Supporting Information

Photocatalytic Redox-Neutral Selective Single C(sp3)–F Bond Activation of Perfluoroalkyl Imines under Redox-Neutral Conditions

Tao Wang,
† Yuan-Yuan Zong, † Tao Huang, † Xiao-Ling Jin, † Li-Zhu Wu, ‡ and Qiang Liu
*, †

^aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

^bKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China *E-mail: liuqiang@lzu.edu.cn

I.	General Information	S2
II.	Detailed Reaction Optimizations	S3
III.	Gram-Scale Synthesis of 3a	S6
IV.	General Synthetic Procedures	S6
1	. General Procedure for Single C(sp ³)-F Bond Cleavage	S6
2.	. Synthesis of Alkenylpyridines	S6
3.	. Synthesis of Perfluoroalkyl Group Substituted Iminosulfides	S8
4.	. Derivatization of Products	S18
V.	Mechanistic Studies	S19
1.	. The Radical Trapping Experiments	S19
2.	. For the Labeling experiments:	S20
3.	. General procedure of the ESR experiments	S20
4.	. The Cyclic Voltammetry Experiments	S22
5.	. Quenching studies of Ir(ppy) ₃ with 1a and 2a	S23
6	. Theoretical Calculations	S25
VI.	X-Ray Crystal Structure Determinations	S51
VII	. Characterization Data of the Products	S52
VII	I. References	S74
	NMR Spectra of the Substrates	S75
	NMR Spectra of the Products	S126

I. General Information

Unless otherwise stated, all reactions were set up in a clear Pyrex glass tube and were stirred with a Teflon-coated magnetic stir bar. Analytical grade solvents and commercially available reagents were used to conduct the reactions. All other reagents were purchased from TCI, Innochem, J&K, Adamas, and Energy chemicals, and were directly used without further purifications. TLC was performed on silica HSGF254 plates and visualized by quenching of UV fluorescence (λ max= 254 nm). Silica gel (200–300 mesh) was purchased from Qingdao Haiyang Chemical Co., China. All reaction glassware was flame- or oven-dried before use. Reactions were monitored by thin-layer chromatography (TLC), and the products were obtained by column chromatography on silica gel.

¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded on a Bruker AM-400 MHz spectrometer (400MHz, 101MHz and 376MHz). ¹H NMR spectra were reported in parts per million (ppm) downfield of tetramethylsilane (TMS) and internally referenced to TMS (0.00 ppm) or the residual protic-solvent peak in CDCl₃ (7.26 ppm). ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.0 ppm). In reporting spectral data the format (δ) chemical shift (multiplicity, *J* values in Hz, integration) was used with the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. High-resolution mass spectra (HRMS) were measured on a TOF by ESI and performed on Bruker Daltonics APEXII 47e Specifications. The X-ray single-crystal determination was performed on a Bruker APEX II X-ray single crystal diffractometer. The melting point was measured by WRX® X-4B.

II. Detailed Reaction Optimizations

C_2F_5 S + 2 equiv	N 0.1 mmol	$Ir(ppy)_3 (1 mol\%)$ $H_2O (10 equiv)$ $Cs_2CO_3 (2 equiv)$ $CH_3CN (0.05 M)$ rt, 24 h, blue LEDs	→ N CF ₃
Substrate		Yield (%) ^[b]	dr ^[c]
C_2F_5 S 1a		83	12:1
C_2F_5 S N		72	11:1
C_2F_5 S 1w		71	12:1
$C_{2}F_{5}$		68	10:1
C_2F_5 S $1y$ CI		62	11:1
C_2F_5 S $1z$ OM_1	e	62	12:1
NPh N C ₂ F ₅ S S 1aa		N.D.	

Table S1. Screening of substrates^[a]

[a] Reaction conditions: 1 (0.2 mmol), 2a (0.1 mmol), Cs_2CO_3 (0.2 mmol), H_2O (1 mmol), $Ir(ppy)_3$ (0.001 mmol) in 2.0 mL of dry CH_3CN with 6 W blue LED irradiation at rt for 24 h, unless otherwise noted. [b] Isolated yield; N.D. = not detected. [c] Detected by ¹⁹F NMR.

C_2F_5 S 2 equiv	+ (N) 0.1 mmol	photocatalyst (1 mol%) H ₂ O (10 equiv) Cs ₂ CO ₃ (2 equiv) CH ₃ CN (0.05 M) rt, 24 h, blue LEDs		N O F CF ₃
Entry	РС		Yield (%) ^[b]	dr ^[c]
1	Ir(ppy) ₃		83	12:1
2	[Ir(dtbbpy)(ppy)	$P_2]PF_6$	N.D	
3	[Ir{dF(CF ₃)ppy} ₂ (dt	bbpy)]PF ₆	N.D	
4	[Ru(bpy) ₃]C	l_2	N.D	
5	Ir(dFppy) ₃		68	16:1
6	Ir(t-Buppy)	3	65	8:1
7	Mes-Acr ⁺ Cl0	D ₄ -	N.D.	
8	4-CzIPN		N.D	
9	Eosin-Y		N.D	
10	no catalyst		N.D	
11	no light		N.D	

Table S2. Screening of catalyst screening and control experiments^[a]

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), Cs_2CO_3 (0.2 mmol), H_2O (1 mmol) and photocatalyst (0.001 mmol) in 2.0 mL of dry CH_3CN with 6 W blue LED irradiation at rt for 24 h, unless otherwise noted. [b] Isolated yield; N.D. = not detected. [c] Detected by ¹⁹F NMR.

Table S3. Screening of solvents^[a]

NPh +	N N	Ir(ppy) ₃ (1 mol%) H ₂ O (10 equiv) Cs ₂ CO ₃ (2 equiv)	
C_2F_5 S \sim 0.1 mmol	2 equiv	solvents (0.05 M) rt, 24 h, blue LEDs	N F
Entry	solvents	Yield (%) ^[b]	dr ^[c]
1	CH ₃ CN	72	12:1
2	AcOEt	N.D	
3	DMF	67	11:1
4	DMSO	45	5:1
5	TFE	N.D	
6	DCM	60	17:1
7	Acetone	69	10:1
8	Dioxane	N.D	
9	Toluene	N.D	
10	THF	N.D	

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), Cs_2CO_3 (0.2 mmol), H_2O (1 mmol), $Ir(ppy)_3$ (0.001 mmol) in 2.0 mL of dry solvent with 6 W blue LED irradiation at rt for 24 h, unless otherwise noted. [b] Isolated yield; N.D. = not detected. [c] Detected by ¹⁹F NMR.

C_2F_5 S + 0.1 mmol	N 2 equiv	Ir(ppy) ₃ (1 mol%) H ₂ O (10 equiv) base (2 equiv) CH ₃ CN (0.05 M) rt,24 h, blue LEDs	N O CF ₃
Entry	bases	Yield (%) ^[b]	dr ^[c]
1	Cs ₂ CO ₃	75	12:1
2	K ₂ HPO ₄	65	11:1
3	Na ₂ CO ₃	67	13:1
4	K_2CO_3	67	9:1
5	NaHCO ₃	54	10:1
6	Li ₂ CO ₃	60	11:1
7	Na ₂ HPO ₄	63	10:1
8	NaOH	66	12:1
9	КОН	60	11:1

Table S4. Screening of bases^[a]

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), bases (0.2 mmol), H_2O (1 mmol), $Ir(ppy)_3$ (0.001 mmol) in 2.0 mL of dry CH₃CN with 6 W blue LED irradiation at rt for 24 h, unless otherwise noted. [b] Isolated yield; N.D. = not detected. [c] Detected by ¹⁹F NMR.

Table S5. Screening of water^[a]

NPh	+ N	lr(ppy) ₃ (1 mol%) H ₂ O (x equiv) Cs ₂ CO ₃ (2 equiv)	
C ₂ F ₅ S 2 equiv	0.1 mmol	CH ₃ CN (0.05 M) rt,24 h, blue LEDs	N F CF ₃
Entry	H ₂ O (equiv)	Yield (%) ^[b]	dr ^[c]
Entry 1	H ₂ O (equiv) 5	Yield (%) ^[b] 78	dr ^[c] 9:1
Entry 1 2	H ₂ O (equiv) 5 10	Yield (%) ^[b] 78 82	dr^[c] 9:1 12:1
Entry 1 2 3	H ₂ O (equiv) 5 10 25	Yield (%) ^[b] 78 82 69	dr ^[c] 9:1 12:1 10:1
Entry 1 2 3 4	H ₂ O (equiv) 5 10 25 50	Yield (%) ^[b] 78 82 69 55	dr ^[c] 9:1 12:1 10:1 9:1

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), Cs_2CO_3 (0.2 mmol), H_2O (x equiv), $Ir(ppy)_3$ (0.001 mmol) in 2.0 mL of dry CH_3CN with 6 W blue LED irradiation at rt for 24 h, unless otherwise noted. [b] Isolated yield; N.D. = not detected. [c] Detected by ¹⁹F NMR.

III. Gram-Scale Synthesis of 3a

To a 100 mL round-bottom flask equipped with a magnetic stir-bar were added phenyl 2,2,3,3,3pentafluoro-N-phenylpropanimidothioate **1a** (8.0 mmol, 2.0 equiv), 2-vinylpyridine **2a** (4.0 mmol, 1.0 equiv), cesium carbonate (8.0 mmol, 2.0 equiv), and $Ir(ppy)_3$ (0.02 mmol, 0.5 mol%). Then, acetonitrile (40.0 mL) and water (0.72 ml, 10 equiv) were added. The vessel was bubbled with a stream of argon for 20 min via a syringe needle, and the tightly sealed tube was irradiated with a 36 W blue LED at about 20 °C for 48 h. The solvent was removed under reduced pressure by a rotary evaporator. Then, the residue was purified by silica gel column chromatography to give the desired product **3a** with a 72% yield.

IV. General Synthetic Procedures

1. General Procedure for Single C(sp³)-F Bond Cleavage

Polyfluorinated Iminosulfide 1 (0.2 mmol, 2.0 equiv), cesium carbonate (0.2 mmol, 2.0 equiv) and $Ir(ppy)_3$ (0.002 mmol, 1.4 mg, 2.0 mol%) were added into a 10 mL of Schlenk tube equipped with a rubber septum and magnetic stirring bar. Then anhydrous MeCN (2 ml, 0.05 M), distilled water (18 ul, 10 equiv) and the alkene (0.1 mmol, 1 equiv) were added sequentially by syringes. The vessel was bubbled with a stream of argon for 20 min via a syringe needle, and the tightly sealed tube was irradiated with 6 W blue LEDs at about 20 °C. After 24 h, the solvent was removed, and the crude products were purified by column chromatography over silica gel as indicated.

2. Synthesis of Alkenylpyridines

Following the modified procedure of reported literature,¹ to a solution of bromo-substituted azaarene (10.0 mmol, 1.0 equiv.), CsF (4.6 g, 30.0 mmol) and pinacol vinylboronate (2.3 g, 15.0

mmol) in dioxane/H₂O (20 mL/10 mL) was added Pd(PPh₃)₂Cl₂ (0.7 g, 1.0 mmol). After stirring for 16 h at 80 °C under Ar, the mixture was concentrated in vacuo. The crude product was further purified by column chromatography (petroleum ether/ethyl acetate = 40/1 - 10/1) on silica gel to yield the corresponding alkenylpyridines.

Procedure B:

$$R_{1} \stackrel{II}{\underset{l}{\overset{l}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}} + BF_{3}K \stackrel{PdCl_{2}(dppf) \cdot CH_{2}Cl_{2}(2 \text{ mol } \%)}{NEt_{3}, i-PrOH, Reflux} R_{1} \stackrel{II}{\underset{l}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}$$

Following the modified procedure of reported literature,² a solution of chloro-substituted azaarene (8.0 mmol, 1.0 equiv.), potassium vinyltrifluoroborate (1.29 g, 9.6 mmol), $PdCl_2(dppf) \cdot CH_2Cl_2$ (131 mg, 0.16 mmol), and Et_3N (1.12 mL, 8.0 mmol) in iPrOH (125 mL) was heated to reflux for 16 h. The mixture was cooled to room temperature and partitioned between CH_2Cl_2 (100 mL) and H_2O (40 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (2 x 50 mL) and the combined organic layers were washed with brine (100 mL), dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 40/1 - 10/1) gave the vinylpyridines.

Procedure C:

Following the modified procedure of reported literature,³ a solution of 2-bromopyridine (2.37 g, 1.43 mL, 15.0 mmol, 1.0 equiv.) in THF (19 mL, 0.8 M) was cooled to -78 °C. n-Butyllithium (15.8 mmol, 1.1 equiv.) was then slowly added and the reaction mixture was stirred at -78 °C for 10 min. After that time, the corresponding ketone (15.0 mmol, 1.0 equiv.) was added to the above solution and the reaction mixture was stirred for 15 h while slowly warming up to 23 °C. NH₄Cl (aq) (20 mL) and EtOAc (20 mL) was added, the layers were separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The organic extracts were combined, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexanes/ EtOAc (9:1 to 4:2 (v/v)), to afford the title compound pyridine alcohol. Concentrated H₂SO₄ (5 mL) was added to the above alcohol and stirred at 100 °C for 1 h. Crashed ice was added and neutralized with NaOH solution to PH = 7 - 8. The reaction mixture was extracted with ethyl ether (20 mL×3) then washed with brine and dried over anhydrous sodium sulfate. The solvent was removed by rotary evaporation and purified by silica gel column chromatography to afford the pure products.

3. Synthesis of Perfluoroalkyl Group Substituted Iminosulfides

A 200 mL two-necked flask equipped with a septum cap, a condenser, and a Teflon-coated magnetic stir bar was charged with PPh₃ (34.5 g, 132 mmol), Et₃N (7.3 mL, 53 mmol), CCl₄ (21.1 mL, 220 mmol), and TFA (3.4 mL, 44 mmol). After the solution was stirred for about 10 min (ice bath), an amine (53 mmol) dissolved in CCl₄ (21.1 mL, 220 mmol) was added. The mixture was then refluxed with stirring (3 h). After the reaction was completed, residual solid Ph3PO, PPh3, and Et₃N-HCl were washed with hexane several times. Then the hexane was filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel or neutral alumina to afford the corresponding fluorinated imidoyl chlorides.

To a solution of thiophenol (2.37 g, 1.43 mL, 15.0 mmol, 1.0 equiv.) in THF (19 mL, 0.8 M) was cooled to 0 °C. Sodium hydride (15.8 mmol, 1.1 equiv.) was then slowly added and the reaction mixture was stirred at 0 °C for 10 min. After that time, the corresponding fluorinated imidoyl chlorides (15.0 mmol, 1.0 equiv.) was added to the above solution, and the reaction mixture was stirred for 3 h at room temperature, diluted with diethyl ether (60 mL), and washed with aqueous NaHCO₃ (2 × 30 mL) and brine (30 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the corresponding product.

Chemical Formula: C₁₅H₁₀F₅NS

phenyl 2,2,3,3,3-pentafluoro-*N*-phenylpropanimidothioate (1a)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.30 – 7.25 (m, 2H), 7.24 – 7.12 (m, 5H), 7.07 – 7.00 (m, 1H), 6.81 – 6.74 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 151.7 (t, J = 29.6 Hz), 146.3, 134.7, 129.3, 129.0, 128.7, 126.9, 125.5, 119.0, 118.4 (qt, J = 287.2, 35.7 Hz), 110.2 (tq, J = 259.6, 36.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.70 (s, 3F), -111.18 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{11}F_5NS$ 332.0527; Found 332.0526.

Chemical Formula: C₁₆H₁₂F₅NS

phenyl 2,2,3,3,3-pentafluoro-*N*-(p-tolyl)propanimidothioate (1b) ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.31 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 7.20 – 7.14 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 6.74 (d, *J* = 8.3 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 150.9 (t, *J* = 29.6 Hz), 143.8, 135.5, 134.6, 129.2, 129.1, 128.9, 127.2, 119.4, 118.4 (qt, *J* = 287.4, 35.8 Hz), 110.3 (tq, *J* = 259.7, 36.3 Hz), 20.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.67 (s, 3F), -110.62 (s, 2F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₃F₅NS 346.0683; Found 346.0682.

Chemical Formula: C₁₉H₁₈F₅NS

phenyl N-(4-(tert-butyl)phenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1c)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 – 7.21 (m, 2H), 7.21 – 7.16 (m, 3H), 7.15 – 7.09 (m, 2H), 6.76 – 6.70 (m, 2H), 1.27 (s, 9H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 150.5 (t, *J* = 29.8 Hz), 148.7, 143.5, 134.5, 129.1, 128.9, 127.2, 125.4, 119.1, 118.5 (qt, *J* = 287.3, 36.3 Hz), 110.2 (tq, *J* = 259.6, 36.4 Hz), 34.4, 31.3.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.70 (s, 3F), -111.29 (s, 2F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₉H₁₉F₅NS 388.1153; Found 388.1151.

Chemical Formula: C₁₅H₉F₆NS

phenyl 2,2,3,3,3-pentafluoro-N-(4-fluorophenyl)propanimidothioate (1d)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 – 7.21 (m, 3H), 7.19 – 7.11 (m, 2H), 6.89 – 6.82 (m, 2H), 6.80 – 6.72 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 160.5 (d, *J* = 245.4 Hz), 152.0 (t, *J* = 29.5 Hz), 142.2 (d, *J* = 3.1 Hz), 134.4, 129.4, 129.1, 126.8, 121.0 (d, *J* = 8.3 Hz), 118.4 (qt, *J* = 287.3, 35.7 Hz), 115.5 (d, *J* = 22.8 Hz), 110.4 (tq, *J* = 259.6, 36.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.74 (s, 3F), -111.57 (s, 2F), -117.11 (s, 1F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₅H₁₀F₆NS 350.0433; Found 350.0432.

Chemical Formula: C₁₅H₉CIF₅NS

phenyl N-(4-chlorophenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1e)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 - 7.21 (m, 3H), 7.19 - 7.09 (m, 4H), 6.70 - 6.66 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 152.8 (t, *J* = 29.2 Hz), 144.7, 134.7, 130.9, 129.5,

129.1, 128.7, 127.5, 120.4, 118.4 (qt, *J* = 287.4, 35.8 Hz), 110.0 (tq, *J* = 259.9, 36.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.75 (s, 3F), -111.73 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{10}ClF_5NS$ 366.0137; Found 366.0136.

Chemical Formula: C₁₅H₉BrF₅NS

phenyl *N*-(4-bromophenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1f) ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.28 - 7.20 (m, 5H), 7.19 - 7.13 (m, 2H), 6.64 - 6.59 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 152.9 (t, *J* = 29.3 Hz), 145.2, 134.8, 131.7, 129.5,

129.1, 127.5, 120.7, 118.6, 118.3 (qt, *J* = 287.4, 35.7 Hz), 110.0 (tq, *J* = 260.0, 36.8 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.7 (s, 3F), -111.8 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{10}BrF_5NS$ 409.9632; Found 409.9631.

Chemical Formula: C17H12F5NO2S

methyl 4-((2,2,3,3,3-pentafluoro-1-(phenylthio)propylidene)amino)benzoate (1g)

S10

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.86 – 7.79 (m, 2H), 7.25 – 7.20 (m, 3H), 7.16 – 7.08 (m, 2H), 6.78 – 6.71 (m, 2H), 3.89 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 166.4, 153.4 (t, *J* = 29.3 Hz), 150.2, 135.0, 130.3, 129.7, 129.1, 126.6, 126.2, 118.4, 118.3 (qt, *J* = 287.6, 35.7 Hz), 109.9 (tq, *J* = 261.1, 37.0 Hz), 52.04.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.83 (s, 3F), -112.09 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{13}F_5NO_2S$ 390.0582; Found 390.0581.

Chemical Formula: C₂₂H₁₄F₅NOS

phenyl N-(4-benzoylphenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1h)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.75 – 7.69 (m, 2H), 7.64 – 7.55 (m, 3H), 7.52 – 7.44 (m, 2H), 7.29 – 7.21 (m, 3H), 7.19 – 7.11 (m, 2H), 6.81 – 6.75 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 195.4, 153.2 (t, *J* = 29.1 Hz), 149.7, 137.6, 134.9, 134.1, 132.3, 131.0, 129.8, 129.6, 129.2, 128.3, 126.3, 118.3, 118.3 (qt, *J* = 287.7, 35.7 Hz), 109.9 (tq, *J* = 261.2, 37.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.80 (s, 3F), -112.24 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{15}F_5NOS$ 436.0789; Found 436.0785.

Chemical Formula: C₂₁H₁₄F₅NOS

phenyl 2,2,3,3,3-pentafluoro-N-(4-phenoxyphenyl)propanimidothioate (1i)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.37 – 7.30 (m, 2H), 7.29 – 7.16 (m, 5H), 7.10 (td, J = 7.5, 1.1 Hz, 1H), 6.95 – 6.89 (m, 2H), 6.87 – 6.79 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 157.2, 155.0, 150.5 (t, *J* = 29.3 Hz), 141.3, 134.2, 129.7, 129.1, 129.1, 127.2, 123.3, 121.3, 119.1, 118.6, 118.5 (qt, *J* = 287.4, 35.9 Hz), 110.2 (tq, *J* = 259.5, 36.5 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.65 (s, 3F), -111.41 (s, 2F).

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₅F₅NOS 424.0789; Found 424.0788.

Chemical Formula: C₁₆H₉F₈NS

phenyl 2,2,3,3,3-pentafluoro-*N*-(4-(trifluoromethyl)phenyl)propanimidothioate (1j) ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.35 (d, *J* = 8.3 Hz, 2H), 7.24 - 7.16 (m, 3H), 7.14 - 7.07 (m, 2H), 6.73 (d, *J* = 8.2 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 153.9 (t, *J* = 29.2 Hz), 149.1, 135.0, 129.7, 129.2, 127.0 (q, *J* = 32.6 Hz), 126.2, 125.8 (q, *J* = 3.9 Hz), 124.0 (q, *J* = 271.7 Hz), 118.7, 118.4 (qt, *J* = 287.3, 35.6 Hz), 109.9 (tq, *J* = 260.2, 37.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -62.39 (s, 3F), -80.87 (s, 3F), -112.57 (s, 2F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₆H₁₀F₈NS 400.0401; Found 400.0399.

Chemical Formula: C₁₆H₁₂F₅NS

phenyl 2,2,3,3,3-pentafluoro-N-(o-tolyl)propanimidothioate (1k)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.27 - 7.18 (m, 3H), 7.16 - 7.12 (m, 2H), 7.06 - 7.02 (m, 1H), 6.98 - 6.91 (m, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 1.98 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 151.3 (t, *J* = 29.4 Hz), 145.1, 134.7, 130.2, 129.4, 128.9, 127.8, 126.7, 126.0, 125.7, 117.1, 118.5 (qt, *J* = 287.3, 35.3 Hz), 110.0 (tq, *J* = 259.6, 36.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.7 (s, 3F), -111.5 (s, 2F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₆H₁₃F₅NS 346.0683; Found 346.0684.

Chemical Formula: C₁₅H₉CIF₅NS

phenyl N-(3-chlorophenyl)-2,2,3,3,3-pentafluoropropanimidothioate (11)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 – 7.20 (m, 3H), 7.18 – 7.13 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.94 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 6.68 (t, *J* = 2.0 Hz, 1H), 6.61 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 153.3 (t, *J* = 29.0 Hz), 147.1, 134.8, 134.4, 129.7, 129.6, 129.1, 126.2, 125.2, 119.0, 118.4 (qt, *J* = 287.3, 35.6 Hz), 117.1, 110.0 (tq, *J* = 260.0, 36.8 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.80 (s, 3F), -112.11 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{10}ClF_5NS$ 366.0137; Found 366.0136.

Chemical Formula: C₁₅H₉BrF₅NS

phenyl N-(3-bromophenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1m)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.23 (dtd, *J* = 6.9, 3.2, 1.2 Hz, 3H), 7.18 – 7.13 (m, 2H), 7.09 (ddd, *J* = 8.0, 1.9, 1.1 Hz, 1H), 7.00 (t, *J* = 7.9 Hz, 1H), 6.83 (t, *J* = 1.9 Hz, 1H), 6.66 (ddd, *J* = 7.9, 2.0, 1.1 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 153.3 (t, *J* = 29.2 Hz), 147.1, 134.8, 130.0, 129.6, 129.1, 128.0, 126.1, 122.4, 121.8, 118.3 (qt, *J* = 287.4, 35.7 Hz), 117.5, 110.4 (tq, *J* = 260.0, 36.9 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.80 (s, 3F), -112.21 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{10}BrF_5NS$ 409.9632; Found 409.9633.

Chemical Formula: C₁₈H₁₄F₅NO₂S

ethyl 3-((2,2,3,3,3-pentafluoro-1-(phenylthio)propylidene)amino)benzoate (1n)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.68 (dt, *J* = 7.9, 1.3 Hz, 1H), 7.36 (t, *J* = 1.8 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.20 – 7.09 (m, 3H), 6.93 (ddd, *J* = 7.9, 2.2, 1.1 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 165.8, 153.0 (t, *J* = 29.3 Hz), 146.1, 134.7, 131.0, 129.4, 129.1, 128.7, 126.4, 126.3, 123.2, 112.0, 118.5 (qt, *J* = 288.6, 35.4 Hz), 110.4 (tq, *J* = 260.3, 36.3 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.74 (s, 3F), -111.91 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{15}F_5NO_2S$ 404.0738; Found 404.0735.

Chemical Formula: C₁₅H₈Cl₂F₅NS

phenyl *N*-(3,4-dichlorophenyl)-2,2,3,3,3-pentafluoropropanimidothioate (10) ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.29 – 7.14 (m, 6H), 6.75 (d, *J* = 2.4 Hz, 1H), 6.57 (dd, *J* = 8.5, 2.4 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 154.1 (t, *J* = 29.0 Hz), 145.2, 134.8, 132.5, 130.2, 129.7, 129.2, 128.7, 126.0, 120.8, 118.5, 118.3 (qt, *J* = 287.5, 35.6 Hz), 109.8 (tq, *J* = 261.2, 37.1 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.85 (s, 3F), -112.48 (s, 2F).

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₉C₁₂F₅NS 399.9747; Found 399.9745.

Chemical Formula: C₁₇H₁₄F₅NS

phenyl *N*-(3,5-dimethylphenyl)-2,2,3,3,3-pentafluoropropanimidothioate (1p) ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.29 – 7.24 (m, 2H), 7.22 – 7.12 (m, 3H), 6.64 (s, 1H), 6.37 (s, 2H), 2.20 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 150.9 (t, *J* = 29.6 Hz), 146.2, 138.4, 134.7, 129.1, 128.8, 127.1, 127.0, 118.5 (qt, *J* = 287.4, 35.9 Hz), 116.6, 110.2 (tq, *J* = 259.7, 36.4 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.71 (s, 3F), -111.14 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_5NS$ 360.0840; Found 360.0837.

Chemical Formula: C₁₉H₁₂F₅NS

phenyl 2,2,3,3,3-pentafluoro-*N*-(**naphthalen-2-yl**)**propanimidothioate (1q)** ¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.75 – 7.61 (m, 3H), 7.47 – 7.36 (m, 2H), 7.25 – 7.19 (m, 2H), 7.17 (d, *J* = 2.0 Hz, 1H), 7.09 – 6.94 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 152.0 (t, *J* = 29.5 Hz), 143.8, 134.7, 133.2, 131.3, 129.2, 128.8, 128.7, 127.7, 127.6, 126.7, 126.5, 125.5, 119.2, 118.5 (qt, *J* = 287.3, 35.7 Hz), 116.0, 110.2 (tq, *J* = 259.8, 36.6 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.64 (s, 3F), -111.14 (s, 2F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₉H₁₃F₅NS 382.0683; Found 382.0682.

Chemical Formula: C₁₆H₉CIF₇NS

phenyl N-(4-chlorophenyl)-2,2,3,3,4,4,4-heptafluorobutanimidothioate (1r)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.24 - 7.19 (m, 1H), 7.18 - 7.09 (m, 4H), 7.08 - 7.01 (m, 2H), 6.66 - 6.58 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 152.4 (t, *J* = 27.7 Hz), 144.6, 134.3, 130.7, 129.3, 129.1, 128.6, 126.7, 120.2. carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.87 (t, *J* = 9.3 Hz, 3F), -109.77 (q, *J* = 9.4 Hz, 2F), -123.50 – -124.37 (m, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₀ClF₇NS 416.0105; Found 416.0104.

Chemical Formula: C₁₇H₁₀F₉NS

phenyl 2,2,3,3,4,4,5,5,5-nonafluoro-N-phenylpentanimidothioate (1s)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.21 – 7.07 (m, 7H), 7.01 – 6.95 (m, 1H), 6.75 – 6.69 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 151.4 (t, *J* = 28.0 Hz), 146.1, 134.3, 129.1, 129.0, 128.6, 127.1, 125.4, 118.9. carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.94 (t, *J* = 9.8 Hz, 3F), -108.53 (t, *J* = 12.8 Hz, 2F), -120.66 (dddt, *J* = 13.3, 9.9, 6.5, 3.5 Hz, 2F), -124.77 (tt, *J* = 12.9, 4.1 Hz, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{11}F_9NS$ 432.0463; Found 432.0460.

Chemical Formula: C₁₈H₁₀F₁₁NS

phenyl 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-*N*-phenylhexanimidothioate (1t)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.20 – 7.05 (m, 7H), 7.00 – 6.94 (m, 1H), 6.71 (d, J = 7.7 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 151.4 (t, *J* = 27.9 Hz), 146.2, 134.2, 129.1, 129.0, 128.6, 127.1, 125.3, 118.9. carbons corresponding to the C₅F₁₁ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.76 (t, *J* = 10.3 Hz, 3F), -108.38 (t, *J* = 13.9 Hz, 2F), -119.99 (p, *J* = 8.4 Hz, 2F), -121.49 - -121.65 (m, 2F), -126.19 (tt, *J* = 13.7, 3.9 Hz, 2F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₁₈H₁₀F₁₁NS 482.0431; Found 482.0428.

Chemical Formula: C₁₄H₉F₅N₂S

pyridin-2-yl 2,2,3,3,3-pentafluoro-N-phenylpropanimidothioate (1v)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.36 (ddd, J = 4.9, 2.0, 0.9 Hz, 1H), 7.41 (td, J = 7.7, 1.9 Hz, 1H), 7.22 – 7.16 (m, 2H), 7.13 (dt, J = 7.9, 1.0 Hz, 1H), 7.07 – 7.00 (m, 2H), 6.91 – 6.85 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 152.1, 150.2, 148.6 (t, *J* = 29.9 Hz), 136.8, 128.6, 126.9, 126.0, 122.3, 119.3, 118.5 (qt, *J* = 287.5, 36.0 Hz), 109.7 (tq, *J* = 259.5, 36.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.91 (s, 3F), -112.59 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{14}H_{10}F_5N_2S$ 333.0479; Found 333.0478.

Chemical Formula: C₁₄H₉F₅N₂S

pyridin-4-yl 2,2,3,3,3-pentafluoro-*N***-phenylpropanimidothioate (1w)** ¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.38 – 8.31 (m, 2H), 7.23 – 7.16 (m, 2H), 7.10 – 7.03 (m, 3H), 6.86 – 6.80 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 149.9, 148.1 (t, J = 30.0 Hz), 145.7, 138.6, 128.8, 126.9, 126.4, 119.3, 118.3 (qt, J = 287.4, 35.8 Hz), 109.4 (tq, J = 259.3, 37 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.74 (s, 3F), -112.04 (s, 2F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₀F₅N₂S 333.0479; Found 333.0478.

Chemical Formula: C₁₃H₈F₅N₃S

pyrimidin-2-yl 2,2,3,3,3-pentafluoro-N-phenylpropanimidothioate (1x)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.45 (d, *J* = 4.9 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.16 – 7.11 (m, 1H), 7.03 – 6.96 (m, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 167.8, 157.8, 146.6, 145.9 (t, *J* = 30.2 Hz), 128.7, 126.6, 119.5, 118.6 (qt, *J* = 287.6, 36.3 Hz), 118.3, 109.3 (tq, *J* = 259.1, 36.8 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -81.06 (s, 3F), -113.32 (d, *J* = 2.0 Hz, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_9F_5N_3S$ 334.0432; Found 334.0430.

Chemical Formula: C₁₅H₉CIF₅NS

4-chlorophenyl 2,2,3,3,3-pentafluoro-*N*-phenylpropanimidothioate (1y)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 - 7.16 (m, 4H), 7.15 - 7.05 (m, 3H), 6.78 - 6.73 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 151.2 (t, *J* = 29.7 Hz), 146.2, 136.0, 135.9, 129.2, 128.8, 125.6, 125.2, 118.9, 118.3 (qt, *J* = 287.2, 35.6 Hz), 110.1 (tq, *J* = 259.7, 36.7 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.70 (s, 3F), -111.21 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{10}ClF_5NS$ 336.0137; Found 336.0135.

Chemical Formula: C₁₆H₁₂F₅NOS

S17

4-methoxyphenyl 2,2,3,3,3-pentafluoro-N-phenylpropanimidothioate (1z)

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.26 - 7.19 (m, 4H), 7.09 - 7.03 (m, 1H), 6.81 - 6.76 (m, 2H), 6.73 - 6.67 (m, 2H), 3.75 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 159.7, 151.9 (t, *J* = 29.6 Hz), 145.4, 135.9, 127.7, 124.3, 117.9, 117.4 (qt, *J* = 287.4, 35.6 Hz), 109.4 (tq, *J* = 260.0, 36.4 Hz), 115.9, 113.6, 54.3.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.67 (s, 3F), -110.84 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{13}F_5NOS$ 362.0633; Found 362.0631.

Chemical Formula: C₁₆H₉F₅N₂S₂

benzo[d]thiazol-2-yl 2,2,3,3,3-pentafluoro-N-phenylpropanimidothioate (1aa)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.91 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.45 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.37 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.04 – 6.98 (m, 1H), 6.97 – 6.91 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 155.3, 152.8, 145.8 (t, *J* = 30.7 Hz), 145.8, 137.4, 128.7, 126.5, 125.9, 123.3, 121.1, 119.2, 118.3 (qt, *J* = 287.6, 35.8 Hz), 109.6 (tq, *J* = 260.2, 37.3 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.84 (s, 3F), -112.01 (s, 2F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{10}F_5N_2S_2$ 389.0200; Found 389.0199.

4. Derivatization of Products

To a reaction vial was added **3a** (33.0 mg, 0.1 mmol, 1.0 equiv.) under N₂. Subsequently, 9-BBN (0.5 M in THF, 0.5 mL, 2.2 equiv.) was added via syringe, and the reaction mixture was stirred at 65 °C for 2 hours. After completion, 1 M HCl and EtOAc were added. The two-phase mixture was separated, and then the aqueous phase was basified to pH > 10 with Na₂CO₃ and extracted with EtOAc. The resulting organic layer was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the desired product **5a** (21.6 mg, 70%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.64 – 8.58 (m, 1H), 7.59 (td, *J* = 7.7, 1.8 Hz, 1H), 7.30 – 7.14 (m, 4H), 6.83 – 6.75 (m, 1H), 6.51 (dd, *J* = 8.8, 1.1 Hz, 2H), 5.13 (dd, *J* = 9.7, 1.8 Hz, 1H), 4.16 – 4.03 (m, 1H), 4.02 – 3.88 (m, 1H), 3.08 – 2.88 (m, 1H), 2.75 – 2.60 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 161.5, 149.6, 145.6, 137.0, 129.4, 122.3, 120.3, 118.0, 112.6, 63.9, 54.6 (d, *J* = 24.2 Hz), 38.7 (d, *J* = 21.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.34 (d, *J* = 6.2 Hz, 3F), -162.44 (q, *J* = 6.4 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{15}F_4N_2$ 311.1166; Found 311.1164.

To a solution of **3a** (33.0 mg, 0.1 mmol, 1.0 equiv.) in THF (1.0 mL, 0.1 M) was slowly added lithium aluminum hydride (8.0 mg, 0.2 mmol, 2.0 equiv.), and the reaction mixture was stirred at r.t. for 2 hours. When the reaction was completed, the reaction was quenched with 1 M NaOH, H_2O and extracted with EtOAc. The separated organic layer was washed twice with water and once with brine, then dried over anhydrous Na_2SO_4 , the resulting organic layer was concentrated under reduced pressure, and the crude product was purified by chromatography on silica gel to afford the desired product **5b** (18.0 mg, 55%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.49 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.72 (td, J = 7.6, 1.8 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.24 – 7.11 (m, 3H), 6.84 (d, J = 7.7 Hz, 2H), 6.80 – 6.74 (m, 1H), 6.55 (d, J = 9.9 Hz, 1H), 5.75 (d, J = 9.9 Hz, 1H), 5.17 (dt, J = 8.9, 3.2 Hz, 1H), 3.07 (td, J = 14.7, 8.9 Hz, 1H), 2.51 – 2.36 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 159.8, 149.9, 142.8, 137.6, 129.2, 123.0, 122.5, 119.3, 114.2, 80.9 (d, *J* = 20.3 Hz), 61.0, 37.0 (d, *J* = 22.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.30 (d, *J* = 9.5 Hz, 3F), -172.66 (q, *J* = 9.2 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{15}F_4N_2O$ 327.1115; Found 327.1113.

V. Mechanistic Studies

1. The Radical Trapping Experiments

To a 10 mL pyrex glass tube which equipped with a magnetic stirring bar were added **1a** (0.2 mmol), **2a** (0.1 mmol), Cs₂CO₃ (0.2 mmol), H₂O (10 equiv), Ir(ppy)₃ (0.001 mmol) followed by TEMPO (3.0 equiv) in dry CH₃CN (2 mL). The reaction mixture was stirred at rt and irradiated by

6W blue LEDs for 24 hours. The reaction was monitored by TLC. No desired product **3a** was observed.

2. For the Labeling experiments:

Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), Cs_2CO_3 (0.2 mmol), $H_2^{18}O$ (1 mmol), $Ir(ppy)_3$ (0.001 mmol), 6 W blue LEDs, rt, 24 h. Isolated yields. The ¹⁸O was determined by HRMS.

3. General procedure of the ESR experiments

EPR spectra were recorded at 300K using a Bruker A300 EPR spectrometer at 9.4447 GHz. The EPR parameters were set as the following: sweep width 120 G, center field 3362 G, time constant 81.92 ms, sweep time 60.00 s, microwave power 23.49 mW, modulation amplitude 1.00 G, modulation frequency 100 kHz, and receiver gain 1.00×10^4 .

To gain more insight into the possible radical intermediates, EPR trapping experiments were conducted in the presence of a spin trapping agent, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) (33.9 mg). As a result, the formation of the DMPO spin adduct of radical was observed ($a_N = 13.61$ G, $a_H = 24.18$ G, and g = 2.0069) by EPR and HRMS (ESI+) (Figure S1).

Figure S1. EPR spectra in the absence and presence of irradiation.

4. The Cyclic Voltammetry Experiments

Cyclovoltammetry experiments were carried out on a CH electrochemical workstation using a glassy carbon working electrode, Hg/HgCl₂ reference electrode, and Pt wire counter electrode. The measurements were taken at room temperature in dry CH₃CN containing 0.1 M Bu₄NPF₆ as electrolyte. Scan Rate (V/s) = 0.05.

Figure S2. CV of 1a

Figure S3. CV of 3a

5. Quenching studies of Ir(ppy)₃ with 1a and 2a

Fluorescence quenching experiments were performed for a combination of $Ir(ppy)_3$ with **1a** or **2a** involved in the model reaction, and the results are depicted in respectively Figure S4 and Figure S5.

Figure S4. Fluorescence emission spectra of $Ir(ppy)_3$ in acetonitrile in the absence and presence of **1a**.

Figure S5. Fluorescence emission spectra of $Ir(ppy)_3$ in acetonitrile in the absence and presence of **2a**.

Figure S6. Stern-Volmer plot for the fluorescence quenching

6. Theoretical Calculations

Computational Details All calculations were performed using density functional theory as implemented within the Gaussian 16 (revision A.03) suite of programs⁴. Geometry optimizations were performed at the (U)M06-2X⁵⁻⁶ level of theory with 6-311+ G(d,p) basis set, and vibrational frequencies of all the intermediates and transition states were performed at the (U)M06-2X/6-31+G(d,p). For modeling reactions conducted in solvent, solvation effects were incorporated using the SMD⁷ model in geometry optimization, and frequency analysis (Acetonitrile, Eps= 35.688). All stationary points were confirmed to have no imaginary frequencies. Reported Gibbs free energies and enthalpies include thermal corrections computed at 298.15 K and 1 atm, and are reported in kcal/mol using the conversion of 1 Hartree = 627.5095kcal/mol. Molecular visualizations were created using CYLview⁸.

(A)

Figure S7. (A) SOMO of radical anion A. (B) The bond length of 1a and radical anion A.

Figure S8. DFT calculated reaction energy profiles. Calculations were performed at the (U)M06- $2X/6-31+G(d,p)/SMD(CH_3CN)$ level of theory. Free energies are in kcal·mol⁻¹.

Figure S9. An alternative mechanism for styrene.

(B)

Figure S10. DFT-computed free energy changes of vinylpyridine to form D1a and D1b.

Figure S11. DFT-computed free energy changes of styrene to form D2a and D2b.

Energy profile at the (U)M06-2X/6-311G(d,p)/SMD(CH₃CN)

Figure S12. DFT-computed free energy changes of to form D3a and D3b.

NS.			
F			
F ₃ C ∽			
С	-0.53302800	3.75714000	0.51900300
С	-0.23133900	2.41160300	0.34143800
С	1.06195100	2.00529700	-0.06806300
С	2.02580300	3.02334100	-0.26325900
С	1.70957600	4.36199200	-0.09263600
С	0.42349100	4.74713400	0.29680400
Ν	1.46635200	0.70378200	-0.22599300
С	0.60733700	-0.30356000	-0.46534800
С	1.20198800	-1.65233800	-0.41557400
S	-0.81401300	-0.20266500	-1.54297900
С	-2.23542500	-0.42532600	-0.48032800
С	-2.14102400	-0.74265600	0.87432700
С	-3.29919000	-0.90194600	1.63209300
С	-4.55448500	-0.75270000	1.04933000
С	-4.64569400	-0.43916400	-0.30575200
С	-3.49508400	-0.27531700	-1.06906200
F	0.26207400	-2.62158800	-0.19850500
F	1.83159100	-2.06414800	-1.59304800
С	2.28122200	-1.86073600	0.67041000
F	3.43405800	-1.26828200	0.37173900
F	2.53904600	-3.17181300	0.79922000
F	1.87025800	-1.42073300	1.86035200
Н	-1.53095600	4.03503700	0.84319200
Н	-0.98610800	1.66511900	0.55397600
Н	3.02664700	2.72885400	-0.56190000

Н	2.47282100	5.11486100	-0.26037500
Н	0.17745900	5.79364900	0.43284600
Н	-1.16536100	-0.85928200	1.33369900
Н	-3.21444200	-1.14610400	2.68538500
Н	-5.45233900	-0.87851800	1.64303800
Н	-5.61667000	-0.31776900	-0.77301100
Н	-3.57503700	-0.02776200	-2.12292600

-•٦

F F F			
С	-4.31002500	-1.67081100	-0.77659500
С	-3.13812600	-0.93978500	-0.98764200
С	-2.66027900	-0.08344000	0.01898800
С	-3.38191100	0.05826900	1.21763400
С	-4.53259500	-0.70023500	1.42950600
С	-5.00244700	-1.56558100	0.43340500
Ν	-1.52382800	0.72566900	-0.15017100
С	-0.37885900	0.34816400	-0.55009500
С	0.61057100	1.50859000	-0.77370500
S	0.08382900	-1.33493400	-1.01916100
С	1.67119100	-1.60782400	-0.20858100
С	1.78252400	-1.53809000	1.18650000
С	3.00370400	-1.84130400	1.79487800
С	4.09878500	-2.23752700	1.02003000
С	3.97434500	-2.32560400	-0.37024500
С	2.76338400	-2.00545900	-0.99059100
F	1.84520200	1.07366600	-1.13754700
F	0.14968100	2.28886300	-1.80472200
С	0.81767200	2.46207300	0.44584600
F	-0.26686200	3.21191000	0.68788900
F	1.84812100	3.29497000	0.19731300
F	1.10900200	1.75672700	1.55380100
Н	-4.67956900	-2.32313000	-1.56261700
Н	-2.62412800	-1.00121800	-1.94147900
Н	-3.02200800	0.74828500	1.97483100
Н	-5.07199600	-0.60393800	2.36737000
Н	-5.90903000	-2.14141200	0.59482900
Н	0.92830900	-1.25303400	1.79249400
Н	3.09260000	-1.77794400	2.87564400
Н	5.04340200	-2.48016800	1.49819100
Н	4.82084000	-2.63443200	-0.97683700

2.67321500	-2.05760000	-2.07126900

C C

С С С С N С С S С С С С С С F F С F F F Н Н Н Н Н Н Н Н Н Η

;	Г	Ts1			
			-0.38594200	-0.71496600	0.18278000
			0.70794700	0.14537100	0.20031800
			1.29153900	0.58820600	-1.00114200
			0.71381700	0.18104400	-2.21944100
			-0.39091400	-0.66706500	-2.22740200
			-0.94129900	-1.12994800	-1.03032700
			2.35504300	1.47990200	-0.92533800
			3.41589800	1.40695100	-1.70704700
			4.29419800	2.50698700	-1.74226400
			3.85338400	0.00223300	-2.75590300
			5.30821200	-0.58501100	-1.89604200
			5.39790100	-0.56400700	-0.50039200
			6.53255700	-1.07556600	0.12684800
			7.57022400	-1.62683100	-0.62738400
			7.47019300	-1.65782600	-2.01793700
			6.34625800	-1.13134900	-2.65569900
			5.53204000	2.32491400	-2.22297400
			3.79243900	3.72548600	-3.03481500
			4.29905500	3.53879700	-0.63006200
			3.14632000	4.19446300	-0.48799600
			5.26355600	4.44812900	-0.83577300
			4.57216300	2.95908700	0.56147400
			-0.81114800	-1.05829800	1.12163300
			1.13729000	0.47849600	1.14119300
			1.11180400	0.56229800	-3.15573200
			-0.82752600	-0.96337100	-3.17708200
			-1.80018400	-1.79384100	-1.04235400
			4.58744000	-0.14923800	0.09362300
			6.59941400	-1.05033400	1.21055700
			8.44997000	-2.02818200	-0.13391600
			8.27329900	-2.08032600	-2.61452000
			6.28212600	-1.13840300	-3.74031300
			0.00000000	0.00000000	0.00000000

1

F F

S30

۶ N _S S			
C INTI	-3 00886	_1 00702	-0.819/1
C C	-3.99000	1 22550	0.023
C C	-2.0+330	-0.25087	0.06018
C C	-2.5445	-0.23987	1 13383
C C	-/ 50281	-0.86867	1.15505
C C	-4.8679	-0.80807	0 26698
N	-1.45451	0 58688	0.20078
C C	-0.25752	0.33006	-0.44096
C C	0.61711	1 42624	-0.51708
S S	0.33554	-1 30042	-0.99206
S C	1 93374	-1 42906	-0 16988
C	2 05012	-1 26236	1 21749
C	3 29158	-1 44478	1.21719
C	4 40707	-1 81878	1.05137
C	4 28089	-2.00185	-0 30597
C	3 04784	-1 79956	-0.93408
F	1.79856	1.32543	-1.13793
C	0.33899	2.81147	0.01498
F	-0.67954	3.4313	-0.63584
F	1.43053	3.5948	-0.12558
F	0.01498	2.80473	1.32982
Н	-4.22584	-2.72332	-1.59527
Н	-2.21232	-1.32779	-1.79834
Н	-3.24415	0.69593	1.87254
Н	-5.27216	-0.72866	2.07797
Н	-5.76225	-2.44931	0.34266
Н	1.1832	-0.99437	1.81383
Н	3.38144	-1.30662	2.90574
Н	5.36794	-1.96846	1.55816
Н	5.1428	-2.29075	-0.90068
Н	2.95715	-1.92302	-2.0091

С	1.58956000	1.72106000	2.43429700
С	2.46030100	2.78602000	2.61836700
С	3.16871600	3.30939600	1.53633200
Ν	0.51279800	0.10388600	1.04835500
С	-0.35460000	-0.06855300	0.12009000
С	-1.10452200	-1.30601900	0.18542300
S	-0.70231500	1.03363200	-1.26029400
С	-2.46457000	1.20984800	-1.02768700
С	-3.01015500	1.39346600	0.24429400
С	-4.38498700	1.55343700	0.38678300
С	-5.21256800	1.56080900	-0.73351300
С	-4.66139800	1.39468200	-2.00136600
С	-3.29053200	1.20720300	-2.15157600
С	0.32879500	-2.94815300	-0.57006600
F	-2.06314500	-1.52315200	-0.71317000
С	1.55543300	-2.59555100	-0.11469300
С	2.43447900	-1.68592600	-0.84839200
С	3.68949000	-1.33394200	-0.33102300
С	4.51633400	-0.49981400	-1.07102300
С	4.07036800	-0.03630300	-2.30468700
С	2.79680700	-0.42057700	-2.72844000
Ν	1.99204700	-1.21471600	-2.02953900
С	-1.45168300	-1.92393200	1.52327000
F	-2.23513600	-2.99174500	1.33062400
F	-2.13129000	-1.05742300	2.29283900
F	-0.38423400	-2.31910300	2.21315300
Н	3.55924500	3.14365400	-0.57565300
Н	1.99535700	1.26272600	-0.91047000
Н	1.04730200	1.28374000	3.26638900
Η	2.59949900	3.20076700	3.61193200
Н	3.86148000	4.13169000	1.68468200
Н	-2.36309900	1.40743600	1.11676400
Н	-4.80745100	1.68439600	1.37812600
Н	-6.28346800	1.69417900	-0.61843700
Н	-5.30133400	1.39394000	-2.87830700
Н	-2.86045700	1.04666900	-3.13544300
Η	0.02917600	-2.66923100	-1.57553300
Н	-0.25962900	-3.70276600	-0.05771600
Η	1.90327800	-2.93893800	0.85561800
Н	3.99748700	-1.71355700	0.63808700
Н	5.49119900	-0.21268100	-0.68928400
Н	4.68188900	0.61215200	-2.92257100
Н	2.40298700	-0.06363500	-3.67810200

\bigcirc	
CF₃ CF₃	· INT2

С	2.74278400	3.02663400	0.08812100
С	2.03322600	1.83113500	0.00639700
С	1.14180700	1.48490000	1.02558400
С	0.98357100	2.32504000	2.13275100
С	1.67463700	3.53080500	2.19068300
С	2.55964100	3.88434900	1.17120500
Ν	0.44906800	0.26080800	1.03274800
С	-0.29780400	-0.16022700	0.10495600
С	-0.82730900	-1.58647900	0.26725400
S	-0.66829100	0.68421500	-1.44292000
С	-2.42778500	0.91177300	-1.21168400
С	-2.92944700	1.44591700	-0.02346600
С	-4.30054100	1.64724800	0.11665600
С	-5.16615500	1.34464900	-0.93322900
С	-4.65764400	0.82825400	-2.12411400
С	-3.29057100	0.60006900	-2.26325100
С	0.19994500	-2.62169700	-0.24669300
F	-1.98084300	-1.76084400	-0.46680200
С	1.59123900	-2.41662100	0.24750900
С	2.56602700	-1.71482300	-0.51964800
С	3.85122900	-1.44584900	0.01148200
С	4.76849900	-0.75075400	-0.75651700
С	4.40274900	-0.33896300	-2.04056700
С	3.11291400	-0.64237400	-2.48597100
Ν	2.21223200	-1.29678400	-1.76212600
С	-1.25209800	-1.88152300	1.71864000
F	-1.95816900	-3.02263700	1.75256600
F	-2.02908500	-0.91338300	2.21651900
F	-0.20679700	-2.04468600	2.53677800
Н	3.43831300	3.28729600	-0.70377900
Н	2.17777700	1.15741800	-0.83189400
Н	0.31347400	2.02002600	2.93047700
Н	1.53334200	4.18950700	3.04172100
Н	3.10927400	4.81837500	1.22637000
Н	-2.25084400	1.70031100	0.78617400
Н	-4.68981900	2.05028100	1.04624700
Н	-6.23315800	1.50924300	-0.82322700
Н	-5.32736100	0.58617000	-2.94331200
Н	-2.89275800	0.16745300	-3.17586800

Н	0.17924400	-2.52397700	-1.33557400
Н	-0.18148200	-3.61097700	0.02868700
Н	1.86082900	-2.75146100	1.24252800
Н	4.09433000	-1.77732000	1.01598300
Н	5.75541900	-0.52673900	-0.36396900
Н	5.08976300	0.20356500	-2.68008900
Н	2.78776900	-0.32959900	-3.47624200

	- 135		
С	2.56957600	3.21190100	-0.34346200
С	1.91829800	1.98030500	-0.45792000
С	1.27000000	1.42805600	0.65740200
С	1.29918600	2.10332100	1.88767400
С	1.93997100	3.33970500	1.99007000
С	2.57789500	3.89696300	0.87566900
Ν	0.62960500	0.16499600	0.61716200
С	-0.44222100	-0.13918800	-0.07293900
С	-0.74540200	-1.61782100	0.09419900
S	-1.12262400	0.82703900	-1.42519900
С	-2.88064000	0.90596600	-1.02634700
С	-3.32326600	1.58301700	0.11900100
С	-4.69305300	1.70325800	0.36555200
С	-5.62153800	1.16895800	-0.53547800
С	-5.17653400	0.50719700	-1.68365000
С	-3.80624800	0.36896300	-1.93010000
С	0.62642300	-2.34765100	0.01467800
F	-1.58692200	-2.09804200	-0.91525200
С	1.72349200	-1.50564000	0.59941600
С	2.94567600	-1.26591300	-0.14875500
С	4.12520400	-0.87888900	0.53061100
С	5.28369700	-0.63326700	-0.19676300
С	5.25046500	-0.77077100	-1.58947900
С	4.04267900	-1.15188200	-2.18461100
Ν	2.91877700	-1.39418000	-1.50255500
С	-1.51406900	-1.95084900	1.39513600
F	-1.77860300	-3.27835700	1.47515800
F	-2.70296200	-1.31244700	1.46322300
F	-0.80999500	-1.61706400	2.49817600
Н	3.06981800	3.63427700	-1.21041200
Н	1.92280600	1.44570900	-1.40182000

Н	0.81055500	1.65755200	2.74902200
Н	1.94618000	3.86364300	2.94165200
Н	3.08289000	4.85502200	0.95923200
Н	-2.60487400	2.01131700	0.81134000
Н	-5.03339800	2.22358400	1.25650900
Н	-6.68591800	1.27090200	-0.34371700
Н	-5.89196100	0.08994800	-2.38667100
Н	-3.46164800	-0.15590800	-2.81589400
Н	0.80615400	-2.51027200	-1.05054600
Н	0.56718900	-3.32167500	0.50908300
Н	1.85986500	-1.56555500	1.67414500
Н	4.11473000	-0.78623700	1.61253700
Н	6.19917500	-0.34206100	0.31046200
Н	6.12958700	-0.59144000	-2.19995500
Н	3.98094000	-1.26837900	-3.26521400

С	0.21936600	-3.62049900	0.76244200
С	0.59272100	-2.29621300	0.99513800
С	0.25455500	-1.31729900	0.06674200
С	-0.44109200	-1.64864100	-1.09799700
С	-0.80921700	-2.97029500	-1.32676700
С	-0.48060900	-3.95661200	-0.39447600
Ν	0.62646100	0.04260900	0.31514800
С	-0.32592600	0.99687100	0.65031300
С	0.23665200	2.36024700	0.40189700
S	-1.63076700	0.68629600	1.76273400
С	-2.71491400	-0.33710000	0.75587000
С	-3.03036300	-1.62134300	1.19756700
С	-3.86290500	-2.43347300	0.42769400
С	-4.37135700	-1.96719500	-0.78264900
С	-4.05790900	-0.67811100	-1.21748600
С	-3.23834700	0.14250900	-0.44692900
С	1.67655600	2.09907200	-0.05118000
F	0.21263700	3.16661700	1.53543700
С	1.67538000	0.64446200	-0.52465200
С	2.98665600	-0.09088500	-0.34144700
С	3.42717400	-0.99435800	-1.30884800
С	4.60939200	-1.69404100	-1.08320500
С	5.30498500	-1.46316800	0.09811200

С	4.78172500	-0.53881200	1.00294100
Ν	3.65017000	0 0.13367300	0.79607300
С	-0.55857500	3.14998100	-0.64134800
F	-0.02682900	4.36283300	-0.85045200
F	-1.83634700	3.32261400	-0.29160800
F	-0.54161800	2.49891300	-1.82300800
Н	0.47458400	0 -4.38737900	1.48692300
Н	1.13300200	0 -2.00375600	1.89018800
Н	-0.71807600	-0.86199200	-1.79576000
Н	-1.36825300	-3.22782400	-2.22086100
Н	-0.77552100	-4.98649900	-0.56995000
Н	-2.59974600	-1.99044100	2.12377600
Н	-4.09640000	-3.43788900	0.76754000
Н	-5.01210200	-2.60339700	-1.38535600
Н	-4.46098400	-0.30643700	-2.15475500
Н	-2.99239100	1.14768000	-0.77619400
Н	2.30942000	0 2.18385400	0.83557900
Н	2.02346100	0 2.79520800	-0.81665800
Н	1.37576500	0 0.58227700	-1.58214600
Н	2.84389100	0 -1.15038400	-2.21122700
Н	4.97676200	0 -2.40669400	-1.81485900
Н	6.23091500	0 -1.98181800	0.32086700
Н	5.29725100	0 -0.32858900	1.93688200

Ph	ſ.IJ
PhS-	N N
F ₃ C ¹¹¹¹ F	D1b

С С С С С С N С С S С С С С С С

0.27893600	-0.52107700	0.07950200	
-0.30137700	-1.77159200	-0.12110200	
-1.68819600	-1.92477500	0.01128000	
-2.48166200	-0.82148200	0.35251500	
-1.89023700	0.42447400	0.53996000	
-0.50965700	0.58262100	0.40536000	
-2.26968400	-3.19591000	-0.16188400	
-3.48129400	-3.45805600	-0.78034300	
-3.66502900	-4.93990200	-0.83339400	
-4.14094100	-2.40509100	-2.01319400	
-5.63169800	-1.73754500	-1.27617100	
-5.97459000	-1.90261500	0.06685700	
-7.15628400	-1.33990900	0.55158200	
-7.99352600	-0.61105200	-0.29208500	
-7.64277200	-0.44646600	-1.63336700	
-6.46853600	-1.00894800	-2.12890300	
С	-2.65490500	-5.49032000	0.16178000
---	-------------	-------------	-------------
F	-3.38338800	-5.43618600	-2.12504300
С	-1.54162200	-4.43124400	0.18464000
С	-5.08526400	-5.43773300	-0.56832800
F	-5.13618000	-6.77956600	-0.63503300
F	-5.96581700	-4.96400800	-1.45967300
F	-5.51185000	-5.08304500	0.65221100
Н	1.35395300	-0.41202700	-0.02704100
Н	0.32078500	-2.62066600	-0.38729700
Н	-3.55070400	-0.94358600	0.49192800
Н	-2.51346200	1.27280500	0.80629200
Н	-0.05282500	1.55509100	0.55946800
Н	-5.32645400	-2.46652900	0.73215300
Н	-7.41739800	-1.47422200	1.59726200
Н	-8.91120400	-0.17557500	0.09058600
Н	-8.28650500	0.11794800	-2.30146500
Н	-6.20673800	-0.88365500	-3.17677200
Н	-2.29643600	-6.47520900	-0.13940100
Н	-3.11868300	-5.56180900	1.15003600
Н	-0.79101500	-4.64501600	-0.58551000
С	-0.84659900	-4.34310900	1.52660800
С	-1.50271500	-3.80821100	2.63820400
С	-0.82854600	-3.76997400	3.85288100
Н	-2.51660300	-3.42751400	2.54244300
С	1.03508500	-4.79251900	2.75470000
С	0.47010100	-4.27359600	3.91569300
Н	-1.30616000	-3.35482400	4.73504100
Н	2.04484400	-5.19456600	2.76445600
Н	1.03635400	-4.26404900	4.84068300
Ν	0.39783800	-4.82493700	1.57667100

TS3b

С	0.38771100	-1.01424400	0.27809200
С	-0.50893900	-2.06192400	0.07585300
С	-1.33236900	-2.47844800	1.12698200
С	-1.23930900	-1.86945600	2.38155500
С	-0.35172800	-0.81192500	2.57034900
С	0.46352600	-0.38355400	1.52096800

Ν	-2.19904900	-3.58653800	0.99409700
С	-3.16717800	-3.68906900	0.14012700
С	-3.73150300	-5.09537100	0.17428200
S	-3.50107100	-2.57321100	-1.20754400
С	-5.28066300	-2.41112400	-1.06530100
С	-5.82021200	-1.66457600	-0.01436000
С	-7.20152200	-1.50800400	0.07916800
С	-8.03768900	-2.08252300	-0.88019200
С	-7.49218200	-2.81408500	-1.93518000
С	-6.11026700	-2.98275600	-2.03073900
С	-2.53005000	-6.08559600	0.36753900
F	-4.41052400	-5.39854100	-0.99126800
С	-1.27084100	-5.37198000	0.75920000
С	-4.78545500	-5.28605700	1.27274400
F	-5.21817100	-6.55881400	1.30007800
F	-5.86196600	-4.51531500	1.07118800
F	-4.29550800	-4.99764000	2.48373900
Н	1.02997600	-0.69399700	-0.53664800
Н	-0.55451000	-2.57283700	-0.88239200
Н	-1.86649700	-2.22915500	3.19243000
Н	-0.28841500	-0.33076500	3.54152700
Н	1.16311300	0.43239800	1.67391900
Н	-5.16341300	-1.21766300	0.72711900
Н	-7.62331900	-0.93351700	0.89828400
Н	-9.11363400	-1.95617900	-0.80689500
Н	-8.14038200	-3.25996500	-2.68340200
Н	-5.68084500	-3.56147400	-2.84296900
Н	-2.40423100	-6.56454600	-0.60709900
Н	-2.80169200	-6.86543400	1.08225000
Н	-0.62372800	-5.05208300	-0.05370400
С	-0.57880300	-5.56311100	2.01865500
С	-1.20456400	-6.08812400	3.16563700
С	-0.49218300	-6.14960200	4.35592700
Н	-2.22975100	-6.43966400	3.12228400
С	1.36387200	-5.17674500	3.20459300
С	0.82279700	-5.68623300	4.38580900
Н	-0.95779400	-6.55234400	5.25053400
Н	2.38608900	-4.80525500	3.18748400
Н	1.41641300	-5.71483500	5.29290600
Ν	0.69640800	-5.10789700	2.05293000

С	0.59417000	-1.81708700	0.02316700
С	0.84995400	-2.67086500	1.09502400
С	0.83553700	-2.16503000	2.39858800
С	0.59267200	-0.80718500	2.62763500
С	0.31667100	0.03226200	1.55080600
С	0.31885200	-0.46777600	0.24691700
Ν	1.14364600	-2.98682700	3.50330400
С	0.46485000	-4.00140600	3.83159000
С	1.04994300	-4.85378800	4.96681100
S	-0.99596800	-4.59877900	2.96529700
С	-2.17293800	-4.68347800	4.31227500
С	-2.42319600	-3.55644900	5.09804700
С	-3.37757600	-3.62623400	6.11246100
С	-4.09664700	-4.80371000	6.32022200
С	-3.85663900	-5.91815200	5.51509100
С	-2.88855400	-5.86554100	4.51324600
С	2.26923600	-5.63228200	4.44283800
F	0.11453800	-5.75960400	5.42741000
С	2.83651900	-6.58668300	5.43816000
С	4.13002700	-6.50403500	6.02658700
С	5.63944600	-7.49481700	7.47444600
С	6.60116100	-6.50116800	7.26016100
С	6.28626500	-5.46526300	6.38078700
С	1.38258000	-3.98028900	6.19430800
F	1.54963900	-4.74456400	7.28342500
F	0.39143300	-3.11863300	6.46941600
F	2.50399600	-3.27343400	6.02361800
Н	0.60873700	-2.21092600	-0.98858200
Н	1.07919500	-3.71990900	0.92632000
Н	0.60953500	-0.42737200	3.64500300
Н	0.10933200	1.08269100	1.73135000
Н	0.11540300	0.19276900	-0.59011400
Н	-1.87700200	-2.63343600	4.92104400
Н	-3.56540100	-2.75423200	6.73156400
Н	-4.84433000	-4.85221800	7.10595000
Н	-4.41461900	-6.83613700	5.67261900
Н	-2.68302300	-6.73902500	3.90144100
Н	2.99861300	-4.90593900	4.07975900
Н	1.90109500	-6.19043400	3.57116700

Н	2.21937000	-7.42565300	5.74367700
Н	5.85089800	-8.31683000	8.15505600
Н	7.55725300	-6.54607100	7.76960400
Н	6.99879500	-4.66978000	6.18464400
С	5.04793700	-5.45863600	5.75734900
Н	4.78831000	-4.65709000	5.07498900
Ν	4.44704100	-7.51194200	6.89096300

TS3a

С	2.96383900	2.77963100	-0.28158600
С	2.07770000	1.70982300	-0.39642000
С	1.46547700	1.19162100	0.75042900
С	1.76352100	1.72555000	2.00793200
С	2.64010200	2.80317100	2.11331200
С	3.24215900	3.33159400	0.96958400
Ν	0.61729300	0.06086400	0.71031600
С	-0.41834600	-0.08959100	-0.05903300
С	-0.93283400	-1.50686400	0.06357800
S	-0.93972600	0.97292400	-1.38674400
С	-2.68695400	1.10830600	-1.00487000
С	-3.09482400	1.82572000	0.12288000
С	-4.45419200	1.96347800	0.39576700
С	-5.40140600	1.40047900	-0.46193300
С	-4.98858800	0.69662600	-1.59318500
С	-3.62865400	0.54508700	-1.86716600
С	0.32050800	-2.42383900	0.01473100
F	-1.80493400	-1.83555000	-0.95504300
С	1.50963600	-1.73313000	0.60930700
С	2.67565900	-1.44843300	-0.20030000
С	3.90067000	-1.11674400	0.41743000
С	4.97650600	-0.74298300	-0.37184300
С	4.81543100	-0.70540800	-1.75993000
С	3.57165100	-1.05367200	-2.28671400
Ν	2.52294100	-1.41252500	-1.54398300
С	-1.74500600	-1.74243400	1.34391200
F	-2.22628000	-2.99672800	1.37255500
F	-2.79716300	-0.91751900	1.43142200
F	-0.99761900	-1.57311200	2.44156900
Н	3.44175900	3.17619000	-1.17234800

Н	1.88721800	1.25934600	-1.36614900
Н	1.30065700	1.29056400	2.88917600
Н	2.85999100	3.22391900	3.08970000
Н	3.93344800	4.16447300	1.05442000
Н	-2.35280600	2.26455000	0.78477400
Н	-4.77252600	2.51529800	1.27504000
Н	-6.46022300	1.51258500	-0.24898100
Н	-5.72272900	0.25764100	-2.26188900
Н	-3.30148200	-0.01452300	-2.73839700
Н	0.48952900	-2.62208000	-1.04630700
Н	0.11131700	-3.36907200	0.52320300
Н	1.69349600	-1.87240800	1.67029500
Н	3.98089400	-1.15403800	1.50001700
Н	5.92754000	-0.48203900	0.08302900
Н	5.62773200	-0.41924900	-2.41900400
Н	3.41179400	-1.03805800	-3.36281400

С	0.01726100	-3.54869000	1.16097500
С	0.39553800	-2.21018300	1.27566800
С	0.25939100	-1.36245000	0.17808100
С	-0.23096500	-1.84273100	-1.03860400
С	-0.60149800	-3.18141500	-1.14841400
С	-0.48261300	-4.03371300	-0.04772600
Ν	0.60906300	0.01673000	0.31632600
С	-0.31357800	0.97775300	0.70221700
С	0.26251500	2.33156600	0.47782500
S	-1.66360500	0.64562000	1.74815600
С	-2.72208700	-0.34769300	0.68008300
С	-3.17609600	-1.57877400	1.15518600
С	-3.99696800	-2.37062300	0.34933800
С	-4.35485500	-1.93776200	-0.92691100
С	-3.90102700	-0.70178000	-1.39415100
С	-3.09103800	0.09883300	-0.59132000
С	1.66178300	2.06527900	-0.08438700
F	0.34195200	3.08355000	1.66789800
С	1.61869500	0.61216800	-0.57359200
С	2.93854200	-0.12021500	-0.46409700
С	3.51150400	-0.72030500	-1.58360700
С	4.72256300	-1.39509600	-1.43488000
С	5.30714000	-1.44810800	-0.17448300

С	4.65334100	-0.81911400	0.88633700
Ν	3.49650000	-0.16718700	0.75203100
С	-0.57532900	3.22492300	-0.43905100
F	-0.01841300	4.44004900	-0.58130100
F	-1.81923100	3.41597300	0.02192600
F	-0.67283900	2.68581900	-1.66555800
Н	0.11484100	-4.21062700	2.01603600
Н	0.78665600	-1.81361600	2.20805500
Н	-0.33889000	-1.16505400	-1.88172100
Н	-0.99233100	-3.55639500	-2.08966700
Н	-0.77886100	-5.07481600	-0.13408100
Н	-2.87384400	-1.92660600	2.13935700
Н	-4.34118100	-3.33285900	0.71703200
Н	-4.98409400	-2.55952300	-1.55651600
Н	-4.18170200	-0.35692600	-2.38503500
Н	-2.73626500	1.05839800	-0.95636400
Н	2.35759300	2.14674500	0.75524700
Н	1.95824600	2.76295100	-0.86898500
Н	1.26832300	0.56783300	-1.61348300
Н	3.01272600	-0.65992500	-2.54608800
Н	5.19506200	-1.87301500	-2.28753300
Н	6.24669400	-1.96335400	-0.00610700
Н	5.08061600	-0.84106200	1.88593200
Ph PhS F3C ¹¹¹			
° F D2b	0 1 (700500	1 02992200	0.00106800
C C	-0.16/90500	-1.03882200	0.00106800
C C	0.14856900	0.31622500	0.06682900
C C	-0.70033100	1.21839000	1.10676500
C C	-1.99/34/00	0.73408800	1.100/0300
C C	-2.29749400	-0.60318400	1.04433100
U N	-1.38/33300	-1.30629800	0.49219900
N	-0.45427800	2.59121700	0.66897000
C C	-0.72839600	3.44903700	1.72063100
C î	-0.14026300	4./8349100	1.40043100
S	-0.88835600	2.88124000	3.36/83100
C E	0.14094400	4./3236/00	-0.09342200
r			7 10943100
a 1	1.06486100	4.98870300	2.10745100
C	0.34893500	3.23860300	-0.39056500
C C	0.34893500 -0.99159500	3.23860300 5.98835700	-0.39056500 1.79746600
C C F	0.34893500 -0.99159500 -0.38537900	4.98870300 3.23860300 5.98835700 7.13524900	-0.39056500 1.79746600 1.44363800

F	-2.18686200	5.96581300	1.18985700
Н	0.54812100	-1.73111700	-0.43132600
Н	1.10547800	0.66976200	-0.30433100
Н	-2.72139200	1.45649200	1.50770200
Н	-3.25499800	-0.95300700	1.41852700
Н	-1.62902500	-2.56321300	0.43999300
Н	1.00859500	5.34007600	-0.35380000
Н	-0.73167800	5.10038800	-0.64115800
С	-2.61210000	3.16227700	3.77037400
С	-3.57159600	3.55817700	2.83703200
С	-2.97686900	2.95486100	5.10543300
С	-4.89320700	3.74807100	3.24354200
Н	-3.29219300	3.71928500	1.79951800
С	-4.29998900	3.14188500	5.49950800
Н	-2.23060100	2.65105400	5.83557200
С	-5.26380400	3.54131900	4.57164200
Н	-5.63352400	4.05816400	2.51178400
Н	-4.57511800	2.97855000	6.53726900
Н	-6.29322900	3.69018500	4.88213600
С	-0.09570500	2.84588700	-1.78141700
С	0.84775900	2.49753800	-2.74769500
С	-1.45448500	2.85163200	-2.11532200
С	0.44102900	2.16321400	-4.04132700
Н	1.90301000	2.48154300	-2.48532200
С	-1.86225600	2.51084400	-3.40245400
Н	-2.19322200	3.11706900	-1.36062700
С	-0.91360700	2.16680600	-4.36946200
Н	1.18257900	1.89322600	-4.78723200
Н	-2.91900700	2.51173800	-3.65242400
Н	-1.23193400	1.90004700	-5.37278900
Н	1.40404800	2.97049100	-0.25082000

TS3d

С	0.59976400	-0.48845900	0.25085800
С	-0.29847500	-1.53711500	0.06004800
С	-1.11329000	-1.95228400	1.11939500
С	-1.00686600	-1.33855900	2.37120600
С	-0.11868400	-0.27951100	2.54875000
С	0.68650000	0.14666400	1.49083500

Ν	-1.97520100	-3.06359800	1.00063200
С	-2.93491400	-3.18609700	0.13865300
С	-3.47858100	-4.59925800	0.18005700
S	-3.27587400	-2.09445300	-1.22880200
С	-5.05365800	-1.92806400	-1.06750000
С	-5.58236900	-1.18753200	-0.00666200
С	-6.96245200	-1.03046000	0.10215300
С	-7.80922200	-1.59847600	-0.85191700
С	-7.27507800	-2.32458000	-1.91633900
С	-5.89420700	-2.49410900	-2.02673400
С	-2.26232800	-5.57535600	0.35738900
F	-4.16877500	-4.91446300	-0.97665400
С	-1.01306500	-4.85703000	0.77352900
С	-4.51767800	-4.80316700	1.28994100
F	-4.93699100	-6.08083000	1.32037700
F	-5.60530800	-4.04406800	1.09978700
F	-4.02049200	-4.51122000	2.49675800
Н	1.23458600	-0.17059400	-0.57070200
Н	-0.35180600	-2.05060500	-0.89649200
Н	-1.62506500	-1.69705000	3.18950400
Н	-0.04630600	0.20388800	3.51821300
Н	1.38694400	0.96350700	1.63491300
Н	-4.91777100	-0.74554200	0.73090900
Н	-7.37523500	-0.46052000	0.92904200
Н	-8.88425400	-1.47177100	-0.76668600
Н	-7.93127800	-2.76621200	-2.66012800
Н	-5.47381600	-3.06995700	-2.84579000
Н	-2.12703000	-6.02812100	-0.62864200
Н	-2.52828400	-6.37566200	1.05133500
Н	-0.37772200	-4.51010400	-0.03875400
С	-0.33146200	-5.06276500	2.03433900
С	-0.95426200	-5.63884600	3.16073500
С	-0.27709200	-5.73687800	4.37283300
Н	-1.97055800	-6.01455700	3.08893600
С	1.65791900	-4.67616900	3.39261700
С	1.02991900	-5.25817000	4.49750400
Н	-0.77258200	-6.18840400	5.22753300
Н	2.67302900	-4.29951400	3.47877700
Н	1.55311900	-5.33802000	5.44548200
С	0.98614500	-4.57751600	2.17907100
Н	1.47622500	-4.12261100	1.32091200

С	0.30217800	-2.11639400	0.03090500
С	0.54632600	-2.97908300	1.09831900
С	0.52886500	-2.48200600	2.40526400
С	0.29445800	-1.12399100	2.64206700
С	0.03016000	-0.27537100	1.56947900
С	0.03547700	-0.76663300	0.26226900
Ν	0.82587000	-3.31371800	3.50543400
С	0.13823900	-4.32572400	3.82354900
С	0.71363300	-5.19300900	4.95197100
S	-1.32570600	-4.90401900	2.94883200
С	-2.50630300	-4.98008100	4.29320500
С	-2.73827000	-3.85600100	5.08886800
С	-3.69445400	-3.91850100	6.10203100
С	-4.43368900	-5.08530100	6.29894200
С	-4.21211700	-6.19631200	5.48387800
С	-3.24226900	-6.15141900	4.48331500
С	1.92290400	-5.98284100	4.42098400
F	-0.23317600	-6.09104300	5.40658900
С	2.50003300	-6.93420400	5.41567100
С	3.78925000	-6.83469200	6.00663100
С	4.20308000	-7.83834900	6.92527200
С	5.44989300	-7.79190500	7.52889800
С	6.33507400	-6.74472100	7.24368900
С	5.94911200	-5.74499000	6.34432600
С	1.05804000	-4.33219500	6.18526500
F	1.19524400	-5.10189800	7.27454200
F	0.08897600	-3.44358300	6.45595600
F	2.19982500	-3.65581500	6.02483500
Н	0.31919200	-2.50359900	-0.98336600
Н	0.76913900	-4.02857400	0.92385800
Н	0.30882400	-0.75106000	3.66201500
Н	-0.17046900	0.77532000	1.75601000
Н	-0.15875500	-0.09898100	-0.57130400
Н	-2.17666600	-2.94065800	4.92055900
Н	-3.86776400	-3.04890200	6.72871200
Н	-5.18268600	-5.12802700	7.08375400
Н	-4.78593000	-7.10595900	5.63268400
Н	-3.05138400	-7.02293000	3.86398800
Н	2.65248600	-5.26126100	4.04822400

Н	1.54115400	-6.53879400	3.55380900
Н	1.87870800	-7.77526900	5.71030200
Н	3.51921200	-8.65318400	7.14928300
Н	5.73923000	-8.57286800	8.22611500
Н	7.31145800	-6.70845100	7.71655600
Н	6.62896900	-4.92825400	6.11945000
С	4.70233500	-5.78102200	5.73402400
Н	4.43090900	-4.98767000	5.04491800

TS3c

С	-0.78891500	-1.04609400	0.04456400
С	-1.69879400	-2.09717000	-0.05917200
С	-2.27155900	-2.63706900	1.09886700
С	-1.90793400	-2.13890300	2.35488400
С	-1.00899900	-1.07932700	2.45047600
С	-0.44651600	-0.53152100	1.29564600
Ν	-3.13077700	-3.75653500	1.07694300
С	-4.17023600	-3.92063400	0.31326300
С	-4.67758700	-5.33707400	0.46240100
S	-4.70154600	-2.89260400	-1.03961300
С	-6.44278600	-2.73482000	-0.63985900
С	-6.83245300	-2.01067600	0.49013600
С	-8.18756200	-1.85710800	0.77537800
С	-9.14936500	-2.41098700	-0.07215700
С	-8.75493500	-3.12200100	-1.20537400
С	-7.39923900	-3.28965700	-1.49130100
С	-3.42620900	-6.26265100	0.40636300
F	-5.56767200	-5.68269200	-0.53581200
С	-2.21518000	-5.57019800	0.95583900
С	-1.04655600	-5.29076600	0.15117400
С	0.16223800	-4.94749400	0.79931300
С	1.28171200	-4.56293000	0.07278100
С	1.22930500	-4.50662500	-1.32466800
С	0.04309300	-4.84269200	-1.98160200
С	-5.46811000	-5.55774300	1.75931400
F	-5.95323600	-6.81045600	1.80809500
F	-6.51662000	-4.72900000	1.85606200
F	-4.70344700	-5.38127600	2.84366400
Н	-0.34176400	-0.63551700	-0.85583900

Н	-1.93472600	-2.51735500	-1.03153600
Н	-2.33862700	-2.59026400	3.24427800
Н	-0.73936500	-0.68889800	3.42700800
Н	0.26333600	0.28654600	1.37137200
Н	-6.07947000	-1.57887400	1.14427500
Н	-8.49136200	-1.29978600	1.65636200
Н	-10.20478900	-2.28635200	0.15043100
Н	-9.50010900	-3.55448900	-1.86610200
Н	-7.08660800	-3.85527700	-2.36407400
Н	-3.30986900	-6.51829800	-0.64918600
Н	-3.62799000	-7.18878000	0.95226900
Н	-2.03111500	-5.69442200	2.01944800
Н	0.20341800	-4.98289600	1.88560300
Н	2.19900400	-4.30370900	0.59375800
Н	2.10380400	-4.20608800	-1.89360600
Н	-0.00704700	-4.79916000	-3.06586700
С	-1.08297900	-5.22769400	-1.25917000
Н	-1.99680200	-5.46485200	-1.79662700

С	0.08578700	-0.92396000	0.15227000
С	0.60105800	0.36913000	0.06583400
С	0.14322000	1.22792700	-0.93505800
С	-0.82995000	0.80278100	-1.84295300
С	-1.34722000	-0.48757600	-1.74506800
С	-0.88977300	-1.35249300	-0.74889000
Ν	0.67440000	2.55269500	-1.02568400
С	-0.15722200	3.65099400	-1.13697500
С	0.60528100	4.82135300	-1.65643700
S	-1.68197600	3.75649600	-0.29996200
С	2.03064600	4.29726300	-1.84760700
F	0.59479100	5.90871700	-0.76842700
С	1.91267700	2.76663600	-1.81193000
С	3.10410400	2.05846700	-1.20973300
С	3.78054200	1.08230200	-1.94170300
С	4.87120100	0.40912200	-1.38507300
С	5.28495700	0.70622600	-0.08829400
С	4.60830800	1.68119000	0.65108900
С	0.00189100	5.40581000	-2.93461600
F	0.68237700	6.48262500	-3.35887000
F	-1.27290200	5.78686600	-2.75770100

F	0.02071400	4.50147100	-3.92658100
Н	0.43929300	-1.59098900	0.93263300
Н	1.34187800	0.72205200	0.77747700
Н	-1.17563200	1.48751100	-2.61351000
Н	-2.10595400	-0.81800000	-2.44801000
Н	-1.29500300	-2.35702500	-0.67390100
Н	2.60657900	4.65814400	-0.99131800
Н	2.50904000	4.64923000	-2.76350300
Н	1.74148600	2.37943700	-2.82595700
Н	3.44983100	0.84435500	-2.94988400
Н	5.39051900	-0.34890600	-1.96380600
Н	6.12966100	0.18189000	0.34849000
Н	4.92488600	1.91357400	1.66360000
С	3.52540700	2.35396100	0.09235100
Н	2.99382500	3.10374100	0.67521600
С	-1.24391900	3.10167100	1.31545700
С	-2.09754100	2.16703500	1.90400300
С	-0.06986000	3.49553900	1.96341500
С	-1.77752500	1.62995000	3.15201400
Н	-2.99704400	1.84801100	1.38394200
С	0.25274400	2.93863800	3.19904700
Н	0.59038700	4.22327800	1.49801200
С	-0.59973900	2.00661000	3.79679400
Н	-2.44267500	0.90338700	3.60907300
Н	1.16975100	3.23746500	3.69868100
Н	-0.34443700	1.57609500	4.76023800

С	0.91567500	-0.44080800	-0.02094400
С	1.17314700	-1.27948500	1.05838100
С	1.16224800	-0.75776900	2.35242300
С	0.91863900	0.59986700	2.56446300
С	0.63933200	1.42322000	1.48084300
С	0.63915700	0.90725100	0.18661500
N	1.46278300	-1.55998700	3.47267000
С	0.80519000	-2.58440300	3.79572300
С	1.36787700	-3.38018400	4.98267700
S	-0.60336400	-3.25412100	2.90324100
С	-1.80007500	-3.40110800	4.22864400
С	-2.15007500	-2.27916200	4.97601900
С	-3.11594800	-2.39636100	5.97069900

С	-3.74749700	-3.61656800	6.19224400
С	-3.40730400	-4.72733900	5.42407300
С	-2.42571100	-4.62720400	4.44427700
С	2.70812200	-4.01654000	4.58778100
F	0.50434300	-4.37429200	5.36968100
С	3.21000200	-4.95936800	5.60589100
С	4.51122000	-5.10148100	6.04734800
С	4.77067900	-6.13944800	6.99499100
С	6.04237600	-6.32558300	7.48171100
С	7.06930100	-5.48520500	7.03868300
С	6.84170200	-4.45660700	6.11098100
С	1.54042800	-2.49524000	6.22917200
F	1.84116000	-3.27376000	7.27839000
F	0.42260300	-1.83584300	6.52160300
F	2.52622600	-1.61521700	6.08965000
Н	0.92906300	-0.84583100	-1.02597800
Н	1.40566200	-2.32728200	0.90166500
Н	0.94033800	0.98913000	3.57573600
Н	0.43131500	2.47356800	1.64783500
Н	0.43295800	1.55551500	-0.65661900
Н	-1.66920300	-1.32597500	4.78520500
Н	-3.38190300	-1.52831200	6.56231900
Н	-4.50597800	-3.70218500	6.96143800
Н	-3.89832600	-5.67832200	5.59392400
Н	-2.14082000	-5.49419500	3.85982900
Н	3.41438000	-3.24214400	4.29784200
Н	2.50296600	-4.64156100	3.70256800
Н	2.47356000	-5.64341800	6.02423000
Н	3.94782200	-6.76828400	7.31614400
Н	6.25140100	-7.10805200	8.19894800
Н	8.07231300	-5.62972900	7.42470000
Н	7.66212800	-3.82541300	5.79595500
С	5.57864200	-4.25695700	5.61381000
Н	5.39252900	-3.46233800	4.90303000
Ph N			
PhS-+			
F ₃ C ^{wit} D3b			

F ^{3C} F			
С	0.96610500	-1.20501900	0.07379900
С	1.05524700	0.14342700	0.40177000
С	0.05698100	0.99579500	-0.05041400
С	-1.01347500	0.55829800	-0.82087700
С	-1.08467600	-0.79246400	-1.13998100

С	-0.09880300	-1.66894200	-0.69355800
Ν	0.15249800	2.39888200	0.26658900
С	-0.50308700	2.97330400	1.22069100
С	-0.14812600	4.46772700	1.28020700
S	-1.49488300	2.03506800	2.27133700
С	0.92563200	4.63093500	0.19620400
F	0.36650500	4.73873100	2.52025600
С	1.07013100	3.27952200	-0.51594200
С	-1.39067700	5.39108600	1.09209600
F	-1.11408200	6.43776800	0.31768300
F	-1.82257500	5.86558700	2.25201900
F	-2.38840800	4.71383200	0.50995000
Н	1.73040800	-1.89050000	0.41844700
Н	1.87377500	0.53096700	0.99742800
Н	-1.76348200	1.26479700	-1.15865000
Н	-1.90870900	-1.15734100	-1.74054500
Н	-0.16030500	-2.72053500	-0.94689700
Н	1.85019100	4.89063300	0.71064800
Н	0.68367700	5.42447700	-0.50410900
С	-2.23444500	3.23950100	3.36740800
С	-3.56171100	3.59868300	3.14469600
С	-1.52507800	3.70047100	4.47394100
С	-4.17561600	4.47522000	4.03191400
Н	-4.10061500	3.21111500	2.28844100
С	-2.14966800	4.58360600	5.34568700
Н	-0.50335400	3.38438800	4.64329900
С	-3.46836800	4.97197300	5.12257800
Н	-5.20492500	4.76960300	3.86742100
Н	-1.60711600	4.96160000	6.20364200
Н	-3.94987400	5.65848100	5.80896800
С	0.69000800	3.22940700	-1.97778500
С	1.49802400	2.52807900	-2.86899300
С	-0.49087900	3.82021200	-2.43069600
С	1.13469200	2.42353400	-4.20924000
Н	2.41068800	2.06276800	-2.51158600
С	-0.85473700	3.71221600	-3.76704100
Н	-1.13098400	4.36356900	-1.74313000
С	-0.04158400	3.01369100	-4.65789800
Н	1.76952600	1.87987400	-4.89881200
Н	-1.77195100	4.17289200	-4.11426900
Н	-0.32673100	2.93166800	-5.70026200
Н	2.06822900	2.85924700	-0.38350200

С	-0.17366000	-0.25066000	0.06915800
С	0.11493600	1.05971300	0.43294900
С	-0.39014300	2.08587400	-0.35556000
С	-1.16189200	1.85240500	-1.48673500
С	-1.43728300	0.53535200	-1.83660700
С	-0.94419500	-0.51039000	-1.06122000
Ν	-0.09471000	3.45580700	-0.01556000
С	-0.77313900	4.15687300	0.83651100
С	-0.30898400	5.61399200	0.75575100
S	-2.03884400	3.44744900	1.75841100
С	1.05646000	5.50405900	0.08783800
F	-0.25707800	6.22844600	1.96887100
С	0.98836300	4.21357300	-0.73331700
С	2.24932700	3.39212300	-0.79807700
С	2.71264500	2.94728800	-2.03369000
С	3.85968600	2.16162500	-2.10773400
С	4.53735700	1.81078900	-0.94520200
С	4.06924800	2.24550300	0.29376400
С	-1.29892600	6.42070600	-0.10157400
F	-0.85951700	7.66449500	-0.25264600
F	-2.50705200	6.47354200	0.45148400
F	-1.41653200	5.86028600	-1.30839500
Н	0.20830600	-1.06756200	0.66884600
Н	0.71376500	1.28727700	1.30710100
Н	-1.53499100	2.68652700	-2.07073600
Н	-2.03691200	0.32926300	-2.71459700
Н	-1.16153400	-1.53467900	-1.33935200
Н	1.79129300	5.41684100	0.88923900
Н	1.29185200	6.37082400	-0.52655000
Н	0.61372000	4.39878000	-1.74188200
Н	2.17410000	3.21719400	-2.93604900
Н	4.21929000	1.82230500	-3.07185900
Н	5.42862800	1.19674200	-1.00107100
Н	4.59307000	1.96797000	1.20078800
С	2.92900900	3.03515900	0.36846600
Н	2.56060100	3.36144800	1.33658600
С	-2.47466000	4.69200600	2.97312700
С	-3.68225300	5.36843500	2.83294700
С	-1.67685600	4.84218300	4.10533400

С	-4.07938600	6.24405100	3.83826000
Н	-4.29757300	5.22115300	1.95399300
С	-2.08176500	5.72776000	5.09560100
Н	-0.75330600	4.28455700	4.20480300
С	-3.27942400	6.42668500	4.96159300
Н	-5.01489400	6.78094400	3.73967100
Н	-1.46519000	5.86426200	5.97563200
Н	-3.59340300	7.11074200	5.74105100

VI. X-Ray Crystal Structure Determinations

Single crystal of **3a** (CCDC 2209201) was obtained by recrystallization from a mixed solvent of acetone/ petroleum ether at room temperature (evaporation in air). The X-ray single-crystal determination was performed on a Bruker APEX II X-ray single crystal diffractometer.

Bond precision:	C-C = 0.0059 A	Wavelength=1.54184	
Cell:	a=15.5988(5)	b=8.2297(4)	c=12.1249(6)
	alpha=90	beta=101.812(4)	gamma=90
Temperature:	295 K		
	Calculated	Reported	
Volume	1523.56(12)	1523.56(12)
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C16 H12 F4 N2 O	C16 H12 F4	N2 O
Sum formula	C16 H12 F4 N2 O	C16 H12 F4	N2 O
Mr	324.28	324.28	
Dx,g cm-3	1.414	1.414	
Z	4	4	
Mu (mm-1)	1.073	1.073	
F000	664.0	664.0	
F000'	666.66		
h,k,lmax	19,10,15	19,10,15	
Nref	3216	3031	
Tmin, Tmax	0.975,0.979	0.809,1.00	0
Tmin'	0.968		
Correction method= # Reported T Limits: Tmin=0.809 Tmax=1.000 AbsCorr = MULTI-SCAN			
Data completeness= 0.942 Theta(max)= 76.552			
WR2 (reflections			wR2(reflections)=
R(refrections) = 0.0722(1541) 0.2354(3031)			0.2354(3031)
S = 1.307	Npar= 2	08	

VII. Characterization Data of the Products

Chemical Formula: C₁₆H₁₂F₄N₂O

3-fluoro-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3a): yellow solid (mp = 118.3-118.8 °C), 26.8 mg, (Yield: 83%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.60 – 8.54 (m, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.32 – 7.26 (m, 2H), 7.22 – 7.13 (m, 3H), 5.40 (ddd, *J* = 7.7, 5.6, 3.8 Hz, 1H), 3.22 (td, *J* = 14.8, 7.7 Hz, 1H), 2.77 – 2.62 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.3 Hz), 157.5, 150.1, 137.3, 136.3, 129.0, 126.7, 123.5, 122.9, 121.4, 121.1 (qd, *J* = 282.0, 31.8 Hz), 92.3 (dq, *J* = 199.8, 34.4 Hz), 60.6, 34.1 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.88 (d, *J* = 10.5 Hz, 3F), -167.16 (q, *J* = 10.6 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{13}F_4N_2O$ 325.0959; Found 325.0958.

Chemical Formula: C17H14F4N2O

3-fluoro-5-(4-methylpyridin-2-yl)-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3b): yellow solid (mp = 125.6-126.6 °C), 27.6 mg, (Yield: 81%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.41 (d, *J* = 5.0 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.32 – 7.25 (m, 2H), 7.20 – 7.11 (m, 1H), 7.04 – 6.95 (m, 2H), 5.35 (ddd, *J* = 7.8, 5.5, 3.9 Hz, 1H), 3.19 (td, *J* = 14.9, 7.8 Hz, 1H), 2.66 (dddd, *J* = 25.7, 15.0, 5.5, 1.2 Hz, 1H), 2.26 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.1 Hz), 157.4, 149.7, 136.4, 129.0, 126.6, 124.5, 122.7, 122.0 (qd, *J* = 283.3, 32.3 Hz), 92.4 (dq, *J* = 201.0, 34.3 Hz), 60.6, 34.1 (d, *J* = 20.3 Hz), 21.0.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.91 (d, *J* = 10.4 Hz, 3F), -167.10 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O$ 339.1115; Found 339.1112.

Chemical Formula: C₁₇H₁₄F₄N₂O

3-fluoro-5-(5-methylpyridin-2-yl)-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3c): white solid (mp = 105.6-127.3 °C), 27.6 mg, (Yield: 81%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.42 – 8.35 (m, 1H), 7.45 – 7.37 (m, 3H), 7.32 – 7.23 (m, 2H), 7.19 – 7.11 (m, 1H), 7.05 (d, *J* = 7.9 Hz, 1H), 5.36 (ddd, *J* = 7.7, 5.7, 3.9 Hz, 1H), 3.19 (td, *J* = 14.6, 7.7 Hz, 1H), 2.67 (dddd, *J* = 25.6, 15.0, 5.7, 1.3 Hz, 1H), 2.28 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.3 Hz), 154.6, 150.5, 137.7, 136.4, 133.2, 129.0, 126.7, 122.9, 121.9 (qd, *J* = 284.7, 31.8 Hz), 120.8, 92.4 (dq, *J* = 200.0, 34.2 Hz), 60.4, 34.2 (d, *J* = 20.2 Hz), 18.1.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.89 (d, *J* = 10.7 Hz, 3F), -167.21 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O$ 339.1115; Found 339.1114.

Chemical Formula: C₁₇H₁₄F₄N₂O₂

3-fluoro-5-(6-methoxypyridin-2-yl)-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3d): yellow dense oil, 25.3 mg, (Yield: 71%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.44 (dd, J = 8.4, 7.2 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.32 – 7.24 (m, 2H), 7.19 – 7.12 (m, 1H), 6.72 (dd, J = 7.2, 0.7 Hz, 1H), 6.61 (dd, J = 8.3, 0.7 Hz, 1H), 5.22 (ddd, J = 7.8, 5.2, 4.2 Hz, 1H), 3.89 (s, 3H), 3.13 (td, J = 14.8, 7.7 Hz, 1H), 2.72 (dddd, J = 26.2, 15.0, 5.3, 1.2 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.4, 163.2 (d, *J* = 22.5 Hz), 154.4, 139.2, 136.5, 128.9, 126.8, 123.4, 122.0 (qd, *J* = 283.5, 32.0 Hz), 114.8, 111.1, 92.2 (dq, *J* = 200.1, 34.0 Hz), 60.3, 53.5, 33.5 (d, *J* = 20.7 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -80.01 (d, *J* = 10.7 Hz, 3F), -167.27 (q, *J* = 10.6 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O_2$ 355.1064; Found 355.1063.

Chemical Formula: C17H14F4N2O2

3-fluoro-5-(4-methoxypyridin-2-yl)-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3e): yellow solid (mp = 104.2-124.7 °C), 27.5 mg, (Yield: 77%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.38 (d, *J* = 5.6 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.74 – 6.63 (m, 2H), 5.35 (dt, *J* = 8.4, 4.7 Hz, 1H), 3.74 (s, 3H), 3.20 (td, *J* = 15.1, 7.8 Hz, 1H), 2.66 (ddd, *J* = 25.7, 15.1, 5.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 166.6, 163.1 (d, *J* = 22.3 Hz), 159.3, 151.3, 136.4, 129.0, 126.7, 122.7, 121.8 (qd, *J* = 283.4, 31.8 Hz), 109.2, 107.7 (d, *J* = 1.3 Hz), 92.3 (dq, *J* = 199.8, 34.3 Hz), 60.5, 55.2, 34.0 (d, *J* = 20.4 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.89 (d, *J* = 10.8 Hz, 3F), -166.93 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O_2$ 355.1064; Found 355.1063.

Chemical Formula: C₁₆H₁₁CIF₄N₂O

5-(5-chloropyridin-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (**3f**): white solid (mp = 143.9-144.7 °C), 22.9 mg, (Yield: 64%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.53 (d, J = 2.4 Hz, 1H), 7.58 (dd, J = 8.4, 2.4 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.34 – 7.27 (m, 2H), 7.22 – 7.14 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H), 5.39 (ddd, J = 7.8, 5.5, 3.8 Hz, 1H), 3.21 (td, J = 15.0, 7.7 Hz, 1H), 2.66 (dddd, J = 25.5, 15.1, 5.5, 1.2 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 22.3 Hz), 155.6, 149.1, 137.0, 136.1, 131.9, 129.2, 126.9, 122.9, 122.2, 121.8 (qd, *J* = 283.4, 31.8 Hz), 92.2 (dq, *J* = 200.2, 34.2 Hz), 60.0, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.86 (d, *J* = 10.6 Hz, 3F), -167.02 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}ClF_4N_2O$ 359.0569; Found 359.0566.

Chemical Formula: C₁₆H₁₁BrF₄N₂O

5-(6-bromopyridin-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3g): dense yellow oil, 26.3 mg, (Yield: 65%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.50 - 7.42 (m, 3H), 7.41 - 7.36 (m, 1H), 7.32 (dd, J = 8.7, 7.2 Hz, 2H), 7.22 - 7.15 (m, 1H), 7.11 (d, J = 7.5 Hz, 1H), 5.40 (td, J = 4.9, 2.5 Hz, 1H), 3.22 (ddd, J = 17.0, 15.1, 7.9 Hz, 1H), 2.72 - 2.57 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 22.5 Hz), 159.2, 142.3, 139.6, 136.1, 129.2, 128.0, 126.9, 122.6, 121.7 (qd, *J* = 283.3, 31.5 Hz), 119.8, 92.3 (dq, *J* = 199.9, 34.3 Hz), 60.0, 34.0 (d, *J* = 20.6 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.79 (d, *J* = 10.3 Hz, 3F), -166.94 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}BrF_4N_2O$ 403.0064; Found 403.0062.

Chemical Formula: C₁₆H₁₁BrF₄N₂O

5-(4-bromopyridin-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3h): yellow solid (mp = 82.1-82.7 °C), 33.2 mg, (Yield: 82%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.38 (dd, *J* = 5.1, 1.4 Hz, 1H), 7.44 – 7.27 (m, 6H), 7.22 – 7.12 (m, 1H), 5.36 (ddd, *J* = 7.7, 5.4, 3.8 Hz, 1H), 3.20 (td, *J* = 15.0, 7.8 Hz, 1H), 2.67 (dddd, *J* = 25.4, 15.1, 5.5, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 22.2 Hz), 159.0, 150.8, 136.0, 133.9, 129.2, 127.0, 126.9, 125.0, 122.9, 121.8 (qd, *J* = 283.4, 31.8 Hz), 92.1 (dq, *J* = 200.3, 34.2 Hz), 60.1, 33.8 (d, *J* = 20.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.88 (d, *J* = 10.7 Hz, 3F), -166.98 (dt, *J* = 13.2, 10.6 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}BrF_4N_2O$ 403.0064; Found 403.0062.

Chemical Formula: C₁₈H₁₄F₄N₂O₂

5-(5-acetylpyridin-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3i): yellow solid (mp = 96.9-98.7 °C), 23.9 mg, (Yield: 65%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 9.11 (d, *J* = 2.2 Hz, 1H), 8.14 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.47 – 7.39 (m, 2H), 7.34 – 7.25 (m, 3H), 7.22 – 7.13 (m, 1H), 5.49 (ddd, *J* = 8.5, 5.3, 3.7 Hz, 1H), 3.24 (td, *J* = 15.4, 7.9 Hz, 1H), 2.74 – 2.55 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 195.9, 163.0 (d, *J* = 22.2 Hz), 161.8, 150.2, 136.9, 136.1, 129.2, 126.9, 122.6, 121.7 (qd, *J* = 283.4, 31.6 Hz), 121.2, 92.2 (dq, *J* = 200.1, 34.3 Hz), 60.3, 33.8 (d, *J* = 20.7 Hz), 26.7.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.84 (d, *J* = 10.7 Hz, 3F), -166.85 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{15}F_4N_2O_2$ 367.1064; Found 367.1062.

Chemical Formula: C₁₉H₁₆F₄N₂O₃

ethyl 6-(4-fluoro-5-oxo-1-phenyl-4-(trifluoromethyl)pyrrolidin-2-yl)nicotinate (3j): dense yellow oil, 25.9 mg, (Yield: 64%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 9.17 (d, J = 2.1 Hz, 1H), 8.21 (dd, J = 8.2, 2.2 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.33 – 7.22 (m, 3H), 7.20 – 7.13 (m, 1H), 5.52 – 5.44 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.24 (td, J = 15.3, 7.8 Hz, 1H), 2.67 (ddd, J = 25.3, 15.1, 5.4 Hz, 1H), 1.38 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.5, 163.0 (d, *J* = 22.2 Hz), 161.7, 151.2, 138.4, 136.1, 129.2, 126.9, 126.1, 122.6, 121.8 (qd, *J* = 283.3, 31.7 Hz), 120.9, 92.2 (dq, *J* = 200.2, 34.2 Hz), 61.6, 60.4, 33.9 (d, *J* = 20.7 Hz), 14.2.

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.84 (d, *J* = 10.6 Hz, 3F), -166.91 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{17}F_4N_2O_3$ 397.1170; Found 397.1168.

Chemical Formula: C₁₇H₁₂F₄N₂O₂

6-(4-fluoro-5-oxo-1-phenyl-4-(trifluoromethyl)pyrrolidin-2-yl)nicotinaldehyde (3k): dense brown oil, 15.9 mg, (Yield: 45%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 10.06 (s, 1H), 9.04 (dd, J = 2.2, 0.8 Hz, 1H), 8.09 (dd, J = 8.1, 2.2 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.33 – 7.25 (m, 2H), 7.21 – 7.13 (m, 1H), 5.51 (ddd, J = 8.0, 5.3, 3.6 Hz, 1H), 3.26 (ddd, J = 16.1, 15.1, 7.9 Hz, 1H), 2.75 – 2.61 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 189.7, 163.3, 163.0 (d, *J* = 22.5 Hz), 152.1, 137.4, 136.1, 131.0, 129.2, 127.0, 122.6, 121.7, 121.7 (qd, *J* = 284.4, 31.8 Hz), 92.2 (dq, *J* = 200.0, 34.3 Hz), 60.4, 33.8 (d, *J* = 20.8 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.81 (d, *J* = 10.5 Hz, 3F), -166.82 (q, *J* = 10.4 Hz, 1F).

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₃F₄N₂O₂ 353.0908; Found 353.0907.

Chemical Formula: C17H11F4N3O

6-(4-fluoro-5-oxo-1-phenyl-4-(trifluoromethyl)pyrrolidin-2-yl)nicotinonitrile (31): yellow solid (mp = 157.1-157.9 °C), 22.9 mg, (Yield: 65%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.85 (d, *J* = 2.0 Hz, 1H), 7.89 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.36 – 7.28 (m, 3H), 7.23 – 7.16 (m, 1H), 5.49 (ddd, *J* = 8.3, 5.1, 3.6 Hz, 1H), 3.25 (ddd, *J* = 16.8, 15.1, 8.0 Hz, 1H), 2.72 – 2.57 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 162.9 (d, *J* = 22.0 Hz), 161.9, 152.7, 140.6, 135.9, 129.3, 127.1, 122.5, 121.6 (qd, *J* = 283.2, 31.5 Hz), 121.3, 115.9, 109.8, 92.1 (dq, *J* = 200.1, 34.5 Hz), 60.2, 33.7 (d, *J* = 20.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.79 (d, *J* = 10.4 Hz, 3F), -166.60 (q, *J* = 10.6 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{12}F_4N_3O$ 350.0911; Found 350.0908.

Chemical Formula: C₁₇H₁₃BrF₄N₂O

5-(5-bromo-3-methylpyridin-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (**3m**): yellow solid (mp = 110.6-111.1 °C), 26.8 mg, (Yield: 63%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.47 (d, J = 2.2 Hz, 1H), 7.53 (d, J = 2.2 Hz, 1H), 7.30 – 7.14 (m, 5H), 5.46 (td, J = 6.9, 4.2 Hz, 1H), 3.12 (ddd, J = 14.7, 9.3, 7.3 Hz, 1H), 2.84 – 2.69 (m, 1H), 2.26 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 22.6 Hz), 152.8, 149.0, 140.9, 136.3, 133.1, 129.0, 127.3, 124.1, 122.1 (qd, *J* = 283.9, 32.3 Hz), 120.2, 91.9 (dq, *J* = 201.5, 33.8 Hz), 56.5, 32.8 (d, *J* = 20.8 Hz), 17.7.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.06 (d, *J* = 10.9 Hz, 3F), -168.42 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{14}BrF_4N_2O$ 417.0220; Found 417.0219.

Chemical Formula: C₁₆H₁₂F₄N₂O

3-fluoro-1-phenyl-5-(pyridin-4-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3n): yellow solid (mp = 156.9-157.7 °C), 24.4 mg, (Yield: 75%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.60 - 8.55 (m, 2H), 7.42 - 7.35 (m, 2H), 7.35 - 7.27 (m, 2H), 7.21 - 7.14 (m, 3H), 5.31 - 5.24 (m, 1H), 3.26 (td, *J* = 15.3, 7.9 Hz, 1H), 2.50 - 2.36 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 162.9 (d, *J* = 22.2 Hz), 150.8, 147.6, 135.7, 129.2, 127.1, 122.7, 121.6 (qd, *J* = 283.5, 31.6 Hz), 121.2, 92.0 (dq, *J* = 200.1, 34.4 Hz), 58.3, 35.3 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.78 (d, *J* = 10.4 Hz, 3F), -165.85 (q, *J* = 10.5 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₃F₄N₂O 325.0959; Found 325.0956.

Chemical Formula: C₁₇H₁₃F₄NO

3-fluoro-1,5-diphenyl-3-(trifluoromethyl)pyrrolidin-2-one (30): white solid (mp = 106.9-107.6 °C), 16.5 mg, (Yield: 51%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.39 – 7.34 (m, 2H), 7.34 – 7.21 (m, 7H), 7.16 – 7.11 (m, 1H), 5.23 (ddd, J = 7.6, 6.1, 4.1 Hz, 1H), 3.23 (ddd, J = 15.2, 12.8, 7.6 Hz, 1H), 2.47 (dddd, J = 26.0, 15.2, 6.1, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.3 Hz), 138.6, 136.2, 129.2, 128.9, 128.7, 126.7, 126.5, 123.3, 121.9 (qd, *J* = 283.6, 31.9 Hz), 92.2 (dq, *J* = 199.8, 34.2 Hz), 59.5 (d, *J* = 2.4 Hz), 36.2 (d, *J* = 20.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.85 (d, *J* = 10.7 Hz, 3F), -166.37 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{14}F_4NO$ 324.1006; Found 324.1005.

Chemical Formula: C₂₀H₁₄F₄N₂O

3-fluoro-5-(isoquinolin-1-yl)-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3p): white solid (mp = 101.4-102.6 °C), 15.9 mg, (Yield: 42%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.47 (d, J = 5.6 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.90 – 7.82 (m, 1H), 7.69 (dddd, J = 21.8, 8.3, 6.9, 1.3 Hz, 2H), 7.59 (d, J = 5.6 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.17 (dd, J = 8.6, 7.2 Hz, 2H), 7.09 – 7.01 (m, 1H), 6.20 (q, J = 6.6, 5.9 Hz, 1H), 3.32 (ddd, J = 14.9, 11.3, 7.6 Hz, 1H), 2.96 – 2.80 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.6 Hz), 155.2, 141.9, 136.7, 136.6, 130.5, 128.8, 128.3, 128.2, 126.7, 126.0, 123.3, 122.5, 122.1 (qd, *J* = 283.9, 30.9 Hz), 121.5, 92.1 (dq, *J* = 200.5, 34.0 Hz), 58.4, 33.7 (d, *J* = 20.9 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ (ppm) = -79.92 (d, *J* = 10.7 Hz, 3F), -167.98 (s, 1F). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₅F₄N₂O 375.1115; Found 375.1114.

Chemical Formula: C₂₀H₁₄F₄N₂O

3-fluoro-1-phenyl-5-(quinolin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3q): brown solid (mp = 151.3-152.1 °C), 27.9 mg, (Yield: 74%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.13 – 8.02 (m, 2H), 7.80 – 7.69 (m, 2H), 7.58 – 7.48 (m, 3H), 7.31 – 7.21 (m, 3H), 7.14 – 7.06 (m, 1H), 5.62 (ddd, *J* = 7.8, 5.8, 3.8 Hz, 1H), 3.34 (td, *J* = 14.8, 7.8 Hz, 1H), 2.69 (dddd, *J* = 25.7, 15.2, 5.9, 1.3 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.2 (d, *J* = 22.1 Hz), 158.1, 147.7, 138.0, 136.4, 130.3, 129.1, 127.7, 127.5, 127.2, 126.7, 122.6, 121.9 (qd, *J* = 283.6, 31.7 Hz), 117.6, 117.6, 92.3 (dq, *J* = 199.9, 34.3 Hz), 61.2, 34.2 (d, *J* = 20.3 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.77 (d, *J* = 10.8 Hz, 3F), -166.55 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{15}F_4N_2O$ 375.1115; Found 375.1111.

Chemical Formula: C₁₈H₁₂F₄N₂OS

5-(benzo[d]thiazol-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (**3r**): white solid (mp = 140.3-141.2 °C), 21.3 mg, (Yield: 56%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.99 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.84 – 7.78 (m, 1H), 7.57 – 7.45 (m, 3H), 7.43 – 7.30 (m, 3H), 7.24 – 7.17 (m, 1H), 5.81 (ddd, *J* = 8.0, 5.4, 3.6 Hz, 1H), 3.38 (td, *J* = 15.2, 7.9 Hz, 1H), 2.85 (dddd, *J* = 24.9, 15.3, 5.4, 1.1 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 169.0, 162.6 (d, *J* = 22.1 Hz), 152.4, 135.8, 135.0, 129.3, 127.3, 126.6, 126.0, 123.5, 123.0, 122.0, 121.7 (qd, *J* = 283.5, 31.6 Hz), 91.7 (dq, *J* = 201.9, 34.4 Hz), 57.8, 34.2 (d, *J* = 21.1 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.80 (d, *J* = 10.6 Hz, 3F), -166.09 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{13}F_4N_2OS$ 381.0679; Found 381.0678.

Chemical Formula: $C_{18}H_{12}F_4N_2O_2$

5-(benzo[d]oxazol-2-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3s): white solid (mp = 154.7-155.4 °C), 19.0 mg, (Yield: 52%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.71 – 7.65 (m, 1H), 7.51 – 7.44 (m, 3H), 7.38 – 7.30 (m, 4H), 7.24 – 7.17 (m, 1H), 5.59 (ddd, *J* = 7.9, 5.8, 3.5 Hz, 1H), 3.29 (ddd, *J* = 15.1, 13.3, 7.9 Hz, 1H), 3.02 – 2.86 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 162.4 (d, *J* = 22.2 Hz), 161.3, 150.9, 140.4, 135.7, 129.3, 127.6, 126.2, 125.0, 123.2, 121.7 (qd, *J* = 283.7, 31.8 Hz), 120.6, 111.1, 91.3 (dq, *J* = 202.2, 34.5 Hz), 53.7, 31.8 (d, *J* = 21.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.92 (d, *J* = 10.7 Hz, 3F), -168.06 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{13}F_4N_2O_2$ 365.0908; Found 365.0907.

Chemical Formula: C₁₇H₁₅F₄N₃O₃

5-(2,6-dimethoxypyrimidin-4-yl)-3-fluoro-1-phenyl-3-(trifluoromethyl)pyrrolidin-2-one (3t): dense yellow oil, 28.2 mg, (Yield: 73%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.50 – 7.43 (m, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.24 – 7.16 (m, 1H), 6.23 (s, 1H), 5.18 (dt, *J* = 8.3, 4.3 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.14 (ddd, *J* = 17.7, 15.2, 8.1 Hz, 1H), 2.71 – 2.54 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 172.4, 167.9, 165.9, 163.0 (d, *J* = 22.1 Hz), 136.3, 129.2, 126.9, 122.5, 121.7 (qd, *J* = 283.3, 31.7 Hz), 99.5, 92.0 (dq, *J* = 200.4, 34.3 Hz), 59.3, 55.1, 54.1, 33.0 (d, *J* = 21.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.94 (d, *J* = 10.3 Hz, 3F), -166.74 (q, *J* = 10.5 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{16}F_4N_3O_3$ 386.1122; Found 386.1121.

Chemical Formula: C17H14F4N2O

3-fluoro-5-methyl-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3u): yellow solid (mp = $138.4-139.7 \circ C$), 24.4 mg, (Yield: 72%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.69 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.34 (dd, J = 8.0, 0.8 Hz, 1H), 7.30 – 7.22 (m, 4H), 6.92 – 6.83 (m, 2H), 3.08 (ddd, J = 27.3, 15.8, 1.0 Hz, 1H), 2.73 (dd, J = 23.0, 15.7 Hz, 1H), 1.81 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.9 (d, *J* = 22.0 Hz), 161.3, 149.7, 136.8, 134.9, 129.0, 128.1, 127.2, 123.0, 122.0 (qd, *J* = 284.0, 31.7 Hz), 120.4, 92.0 (dq, *J* = 198.4, 33.8 Hz), 65.5, 42.0 (d, *J* = 20.8 Hz), 24.7 (d, *J* = 2.7 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.91 (d, *J* = 10.1 Hz, 3F), -166.69 (q, *J* = 9.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O$ 339.1115; Found 339.1114.

Chemical Formula: C₂₂H₁₆F₄N₂O

3-fluoro-1,5-diphenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3v): dense yellow oil, 30.1 mg, (Yield: 75%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.75 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.59 (td, J = 7.8, 1.8 Hz, 1H), 7.32 – 7.24 (m, 6H), 7.23 – 7.18 (m, 1H), 7.14 – 7.03 (m, 5H), 3.91 (dd, J = 26.3, 15.5 Hz, 1H), 3.17 (dd, J = 25.7, 15.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 164.4 (d, *J* = 21.9 Hz), 159.5, 149.2, 140.2, 136.3, 136.0, 128.5, 128.4, 128.3, 128.2, 127.1, 126.6, 123.9, 123.0, 121.8 (qd, *J* = 284.8, 31.6 Hz), 92.0 (dq, *J* = 198.1, 34.3 Hz), 73.6, 44.5 (d, *J* = 20.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.24 (d, *J* = 10.1 Hz, 3F), -167.89 (q, *J* = 10.1 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{17}F_4N_2O$ 401.1272; Found 401.1269.

Chemical Formula: C23H18F4N2O

3-fluoro-1-phenyl-5-(pyridin-2-yl)-5-(p-tolyl)-3-(trifluoromethyl)pyrrolidin-2-one (3w): white solid (mp = 102.0-103.1 °C), 30.3 mg, (Yield: 73%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.76 – 8.70 (m, 1H), 7.58 (td, *J* = 7.8, 1.9 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.20 – 7.03 (m, 10H), 3.87 (dd, *J* = 26.4, 15.5 Hz, 1H), 3.15 (dd, *J* = 25.7, 15.5 Hz, 1H), 2.30 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.4 (d, *J* = 22.3 Hz), 159.7, 149.1, 138.2, 137.2, 136.2, 136.0, 129.1, 128.4, 128.1, 127.1, 126.7, 123.9, 122.9, 121.8 (qd, *J* = 282.8, 31.6 Hz), 92.0 (dq, *J* = 197.2, 34.2 Hz), 73.5, 44.4 (d, *J* = 20.8 Hz), 20.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.24 (d, *J* = 10.0 Hz, 3F), -167.86 (q, *J* = 9.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{23}H_{19}F_4N_2O$ 425.1428; Found 425.1427.

Chemical Formula: C₂₂H₁₅F₅N₂O

3-fluoro-5-(4-fluorophenyl)-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (3x): dense yellow oil, 29.8 mg, (Yield: 71%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.75 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1H), 7.64 (td, *J* = 7.8, 1.9 Hz, 1H), 7.33 – 7.25 (m, 4H), 7.15 – 7.09 (m, 3H), 7.07 – 7.02 (m, 2H), 7.00 – 6.94 (m, 2H), 3.82 (dd, *J* = 25.3, 15.5 Hz, 1H), 3.14 (dd, *J* = 26.6, 15.5 Hz, 1H).

¹³C **NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.2 (d, J = 21.9 Hz), 162.2 (d, J = 249.1 Hz), 159.5, 149.3, 136.6, 135.7, 130.2 (d, J = 8.2 Hz), 128.5, 127.1, 126.3, 123.6, 123.1, 121.8 (qd, J = 282.6, 31.5 Hz), 115.4 (d, J = 21.7 Hz), 91.9 (dq, J = 197.8, 34.2 Hz), 73.0, 44.9 (d, J = 20.6 Hz). ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.28 (d, J = 9.7 Hz, 3F), -113.08 (s, 1F), -168.53 (q, J = 9.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{16}F_5N_2O$ 419.1177; Found 419.1175.

Chemical Formula: C₂₂H₁₅CIF₄N₂O

5-(4-chlorophenyl)-3-fluoro-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (**3y**): dense colorless oil, 30.9 mg, (Yield: 71%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.75 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.62 (td, J = 7.8, 1.8 Hz, 1H), 7.31 – 7.25 (m, 5H), 7.21 (d, J = 8.0 Hz, 1H), 7.16 – 7.10 (m, 3H), 7.07 – 7.01 (m, 2H), 3.88 (dd, J = 25.8, 15.5 Hz, 1H), 3.09 (dd, J = 25.6, 15.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.2 (d, *J* = 21.9 Hz), 159.1, 149.3, 138.7, 136.6, 135.7, 134.3, 129.6, 128.6, 128.6, 127.2, 126.3, 123.7, 123.2, 121.7 (qd, *J* = 282.6, 31.4 Hz), 91.8 (dq, *J* = 197.8, 34.3 Hz), 73.0, 44.7 (d, *J* = 20.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.25 (d, *J* = 10.1 Hz, 3F), -168.13 (q, *J* = 10.1 Hz, 1F).

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₆ClF₄N₂O 435.0882; Found 435.0878.

Chemical Formula: C₂₂H₁₅BrF₄N₂O

5-(4-bromophenyl)-3-fluoro-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (**3z**): white solid (mp = 107.6-108.5 °C), 31.8 mg, (Yield: 66%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.75 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.61 (td, J = 7.8, 1.9 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.29 (ddd, J = 7.6, 4.8, 1.0 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.16 – 7.10 (m, 3H), 7.07 – 7.00 (m, 2H), 3.89 (dd, J = 26.0, 15.5 Hz, 1H), 3.08 (dd, J = 25.3, 15.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.3 (d, *J* = 22.1 Hz), 159.0, 149.3, 139.4, 136.5, 135.7, 131.6, 129.9, 128.6, 127.2, 126.3, 123.8, 123.2, 122.5, 121.7 (qd, *J* = 282.7, 31.4 Hz), 91.8 (dq, *J* = 197.8, 34.3 Hz), 73.1, 44.6 (d, *J* = 20.9 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.25 (d, *J* = 9.8 Hz, 3F), -168.01 (q, *J* = 10.1 Hz, 1F).

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₆BrF₄N₂O 479.0377; Found 479.0375.

Chemical Formula: C₂₃H₁₈F₄N₂O₂

3-fluoro-5-(4-methoxyphenyl)-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (**3aa**): dense brown oil, 33.3 mg, (Yield: 77%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.73 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.61 (td, J = 7.8, 1.8 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.19 – 7.04 (m, 7H), 6.83 – 6.77 (m, 2H), 3.84 – 3.73 (m, 4H), 3.17 (dd, J = 26.9, 15.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 164.2 (d, *J* = 21.7 Hz), 160.0, 159.3, 149.1, 136.4, 136.0, 131.7, 131.7, 129.6, 128.4, 127.0, 126.6, 123.6, 122.9, 121.8 (qd, *J* = 284.0, 31.2 Hz), 113.7, 92.0 (dq, *J* = 197.4, 34.1 Hz), 55.2, 44.5 (d, *J* = 20.6 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.25 (d, *J* = 9.9 Hz, 3F), -168.47 (q, *J* = 10.0 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{23}H_{19}F_4N_2O_2$ 434.1377; Found 434.1374.

Chemical Formula: C₂₆H₁₈F₄N₂O

3-fluoro-5-(naphthalen-2-yl)-1-phenyl-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (**3ab**): brown solid (mp = 248.5-249.3 °C), 15.6 mg, (Yield: 34%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.77 – 8.68 (m, 1H), 8.06 (d, *J* = 7.3 Hz, 1H), 7.96 – 7.87 (m, 2H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.25 – 7.19 (m, 1H), 7.17 – 7.00 (m, 8H), 6.49 (d, *J* = 7.5 Hz, 1H), 4.85 (dd, *J* = 34.4, 15.1 Hz, 1H), 3.32 (dd, *J* = 15.0, 9.5 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 165.6 (d, *J* = 22.7 Hz), 157.8, 149.3, 137.5, 136.5, 135.5, 134.9, 129.9, 129.6, 129.6, 128.5, 127.8, 127.6, 126.5, 126.0, 125.9, 125.6, 124.4, 123.1, 121.5 (qd, *J* = 284.3, 32.8 Hz), 92.1 (dq, *J* = 194.9, 33.5 Hz), 74.4 (d, *J* = 3.0 Hz), 41.4 (d, *J* = 22.0 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -78.82 (d, *J* = 11.5 Hz, 3F), -161.79 (s, 1F). **HRMS (ESI) m/z:** [M + H]⁺ Calcd for C₂₆H₁₉F₄N₂O 451.1428; Found 451.1425.

3ac Chemical Formula: C₁₈H₁₄F₄N₂O₂

4-fluoro-5-oxo-*N***,1-diphenyl-4-(trifluoromethyl)pyrrolidine-2-carboxamide** (3ac): dense yellow oil, 18.7 mg, (Yield: 51%).

¹**H** NMR (400 MHz, Acetone- d_6) δ (ppm) = 9.76 (s, 1H), 7.67 – 7.60 (m, 2H), 7.61 – 7.54 (m, 2H), 7.48 – 7.38 (m, 2H), 7.32 – 7.24 (m, 3H), 7.14 – 7.05 (m, 1H), 5.20 (dt, J = 8.2, 4.1 Hz, 1H), 3.33 (ddd, J = 19.8, 15.4, 8.2 Hz, 1H), 2.88 – 2.74 (m, 1H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ (ppm) = 167.8, 163.5 (d, *J* = 22.4 Hz), 139.1, 138.0, 129.9, 129.6, 127.7, 125.1, 124.6, 124.3, 123.5, 121.8, 121.5, 120.4, 94.2, 93.8, 92.2, 91.8, 59.6, 31.2 (d, *J* = 21.5 Hz).

¹⁹**F NMR** (376 MHz, Acetone- d_6) δ (ppm) = -80.67 (d, J = 10.1 Hz, 3F), -167.55 (q, J = 10.1 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{15}F_4N_2O_2$ 367.1064; Found 367.1061.

3ad

Chemical Formula: C₁₉H₁₆F₄N₂O₂

4-fluoro-*N*-**methyl-5-oxo**-*N*,**1-diphenyl-4-(trifluoromethyl)pyrrolidine-2-carboxamide (3ad)**: dense yellow oil, 22.4 mg, (Yield: 59%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 7.55 – 7.47 (m, 3H), 7.46 – 7.39 (m, 2H), 7.35 – 7.27 (m, 3H), 7.06 (dd, *J* = 8.0, 1.6 Hz, 2H), 4.62 (ddd, *J* = 7.9, 5.3, 4.1 Hz, 1H), 3.21 (s, 3H), 2.76 – 2.54 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 168.0, 162.7 (d, *J* = 22.4 Hz), 141.7, 136.2, 130.5, 129.2, 129.2, 127.6, 126.9, 123.6, 123.3, 122.9, 120.4, 120.1, 92.5, 92.2, 90.5, 90.2, 54.8, 38.0, 30.6 (d, *J* = 21.8 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.25 (d, *J* = 10.8 Hz, 3F), -167.30 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{17}F_4N_2O_2$ 381.1221; Found 381.1220.

Chemical Formula: C₁₇H₁₄F₄N₂O

3-fluoro-5-(pyridin-2-yl)-1-(p-tolyl)-3-(trifluoromethyl)pyrrolidin-2-one (4b): yellow solid (mp = 85.6-86.8 °C), 26.2 mg, (Yield: 77%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.62 – 8.54 (m, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.22 – 7.12 (m, 2H), 7.07 (d, J = 8.2 Hz, 2H), 5.35 (ddd, J = 7.8, 5.6, 4.0 Hz, 1H), 3.20 (td, J = 14.9, 7.7 Hz, 1H), 2.68 (dddd, J = 25.8, 15.1, 5.7, 1.3 Hz, 1H), 2.25 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, J = 22.0 Hz), 157.7, 150.0, 137.2, 136.7, 133.8, 129.6, 123.4, 122.8, 121.9 (qd, J = 284.5, 32.1 Hz), 121.4, 92.3 (dq, J = 199.6, 34.2 Hz), 60.7, 34.0 (d, J = 20.5 Hz), 20.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.90 (d, *J* = 10.8 Hz, 3F), -167.06 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O$ 339.1115; Found 339.1112.

Chemical Formula: C₂₀H₂₀F₄N₂O

1-(4-(tert-butyl)phenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4c): white solid (mp = 121.9-123.4 °C), 28.3 mg, (Yield: 74%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.59 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.23 – 7.16 (m, 2H), 5.39 (ddd, J = 7.9, 5.2, 3.8 Hz, 1H), 3.20 (ddd, J = 16.0, 15.1, 7.8 Hz, 1H), 2.66 (dddd, J = 25.4, 15.1, 5.2, 1.2 Hz, 1H), 1.24 (s, 9H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.1 Hz), 157.9, 150.0, 149.7, 137.3, 133.7, 125.9, 123.4, 122.2, 121.9 (qd, *J* = 284.8, 31.9 Hz), 121.2, 92.4 (dq, *J* = 199.5, 34.1 Hz), 60.6, 34.4, 34.1 (d, *J* = 20.5 Hz), 31.1.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.89 (d, *J* = 10.6 Hz, 3F), -166.98 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}F_4N_2O$ 351.1585; Found 351.1581.

Chemical Formula: C₁₆H₁₁F₅N₂O

3-fluoro-1-(4-fluorophenyl)-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4d): white solid (mp = 88.4-89.1 °C), 25.8 mg, (Yield: 75%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.62 – 8.54 (m, 1H), 7.62 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.22 (ddd, *J* = 7.6, 4.8, 1.1 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.00 – 6.93 (m, 2H), 5.32 (ddd, *J* = 7.6, 6.0, 3.9 Hz, 1H), 3.22 (ddd, *J* = 15.0, 12.9, 7.6 Hz, 1H), 2.74 (dddd, *J* = 25.9, 15.1, 5.9, 1.2 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.2 (d, *J* = 22.4 Hz), 160.7 (d, *J* = 247.5 Hz), 156.9, 150.2, 137.3, 132.2 (d, *J* = 3.1 Hz), 125.1 (d, *J* = 8.4 Hz), 123.7, 121.9 (qd, *J* = 283.6, 31.9 Hz), 121.7, 115.9 (d, *J* = 22.8 Hz), 92.2 (dq, *J* = 200.3, 34.2 Hz), 60.8, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.92 (d, *J* = 10.7 Hz, 3F), -114.00 (s, 1F), -167.48 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}F_5N_2O$ 343.0864; Found 343.0863.

Chemical Formula: C₁₆H₁₁CIF₄N₂O

1-(4-chlorophenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4e): white solid (mp = 112.4-113.2 °C), 24.9 mg, (Yield: 69%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.61 – 8.55 (m, 1H), 7.63 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.27 – 7.19 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 1H), 5.35 (ddd, *J* = 7.7, 5.7, 3.8 Hz, 1H), 3.22 (td, *J* = 14.6, 7.7 Hz, 1H), 2.70 (dddd, *J* = 25.7, 15.0, 5.7, 1.2 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.4 Hz), 157.1, 150.2, 137.3, 134.9, 132.2, 129.2, 124.1, 123.7, 121.8 (qd, *J* = 283.5, 31.8 Hz), 121.4, 92.2 (dq, *J* = 200.3, 34.3 Hz), 60.6, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.88 (d, *J* = 10.4 Hz, 3F), -167.19 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}ClF_4N_2O$ 359.0569; Found 359.0568.

Chemical Formula: C₁₆H₁₁BrF₄N₂O

1-(4-bromophenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4f): white solid (mp = 115.6-116.8 °C), 22.7 mg, (Yield: 56%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.58 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.63 (td, J = 7.7, 1.7 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.22 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 5.35 (ddd, J = 7.8, 5.7, 3.8 Hz, 1H), 3.22 (ddd, J = 15.1, 14.2, 7.7 Hz, 1H), 2.69 (dddd, J = 25.6, 15.1, 5.7, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.4 Hz), 157.0, 150.2, 137.4, 135.4, 132.1, 124.3, 123.7, 121.8 (qd, *J* = 283.6, 31.8 Hz), 121.4, 120.0, 92.2 (dq, *J* = 200.4, 34.3 Hz), 60.5, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.86 (d, *J* = 10.8 Hz, 3F), -167.17 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}BrF_4N_2O$ 403.0064; Found 403.0062.

Chemical Formula: C18H14F4N2O3

methyl 4-(3-fluoro-2-oxo-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-1-yl)benzoate (4g): white solid (mp = 149.9-150.6 °C), 25.1 mg, (Yield: 65%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.60 - 8.54 (m, 1H), 8.00 - 7.92 (m, 2H), 7.67 - 7.55 (m, 3H), 7.21 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 5.46 (ddd, J = 7.8, 5.4, 3.5 Hz, 1H), 3.87 (s, 3H), 3.24 (td, J = 15.3, 7.8 Hz, 1H), 2.76 - 2.61 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 166.1, 163.3 (d, *J* = 22.6 Hz), 157.2, 150.2, 140.3, 137.4, 130.5, 127.9, 123.6, 121.8, 121.7 (qd, *J* = 284.4, 31.6 Hz), 121.1, 92.3 (dq, *J* = 201.0, 34.3 Hz), 60.4, 52.2, 34.1 (d, *J* = 20.4 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.83 (d, *J* = 10.5 Hz, 3F), -166.95 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{15}F_4N_2O_3$ 383.1013; Found 383.1011.

Chemical Formula: C₂₃H₁₆F₄N₂O₂

1-(4-benzoylphenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4h):brown solid (mp = 129.5-130.3 °C), 24.6 mg, (Yield: 57%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.59 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.78 – 7.70 (m, 4H), 7.65 – 7.54 (m, 4H), 7.49 – 7.43 (m, 2H), 7.25 – 7.17 (m, 2H), 5.48 (ddd, *J* = 7.8, 5.6, 3.5 Hz, 1H), 3.26 (td, *J* = 15.1, 7.8 Hz, 1H), 2.70 (dddd, *J* = 25.5, 15.3, 5.6, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 195.4, 163.4 (d, *J* = 22.1 Hz), 157.2, 150.3, 139.9, 137.5, 137.2, 135.2, 132.6, 131.0, 129.9, 128.3, 123.7, 121.8, 121.1, 118.9 (qd, *J* = 283.8, 32.1 Hz), 92.3 (dq, *J* = 201.3, 34.4 Hz), 60.4, 34.1 (d, *J* = 20.4 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.80 (d, *J* = 10.5 Hz, 3F), -167.01 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{23}H_{17}F_4N_2O_2$ 429.1221; Found 429.1214.

Chemical Formula: C₂₂H₁₆F₄N₂O₂

3-fluoro-1-(4-phenoxyphenyl)-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4i): yellow solid (mp = 109.4-110.2 °C), 32.3 mg, (Yield: 77%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.64 – 8.54 (m, 1H), 7.62 (td, *J* = 7.7, 1.8 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.23 – 7.15 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 9.0 Hz, 2H), 5.32 (ddd, *J* = 7.7, 5.7, 4.0 Hz, 1H), 3.20 (td, *J* = 14.4, 7.6 Hz, 1H), 2.72 (ddd, *J* = 25.8, 15.0, 5.8 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.3 Hz), 157.3, 156.4, 155.8, 150.1, 137.2, 131.2, 129.8, 124.7, 123.8, 123.6, 121.9 (qd, *J* = 284.6, 31.8 Hz), 121.6, 119.2, 118.7, 92.2 (dq, *J* = 200.1, 34.3 Hz), 60.9, 34.0 (d, *J* = 20.4 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.88 (d, *J* = 10.8 Hz, 3F), -167.23 (q, *J* = 10.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{17}F_4N_2O_2$ 417.1221; Found 417.1216.

Chemical Formula: C₁₇H₁₁F₇N₂O

3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (4j): white solid (mp = 100.5-101.6 °C), 21.7 mg, (Yield: 55%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.59 (dt, J = 4.9, 1.4 Hz, 1H), 7.68 – 7.60 (m, 3H), 7.55 (d, J = 8.9 Hz, 2H), 7.23 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 5.44 (ddd, J = 7.9, 5.6, 3.6 Hz, 1H), 3.25 (td, J = 15.1, 7.8 Hz, 1H), 2.69 (dddd, J = 25.3, 15.1, 5.6, 1.3 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.4 (d, J = 272.0 Hz), 157.0, 150.3, 139.4, 137.5, 128.3 (q, J = 33.1 Hz), 126.2 (q, J = 3.7 Hz), 123.6 (q, J = 272.0 Hz), 123.7, 122.3, 121.7 (qd, J = 283.4, 31.5 Hz), 121.1, 92.2 (dq, J = 200.5, 34.3 Hz), 60.4, 34.1 (d, J = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -62.62 (s, 3F), -79.85 (d, *J* = 10.2 Hz, 3F), -167.14 (q, *J* = 10.3 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{12}F_7N_2O$ 393.0832; Found 393.0827.

Chemical Formula: C₁₇H₁₄F₄N₂O

3-fluoro-5-(pyridin-2-yl)-1-(o-tolyl)-3-(trifluoromethyl)pyrrolidin-2-one (4k): yellow solid (mp = 105.2-106.0 °C), 19.6 mg, (Yield: 57%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.65 – 8.56 (m, 1H), 7.52 (td, *J* = 7.6, 1.8 Hz, 1H), 7.19 (ddd, *J* = 7.7, 4.8, 1.1 Hz, 1H), 7.15 – 7.08 (m, 2H), 7.03 (d, *J* = 7.7 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 5.09 (td, *J* = 6.9, 4.4 Hz, 1H), 3.27 – 3.11 (m, 2H), 2.17 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 162.8 (d, *J* = 22.3 Hz), 155.3, 150.1, 136.7, 136.1, 134.3, 131.2, 128.6, 126.4, 123.9, 123.7, 122.3 (qd, *J* = 284.9, 32.2 Hz), 91.8 (dq, *J* = 200.4, 34.0 Hz), 61.4, 33.2 (d, *J* = 20.9 Hz), 17.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.97 (d, *J* = 11.2 Hz, 3F), -168.19 (q, *J* = 11.0 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{15}F_4N_2O_2$ 339.1115; Found 339.1116.

Chemical Formula: C₁₆H₁₁ClF₄N₂O

1-(3-chlorophenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4l): white solid (mp = 101.4-102.2 °C), 26.8 mg, (Yield: 74%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.62 – 8.55 (m, 1H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.57 (t, *J* = 2.0 Hz, 1H), 7.29 – 7.11 (m, 5H), 5.37 (ddd, *J* = 7.8, 5.7, 3.7 Hz, 1H), 3.22 (td, *J* = 14.8, 7.7 Hz, 1H), 2.70 (dddd, *J* = 25.4, 15.0, 5.6, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.2 (d, *J* = 22.5 Hz), 157.0, 150.3, 137.42, 137.37, 134.7, 130.0, 126.8, 123.7, 123.0, 121.8 (qd, *J* = 284.5, 31.8 Hz), 121.3, 120.7, 92.2 (dq, *J* = 200.3, 34.3 Hz), 60.5, 34.0 (d, *J* = 20.4 Hz).

¹⁹**F NMR** (376 MHz,Chloroform-*d*) δ (ppm) = -79.87 (d, *J* = 10.4 Hz, 3F), -167.24 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}ClF_4N_2O$ 359.0569; Found 359.0562.

Chemical Formula: C₁₆H₁₁BrF₄N₂O

1-(3-bromophenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4m):yellow solid (mp = 80.5-81.6 °C), 23.7 mg, (Yield: 58%). (4m)

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.62 – 8.56 (m, 1H), 7.72 (t, *J* = 2.0 Hz, 1H), 7.64 (td, *J* = 7.8, 1.8 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.22 (ddd, *J* = 7.7, 4.8, 1.1 Hz, 1H), 7.19 – 7.11 (m, 2H), 5.36 (ddd, *J* = 7.8, 5.6, 3.7 Hz, 1H), 3.21 (td, *J* = 14.8, 7.7 Hz, 1H), 2.70 (dddd, *J* = 25.6, 15.1, 5.6, 1.2 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.2 (d, *J* = 22.4 Hz), 157.0, 150.3, 137.6, 137.4, 130.2, 129.8, 125.9, 123.7, 122.6, 121.8 (qd, *J* = 283.5, 31.7 Hz), 121.3, 121.2, 92.2 (dq, *J* = 200.5, 34.3 Hz), 60.5, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.87 (d, *J* = 10.8 Hz, 3F), -167.20 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{12}BrF_4N_2O$ 403.0064; Found 403.0060.

Chemical Formula: C₁₉H₁₆F₄N₂O₃

ethyl 3-(3-fluoro-2-oxo-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-1-yl)benzoate (4n): brown solid (mp = 81.6-82.3 °C), 33.9 mg, (Yield: 85%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.58 (dd, *J* = 5.3, 1.9 Hz, 1H), 8.03 (s, 1H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.69 (dd, *J* = 8.1, 2.3 Hz, 1H), 7.61 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.16 (m, 2H), 5.43 (ddd, *J* = 7.7, 5.8, 3.8 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.24 (ddd, *J* = 15.0, 13.5, 7.6 Hz, 1H), 2.75 (ddd, *J* = 25.8, 15.0, 5.9 Hz, 1H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 165.5, 163.2 (d, *J* = 22.6 Hz), 156.9, 150.3, 137.3, 136.5, 131.4, 129.1, 127.7, 127.4, 123.7, 123.6, 121.8 (qd, *J* = 283.5, 31.7 Hz), 121.7, 92.2 (dq, *J* = 200.4, 34.2 Hz), 61.3, 60.5, 34.0 (d, *J* = 20.5 Hz), 14.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.88 (d, *J* = 10.8 Hz, 3F), -167.33 (q, *J* = 11.0 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{17}F_4N_2O_3$ 397.1170; Found 397.1167.

Chemical Formula: C₁₆H₁₀Cl₂F₄N₂O

1-(3,4-dichlorophenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (40):white solid (mp = 127.7-128.5 °C), 24.3 mg, (Yield: 61%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.63 – 8.56 (m, 1H), 7.72 – 7.63 (m, 2H), 7.33 (d, J = 8.8 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.17 (d, J = 7.8 Hz, 1H), 5.34 (ddd, J = 7.9, 5.7, 3.6 Hz, 1H), 3.22 (td, J = 14.8, 7.7 Hz, 1H), 2.69 (dddd, J = 25.4, 15.2, 5.6, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.2 (d, *J* = 22.6 Hz), 156.7, 150.4, 137.5, 135.7, 133.1, 130.6, 130.5, 124.6, 123.8, 121.8, 121.7 (qd, *J* = 283.6, 31.7 Hz), 121.3, 92.1 (dq, *J* = 200.6, 34.3 Hz), 60.4, 34.0 (d, *J* = 20.5 Hz).

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.86 (d, *J* = 10.7 Hz, 3F), -167.17 (q, *J* = 10.8 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{11}Cl_2F_4N_2O$ 393.0179; Found 393.0178.

Chemical Formula: C₁₈H₁₆F₄N₂O

1-(3,5-dimethylphenyl)-3-fluoro-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4p): white solid (mp = 138.4-139.0 °C), 26.6 mg, (Yield: 75%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.61 – 8.55 (m, 1H), 7.61 (td, *J* = 7.8, 1.8 Hz, 1H), 7.23 – 7.13 (m, 2H), 7.03 (s, 2H), 6.79 (s, 1H), 5.36 (ddd, *J* = 7.8, 5.5, 3.9 Hz, 1H), 3.19 (td, *J* = 15.0, 7.7 Hz, 1H), 2.67 (dddd, *J* = 25.6, 15.0, 5.6, 1.3 Hz, 1H), 2.22 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.1 (d, *J* = 22.2 Hz), 157.7, 149.9, 138.3, 137.2, 136.1, 128.6, 123.4, 121.3, 120.7, 119.2 (qd, *J* = 284.8, 32.3 Hz), 92.3 (dq, *J* = 199.6, 34.1 Hz), 60.7, 34.0 (d, *J* = 20.5 Hz), 21.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.90 (d, *J* = 10.6 Hz, 3F), -167.08 (q, *J* = 10.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{17}F_4N_2O$ 353.1272; Found 353.1270.

Chemical Formula: C₂₀H₁₄F₄N₂O

3-fluoro-1-(naphthalen-2-yl)-5-(pyridin-2-yl)-3-(trifluoromethyl)pyrrolidin-2-one (4q): white solid (mp = 157.9-158.3 °C), 24.4 mg, (Yield: 65%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.56 (d, *J* = 4.6 Hz, 1H), 7.91 (s, 1H), 7.77 – 7.70 (m, 3H), 7.59 – 7.50 (m, 2H), 7.47 – 7.39 (m, 2H), 7.22 – 7.11 (m, 2H), 5.57 – 5.47 (m, 1H), 3.27 (tdd, *J* = 14.8, 7.7, 1.4 Hz, 1H), 2.74 (ddd, *J* = 25.7, 15.0, 5.7 Hz, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ (ppm) = 163.3 (d, *J* = 22.3 Hz), 157.4, 150.1, 137.3, 133.8, 133.0, 131.6, 129.0, 127.9, 127.5, 126.6, 126.3, 123.5, 121.9 (qd, *J* = 284.6, 31.9 Hz), 121.5, 121.4, 121.0, 92.4 (dq, *J* = 199.9, 34.1 Hz), 60.7, 34.1 (d, *J* = 20.3 Hz).

¹⁹**F NMR** (376 MHz,Chloroform-*d*) δ (ppm) = -79.79 (d, *J* = 11.0 Hz, 3F), -166.94 (q, *J* = 11.2 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{15}F_4N_2O$ 375.1115; Found 375.1113.

Chemical Formula: C17H11CIF6N2O

1-(4-chlorophenyl)-3-fluoro-3-(perfluoroethyl)-5-(pyridin-2-yl)pyrrolidin-2-one (4r): yellow solid (mp = 97.3-98.6 °C), 26.2 mg, (Yield: 64%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.59 – 8.57 (m, 1H), 7.62 (td, *J* = 7.8, 1.8 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.27 – 7.20 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 1H), 5.35 (ddd, *J* = 7.6, 5.8, 3.6 Hz, 1H), 3.33 (td, *J* = 14.9, 7.5 Hz, 1H), 2.73 (ddd, *J* = 25.8, 15.1, 5.9 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 23.2 Hz), 157.0, 150.2, 137.3, 134.9, 132.2, 129.2, 124.1, 123.7, 121.5, 92.9 (dt, *J* = 201.3, 28.9 Hz), 60.7, 34.5 (d, *J* = 20.9 Hz). Carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -79.82 (d, J = 10.4 Hz, 3F), -123.91 – -127.22 (m, 2F), -165.66 (h, J = 9.7 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{12}ClF_6N_2O$ 409.0537; Found 409.0535.

Chemical Formula: C₁₈H₁₂F₈N₂O

3-fluoro-3-(perfluoropropyl)-1-phenyl-5-(pyridin-2-yl)pyrrolidin-2-one (4s): white solid (mp = 93.6-94.2 °C), 30.3 mg, (Yield: 71%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ (ppm) = 8.60 – 8.55 (m, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.32 – 7.25 (m, 2H), 7.21 – 7.13 (m, 3H), 5.41 (ddd, *J* = 7.7, 5.4, 3.7 Hz, 1H), 3.34 (dddd, *J* = 16.4, 15.2, 7.7, 1.2 Hz, 1H), 2.75 (ddd, *J* = 25.6, 15.1, 5.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 21.8 Hz), 157.5, 150.0, 137.2, 136.3, 129.0, 126.7, 123.5, 122.8, 121.3, 93.5 (dt, *J* = 197.1, 28.3 Hz), 60.7, 34.5 (d, *J* = 20.8 Hz). Carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.83 (td, J = 10.2, 3.9 Hz, 3F), -121.18 – -123.71 (m, 2F), -124.41 (dt, J = 10.3, 6.2 Hz, 2F), -164.45 (ttt, J = 13.2, 6.7, 3.9 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{13}F_8N_2O$ 425.0895; Found 425.0891.

Chemical Formula: C₁₉H₁₂F₁₀N₂O

3-fluoro-3-(perfluorobutyl)-1-phenyl-5-(pyridin-2-yl)pyrrolidin-2-one (4t): white solid (mp = 90.3-91.6 °C), 33.4 mg, (Yield: 70%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ (ppm) = 8.58 (dd, *J* = 4.7, 1.4 Hz, 1H), 7.60 (td, *J* = 7.7, 1.8 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.32 – 7.25 (m, 2H), 7.22 – 7.13 (m, 3H), 5.41 (ddd, *J* = 7.7, 5.5, 3.7 Hz, 1H), 3.35 (td, *J* = 15.9, 8.1 Hz, 1H), 2.75 (ddd, *J* = 25.6, 15.1, 5.5 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 163.0 (d, *J* = 22.6 Hz), 157.5, 150.1, 137.2, 136.4, 129.0, 126.7, 123.5, 122.8, 121.4, 93.7 (dt, *J* = 203.1, 28.8 Hz), 60.7, 34.6 (d, *J* = 20.6 Hz). Carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ (ppm) = -80.77 (tt, *J* = 11.3, 2.8 Hz, 3F), -120.40 – -122.99 (m, 4F), -126.06 – -126.27 (m, 2F), -164.27 (tdq, *J* = 14.5, 10.4, 5.2 Hz, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{13}F_{10}N_2O$ 475.0863; Found 475.0860.

VIII. References

- (1) Y. Peng, C. Qin, X. Chen, J. Li, H. Li, W. Wang, Asian J. Org. Chem. 2017, 6, 694-697.
- (2) A. Saxena, B. Choi, & H. W. Lam, J. Am. Chem. Soc. 134, 8428-8431.
- (3) (a) K. N. Lee, Z. Lei, & M.-Y. Ngai, J. Am. Chem. Soc. 139, 5003-5006. (b) B. Zhou, Y. Hu, & C. Wang, Angew. Chem. Int. Ed. 54, 13659-13663.

- (4) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (5) R. S. Paton, J. L. Mackey, W. H. Kim, J. H. Lee, S. J. Danishefsky, K. N. Houk, J. Am. Chem. Soc. 2010, 132 (27), 9335–9340.
- (6) J. G. Harrison, O. Gutierrez, N. Jana, T. G. Driver, D. J. Tantillo, J. Am. Chem. Soc. 2016, 138, 487–490
- (7) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- (8) Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, 2009; http://www.cylview.org.

NMR Spectra of the Substrates

S77

S86

S102

NMR Spectra of the Products

S132

S153

S185

S196

S216

