Supporting Information

On the σ -complex character of bis(gallyl)/digallane transition metal species

T. L. Kalkuhl,^a L. Qin,^b L. Zhao*,^b G. Frenking,^{*,b,c} and T. J. Hadlington^{*,a}

^a Fakultät für Chemie, Technische Universität München, Lichtenberg Strasse 4, 85747 Garching, Germany

^b Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China

^c Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043, Marburg, Germany

1.	Experimental Methods and Data	1
	a. General Considerations	1
	b. Experimental Procedures	2
	c. Spectroscopic Data	9
2.	X-ray crystallographic details	35
3.	Computational methods and details	37
4.	References	64

1. Experimental Methods and Data

a. General Considerations

All analysis and manipulations were carried out under an dry oxygen free argon atmosphere using standard Schlenk techniques or in an MBraun inert atmosphere glovebox containing an atmosphere of high purity argon, using flame dried glassware. All syringes, magnetic stirring bars and needles were rigorously dried. THF and diethyl ether were dried by distillation over a sodium/benzophenone mixture, degassed by standard procedures and stored over activated 4Å mol sieves. C₆D₆ and THF-d₈ were dried, degassed by standard procedures, and stored over a potassium mirror, molecular sieve prior to use, respectively. All other solvents were dried over activated 4Å mol sieves and degassed by standard procedures, prior to use. ^{PhiP}DippNK ([[Ph₂PCH₂Si(ⁱPr)₂](Dipp)NK]), ¹ Ni(COD)₂, ² Pd(COD)(CH₂TMS)₂ ³ were synthesized according to known literature procedures. All other reagents were used as received, unless mentioned otherwise. If compounds were sensitive to oxygen and/ or moisture, they were stored in a glovebox (MBraun Labmaster dp) under dry argon atmosphere.

NMR. NMR spectra were recorded on a Bruker AV 400 Spectrometer. The spectra were processed using the MestReNova 14.3.0 software suite. All chemical shifts δ are given in ppm. The ¹H and ¹³C{¹H} NMR spectra were referenced to the residual solvent signals as internal standards. ²⁹Si{¹H} NMR spectra were externally calibrated with SiMe₄. ³¹P{¹H} NMR spectra were externally calibrated with SiMe₄. ³¹P{¹H} NMR spectra were used: s = singlet, d = doublet, t = triplet, q = quartet, p = pentad, h = heptad, m = multiplet, br = broard and combinations thereof.

LIFDI-MS. Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS) was measured directly from an inert atmosphere glovebox with a Thermo Fisher Scientific Exactive Plus Orbitrap equipped with an ion source from Linden CMS.⁴

Raman. Raman spectra were measured using an *inVia* Raman microscope (Renishaw, RE04). The powdery samples were filled into a 0.5 mm glass capillary and irradiated with a 532 nm laser beam for 1 s at 0.5 % laser power using a microscope equipped with a 50-fold magnifying objective and a grating with 1800 lines mm⁻¹. 150 such measurements were averaged to yield the final Raman spectra.

UV-Vis. Absorption spectra (UV/vis) were recorded on an Agilent Cary 60 UV/vis spectrophotometer. In an inert cuvette with all samples being prepared in an MBraun Labmaster dp inert atmosphere glovebox containing an dry atmosphere of high purity argon.

Elemental Analysis. Elemental analyses (C, H, N) were performed with a combustion analyzer (elementar vario EL, Bruker).

b. Experimental Procedures

Ga₂Cl₄·(dioxane)₂. This was accessed via modified literature procedures.^{5,6}

A high pressure Schlenk flask was loaded with gallium trichloride (4.00 g, 22.72 mmol) and excess of elemental gallium (1.58 g, 22.72 mmol). Subsequently 30 mL of benzene were added, and the reaction mixture was heated to 60 °C for 24 h, without stirring. After 24 h two layers had formed, characteristic for group 13 benzene adducts. The reaction mixture was filtered to separate it from the excess of elemental gallium, and dioxane (15.65 g, 15.20 mL, 181.74 mmol) was added to the filtrate dropwise at 0 °C. This resulted in the formation of a grey precipitate. Subsequently the solution was filtered off, and the crude product was purified by washing with benzene (2 x 10 mL), and the solid dried *in vacuo*, yielding **Ga₂Cl₄ (dioxane)**₂ as an off-white powder. The filtrate and wash solutions were concentrated and stored at room temperature for two days, leading to a further crop of crystalline **Ga₂Cl₄ (dioxane)**₂. The combined yield was 8.32 g (81%).

¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ = 3.32 (s).

¹³C{¹H} NMR (C₆D₆, 101 MHz, 298 K): δ = 67.2 (O-CH₂).

PhiPDippGaCl₂, 1.

Method A: A Schlenk flask was loaded with ^{PhiP}DippNK (1.00 g, 1.90 mmol) and gallium trichloride (0.335 g, 1.90 mmol). Subsequently 20 mL of toluene were added at -80 °C. The suspension was subsequently allowed to slowly warm up to room temperature overnight under continuous stirring. Afterwards the reaction mixture was filtered, and all volatiles were removed *in vacuo*, yielding an off-white solid. The crude product was purified by washing with pentane (2x10 mL) and dried *in vacuo* afterwards. Yielding **1** (0.38 g, 0.60 mmol, 30 %) as an off-white powder.

Method B: A Schlenk flask was loaded with gallium trichloride (0.335 g, 1.90 mmol) and 15 mL of THF were added at -80 °C. Subsequently a solution of ^{PhiP}DippK (1.00 g, 1.90 mmol) in 20 mL of THF was added dropwise over the course of 30 min, while maintaining a temperature of -80 °C. The solution was subsequently allowed to slowly warm up to room temperature overnight under continuous stirring. Afterwards the reaction mixture was filtered, and all volatiles were removed *in vacuo*, yielding an off-white solid. The crude product was purified by washing with pentane (10 mL) and dried *in vacuo* afterwards. Yielding **1** (1.00 g, 1.58 mmol, 80 %) as an off-white powder.

N.B. Colorless crystals of **1** suitable for single crystal X-Ray diffraction analysis were obtained from a concentrated pentane solution at room temperature.

¹**H NMR** (THF-d₈, 400 MHz, 298 K): δ = 7.93 (dt, ³*J*_{*HH*} = 12.0, 5.5 Hz, 4H, Ar-C*H*), 7.55 (m, 6H, Ar-C*H*), 6.93 (m, 3H, Ar-C*H*), 3.33 (p, ³*J*_{*HH*} = 6.8 Hz, 2H, Dipp-iPr-C*H*), 2.11 (d, ³*J*_{*HP*} = 14.8 Hz, 2H, Si-C*H*₂-P), 1.17 (m, 8H, Si-iPr-C*H*/Si-iPr-C*H*₃), 1.08 (d, ³*J*_{*HH*} = 6.8 Hz, 6H, Dipp-iPr-C*H*₃), 0.94 (d, ³*J*_{*HH*} = 6.6 Hz, 6H, Dipp-iPr-C*H*₃), 0.83 (d, ³*J*_{*HH*} = 7.0 Hz, 6H, Si-iPr-C*H*₃).

¹³C{¹H} NMR (THF-d₈, 101 MHz, 298 K): δ = 147.7, 143.2, 143.1, 134.0, 133.9, 133.1, 133.1, 130.5, 130.4, 128.8, 128.4, 124.7 and 124.3 (Ar-*C*), 28.5 (Dipp-iPr-*C*H), 27.2 and 24.1 (Dipp-iPr-*C*H₃), 19.6 and 18.9 (Si-iPr-*C*H₃), 16.3 (Si-iPr-*C*H), 4.0 (d, ¹J_{CP} = 20.2 Hz, Si-*C*H₂-P).

³¹P{¹H} NMR (THF-d₈, 162 MHz, 298 K): δ = -20.6 (s, CH₂-*P*-(Ph)₂).

²⁹Si{¹H} NMR (THF-d₈, 400 MHz, C₆D₆, 298 K): $\delta = 0.1$ (s, CH₂-Si-(^{*i*}Pr)₂)

MS/LIFDI-HRMS found (calcd.) m/z: 629.1495 (629.1521) for [PhiPDippNGaCl2]+.

Anal. calcd. C₃₁H₄₃Cl₂GaNPSi: C, 59.16%; H, 6.89%; N, 2.23%; found: C, 57.10%; H, 6.83%; N, 2.47%.

N.B. Repeated element analysis gave variable but consistently low values for C, possibly due to Si-carbide formation.⁷

(^{PhiP}DippGaCI)₂, **2.** A Schlenk flask was loaded with ^{PhiP}DippNK (1.50 g, 2.84 mmol) and tetrachlorodigallane (dioxane)₂ (0.643 g, 1.42 mmol). Subsequently 30 mL of toluene were added at -80 °C. The suspension was subsequently allowed to slowly warm up to room temperature overnight under continuous stirring. After this time, the reaction mixture was filtered, and all volatiles were removed *in vacuo*, yielding an off-white solid. The crude product was purified by washing with pentane (2 x 10 mL) and dried in *vacuo* afterwards. Yielding **2** (1.28 g, 1.08 mmol, 76 %) as a white powder.

N.B. Colorless crystals of **2** suitable for single crystal X-Ray diffraction analysis were obtained from a concentrated diethyl ether solution at room temperature.

¹**H NMR** (C₆D₆, 400 MHz, 298 K): $\delta = 7.94$ (t, ³*J*_{HH} = 8.6 Hz, 4H, Ar-C*H*), 7.69 (t, ³*J*_{HH} = 8.9 Hz, 3H, Ar-C*H*), 7.21 (m, 4H, Ar-C*H*), 7.11 (m, 6H, Ar-C*H*), 7.03 (m, 6H, Ar-C*H*), 6.88 (dd, ³*J*_{HH} = 8.5, 6.6 Hz, 2H, Ar-C*H*), 4.16 (p, ³*J*_{HH} = 6.8 Hz, 2H, Dipp-^{*i*}Pr-C*H*), 3.06 (p, ³*J*_{HH} = 6.9 Hz, 2H, Dipp-^{*i*}Pr-C*H*), 1.92 (m, 2H, Si-C*H*₂-P), 1.57 (m, 10H, Si-^{*i*}Pr-C*H*₃/Si-^{*i*}Pr-C*H*/Si-C*H*₂-P), 1.42 (d, *J* = 7.0 Hz, 6H, Dipp-^{*i*}Pr-C*H*₃), 1.35 (d, ³*J*_{HH} = 6.6 Hz, 6H, Dipp-^{*i*}Pr-C*H*₃), 0.97 (d, ³*J*_{HH} = 7.1 Hz, 6H, Si-^{*i*}Pr-C*H*₃), 0.87 (m, 12H, Dipp-^{*i*}Pr-C*H*₃/Si-^{*i*}Pr-C*H*₃), 0.72 (q, ³*J*_{HH} = 7.3

Hz, 2H, Si-*i*Pr-C*H*), 0.47 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 6H, Si-*i*Pr-C*H*₃), 0.36 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, Dipp-*i*Pr-C*H*₃).

¹³C{¹H} NMR (C₆D₆, 101 MHz, 298 K): δ = 147.0, 146.5, 145.0, 135.1, 135.0, 135.0, 133.8, 133.7, 133.7, 131.4, 131.0, 129.3, 128.9, 128.8, 128.7, 128.7, 124.2, 124.1 and 124.0 (Ar-C), 28.3 (Dipp-/Pr-CH₃), 27.5 (Dipp-/Pr-CH), 27.2 (Dipp-/Pr-CH₃), 27.0 (Dipp-/Pr-CH), 24.0 and 23.7 (Dipp-/Pr-CH₃), 20.5, 19.9, 18.2 and 15.0 (Si-/Pr-CH₃), 14.8 (Si-/Pr-CH), 4.2 (Si-CH₂-P).

³¹P{¹H} NMR (C₆D₆, 162 MHz, 298 K): δ = -13.1 (s, CH₂-*P*-(Ph)₂).

²⁹Si{¹H} NMR (C₆D₆, 99 MHz, 298 K): δ = 3.6 (s, CH₂-S*i*-(*i*Pr)₂).

MS/LIFDI-HRMS found (calcd.) m/z: 1186.3651 (1186.3679) for [(^{PhiP}DippNGaCl)₂]⁺.

Raman v/cm⁻¹ (ATR): 151.6, 179.3, 218.6, 256.4, 268.0, 340.0, 363.0, 389.6, 443.7, 486.2, 506.0, 535.6, 545.5, 556.5, 594.4, 617.5, 628.4, 646.5, 688.5, 715.9, 747.9, 790.3, 796.2, 842.9, 881.0, 906.3, 953.2, 971.3, 987.1, 999.6, 1014.2, 1025.4, 1040.0, 1072.27, 1092.2, 1100.0, 1149.4, 1158.2, 1176.7, 1184.3, 1237.3.

Anal. calcd. C₆₂H₈₆Cl₂Ga₂N₂P₂Si₂: C, 62.69%; H, 7.30%; N, 2.36%; found: C, 63.09%; H, 7.36%; N, 2.36%.

[(^{PhiP}DippGaCI)₂Ni], 3.

Method A: A Schlenk flask was loaded with **2** (450 mg, 0.38 mmol) and Ni(COD)₂ (105 mg, 0.38 mmol). Toluene (15 mL) was added, and the solution was stirred for 72 h at room temperature. Afterwards the reaction mixture was filtered, and all volatiles were removed *in vacuo*, resulting in the formation of a reddish solid. Then the crude product was purified by extraction with pentane and subsequent crystallization from the concentrated pentane solution at room temperature, yielding **3** (76 mg, 0.06 mmol, 16 %) as orange to yellow crystals suitable for single crystal X-Ray diffraction analysis.

Method B: A Schlenk flask was loaded with **2** (300 mg, 0.26 mmol) and Ni(COD)₂ (70 mg, 0.26 mmol). Then THF 15 mL was added and the solution was stirred for 16 h at room temperature. Afterwards the reaction mixture was filtered, and all volatiles were removed *in vacuo*, resulting in the formation of a reddish solid. The crude product was purified by extraction with pentane and subsequent crystallization from the concentrated pentane solution at room temperature, yielding **3** (56 mg, 0.04 mmol, 17 %) as orange to yellow crystals suitable for single crystal X-Ray diffraction analysis.

¹**H NMR** (THF-d₈, 400 MHz, 193 K): δ = 7.97 (m, 1H, Ar-C*H*), 7.82 (m, 3H, Ar-C*H*), 7.65 (m, 2H, Ar-C*H*), 7.46 (m, 6H, Ar-C*H*), 6.98 (d, ³*J*_{*HH*} = 7.7 Hz, 3H, Ar-C*H*), 6.90 (m, 6H, Ar-C*H*), 6.98 (d, ³*J*_{*HH*} = 7.6 Hz, 5H, Ar-C*H*), 4.05 (p, *J* = 6.7 Hz, 2H, Dipp-^{*i*}Pr-C*H*), 2.35 (m, 4H, Dipp/Si-

^{*i*}Pr-C*H*), 2.17 (m, 4, Si-C*H*₂-P), 1.72 (d, *J* = 8.6 Hz, 6H, Si-^{*i*}Pr-C*H*₃), 1.42 (d, *J* = 7.3 Hz, 6H, Si-^{*i*}Pr-C*H*₃), 1.25 (m, 8H, Si-^{*i*}Pr-C*H*/Dipp-^{*i*}Pr-C*H*₃), 1.14 (m, 12H, Si-^{*i*}Pr-C*H*₃), 0.96 (d, *J* = 6.8 Hz, 6H, Dipp-^{*i*}Pr-C*H*₃), 0.59 (d, *J* = 7.2 Hz, 6H, Si-^{*i*}Pr-C*H*₃), 0.04 (d, *J* = 6.4 Hz, 6H, Dipp-^{*i*}Pr-C*H*₃).

¹³C{¹H} NMR (THF-d₈, 101 MHz, 298 K) δ = 146.8, 143.3, 139.5, 134.0, 133.9, 133.1, 130.5, 129.7 (br), 124.3 and 124.0 (br, Ar-*C*), 28.5 (br), 27.0 (br), 19.6, 18.9 and 16.3 (Ali-*C*), 14.9 (Si-*C*H₂-P).

³¹P{¹H} NMR (THF-d₈, 162 MHz, 298 K): δ = 8.5 (s, CH₂-*P*-(Ph)₂).

λ_{max}, nm (ε, Lmol⁻¹ cm⁻¹): 350 (172,800)

MS/LIFDI-HRMS found (calcd.) m/z: 1244.2999 (1244.3033) for [(^{PhiP}DippNGaCl)₂Ni]⁺.

Raman v/cm⁻¹ (ATR): 151.6, 176.7, 225.2, 277.1, 343.9, 357.9, 392,13, 445.0, 577.7, 595.60, 617.5, 686.1, 713.6, 745.6, 793.9, 837.1, 879.9, 999.6, 1026.5, 1039.9, 1096.7, 1103.3, 1159.3, 1183.3.

Anal. calcd. C₆₂H₈₆Cl₂Ga₂N₂P₂Si₂Ni: C, 59.74%; H, 6.95%; N, 2.25%; found: C, 56.12%; H, 6.53%; N, 2.08%.

N.B. Due to the conformationally locked nature of **3**, highly broadened NMR signals for the ligands in this compound are observed at room temperature. This precluded the observation of any signal in the ²⁹Si-NMR-spectrum.

N.B. Repeated element analysis gave variable but consistently low values for C, possibly due to Si-carbide/Ni-carbide formation.⁷

[(^{PhiP}DippGaCl)₂Pd], 4.

A Schlenk flask was loaded with **2** (250 mg, 0.21 mmol, 1.0 eq.) and Pd(COD)(CH₂TMS)₂ (82 mg, 0.21 mmol, 1.0 eq). THF (15 mL) was subsequently added, and the solution was stirred for 24 h at room temperature. All volatiles were then removed *in vacuo*, yielding an off-white to light pink solid. The crude product was purified by washing with pentane (10 mL* 2 times), yielding **4** (217 mg, 0.17 mmol, 79%) as an analytically pure off-white to light pink solid.

N. B. Colorless crystals of **4** suitable for single crystal X-Ray diffraction analysis were obtained from a concentrated pentane solution stored at room temperature.

¹**H NMR** (THF-d₈, 400 MHz, 193 K): δ = 7.89 (m, 4H, Ar-C*H*), 7.55 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 6H, Ar-C*H*), 6.98 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 3H, Ar-C*H*), 6.88 (m, 10H, Ar-C*H*), 6.76 (m, 3H, Ar-C*H*), 4.00 (p, *J* = 6.8 Hz, 2H, Dipp-*i*Pr-C*H*), 2.42 (m, 4H, Dipp/Si-*i*Pr-C*H*), 2.25 (m, 2H, Si-C*H*₂-P), 1.98 (m,

2H, Si-C*H*₂-P), 1.66 (d, J = 7.3 Hz, 6H, Si-iPr-C*H*₃), 1.33 (d, J = 7.4 Hz, 6H, Si-iPr-C*H*₃), 1.24 (d, J = 6.4 Hz, 6H, Dipp-iPr-C*H*₃), 1.14 (d, J = 6.5 Hz, 6H, Dipp-iPr-C*H*₃), 1.07 (d, J = 7.5 Hz, 6H, Si-iPr-C*H*₃), 0.99 (d, J = 6.6 Hz, 6H, Dipp-iPr-C*H*₃), 0.86 (d, J = 7.2 Hz, 2H, Si-iPr-C*H*), 0.12 (d, J = 6.4 Hz, 6H, Dipp-iPr-C*H*₃).¹³C{¹H} NMR (THF-d₈, 101 MHz, 298 K): K $\delta = 146.6$, 143.5, 138.6, 138.5, 138.3, 129.8 (br), 124.4 and 123.9 (br, Ar-C), 29.1 (br), 24.1 (br), 19.6 (br), 23.7 and 16.6 (br, Ali-C).

³¹P{¹H} NMR (THF-d₈, 162 MHz, 298 K): $\delta = 4.3$ (s, CH₂-*P*-(Ph)₂).

MS/LIFDI-HRMS found (calcd.) m/z: 1294.2700 (1294.2718) for [(PhiPDippNGaCl)2Pd]+.

λ_{max}, nm (ε, Lmol⁻¹ cm⁻¹): 275 (689760)

Raman v/cm⁻¹ (ATR): 151.6, 166.37, 219.9, 260.3, 271.9, 309.3, 360.4, 434.9, 453.7, 517.1, 566.3, 591.9, 617.5, 686.1, 701.6, 718.3, 785.7, 793.9, 830.1, 837.1, 881.3, 898.3, 952.0, 999.6, 1027.6, 1038.8, 1058.9, 1097.8, 1104.4, 1127.5, 1159.3, 1175.6, 1210.4, 1237.3.

Anal. calcd. C₆₂H₈₆Cl₂Ga₂N₂P₂Si₂Pd: C, 57.54%; H, 6.70%; N, 2.16%; found: C, 54.85%; H, 6.22%; N, 2.25%.

N.B. Due to the conformationally locked nature of **3**, highly broadened NMR signals for the ligands in this compound are observed at room temperature. This precluded the observation of any signal in the ²⁹Si-NMR-spectrum.

N.B. Repeated element analysis gave variable but consistently low values for C, possibly due to Si-carbide/Pd-carbide formation.⁷

PhiPDippGaMe₂, 6.

Method A: A Schlenk flask was loaded with **2** (0.313 g, 0.263 mmol). Diethyl ether (15 mL) was added and the solution was cooled to -80 °C. A stock solution of MeLi (1.6 M in Et₂O, 0.35 mL, 0.553 mmol) was then added dropwise at -80 °C, with rapid stirring. The reaction mixture was then stirred for 3 h at room temperature, resulting in the deposition of elemental gallium in the form of a gallium mirror. The reaction mixture was then filtered, and all volatiles were removed *in vacuo*, resulting in the formation of an off-white solid. The crude product was purified by crystallization from a concentrated diethyl ether solution (~7 mL) at room temperature, yielding **6** (0.102 g, 0.173 mmol, 66 %) as colorless crystals, which were suitable for single crystal X-Ray diffraction analysis.

Method B: A Schlenk flask was loaded with **1** (0.300 g, 0.477 mmol), and diethyl ether (10 mL) was added. The solution was cooled to -80 °C, and a stock solution of MeLi (1.6 M in Et₂O, 0.66 mL, 1.05 mmol) was added dropwise at -80 °C. The reactions mixture was subsequently allowed to slowly warm up to room temperature over the cause of 16 h. The reaction mixture was then filtered, and all volatiles removed *in vacuo*, resulting in the

formation of an off-white solid. The crude product was purified by extracting with pentane (20 mL), filtration, and solvent removal *in vacuo*, yielding analytically pure **6** (0.197 g, 0.335 mmol, 70 %) as an off-white powder.

¹**H NMR** (C₆D₆, 400 MHz, 298 K): $\delta = 7.57$ (t, ³*J*_{*HH*} = 8.2 Hz, 1H, Ar-C*H*), 7.47 (t, ³*J*_{*HH*} = 8.9 Hz, 3H, Ar-C*H*), 7.10 (m, 3H, Ar-C*H*), 7.02 (m, 6H, Ar-C*H*), 3.65 (p, ³*J*_{*HH*} = 7.1 Hz, 2H, Dipp-iPr-C*H*), 1.66 (d, ³*J*_{*HH*} = 12.6 Hz, 2H, Si-C*H*₂-P), 1.28 (d, ³*J*_{*HH*} = 6.9 Hz, 6H, Dipp-iPr-C*H*₃), 1.22 (m, 2H, Si-iPr-C*H*), 1.13 (d, ³*J*_{*HH*} = 7.6 Hz, 12H, Si-iPr-C*H*₃), 1.06 (d, ³*J*_{*HH*} = 6.8 Hz, 6H, Dipp-iPr-C*H*₃), 0.11 (d, ³*J*_{*HP*} = 5.4 Hz, 6H, Ga-C*H*₃)

¹³C{¹H} NMR (C₆D₆, 101 MHz, 298 K): δ = 147.1, 147.0, 146.5, 141.9, 140.3, 133.6, 133.4, 132.9, 133.6, 132.8, 132.5, 130.5, 130.5, 129.2, 129.1, 123.7, 122.9, 122.8 and 116.0 (Ar-C), 27.9 (Dipp-iPr-CH), 26.3, 25.2 and 24.2 (Dipp-iPr-CH₃), 19.7 (Si-iPr-CH₃), 19.6 (Si-iPr-CH), 19.0, 16.9 and 16.8 (Si-iPr-CH₃), 7.3 (Si-CH₂-P), -3.7 (d, ²J_{CP} = 20.2 Hz, Ga-CH₃).

³¹P{¹H} NMR (C₆D₆, 162 MHz, 298 K): δ = -17.4 (s, CH₂-*P*-(Ph)₂).

²⁹Si{¹H} NMR (C₆D₆, 99 MHz, 298 K): δ = -0.3 (d, ²J_{SiP} = 9.9 Hz, 1Si, CH₂-S*i*-(*i*Pr)₂)

MS/LIFDI-HRMS found (calcd.) m/z: 572.2378 (572.2387) for [M-CH₃]⁺.

Anal. calcd. C₃₃H₄₆GaNPSi: C, 67.35%; H, 8.29%; N, 2.38%; found: C, 65.88%; H, 8.29%; N, 2.65%.

N.B. Repeated element analysis gave variable but consistently low values for C, possibly due to Si-carbide formation.⁷

[(^{PhiP}DippNGa)(Ni₂(COD)(^{PhiP}DippNGaPh)], 7.

A Schlenk flask was loaded with **2** (200 mg, 0.17 mmol, 1.0 eq) and Ni(COD)₂ (56 mg, 0.17 mmol, 1.0 eq), and diethyl ether (15 mL) was added. The reaction mixture was stirred for 24 h at room temperature, leading to the formation of a deep red solution over a colourless precipitate. After this time, the suspension was filtered, and all volatiles were removed *in vacuo*, yielding a red-purple solid. The so formed crude product was further purified by extraction with pentane (15 mL), filtration, and concentration to ~6 mL, leading to crystallization of **7** (84 mg, 0.06 mmol, 74 % based on Ni) as red crystals, which were suitable for single crystal X-Ray diffraction analysis.

¹**H NMR** (C₆D₆, 400 MHz, 298 K): δ = 7.58 (m, 2H, Ar-C*H*), 7.42 (m, 2H, Ar-C*H*), 7.08 (m, 12H, Ar-C*H*), 7.00 (m, 3H, Ar-C*H*), 6.93 (m, 1H, Ar-C*H*), 6.77 (m, 4H, Ar-C*H*), 6.70 (m, 2H, Ar-C*H*), 4.24 (m, 1H, HC=C*H*), 4.08 (m, 1H, HC=C*H*), 3.79 (m, 1H, HC=C*H*), 3.64 (p, ³*J*_{HH} = 6.7 Hz, 1H, Dipp-*i*Pr-C*H*), 3.54 (p, ³*J*_{HH} = 6.7 Hz, 1H, Dipp-*i*Pr-C*H*), 2.90 (m, 4H, HC=C*H*/

Dipp-*i*Pr-C*H*/ CH₂-CH₂), 2.42 (m, 6H, Si-C*H*₂-P/ CH₂-CH₂), 2.14 (m, 1H, CH₂-C*H*₂), 2.05 (m, 1H, CH₂-C*H*₂), 1.94 (m, 1H, CH₂-C*H*₂), 1.86 (m, 1H, CH₂-C*H*₂), 1.75 (m, 1H, CH₂-C*H*₂), 1.66 (d, ${}^{3}J_{HH} = 7.0$ Hz, 3H, Si-*i*Pr-C*H*₃), 1.53 (p, ${}^{3}J_{HH} = 6.6$ Hz, 2H, Si-*i*Pr-C*H*), 1.36 (m, 5H, Si-*i*Pr-C*H*/Si-*i*Pr-C*H*₃), 1.23 (m, 12H, Si-*i*Pr-C*H*₃), 1.15 (d, ${}^{3}J_{HH} = 6.7$ Hz, 6H, Dipp-*i*Pr-C*H*₃), 1.02 (m, 15H, Si-*i*Pr-C*H*₃), 0.68 (d, ${}^{3}J_{HH} = 7.2$ Hz, 3H, Si-*i*Pr-C*H*₃), 0.63 (d, ${}^{3}J_{HH} = 6.7$ Hz, 3H, Dipp-*i*Pr-C*H*₃), -0.14 (d, ${}^{3}J_{HH} = 6.6$ Hz, 3H, Dipp-*i*Pr-C*H*₃).

¹³C{¹H} NMR (C₆D₆, 101 MHz, 298 K): δ = 151.8, 148.0, 147.0, 145.9, 145.8, 145.5, 144.5, 141.3, 140.2, 139.8, 137.4, 134.6, 134.4, 131.7, 130.9, 130.8, 130.5, 128.8, 128.7, 127.79, 127.7, 127.6, 127.1, 126.2, 124.8, 124.7, 124.5, 123.3 and 123.0 (Ar-*C*), 86.9, 83.0, 80.6 and 75.5 (H*C*=CH), 35.8, 32.0, 30.7 and 29.1 (CH₂-*C*H₂), 28.5, 28.2 and 27.8 (Dipp-/Pr-*C*H), 27.7 (Si-/Pr-*C*H₃), 27.2 (Dipp-/Pr-*C*H), 26.5 (Dipp-/Pr-*C*H₃), 26.2, 26.1, 25.2, 25.0 and 23.2 (Si-/Pr-*C*H₃), 23.2 (Dipp-/Pr-*C*H₃), 20.5 and 20.4 (Si-/Pr-*C*H₃), 20.1 (Si-/Pr-*C*H), 19.9, 19.3, 19.1, 18.9 and 18.7 (Si-/Pr-*C*H₃), 14.5 (Si-/Pr-*C*H), 14.0 and 14.0 (Si-/Pr-*C*H₃), 12.5, 12.3 and 9.4 (Si-*C*H₂-P).

³¹P{¹H} NMR (C₆D₆, 162 MHz, 298 K): δ = 67.8 (d, ²J_{PP}= 111.3 Hz, 1P, CH₂-*P*-Ph), 17.5 (d, ²J_{PP} = 110.8 Hz, 1P, CH₂-*P*-(Ph)₂).

²⁹Si{¹H} NMR (C₆D₆, 99 MHz, 298 K): δ = 3.27 (dd, ²J_{SiP}/ ⁴J_{SiP} = 9.9 Hz/ 1.2 Hz, 1Si, CH₂-S*i*-(*i*Pr)₂), -0.5 (d, ²J_{SiP}= 3.7 Hz, 1Si, CH₂-S*i*-(*i*Pr)₂).

λ_{max}, nm (ε, Lmol⁻¹ cm⁻¹): 599 (26880), 450 (195630), 331 (462409)

MS/LIFDI-HRMS found (calcd.) m/z: 1342.3902 (1342.3903) for [(^{PhiP}DippNGa)(^{PhiP}DippNGaPh)(Ni)(Ni)(COD)]⁺

Anal. calcd. C₇₀H₉₈Ga₂N₂P₂Si₂Ni₂: C, 62.63%; H, 7.36%; N, 2.09%; found: C, 58.52%; H, 7.24%; N, 1.87%.

N.B. Repeated element analysis gave variable but consistently low values for C, possibly due to Si-carbide/Ni-carbide formation.⁷

c. Spectroscopic data

Figure S1. ¹H-NMR-spectrum (400 MHz, THF-d₈, 298 K) of 1. * Denotes minor amounts of pentane. # denotes minor amounts of coordinated THF.

---20.55

Figure S2. ³¹P{¹H}-NMR-spectrum (162 MHz, THF-d₈, 298 K) of 1. * Denotes minor amounts of decomposition product $^{PhiP}DippNH$ and # denotes minor amounts of starting material $^{PhiP}DippNK$.

Figure S4. ²⁹Si{¹H}-NMR-spectrum (99 MHz, THF-d₈, 298 K) of 1.

Figure S5. COSY-NMR-spectrum (400 MHz, THF-d₈, 298 K) of 1.

Figure S6. HSQC-NMR-spectrum (400/ 101 MHz, THF-d₈, 298 K) of 1.

Figure S7. Cutout from LIFDI/MS of 1; Top: found MS for [^{PhiP}DippNGaCl₂]+; Bottom: Calculated MS spectrum of [^{PhiP}DippNGaCl₂]+.

Figure S8.¹H NMR-spectrum (400 MHz, C₆D₆, 298 K) of Ga₂Cl₄*(dioxane)₂.

Figure S10. ¹H NMR-spectrum (400 MHz, C_6D_6 , 298 K) of 2. * Denotes minor amounts of decomposition product ^{PhiP}DippNH.

Figure S11. ${}^{31}P{}^{1}H{}$ NMR-spectrum (162 MHz, C₆D₆, 298 K) of 2. * Denotes minor amounts of decomposition product ${}^{PhiP}DippNH$.

Figure S12: $^{13}C\{^{1}H\}$ NMR-spectrum (101 MHz, C₆D₆, 298 K) of 2.

Figure S14. COSY-NMR-spectrum (400 MHz, C₆D₆, 298 K) of (^{PhiP}DippNGaCl)₂.

Figure S15. HSQC-NMR-spectrum (400/101 MHz, C₆D₆, 298 K) of 2.

Figure S16. Cutout from LIFDI/MS of 2; Top: found MS for [(^{PhiP}DippNGaCl)₂]+; Bottom: Calculated MS spectrum of [(^{PhiP}DippNGaCl)₂]+.

Figure S18. ¹H-NMR-spectrum (400 MHz, THF-d₈, 193 K) of **3**. * Denotes minor amounts of decomposition product ^{PhiP}DippNH. # denotes minor amounts of pentane.

Figure S20. ³¹P{¹H}-NMR-spectrum (162 MHz, THF-d₈, 298 K) of **3**. * Denotes minor amounts of decomposition product ^{PhiP}DippNH. # denotes minor amounts of ^{PhiP}DippNGaCl₂.

Figure S21. ¹³C{¹H}-NMR-spectrum (101 MHz, THF-d₈, 298 K) of 3. # denotes minor amounts of pentane.

Figure S22. COSY-NMR-spectrum (400 MHz, THF-d₈, 298 K) of 3.

Figure S23. HSQC-NMR-spectrum (400/101 MHz, THF-d₈, 298 K) of 3.

Figure S24. ¹H-NMR-spectrum (400 MHz, THF-d₈) of **3** from 193 – 298K, bottom to top.

Figure S25. Cutout from LIFDI/MS of **3**, Top: found MS for [(^{PhiP}DippNGaCl)₂Ni]+; Bottom: Calculated MS spectrum of [(^{PhiP}DippNGaCl)₂Ni]+.

Figure S26. Raman-Spectra of 3.

Figure S27. UV/Vis spectrum of a 3.125x10⁻⁶ M solution of 3 in THF at ambient temperature.

Figure S28. ¹H-NMR-spectrum (400 MHz, THF-d₈, 193 K) of 4.

Figure S30. ³¹P{¹H}-NMR-spectrum (162 MHz, THF-d₈, 298 K) of 4.

Figure S32. COSY-NMR-spectrum (400 MHz, THF-d₈, 298 K) of 4.

Figure S33. HSQC-NMR-spectrum (400/101 MHz, THF-d₈, 298 K) of 4.

Figure S34. ¹H-NMR-spectrum (400 MHz, THF-d₈) of 4 from 2 193 - 298K, from bottom to top.

Figure S35. Cutout from LIFDI/MS of 4, Top: found MS for [(^{PhiP}DippNGaCl)₂Pd]+; Bottom: Calculated MS spectrum of [(^{PhiP}DippNGaCl)₂Pd]+.

Figure S36. Raman-Spectra of 4.

Figure S38. ¹H-NMR-spectrum (400 MHz, C₆D₆, 298 K) of **6**. * Denotes minor amounts of MeLi. # denotes minor amounts of coordinated diethyl-ether. ~ denotes minor amounts of uncoordinated diethyl-ether. + denotes minor amounts of $^{PhiP}DippNH$.

Figure S39. ³¹P{¹H}-NMR-spectrum (162 MHz, C_6D_6 , 298 K) of 6. * Denotes minor amounts of ^{PhiP}DippNH and # denotes minor amounts of ^{PhiP}DippNGaCl₂.

Figure S40. ¹³C NMR-spectrum (101 MHz, C₆D₆, 298 K) of **6**. * Denotes minor amounts of uncoordinated diethyl-ether and # denotes minor amounts of coordinated diethyl-ether.

--0.24

Figure S42. COSY-NMR-spectrum (400 MHz, C_6D_6 , 298 K) of 6.

Figure S43. HSQC-NMR-spectrum (400/101 MHz, C₆D₆, 298 K) of 6.

Figure S44. Cutout from LIFDI/MS of 6, Top: found MS for [M-CH₃]+; Bottom: Calculated MS spectrum of [M-CH₃]+.

Figure S46. ³¹P{¹H}-NMR-spectrum (162 MHz, C₆D₆, 298 K) of 7.

Figure S48. ²⁹Si{¹H}-NMR-spectrum (99 MHz, C₆D₆, 298 K) of 7.

Figure S49. COSY-NMR-spectrum (400 MHz, C₆D₆, 298 K) of 7.

Figure S50. COSY-NMR-spectrum (400/ 101 MHz, C₆D₆, 298 K) of 7.

Figure S51. Cutout from LIFDI/MS of **7**, Top: found MS for [(^{PhiP}DippNGa)(^{PhiP}DippNGaPh)(Ni)((Ni(COD))]+ Bottom: Calculated MS spectrum of [(^{PhiP}DippNGa)(^{PhiP}DippNGaPh)(Ni)((Ni(COD))]+.

Figure S52. UV/Vis spectrum of a 3.125x10⁻⁶ M solution of 7 in THF at ambient temperature.

2. X-ray Crystallographic Details

Single crystals of **1-4**, **6**, and **7** suitable for X-ray structural analysis were mounted in perfluoroalkyl ether oil on a nylon loop and positioned in a 150 K cold N₂ gas stream. Data collection was performed with a STOE StadiVari diffractometer (MoKα radiation) equipped with a DECTRIS PILATUS 300K detector. Structures were solved by Direct Methods (SHELXS-97)⁸ and refined by full-matrix least-squares calculations against F² (SHELXL-2018).⁹ All non-hydrogen atoms were treated with anisotropic displacement parameters. Crystal data, details of data collections, and refinements for all structures can be found in their CIF files, which are available free of charge via www.ccdc.cam.ac.uk/data_request/cif, and are summarized in Tables S1.

Figure S53. The molecular structure of 1, with thermal ellipsoids at 30% probability, and hydrogen atoms omitted for clarity. Selected bond distances (Å) and angle (°) for 1: Ga1-P1 2.431(1); Ga1-N1 1.886(2); Ga1-Cl1 2.185(1); Ga1-Cl2 2.168(1); N1-Ga1-P1 93.83(6); Cl1-Ga1-Cl2 105.97(3).

Figure S54. The molecular structure of 6, with thermal ellipsoids at 30% probability, and hydrogen atoms omitted for clarity. Selected bond distances (Å) and angle (°) for 6: Ga1-P1 2.5175(9); Ga1-N1 1.934(2); Ga1-C32 1.993(2); Ga1-C33 2.017(2); N1-Ga1-P1 89.03(5); C32-Ga1-C33 113.27(8).

	1	2	3	4	6	7
empirical form.	C ₃₁ H ₄₃ Cl ₂ GaNPSi	C ₆₂ H ₈₆ Cl ₂ Ga ₂ N ₂ P ₂ Si ₂ , 0.5(C ₄ H ₁₀ O)	$C_{62}H_{86}Cl_2Ga_2N_2NiP_2Si_2, C_9H_{20}$	$C_{62}H_{86}CI_2Ga_2N_2P_2PdSi_2$	C ₃₃ H ₄₉ GaNPSi	C70H98Ga2N2Ni2P2Si2
formula wt	629.34	2449.69	1374.74	1294.18	588.51	1342.48
crystal syst.	triclinic	monoclinic	orthorhombic	orthorhombic	triclinic	monoclinic
space group	P-1	P21/c	Pnna	Pnna	P-1	C2/c
<i>a</i> (Å)	9.860(2)	23.090(5)	15.629(3)	15.714(3)	10.009(2)	25.060(5)
b (Å)	9.920(2)	27.340(6)	22.820(5)	22.937(5)	10.011(2)	15.840(3)
<i>c</i> (Å)	18.120(4)	22.520(5)	20.425(4)	20.691(4)	18.111(4)	39.860(8)
α (deg.)	81.90(3)	90	90	90	85.20(3)	90
β (δεγ)	84.70(3)	111.90(3)	90	90	82.22(3)	106.50(3)
γ (deg.)	67.40(3)	90	90	90	67.29(3)	90
vol (ų)	1618.5(7)	13191(5)	7285(3)	7457(3)	1657.6(7)	15171(6)
Z	2	4	4	4	2	8
ρ(calc) (g.cm ⁻³)	1.291	1.234	1.253	1.153	1.179	1.176
µ (mm⁻¹)	1.122	1.022	1.180	1.135	0.935	1.302
<i>F</i> (000)	660	5176	2912	2688	628	5664
Т (К)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
refins collect.	21256	85103	26641	95573	22347	53768
unique reflns	6369	25618	7142	7330	6520	14835
R _{int}	0.0306	0.1513	0.0828	0.0211	0.0261	0.0409
R1 [<i>l</i> >2σ(<i>l</i>)]	0.0346	0.0523	0.0489	0.0354	0.0295	0.0357
wR2 (all data)	0.0970	0.1230	0.1382	0.0940	0.0765	0.1006
CCDC No.						

Table S1. Summary of X-ray crystallographic data for 1-4, 6, and 7.

3. Computational Methods and Details

The geometry ptimization of all reported structures and frequency calculations were performed with the Gaussian 16 program.¹⁰ The calculations were carried out for all molecules using the BP86^{11,12} functional in conjunction with def2-TZVPP and def2-SVP basis sets¹³⁻¹⁵ and with dispersion correction by Grimme with Becke-Johnson damping D3(BJ)¹⁶. The calculation of Pd employed a relativistic effective core potential (ECP) where 28 core electrons replaced by an ECP.¹⁷ Vibrational frequency calculations were performed for all stationary points to identify whether they were local minima (no imaginary frequencies) or transition structures (only one imaginary frequency). Partial charges (q) and Wiberg bond order (P) were obtained at the BP86-D3(BJ)/def2-TZVPP level using NBO 7.0¹⁸ as implemented with Gaussian 16 program. The Laplacian of the electron density was estimated by the Bader's quantum theory of atoms-in-molecules (QTAIM) method with the AIMALL program¹⁹. All presented structures were visualized with CYLView software²⁰.

The bonding situation was analyzed by means of an energy decomposition analysis $(EDA)^{21,22}$ together with the natural orbitals for chemical valence $(NOCV)^{23,24}$ method using the ADF 2019.103 program package^{25,26}. The EDA-NOCV calculations were carried out at the BP86-(D3BJ)/DZ2P+ZORA level^{27,28} using the BP86-(D3BJ)/def2-SVP optimized geometries. In this analysis, the intrinsic interaction energy (Δ Eint) between two fragments can be divided into four energy components as follows:

$\Delta E_{int} = \Delta E_{elstat} + \Delta E_{Pauli} + \Delta E_{orb} + \Delta E_{disp} \quad (1)$

While the electrostatic ΔE_{elstat} term represents the quasiclassical electrostatic interaction between the unperturbed charge distributions of the prepared fragments, the Pauli repulsion ΔE_{Pauli} corresponds to the energy change associated with the transformation from the superposition of the unperturbed electron densities of the isolated fragments to the wavefunction²⁹, which properly obeys the Pauli principle through explicit antisymmetrization and renormalization of the production wavefunction. The orbital term ΔE orb can be further decomposed into contributions from each irreducible representation of the point group of the interacting system as follows:

$$\Delta \mathsf{E}_{\rm orb} = \sum_{r} \Delta \mathsf{E}_{\rm r} \quad (2)$$

The addition of ΔE_{prep} to the intrinsic interaction energy ΔE int gives the total energy ΔE , which has opposite sign compared with the bond dissociation energy De [Eq. (3)].

$$\Delta E(-D_e) = \Delta E_{int} + \Delta E_{prep} \quad (3)$$

The combination of the EDA with NOCV enables the partition of the total orbital interactions into pairwise contributions of the orbital interactions which is very vital to get a complete picture of the bonding. The charge deformation $\Delta p_{k(r)}$, resulting from the mixing of the orbital pairs $\psi_{k(r)}$ and $\psi_{-k(r)}$ of the interacting fragments presents the amount and the shape of the charge flow due to the orbital interactions [Eq. (4)], and the associated energy term Δ Eorb provides with the size of stabilizing orbital energy originated from such interaction [Eq. (5)].

$$\Delta \rho_{\text{orb}}(\mathbf{r}) = \sum_{k} \Delta \rho_{k}(\mathbf{r}) = v_{k} \left[-\psi 2 - k(\mathbf{r}) + \psi 2 k(\mathbf{r}) \right] \quad (4)$$
$$\Delta E_{\text{orb}} = \sum_{k} \Delta E k \text{ orb} = \sum_{k=1}^{N/2} v_{k} [\text{FTS } -k, -k + \text{FTS } k, k] \quad (5)$$

More details about the EDA-NOCV method and its application are given in recent reviews articles³⁰⁻³³.

		BP86-(D3BJ)/ def2-SVP	BP86-(D3BJ)/ def2-TZVPP	Experimental
Gal Gal N2	Gal-Gal'	2.807	2.813	2.771
	Ga1-Ni	2.311	2.331	2.300
P1 Ni P2	P1-Ni	2.196	2.190	2.208
	N1-Ga1	1.888	1.887	1.866
l I	Gal-Ni-Gal'	74.78	74.25	74.08
	P1-Ni-P1'	107.05	108.42	109.23
(a) compound 3	Nil-Gal-Gal'	52.61	52.87	52.96

	BP86-(D3BJ)/ def2-SVP	BP86-(D3BJ)/ def2-TZVPP	Experimental
Gal-Gal'	2.897	2.924	2.856
Ga1-Pd	2.397	2.400	2.386
P1-Pd	2.341	2.326	2.351
N1-Ga1	1.886	1.887	1.859
Ga1-Pd-Ga1'	74.35	75.05	73.53
P1-Pd-P1'	106.53	106.96	109.58
Pd-Ga1-Ga1'	52.83	52.48	53.24
	Gal-Gal' Gal-Pd Pl-Pd N1-Gal Gal-Pd-Gal' P1-Pd-P1' Pd-Gal-Gal'	BP86-(D3BJ)/ def2-SVP Ga1-Ga1' 2.897 Ga1-Pd 2.397 P1-Pd 2.341 N1-Ga1 1.886 Ga1-Pd-Ga1' 74.35 P1-Pd-P1' 106.53 Pd-Ga1-Ga1' 52.83	BP86-(D3BJ)/ def2-SVP BP86-(D3BJ)/ def2-TZVPP Ga1-Ga1' 2.897 2.924 Ga1-Pd 2.397 2.400 P1-Pd 2.341 2.326 N1-Ga1 1.886 1.887 Ga1-Pd-Ga1' 74.35 75.05 P1-Pd-P1' 106.53 106.96 Pd-Ga1-Ga1' 52.83 52.48

Figure **S55.** Optimized geometries of (a) **3** and (b) **4** and the most important bond lengths and angles at BP86-D3(BJ)/def2-SVP and BP86-D3(BJ)/def2-TZVPP

Table S2. EDA-NOCV results of **compound 3** by using the Ga₂Cl₂ and [Ni] as interacting fragments at the BP86-D3(BJ)/TZ2P+ZORA//BP86-D3(BJ)/def2-SVP level of theory. Fragments are given in various electronic states (i.e., singlet (S), doublet (D), and triplet (T)). Energy values are given in kcal/mol.

Fragments	Ga ₂ Cl ₂ (S) + [Ni] (S)	Ga ₂ Cl ₂ (T) + [Ni] (T)	Ga ₂ Cl ₂ ¹⁺ (D) + [Ni] ¹⁻ (D)	Ga ₂ Cl ₂ ²⁺ (S) + [Ni] ²⁻ (S)	Ga ₂ Cl ₂ ¹⁻ (D) + [Ni] ¹⁺ (D)	Ga ₂ Cl ₂ ²⁻ (S) + [Ni] ²⁺ (S)
$\Delta \mathbf{E}_{int}$	-231.2	-295.2	-341.6	-680.5	-300.2	-625.3
$\Delta \mathbf{E}_{\mathbf{Pauli}}$	570.2	592.4	636.2	487.4	885.2	957.5
$\Delta E_{disp}^{[a]}$	-50.5(6.3%)	-50.5(5.7%)	-50.5(5.2%)	-50.5(4.3%)	-50.5(4.3%)	-50.5(3.2%)
$\Delta E_{elstat}^{[a]}$	-369.2(46.1%)	-400.5(45.1%)	-455.5(46.6%)	-620.0(53.1%)	-541.2(45.6%)	-819.1(51.7%)
$\Delta E_{orb}^{[a]}$	-381.7(46.6%)	-436.7(49.2%)	-471.9(48.2%)	-497.3(42.6%)	-593.6(50.1%)	-713.3(45.1%)
$\Delta E_{orb1}^{[b]}$	-193.2(50.6%)					
$\Delta E_{orb2}^{[b]}$	-70.4(18.4%)					
∆Eorb3 ^[b]	-30.4(8.0%)					
∆Eorb4 ^[b]	-17.4(4.6%)					
$\Delta \mathbf{E}_{rest}$	-70.3(18.4%)					

^aThe values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb} + \Delta E_{disp}$.

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .

Table S3. EDA-NOCV results of **compound 4** by using [Ga₂Cl₂] and [Pd] as interacting fragments at the BP86-D3(BJ)/TZ2P+ZORA //BP86-D3(BJ)/def2-SVP level of theory. Fragments are given in various electronic states (i.e., singlet (S), doublet (D), and triplet (T)). Energy values are given in kcal/mol.

Fragments	Ga ₂ Cl ₂ (S) + [Pd] (S)	Ga ₂ Cl ₂ (T) + [Pd] (T)	Ga ₂ Cl ₂ ¹⁺ (D) + [Pd] ¹⁻ (D)	Ga ₂ Cl ₂ ²⁺ (S) + [Pd] ²⁻ (S)	Ga ₂ Cl ₂ ¹⁻ (D) + [Pd] ¹⁺ (D)	Ga ₂ Cl ₂ ²⁻ (S) + [Pd]] ²⁺ (S)
$\Delta \mathbf{E}_{int}$	-221.1	-296.2	-350.3	-671.9	-332.6	-574.2
$\Delta \mathbf{E}_{\mathbf{Pauli}}$	692.9	601.5	611.8	507.9	844.1	1073.0
$\Delta E_{disp}^{[a]}$	-48.6(5.3%)	-48.6(5.4%)	-48.6(5.1%)	-48.6(4.1%)	-48.6(4.1%)	-48.6(3.0%)
$\Delta E_{elstat}^{[a]}$	-442.3(48.4%)	-415.8(46.3%)	-446.8(46.4%)	-644.0(54.6%)	-537.7(45.7%)	-885.6(53.8%)
$\Delta E_{orb}^{[a]}$	-423.1(46.3%)	-433.3(48.3%)	-466.6(48.5%)	-487.1(41.3%)	-590.3(50.2%)	-713.0(43.2%)
$\Delta E_{orb1}^{[b]}$	-239.0(56.5%)					
$\Delta E_{orb2}^{[b]}$	-72.4(17.1%)					
$\Delta E_{orb3}^{[b]}$	-34.9(8.2%)					
$\Delta E_{orb4}^{[b]}$	-15.2(3.6%)					
$\Delta \mathbf{E}_{rest}$	-61.6(14.6%)					

^aThe values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb} + \Delta E_{disp}$.

^bThe values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .

Figure S56. Plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions $\Delta E_{orb1} - \Delta E_{orb4}$ and the shape of the most important interacting MOs of the two fragments [Pd] and Ga₂Cl₂ in the singlet states in **4**. The direction of the charge flow is red→blue. The isosurface value of the plot of deformation densities is 0.001 and the isosurface value of the orbital diagram is 0.05.

Table S4. Coordinates and energies (in hartrees) of the calculatedstructures at the BP86-D3(BJ)/def2-SVP level

Со	mpound 2			Н	-3.990213	2.567651	0.265809
Ene	ergy= -8554	.21091275		С	-1.618007	0.800587	-3.795832
				Н	-0.680694	1.337042	-3.578800
Ga	-1.141677	0.316667	0.359819	С	-5.090056	0.834139	2.313084
Ga	1.168523	0.223774	-0.427420	н	-5.168099	-0.035658	3.000840
CI	-0.801355	1.812281	2.083918	С	2.010402	-0.045897	3.245359
CI	1.251224	1.846377	-2.079050	Н	1.100226	-0.317467	2.694664
Ρ	-2.413277	1.648047	-1.244218	С	-2.479609	-4.389544	0.528072
Ρ	2.537565	1.611201	1.051981	Н	-2.399459	-5.162292	-0.252253
Si	4.306483	-0.363830	-0.528795	С	-1.238772	4.115441	-0.693370
Si	-4.343595	0.136054	0.684029	н	-0.908540	3.641209	0.245087
Ν	2.648532	-0.962580	-0.744055	С	2.569418	-1.702776	-3.585872
Ν	-2.755459	-0.651823	0.785935	Н	2.989706	-0.803935	-3.104178
С	-2.667807	-2.031662	1.158590	С	-5.583917	-1.107967	-0.097954
С	-2.577628	-2.668858	-1.330017	Н	-4.964914	-1.651641	-0.843924
Н	-2.980584	-1.639225	-1.394854	С	2.072660	-4.059719	-2.805844
С	2.375701	-2.323328	-1.101983	Н	2.053667	-4.357359	-3.866411
С	2.885962	0.914141	2.704686	С	-3.478083	-3.579678	-2.180043
С	-2.672935	-2.417430	2.534350	Н	-3.074617	-4.611543	-2.252868
С	-2.365689	3.970571	-2.860833	Н	-3.550325	-3.182953	-3.213647
Н	-2.920154	3.383264	-3.609180	Н	-4.503666	-3.648912	-1.760829
С	-2.578834	-3.037886	0.146590	С	-2.961021	-0.597465	-5.275845
С	-2.774261	-1.381453	3.646477	Н	-3.077344	-1.139858	-6.227070
Н	-2.991491	-0.416732	3.154671	С	-1.441989	-1.189361	4.390977
С	2.353044	-2.720028	-2.475860	Н	-1.088582	-2.139417	4.846664
С	2.098094	-3.296751	-0.092938	Н	-1.550600	-0.437347	5.200406
С	-1.962646	3.370940	-1.649162	Н	-0.661197	-0.816091	3.703239
С	-2.657189	0.789300	-2.838712	С	2.055805	-2.927317	1.382540
С	-2.584252	-3.783108	2.866951	Н	2.491894	-1.912577	1.469325
Н	-2.585998	-4.077879	3.928801	С	1.841760	3.897602	2.551912
С	-1.778968	0.115225	-5.009526	Н	1.673988	3.202853	3.387928
Н	-0.964732	0.130621	-5.749427	С	4.036671	1.296810	3.427798
С	-4.047333	1.692496	-0.415321	Н	4.711813	2.067726	3.023850
н	-4.861581	1.900803	-1.139195	С	4.104293	1.429697	0.124809

Н	4.980576	1.770373	0.711695	Н	4.807715	-3.331438	-0.349108
Н	4.011142	2.086890	-0.763395	Н	6.084276	-3.478444	0.901056
С	2.293270	-0.641520	4.484851	С	2.448372	4.290452	0.219117
Н	1.601706	-1.391598	4.897453	Н	2.724319	3.904457	-0.773369
С	2.270051	3.402161	1.301796	С	-2.048989	5.314821	-3.112112
С	-0.943475	5.463720	-0.946852	Н	-2.358820	5.780826	-4.060795
Н	-0.383202	6.038994	-0.195733	С	5.315580	-0.192710	-2.155322
С	-2.485451	-4.769561	1.877132	н	5.164082	-1.158925	-2.686302
Н	-2.410484	-5.832490	2.155804	С	1.625810	5.273661	2.723185
С	1.232805	-1.263520	-4.204125	н	1.293914	5.654148	3.701805
Н	0.708326	-2.112654	-4.692229	С	-1.154318	-2.623321	-1.906646
Н	1.397156	-0.470007	-4.963577	Н	-0.523658	-1.886280	-1.369163
Н	0.558377	-0.849276	-3.432124	Н	-1.176437	-2.326796	-2.974149
С	-4.215516	1.903321	2.987475	Н	-0.641264	-3.602962	-1.823411
Н	-4.173903	2.834673	2.381284	С	3.449701	-0.273975	5.192463
Н	-3.165724	1.582169	3.132628	Н	3.674723	-0.743908	6.162653
Η	-4.633896	2.187505	3.978134	С	-6.065663	-2.146710	0.936019
С	5.229332	-1.454441	0.747983	Н	-6.688008	-1.676374	1.727228
Η	4.450876	-1.662553	1.514646	Н	-5.221032	-2.663659	1.433256
С	-3.844777	0.078985	-3.111760	Н	-6.692647	-2.926341	0.449639
Н	-4.661321	0.059412	-2.380077	С	-3.993641	-0.614102	-4.323517
С	-3.916320	-1.696792	4.629042	Н	-4.925718	-1.165610	-4.521116
Н	-3.695258	-2.595625	5.243245	С	6.397067	-0.765739	1.476539
Н	-4.870406	-1.889086	4.096257	Н	6.831397	-1.443245	2.245016
Н	-4.075430	-0.849494	5.328695	Н	6.070545	0.152093	2.005626
С	-6.776175	-0.488350	-0.851338	Н	7.220337	-0.484453	0.788781
Н	-7.354491	-1.275508	-1.383856	С	0.603427	-2.856269	1.871982
Η	-6.471943	0.261130	-1.612247	Н	0.038656	-2.060972	1.345006
Η	-7.481475	0.023553	-0.166604	Н	0.550577	-2.647867	2.958207
С	-1.342738	6.063434	-2.153621	Н	0.061254	-3.804154	1.685763
Н	-1.099403	7.119401	-2.351436	С	2.879297	-3.871916	2.275040
С	4.790728	0.947860	-3.050923	Н	2.420461	-4.881258	2.339108
Η	5.135203	1.933247	-2.668249	Н	2.932888	-3.468032	3.307963
Н	3.683711	0.999720	-3.103653	Н	3.914167	-3.995512	1.900252
Н	5.180806	0.854662	-4.087725	С	1.801867	-5.013527	-1.815870
С	5.656080	-2.801196	0.128859	Н	1.578214	-6.056072	-2.091958
н	6.439123	-2.663945	-0.646817	С	4.317019	0.701988	4.667142

Н	5.218398	0.998887	5.225569	С	-2.753404	4.873649	-0.399064
С	1.808846	-4.622519	-0.470959	н	-1.937143	5.501567	-0.825531
н	1.582716	-5.364254	0.311494	С	1.751176	2.467129	2.221703
С	6.828962	-0.018851	-1.924079	С	0.634476	4.862536	-2.019660
н	7.362311	0.106424	-2.892534	С	1.978899	3.625065	2.996975
Н	7.286227	-0.885758	-1.407628	Н	1.134198	4.142993	3.477475
н	7.049805	0.886582	-1.317633	С	-1.883081	0.790861	3.674312
С	-6.515370	1.377659	2.088155	Н	-2.345305	0.480360	2.727029
Н	-6.908709	1.840423	3.020222	С	-3.870380	4.795191	-1.454767
Н	-7.231357	0.586907	1.789088	Н	-4.732304	4.194481	-1.093841
Н	-6.540784	2.166579	1.304446	Н	-3.515228	4.340495	-2.399926
С	3.552087	-2.181727	-4.666497	Н	-4.257196	5.808706	-1.699279
н	4.506867	-2.535060	-4.224582	С	0.954820	5.851092	-2.971489
н	3.784482	-1.356750	-5.372154	н	1.716193	6.608465	-2.723782
Н	3.134915	-3.018443	-5.266453	С	-3.243641	5.543202	0.897827
С	1.834379	6.162112	1.653348	н	-3.694393	6.537116	0.682816
н	1.673859	7.242659	1.794353	Н	-2.421778	5.706335	1.625333
С	2.240767	5.666419	0.401854	Н	-4.022674	4.938035	1.408531
н	2.389559	6.353494	-0.445616	С	-0.611827	4.899918	-4.554890
				Н	-1.082539	4.913353	-5.549748
				С	1.366112	4.849665	-0.681875
coi	mpound 3			Н	1.074732	3.912834	-0.164460
En	ergy= -1006	2.7057400		С	-1.935411	2.782906	-4.015803
				Н	-2.454952	2.492195	-3.081164
Ga	0.341717	1.361036	-1.170508	С	-0.658832	1.490079	6.090382
Ni	0.000000	0.000000	0.665557	Н	-0.161767	1.744825	7.039455
Ρ	0.067219	1.764957	1.971301	С	-0.966077	3.895133	-3.636399
Si	-1.905287	3.189079	-0.108830	С	-1.932261	0.897362	6.100546
CI	2.115811	1.601906	-2.474160	Н	-2.441234	0.697431	7.056305
Ν	-0.743025	2.888239	-1.402859	С	-2.541076	0.538317	4.885313
С	-0.358623	3.892174	-2.344245	Н	-3.526099	0.046259	4.875247
С	0.000000	1.750870	4.876039	С	-3.746171	1.165896	-1.167568
Н	1.005795	2.194424	4.884968	Н	-4.315366	0.233461	-0.960659
С	-0.964491	3.269218	1.559255	Н	-3.007452	0.912403	-1.949628
Η	-0.290799	4.147222	1.541548	Н	-4.458350	1.905841	-1.587715
Н	-1.672364	3.424137	2.397541	С	-4.107219	1.924646	1.223684

Н	-3.666057	2.341127	2.151536	Н	-1.005795	-2.194424	4.884968	
н	-4.618989	0.976333	1.501236	С	0.964491	-3.269218	1.559255	
С	3.281213	4.127316	3.150856	н	0.290799	-4.147222	1.541548	
н	3.450509	5.029173	3.759745	н	1.672364	-3.424137	2.397541	
С	-3.075893	1.694877	0.105177	С	0.617288	-1.416655	3.657725	
н	-2.342359	0.910577	0.447377	С	2.753404	-4.873649	-0.399064	
С	2.840509	1.848150	1.574161	н	1.937143	-5.501567	-0.825531	
Н	2.657639	0.971093	0.933714	С	-1.751176	-2.467129	2.221703	
С	0.334499	5.882110	-4.226360	С	-0.634476	-4.862536	-2.019660	
н	0.597088	6.664539	-4.955809	С	-1.978899	-3.625065	2.996975	
С	2.895288	4.809878	-0.845557	Н	-1.134198	-4.142993	3.477475	
Н	3.199157	3.940744	-1.460848	С	1.883081	-0.790861	3.674312	
Н	3.383551	4.722316	0.146667	Н	2.345305	-0.480360	2.727029	
Н	3.279934	5.732092	-1.330472	С	3.870380	-4.795191	-1.454767	
С	4.364929	3.488886	2.520547	Н	4.732304	-4.194481	-1.093841	
Н	5.383597	3.890514	2.636327	Н	3.515228	-4.340495	-2.399926	
С	-3.002149	3.195402	-5.039768	Н	4.257196	-5.808706	-1.699279	
Н	-3.544706	4.110869	-4.724174	С	-0.954820	-5.851092	-2.971489	
Н	-3.745660	2.381368	-5.166247	Н	-1.716193	-6.608465	-2.723782	
Н	-2.564211	3.392222	-6.041358	С	3.243641	-5.543202	0.897827	
С	4.141042	2.354274	1.722789	Н	3.694393	-6.537116	0.682816	
Н	4.977611	1.867224	1.198898	Н	2.421778	-5.706335	1.625333	
С	-1.166042	1.537333	-4.498361	Н	4.022674	-4.938035	1.408531	
Н	-0.625113	1.751002	-5.444175	С	0.611827	-4.899918	-4.554890	
Н	-1.847411	0.677582	-4.661012	Н	1.082539	-4.913353	-5.549748	
Н	-0.399411	1.222029	-3.762904	С	-1.366112	-4.849665	-0.681875	
С	0.940643	6.029936	0.212001	Н	-1.074732	-3.912834	-0.164460	
Н	1.237309	6.998809	-0.242829	С	1.935411	-2.782906	-4.015803	
Н	1.424572	5.963463	1.209685	Н	2.454952	-2.492195	-3.081164	
Н	-0.158012	6.062894	0.359404	С	0.658832	-1.490079	6.090382	
Ga	-0.341717	-1.361036	-1.170508	Н	0.161767	-1.744825	7.039455	
Ρ	-0.067219	-1.764957	1.971301	С	0.966077	-3.895133	-3.636399	
Si	1.905287	-3.189079	-0.108830	С	1.932261	-0.897362	6.100546	
CI	-2.115811	-1.601906	-2.474160	Н	2.441234	-0.697431	7.056305	
Ν	0.743025	-2.888239	-1.402859	С	2.541076	-0.538317	4.885313	
С	0.358623	-3.892174	-2.344245	н	3.526099	-0.046259	4.875247	
С	0.000000	-1.750870	4.876039	С	3.746171	-1.165896	-1.167568	

Н	4.315366	-0.233461	-0.960659		con	npound 4		
Н	3.007452	-0.912403	-1.949628		Ene	ergy= -8682.	33738607	
Н	4.458350	-1.905841	-1.587715					
С	4.107219	-1.924646	1.223684		Pd	0.000000	0.000000	0.609374
Н	4.896854	-2.629531	0.886605		Ga	-0.291233	1.419017	-1.300949
Н	3.666057	-2.341127	2.151536		Ρ	-0.051045	1.875075	2.009440
Н	4.618989	-0.976333	1.501236	:	Si	1.930264	3.227581	-0.109224
С	-3.281213	-4.127316	3.150856		CI	-2.055705	1.667958	-2.616303
Н	-3.450509	-5.029173	3.759745		N	0.784664	2.962197	-1.428300
С	3.075893	-1.694877	0.105177		С	0.418773	3.981567	-2.359956
Н	2.342359	-0.910577	0.447377		С	-1.733766	2.569170	2.254816
С	-2.840509	-1.848150	1.574161		С	-0.575303	4.949318	-2.032666
Н	-2.657639	-0.971093	0.933714		С	1.035088	3.993523	-3.647767
С	-0.334499	-5.882110	-4.226360		С	0.997567	3.351488	1.568048
Н	-0.597088	-6.664539	-4.955809		Н	1.722338	3.503582	2.392832
С	-2.895288	-4.809878	-0.845557		Н	0.341624	4.243043	1.548299
Н	-3.199157	-3.940744	-1.460848		С	0.623028	1.481205	3.683563
Н	-3.383551	-4.722316	0.146667		С	-1.966938	3.741306	3.006971
Н	-3.279934	-5.732092	-1.330472		Н	-1.123900	4.274637	3.473853
С	-4.364929	-3.488886	2.520547		С	0.000000	1.805278	4.902268
Н	-5.383597	-3.890514	2.636327		Н	-0.994760	2.273922	4.908073
С	3.002149	-3.195402	-5.039768		С	1.873371	0.823725	3.700576
Н	3.544706	-4.110869	-4.724174		Н	2.339680	0.517219	2.753582
Н	3.745660	-2.381368	-5.166247		С	3.068617	1.707435	0.108221
Н	2.564211	-3.392222	-6.041358		Н	2.335092	0.938986	0.482279
С	-4.141042	-2.354274	1.722789		С	-1.311757	4.921596	-0.697939
Н	-4.977611	-1.867224	1.198898		Н	-1.006988	3.987736	-0.183079
С	1.166042	-1.537333	-4.498361		С	0.640379	1.508274	6.118184
Н	0.625113	-1.751002	-5.444175		Н	0.139469	1.756599	7.066898
Н	1.847411	-0.677582	-4.661012		С	2.013443	2.888329	-4.027466
Н	0.399411	-1.222029	-3.762904		Н	2.524595	2.591450	-3.089845
С	-0.940643	-6.029936	0.212001		С	0.684530	5.004789	-4.560704
Н	-1.237309	-6.998809	-0.242829		Н	1.160233	5.026464	-5.553046
Н	-1.424572	-5.963463	1.209685		С	3.692670	1.143659	-1.174005
Н	0.158012	-6.062894	0.359404		Н	4.401295	1.863013	-1.634177
					н	2.927464	0.883640	-1.928911

Н

4.256363 0.208407 -0.964287

С	3.297462	5.567680	0.906030	Н	-3.124949	3.986351	-1.491688
Н	4.050362	4.950143	1.440720	С	3.088480	3.318899	-5.035723
Н	2.465084	5.761382	1.613631	Н	2.660060	3.521016	-6.040301
Н	3.777548	6.547242	0.688563	Н	3.840589	2.512612	-5.161003
С	-3.272686	4.236246	3.154831	Н	3.618848	4.236313	-4.705675
Н	-3.447567	5.150404	3.743447	С	-0.905808	6.105672	0.199615
С	-0.890991	5.945087	-2.978312	Н	0.192337	6.152934	0.348975
Н	-1.653999	6.700473	-2.729292	Н	-1.391125	6.030172	1.195980
С	2.818586	4.894669	-0.393367	Н	-1.214739	7.071740	-0.253015
Н	2.023012	5.534823	-0.840629	Ga	0.291233	-1.419017	-1.300949
С	4.131122	1.936470	1.197797	Ρ	0.051045	-1.875075	2.009440
Η	4.640944	0.984823	1.467688	Si	-1.930264	-3.227581	-0.109224
Η	3.714107	2.359108	2.134542	CI	2.055705	-1.667958	-2.616303
Η	4.919014	2.634018	0.841937	Ν	-0.784664	-2.962197	-1.428300
С	2.513500	0.537719	4.913838	С	-0.418773	-3.981567	-2.359956
Н	3.487033	0.023308	4.905219	С	1.733766	-2.569170	2.254816
С	-0.264568	5.983883	-4.230099	С	0.575303	-4.949318	-2.032666
Η	-0.524053	6.770673	-4.955962	С	-1.035088	-3.993523	-3.647767
С	-2.820357	1.921928	1.630162	С	-0.997567	-3.351488	1.568048
Η	-2.627655	1.032546	1.008282	Н	-1.722338	-3.503582	2.392832
С	3.955543	4.787476	-1.425102	Н	-0.341624	-4.243043	1.548299
Η	4.367899	5.791494	-1.667142	С	-0.623028	-1.481205	3.683563
Η	3.612699	4.333777	-2.374958	С	1.966938	-3.741306	3.006971
Η	4.797453	4.171964	-1.042562	Н	1.123900	-4.274637	3.473853
С	1.901064	0.889501	6.129404	С	0.000000	-1.805278	4.902268
Η	2.396465	0.661886	7.086103	Н	0.994760	-2.273922	4.908073
С	1.262927	1.640087	-4.532132	С	-1.873371	-0.823725	3.700576
Η	0.502080	1.295260	-3.802932	Н	-2.339680	-0.517219	2.753582
Η	1.957821	0.794347	-4.710461	С	-3.068617	-1.707435	0.108221
Η	0.716231	1.861101	-5.472827	Н	-2.335092	-0.938986	0.482279
С	-4.353385	3.573487	2.544509	С	1.311757	-4.921596	-0.697939
Η	-5.374808	3.969583	2.655196	Н	1.006988	-3.987736	-0.183079
С	-4.124629	2.420305	1.774832	С	-0.640379	-1.508274	6.118184
Н	-4.960654	1.912891	1.269681	Н	-0.139469	-1.756599	7.066898
С	-2.839465	4.856150	-0.868307	С	-2.013443	-2.888329	-4.027466
Н	-3.238197	5.774531	-1.349236	Н	-2.524595	-2.591450	-3.089845
н	-3.330849	4.752809	0.121135	С	-0.684530	-5.004789	-4.560704

Н	-1.160233	-5.026464	-5.553046
С	-3.692670	-1.143659	-1.174005
Н	-4.401295	-1.863013	-1.634177
Н	-2.927464	-0.883640	-1.928911
Н	-4.256363	-0.208407	-0.964287
С	-3.297462	-5.567680	0.906030
Н	-4.050362	-4.950143	1.440720
Н	-2.465084	-5.761382	1.613631
Н	-3.777548	-6.547242	0.688563
С	3.272686	-4.236246	3.154831
Н	3.447567	-5.150404	3.743447
С	0.890991	-5.945087	-2.978312
Н	1.653999	-6.700473	-2.729292
С	-2.818586	-4.894669	-0.393367
Н	-2.023012	-5.534823	-0.840629
С	-4.131122	-1.936470	1.197797
Н	-4.640944	-0.984823	1.467688
Н	-3.714107	-2.359108	2.134542
Н	-4.919014	-2.634018	0.841937
С	-2.513500	-0.537719	4.913838
Н	-3.487033	-0.023308	4.905219
С	0.264568	-5.983883	-4.230099
Н	0.524053	-6.770673	-4.955962
С	2.820357	-1.921928	1.630162
Н	2.627655	-1.032546	1.008282
С	-3.955543	-4.787476	-1.425102
Н	-4.367899	-5.791494	-1.667142
Н	-3.612699	-4.333777	-2.374958
Н	-4.797453	-4.171964	-1.042562
С	-1.901064	-0.889501	6.129404
Н	-2.396465	-0.661886	7.086103
С	-1.262927	-1.640087	-4.532132
Н	-0.502080	-1.295260	-3.802932
Н	-1.957821	-0.794347	-4.710461
Н	-0.716231	-1.861101	-5.472827
С	4.353385	-3.573487	2.544509
Н	5.374808	-3.969583	2.655196

С	4.124629	-2.420305	1.774832
Н	4.960654	-1.912891	1.269681
С	2.839465	-4.856150	-0.868307
Н	3.238197	-5.774531	-1.349236
Н	3.330849	-4.752809	0.121135
Н	3.124949	-3.986351	-1.491688
С	-3.088480	-3.318899	-5.035723
Н	-2.660060	-3.521016	-6.040301
Н	-3.840589	-2.512612	-5.161003
Н	-3.618848	-4.236313	-4.705675
С	0.905808	-6.105672	0.199615
Н	-0.192337	-6.152934	0.348975
Н	1.391125	-6.030172	1.195980
Н	1.214739	-7.071740	-0.253015

compound 7

Energy= -10962.7127948

Ga	2.163788	-0.484709	-0.315856
Ga	-2.165552	0.280768	0.596218
Ni	-0.147138	-0.105658	-0.398970
Ni	1.079819	-2.322755	-0.919795
Ρ	-0.895334	-2.145967	-0.110182
Ρ	0.426931	1.954913	-0.463902
Si	-3.386454	-1.247194	-1.727124
Si	3.246130	1.971901	1.331606
Ν	3.587919	0.421708	0.558922
Ν	-3.743783	-0.177218	-0.375849
С	1.367186	2.373572	-1.993292
С	-2.524216	1.235730	2.292925
С	4.885101	-0.136919	0.309272
С	-5.931442	0.952506	-0.266660
С	-1.169482	3.973417	-1.723117
Н	-0.736864	3.623402	-2.671063
С	1.197534	1.537000	-3.115324
н	0.627164	0.600621	-2.999058

С	-2.142513	-0.370634	-2.893143	Н	1.239601	-4.030077	1.064939
Н	-1.224348	-0.358038	-2.227205	С	-5.554958	1.775666	-1.487625
С	-0.813420	3.346089	-0.509442	Н	-4.879189	1.140954	-2.094519
С	-2.406745	-2.732649	-1.004460	С	-1.802384	-1.190325	-4.146247
Н	-3.075865	-3.265458	-0.299841	Н	-2.594913	-1.082916	-4.916554
Н	-2.103979	-3.455759	-1.789293	Н	-1.697750	-2.274693	-3.937870
С	4.867709	0.884909	-2.073239	н	-0.849306	-0.852202	-4.609897
Н	3.988905	1.404319	-1.640805	С	-5.004740	-1.891918	-2.529757
С	5.506472	0.052683	-0.966596	н	-5.770237	-1.710966	-1.738488
С	-5.353238	-0.747323	1.424211	С	6.734217	-0.581824	-1.241437
С	-5.009905	-0.012091	0.247434	н	7.199894	-0.438570	-2.229533
С	-1.006106	-2.759980	1.610494	С	1.912042	-2.832822	-2.800063
С	0.688439	-3.486698	-2.567515	н	1.877771	-1.951346	-3.462769
Н	-0.194149	-3.083950	-3.089990	С	-7.467001	0.482842	1.580326
С	5.544111	-0.954418	1.283245	н	-8.415234	0.681964	2.104071
С	2.133255	3.550671	-2.112333	С	4.992110	-1.145359	2.689564
Н	2.256169	4.218844	-1.247396	н	3.998774	-0.660776	2.703752
С	-2.451647	1.091128	-3.230221	С	-7.143992	1.183211	0.408750
Н	-1.614062	1.554119	-3.797148	Н	-7.846671	1.933897	0.015209
Н	-2.607877	1.693817	-2.315597	С	4.075403	4.753534	0.895999
Н	-3.361984	1.184422	-3.858877	Н	4.073592	5.033591	1.969148
С	3.280261	1.850828	3.246266	Н	3.063131	4.985169	0.502758
Н	4.287432	1.458328	3.495405	Н	4.787789	5.437015	0.383423
С	-6.574653	-0.477612	2.071807	С	-2.053848	5.063448	-1.726454
Н	-6.829628	-1.037669	2.985707	Н	-2.313154	5.548114	-2.680914
С	-0.306173	-2.048043	2.611367	С	2.719644	3.888136	-3.341961
Н	0.190184	-1.103050	2.332232	Н	3.325819	4.803599	-3.425873
С	-4.455620	-1.847373	1.972592	С	-4.170517	-1.722484	3.477680
Н	-3.478877	-1.768968	1.451403	Н	-3.771017	-0.719552	3.724284
С	-1.375527	3.822375	0.696113	Н	-3.420152	-2.477850	3.787900
Η	-1.119912	3.353719	1.655773	Н	-5.085451	-1.887578	4.085535
С	1.441330	2.507791	0.976306	С	2.825284	-3.160422	-0.099521
Н	0.839864	2.180504	1.850357	Н	3.197847	-2.667867	0.814860
Н	1.429263	3.617930	1.005302	С	3.274047	-3.497426	-2.611580
С	4.480005	3.284262	0.683361	н	3.986500	-3.086606	-3.356044
Н	4.495795	3.097156	-0.413748	н	3.181812	-4.577274	-2.854720
С	1.702149	-4.010738	0.063674	С	6.767786	-1.569974	0.957349

Н	7.262063	-2.204192	1.710744	Н	3.972443	0.565923	-4.052769	
С	-1.517376	1.253957	3.283545	Н	3.518917	-0.665427	-2.835572	
Н	-0.605425	0.655785	3.136784	С	3.872703	-3.320870	-1.191672	
С	3.116528	3.206613	3.956954	Н	4.548298	-4.175151	-0.947589	
Н	2.171971	3.715599	3.665544	н	4.520221	-2.421180	-1.177322	
Н	3.951868	3.900513	3.735139	С	-2.604102	5.535608	-0.522573	
Н	3.083866	3.076228	5.061472	н	-3.300024	6.388823	-0.528989	
С	1.754173	1.894605	-4.353968	С	5.901566	-0.441413	3.718890	
Н	1.600104	1.245503	-5.229888	н	6.877381	-0.964925	3.805746	
С	0.530109	-4.901761	-2.036348	н	5.433987	-0.432115	4.726263	
Н	0.689654	-5.650188	-2.850716	н	6.120233	0.605450	3.426066	
Н	-0.529435	-5.020217	-1.723385	С	7.367155	-1.396004	-0.295802	
С	2.517400	3.069133	-4.468383	н	8.321990	-1.890569	-0.532878	
Н	2.964596	3.344450	-5.436343	С	2.230578	0.844560	3.754124	
С	-1.592826	-3.998922	1.946443	н	2.439549	0.525452	4.798080	
Н	-2.109769	-4.588510	1.173148	Н	2.173293	-0.072231	3.129219	
С	-3.689622	2.005014	2.517085	н	1.219767	1.301468	3.755098	
Н	-4.501859	2.010540	1.775352	С	5.823209	1.961685	-2.618030	
С	-0.227314	-2.535855	3.921515	н	6.222367	2.598785	-1.802567	
Н	0.309150	-1.954597	4.688039	н	5.291348	2.614988	-3.339273	
С	-0.833943	-3.762360	4.254112	н	6.690944	1.514897	-3.147461	
Н	-0.776267	-4.149627	5.283042	С	-4.731005	3.004571	-1.072612	
С	-2.269062	4.905283	0.686554	н	-5.319744	3.675994	-0.412488	
Н	-2.702083	5.251492	1.637493	н	-4.409706	3.589084	-1.957819	
С	-6.747729	2.173989	-2.367876	н	-3.817591	2.708988	-0.519470	
Н	-7.373352	1.296440	-2.631132	С	-5.047011	-3.226449	1.621558	
Н	-6.391759	2.638949	-3.311104	н	-6.034314	-3.367450	2.110509	
Н	-7.403761	2.918467	-1.868697	н	-4.378339	-4.044213	1.960478	
С	1.441457	-5.224007	-0.824438	н	-5.206216	-3.331037	0.527941	
Н	0.967454	-6.023287	-0.217983	С	5.896665	3.013870	1.229907	
Н	2.408876	-5.644284	-1.172264	н	6.642031	3.698538	0.767824	
С	-5.437189	-1.118333	-3.789362	Н	6.231848	1.975955	1.031189	
Н	-4.736098	-1.292060	-4.632659	Н	5.944021	3.178408	2.328239	
Н	-5.488568	-0.025206	-3.620387	С	-1.508236	-4.492823	3.259640	
Н	-6.443476	-1.446789	-4.130958	Н	-1.974908	-5.459421	3.507713	
С	4.351803	-0.029193	-3.199908	С	4.795069	-2.620792	3.084685	
Н	5.154044	-0.701095	-3.570774	Н	5.759453	-3.170886	3.110568	

- H 4.345883 -2.692226 4.097471
- H -4.744329 3.371211 3.837471
- C -4.962243 -3.405871 -2.812056
- H -5.930801 -3.758773 -3.230323
- H -4.760764 -4.001644 -1.898626
- H 4.126562 -3.154068 2.380678 H -4.175519 -3.662480 -3.554632 C -1.651523 2.017455 4.455943
- C -3.829406 2.776459 3.683927 H -0.852001 2.011155 5.214795
 - C -2.810806 2.788551 4.654421
 - H -2.923396 3.393870 5.568163

Table S5. Coordinates and energies (in hartrees) of the calculated structures at the BP86-D3(BJ)/def2-TZVPP level

Со	mpound 2			Н	3.965855	2.533894	-0.357517
Ene	ergy= -8558	.18738700		С	1.661696	0.779293	3.732453
				Н	0.714848	1.271818	3.504805
Ga	1.152625	0.331041	-0.364792	С	5.099486	0.736662	-2.330199
Ga	-1.178630	0.252505	0.405851	Н	5.168541	-0.143640	-2.989273
CI	0.846904	1.811217	-2.096154	С	-2.007506	-0.042545	-3.250966
Cl	-1.236307	1.874722	2.044576	н	-1.090363	-0.273521	-2.711991
Ρ	2.447650	1.662956	1.211112	С	2.436171	-4.375617	-0.455811
Ρ	-2.568281	1.603931	-1.077620	Н	2.342327	-5.123396	0.333216
Si	-4.301818	-0.331936	0.560640	С	1.259807	4.117637	0.692120
Si	4.333551	0.105704	-0.695532	Н	0.910631	3.647562	-0.229039
Ν	-2.663711	-0.922630	0.766799	С	-2.593655	-1.676160	3.600737
Ν	2.758437	-0.660439	-0.789028	Н	-3.001612	-0.775650	3.133781
С	2.655749	-2.047167	-1.131520	С	5.557228	-1.105546	0.137338
С	2.543470	-2.634491	1.361216	Н	4.947902	-1.601217	0.909867
Н	2.917071	-1.604062	1.418368	С	-2.106995	-4.017652	2.811054
С	-2.397433	-2.285256	1.121690	н	-2.089907	-4.316030	3.860926
С	-2.910363	0.879210	-2.707643	С	3.462443	-3.515480	2.219045
С	2.663552	-2.461024	-2.490450	н	3.086450	-4.546558	2.291449
С	2.429206	3.970728	2.819615	н	3.517998	-3.112311	3.240147
Н	2.994886	3.388076	3.547582	н	4.481259	-3.559328	1.807647
С	2.549572	-3.024864	-0.104995	С	3.036947	-0.543506	5.228439
С	2.777285	-1.458813	-3.625517	н	3.161475	-1.074594	6.172968
Н	3.004422	-0.490309	-3.168971	С	1.448100	-1.283106	-4.374126
С	-2.376849	-2.682577	2.486741	Н	1.097405	-2.239080	-4.792818
С	-2.128767	-3.252177	0.115849	Н	1.561781	-0.564339	-5.199001
С	2.006255	3.376093	1.621122	н	0.677030	-0.892374	-3.700411
С	2.709374	0.815708	2.796250	С	-2.092303	-2.889058	-1.356697
С	2.561928	-3.824915	-2.792114	Н	-2.491010	-1.870178	-1.448063
Н	2.566638	-4.139744	-3.837574	С	-1.840131	3.839805	-2.606590
С	1.832835	0.107543	4.942804	Н	-1.674406	3.133415	-3.419300
Н	1.013593	0.083741	5.661435	С	-4.075926	1.209188	-3.417871
С	4.047367	1.691915	0.347068	Н	-4.772225	1.945356	-3.013459
Н	4.871737	1.927470	1.034504	С	-4.112242	1.437327	-0.138962

Н	-4.986378	1.749988	-0.725540	Н	-4.835117	-3.294612	0.454923	
Н	-4.022061	2.115488	0.721399	н	-6.129336	-3.443819	-0.754438	
С	-2.274145	-0.648003	-4.480292	С	-2.470375	4.286445	-0.305109	
Н	-1.563294	-1.363778	-4.893744	н	-2.772685	3.930963	0.679514	
С	-2.289927	3.377178	-1.360046	С	2.112518	5.304277	3.083120	
С	0.961258	5.454499	0.957078	н	2.436680	5.762989	4.018359	
Н	0.381267	6.023777	0.231417	С	-5.294356	-0.115687	2.179758	
С	2.445979	-4.783444	-1.788165	н	-5.165687	-1.062148	2.730646	
Н	2.361639	-5.841280	-2.041837	С	-1.598416	5.200241	-2.800995	
С	-1.261197	-1.262343	4.239446	Н	-1.249294	5.551864	-3.772638	
Н	-0.752637	-2.124103	4.698155	С	1.121152	-2.630766	1.933890	
Н	-1.429428	-0.501577	5.016836	Н	0.471924	-1.934417	1.384953	
Н	-0.587259	-0.830872	3.490499	Н	1.131515	-2.321892	2.987546	
С	4.257711	1.802598	-3.045945	Н	0.654388	-3.623077	1.864604	
Н	4.239196	2.745370	-2.476350	С	-3.444580	-0.331999	-5.173870	
Н	3.212161	1.505084	-3.190259	Н	-3.657191	-0.809022	-6.131508	
Н	4.690869	2.035736	-4.032210	С	6.024774	-2.199753	-0.842331	
С	-5.246635	-1.442024	-0.667058	Н	6.626680	-1.773872	-1.659614	
Н	-4.494470	-1.678675	-1.437304	Н	5.182375	-2.741704	-1.291139	
С	3.917174	0.166447	3.089534	Н	6.657574	-2.938354	-0.323542	
Н	4.736063	0.181629	2.375415	С	4.078558	-0.513426	4.298190	
С	3.907561	-1.816569	-4.602492	Н	5.021848	-1.018521	4.509005	
Н	3.671711	-2.724162	-5.178224	С	-6.424683	-0.773414	-1.393851	
Н	4.853924	-1.999605	-4.074086	Н	-6.862332	-1.468418	-2.129430	
Н	4.065389	-0.999743	-5.322149	Н	-6.109755	0.122778	-1.945549	
С	6.770704	-0.475898	0.844286	Н	-7.228845	-0.479622	-0.705723	
Н	7.293286	-1.232395	1.452061	С	-0.648493	-2.876595	-1.865736	
Н	6.505407	0.354475	1.515505	Н	-0.047064	-2.120497	-1.342602	
Н	7.500281	-0.079622	0.126100	Н	-0.609843	-2.661048	-2.941320	
С	1.382883	6.048211	2.150175	Н	-0.155300	-3.843042	-1.698727	
Н	1.138050	7.091063	2.357582	С	-2.953346	-3.813538	-2.230450	
С	-4.755556	1.032663	3.052748	Н	-2.535065	-4.830043	-2.274475	
Н	-5.078718	2.005086	2.648548	Н	-2.991244	-3.426163	-3.259536	
Н	-3.659093	1.063472	3.114122	Н	-3.981396	-3.889842	-1.853756	
Н	-5.154649	0.965195	4.077248	С	-1.844750	-4.965846	1.824540	
С	-5.678803	-2.766735	-0.009883	Н	-1.630452	-6.000815	2.095489	
н	-6.435005	-2.599382	0.771420	С	-4.342640	0.602250	-4.644887	

Н	-5.252865	0.856314	-5.189406	Н	-1.395321	5.675809	-0.822137
С	-1.850059	-4.573330	0.488530	С	1.948904	2.292523	2.212310
Н	-1.631658	-5.307920	-0.288711	С	1.071626	4.791235	-2.012179
С	-6.803136	0.087958	1.953728	С	2.290142	3.420603	2.976775
Н	-7.315853	0.251359	2.915957	Н	1.507516	4.018610	3.445743
н	-7.279813	-0.773624	1.469373	С	-1.814665	1.051019	3.702898
н	-7.001258	0.974207	1.330376	Н	-2.338381	0.814982	2.776985
С	6.530779	1.266397	-2.121616	С	-3.381756	5.173933	-1.443505
н	6.915235	1.702193	-3.058239	Н	-4.286958	4.663249	-1.082169
Н	7.230520	0.478329	-1.816215	Н	-3.082331	4.699308	-2.386622
Н	6.567652	2.061515	-1.359832	Н	-3.661524	6.215283	-1.670226
С	-3.583190	-2.162983	4.668065	С	1.487526	5.741978	-2.954059
Н	-4.526863	-2.504782	4.219438	Н	2.307299	6.417553	-2.701453
Н	-3.812116	-1.350464	5.373189	С	-2.677723	5.842551	0.899098
Н	-3.173026	-2.999952	5.252931	Н	-3.012846	6.870199	0.684424
С	-1.803120	6.107608	-1.756943	Н	-1.853480	5.909383	1.623682
Н	-1.621501	7.171818	-1.914276	Н	-3.512916	5.325649	1.395263
С	-2.235881	5.646878	-0.509671	С	-0.143474	4.951141	-4.538537
н	-2.385674	6.346988	0.313213	Н	-0.602878	5.012242	-5.525744
				С	1.792251	4.712451	-0.676253
cor	npound 3			Н	1.414240	3.822584	-0.153634
Ene	ergy= -1006	6.9003109		С	-1.666190	2.986106	-4.022388
				Н	-2.202411	2.722285	-3.101109
Ga	0.442440	1.335352	-1.169913	С	-0.459565	1.574624	6.076796
Ni	0.000000	0.000000	0.688351	Н	0.083848	1.758671	7.004563
Ρ	0.212105	1.763693	1.969165	С	-0.594960	3.988207	-3.629764
Si	-1.591181	3.374497	-0.115803	С	-1.793072	1.161869	6.117153
CI	2.217961	1.364983	-2.478097	Н	-2.298446	1.034069	7.075204
Ν	-0.484140	2.962696	-1.402489	С	-2.468187	0.889888	4.923054
С	0.000000	3.924408	-2.342383	Н	-3.501683	0.541187	4.938657
С	0.195883	1.742386	4.853264	С	-3.630535	1.570542	-1.176846
Н	1.241336	2.046728	4.838622	Н	-4.309066	0.728745	-0.964119
С	-0.663568	3.348405	1.551148	Н	-2.926069	1.221311	-1.939197
Н	0.083821	4.152008	1.556671	Н	-4.234502	2.381469	-1.608617
Н	-1.361461	3.558296	2.372808	С	-3.933703	2.382798	1.192768
С	-0.483203	1.497987	3.655034	Н	-4.614888	3.173425	0.844109
С	-2.256672	5.130783	-0.396928	н	-3.467189	2.734761	2.123195

Н	-4.557147	1.509859	1.447828	С	0.663568	-3.348405	1.551148	
С	3.628206	3.785208	3.135131	Н	-0.083821	-4.152008	1.556671	
Н	3.883496	4.661581	3.732412	Н	1.361461	-3.558296	2.372808	
С	-2.915506	2.028132	0.096979	С	0.483203	-1.497987	3.655034	
Н	-2.299992	1.169806	0.456971	С	2.256672	-5.130783	-0.396928	
С	2.967935	1.563012	1.583315	Н	1.395321	-5.675809	-0.822137	
Н	2.700157	0.713508	0.951760	С	-1.948904	-2.292523	2.212310	
С	0.884331	5.833732	-4.205270	С	-1.071626	-4.791235	-2.012179	
Н	1.220432	6.582195	-4.924531	С	-2.290142	-3.420603	2.976775	
С	3.307498	4.523343	-0.841313	н	-1.507516	-4.018610	3.445743	
Н	3.523617	3.632423	-1.444130	С	1.814665	-1.051019	3.702898	
Н	3.780861	4.400971	0.143149	н	2.338381	-0.814982	2.776985	
Н	3.769564	5.392617	-1.332240	С	3.381756	-5.173933	-1.443505	
С	4.638743	3.036548	2.521266	н	4.286958	-4.663249	-1.082169	
Н	5.682661	3.329266	2.640104	н	3.082331	-4.699308	-2.386622	
С	-2.692549	3.523790	-5.026252	н	3.661524	-6.215283	-1.670226	
Η	-3.137332	4.470578	-4.687324	С	-1.487526	-5.741978	-2.954059	
Η	-3.502696	2.792627	-5.160025	Н	-2.307299	-6.417553	-2.701453	
Η	-2.245678	3.697590	-6.016561	С	2.677723	-5.842551	0.899098	
С	4.305880	1.930239	1.735933	Н	3.012846	-6.870199	0.684424	
Η	5.084093	1.361034	1.226852	Н	1.853480	-5.909383	1.623682	
С	-1.022172	1.693121	-4.553841	Н	3.512916	-5.325649	1.395263	
Н	-0.484267	1.889825	-5.493323	С	0.143474	-4.951141	-4.538537	
Η	-1.780548	0.918687	-4.735242	Н	0.602878	-5.012242	-5.525744	
Η	-0.286361	1.285109	-3.847883	С	-1.792251	-4.712451	-0.676253	
С	1.494823	5.938297	0.203067	Н	-1.414240	-3.822584	-0.153634	
Η	1.878555	6.855436	-0.268325	С	1.666190	-2.986106	-4.022388	
Η	1.979197	5.836456	1.186196	н	2.202411	-2.722285	-3.101109	
Η	0.416188	6.078971	0.359804	С	0.459565	-1.574624	6.076796	
Ga	-0.442440	-1.335352	-1.169913	Н	-0.083848	-1.758671	7.004563	
Ρ	-0.212105	-1.763693	1.969165	С	0.594960	-3.988207	-3.629764	
Si	1.591181	-3.374497	-0.115803	С	1.793072	-1.161869	6.117153	
CI	-2.217961	-1.364983	-2.478097	Н	2.298446	-1.034069	7.075204	
Ν	0.484140	-2.962696	-1.402489	С	2.468187	-0.889888	4.923054	
С	0.000000	-3.924408	-2.342383	н	3.501683	-0.541187	4.938657	
С	-0.195883	-1.742386	4.853264	С	3.630535	-1.570542	-1.176846	
н	-1.241336	-2.046728	4.838622	н	4.309066	-0.728745	-0.964119	

Н	2.926069	-1.221311	-1.939197				
Н	4.234502	-2.381469	-1.608617	Pd	0.000000	0.000000	0.617443
С	3.933703	-2.382798	1.192768	Ga	-0.283925	1.434153	-1.286291
Н	4.614888	-3.173425	0.844109	Ρ	-0.031486	1.869019	2.001581
Н	3.467189	-2.734761	2.123195	Si	1.942933	3.213112	-0.119915
Н	4.557147	-1.509859	1.447828	CI	-2.019484	1.673937	-2.622240
С	-3.628206	-3.785208	3.135131	Ν	0.812884	2.962463	-1.428223
Н	-3.883496	-4.661581	3.732412	С	0.453475	3.989351	-2.354204
С	2.915506	-2.028132	0.096979	С	-1.698164	2.574402	2.247202
Η	2.299992	-1.169806	0.456971	С	-0.522934	4.959910	-2.019332
С	-2.967935	-1.563012	1.583315	С	1.064603	4.005780	-3.635430
Η	-2.700157	-0.713508	0.951760	С	1.023898	3.322998	1.554758
С	-0.884331	-5.833732	-4.205270	Н	1.754931	3.454609	2.364320
Н	-1.220432	-6.582195	-4.924531	Н	0.385416	4.215844	1.556652
С	-3.307498	-4.523343	-0.841313	С	0.634052	1.491209	3.670975
Н	-3.523617	-3.632423	-1.444130	С	-1.917789	3.744295	2.993151
Η	-3.780861	-4.400971	0.143149	Н	-1.075150	4.266820	3.448473
Η	-3.769564	-5.392617	-1.332240	С	0.000000	1.804596	4.878046
С	-4.638743	-3.036548	2.521266	Η	-0.994266	2.249493	4.875126
Η	-5.682661	-3.329266	2.640104	С	1.892367	0.865670	3.701370
С	2.692549	-3.523790	-5.026252	Η	2.370880	0.572466	2.767300
Η	3.137332	-4.470578	-4.687324	С	3.077437	1.701908	0.090738
Η	3.502696	-2.792627	-5.160025	Η	2.362339	0.934117	0.470062
Η	2.245678	-3.697590	-6.016561	С	-1.256176	4.937249	-0.688215
С	-4.305880	-1.930239	1.735933	Η	-0.967067	4.009812	-0.174070
Η	-5.084093	-1.361034	1.226852	С	0.633601	1.529078	6.093689
С	1.022172	-1.693121	-4.553841	Η	0.125232	1.768552	7.028625
Η	0.484267	-1.889825	-5.493323	С	2.036224	2.906059	-4.029243
Η	1.780548	-0.918687	-4.735242	Η	2.538437	2.585845	-3.106306
Η	0.286361	-1.285109	-3.847883	С	0.722232	5.020772	-4.535348
С	-1.494823	-5.938297	0.203067	Н	1.193001	5.046207	-5.518761
Η	-1.878555	-6.855436	-0.268325	С	3.695298	1.138184	-1.191859
Η	-1.979197	-5.836456	1.186196	Н	4.400833	1.849877	-1.644855
Η	-0.416188	-6.078971	0.359804	Н	2.933812	0.887926	-1.939171
				Н	4.249783	0.209023	-0.983377
CO	mpound 4			С	3.337283	5.515623	0.920747
En	ergy= -8686	.3513358		Н	4.095687	4.892109	1.417725

Н	2.526129	5.687897	1.642395	Н	2.694984	3.567803	-6.015596
Н	3.805252	6.491272	0.711891	Н	3.857421	2.549704	-5.152806
С	-3.210775	4.246640	3.148719	Н	3.642209	4.252602	-4.676647
Н	-3.372714	5.155639	3.729569	С	-0.846196	6.120160	0.204193
С	-0.830199	5.959864	-2.951692	Н	0.240731	6.153776	0.364645
Н	-1.577131	6.714455	-2.696727	Н	-1.341675	6.056359	1.185026
С	2.833179	4.871434	-0.381221	Н	-1.137431	7.074795	-0.258884
Н	2.050860	5.526490	-0.804652	Ga	0.283925	-1.434153	-1.286291
С	4.154032	1.928417	1.164083	Ρ	0.031486	-1.869019	2.001581
Н	4.664393	0.983577	1.414485	Si	-1.942933	-3.213112	-0.119915
Н	3.752136	2.340494	2.100276	CI	2.019484	-1.673937	-2.622240
Н	4.925413	2.623942	0.800681	Ν	-0.812884	-2.962463	-1.428223
С	2.525752	0.600197	4.913545	С	-0.453475	-3.989351	-2.354204
Н	3.502157	0.113876	4.915794	С	1.698164	-2.574402	2.247202
С	-0.211674	6.001119	-4.198230	С	0.522934	-4.959910	-2.019332
Н	-0.463279	6.787755	-4.911236	С	-1.064603	-4.005780	-3.635430
С	-2.789114	1.937489	1.637800	С	-1.023898	-3.322998	1.554758
Н	-2.609780	1.052691	1.022981	Н	-1.754931	-3.454609	2.364320
С	3.960512	4.779079	-1.421868	Н	-0.385416	-4.215844	1.556652
Н	4.383605	5.775914	-1.625631	С	-0.634052	-1.491209	3.670975
Н	3.604881	4.370016	-2.375571	С	1.917789	-3.744295	2.993151
Н	4.783701	4.140534	-1.067826	Н	1.075150	-4.266820	3.448473
С	1.900100	0.941395	6.116837	С	0.000000	-1.804596	4.878046
Н	2.388964	0.730921	7.068824	Н	0.994266	-2.249493	4.875126
С	1.281906	1.681079	-4.575818	С	-1.892367	-0.865670	3.701370
Н	0.517423	1.323409	-3.872693	Н	-2.370880	-0.572466	2.767300
Н	1.971482	0.848157	-4.772605	С	-3.077437	-1.701908	0.090738
Н	0.757451	1.935620	-5.508829	Н	-2.362339	-0.934117	0.470062
С	-4.295160	3.592847	2.552819	С	1.256176	-4.937249	-0.688215
Н	-5.303163	3.992871	2.668957	Н	0.967067	-4.009812	-0.174070
С	-4.081730	2.441878	1.790001	С	-0.633601	-1.529078	6.093689
Н	-4.917857	1.944283	1.297877	Н	-0.125232	-1.768552	7.028625
С	-2.781513	4.893554	-0.862811	С	-2.036224	-2.906059	-4.029243
Н	-3.157073	5.808614	-1.344407	Н	-2.538437	-2.585845	-3.106306
Н	-3.270622	4.803083	0.117612	С	-0.722232	-5.020772	-4.535348
Н	-3.076449	4.035055	-1.479367	Н	-1.193001	-5.046207	-5.518761
С	3.116130	3.351172	-5.022522	С	-3.695298	-1.138184	-1.191859

Н	-4.400833	-1.849877	-1.644855
Н	-2.933812	-0.887926	-1.939171
Н	-4.249783	-0.209023	-0.983377
С	-3.337283	-5.515623	0.920747
Н	-4.095687	-4.892109	1.417725
Н	-2.526129	-5.687897	1.642395
Н	-3.805252	-6.491272	0.711891
С	3.210775	-4.246640	3.148719
Н	3.372714	-5.155639	3.729569
С	0.830199	-5.959864	-2.951692
н	1.577131	-6.714455	-2.696727
С	-2.833179	-4.871434	-0.381221
Н	-2.050860	-5.526490	-0.804652
С	-4.154032	-1.928417	1.164083
Н	-4.664393	-0.983577	1.414485
н	-3.752136	-2.340494	2.100276
Н	-4.925413	-2.623942	0.800681
С	-2.525752	-0.600197	4.913545
Н	-3.502157	-0.113876	4.915794
С	0.211674	-6.001119	-4.198230
Н	0.463279	-6.787755	-4.911236
С	2.789114	-1.937489	1.637800
Н	2.609780	-1.052691	1.022981
С	-3.960512	-4.779079	-1.421868
Н	-4.383605	-5.775914	-1.625631
Н	-3.604881	-4.370016	-2.375571
Н	-4.783701	-4.140534	-1.067826
С	-1.900100	-0.941395	6.116837
Н	-2.388964	-0.730921	7.068824
С	-1.281906	-1.681079	-4.575818
Н	-0.517423	-1.323409	-3.872693
Н	-1.971482	-0.848157	-4.772605
Н	-0.757451	-1.935620	-5.508829
С	4.295160	-3.592847	2.552819
Н	5.303163	-3.992871	2.668957
С	4.081730	-2.441878	1.790001
Н	4.917857	-1.944283	1.297877

C	2 781513	-1 803551	-0.862811
C	2.701515	-4.0333354	-0.002011
Η	3.157073	-5.808614	-1.344407
Н	3.270622	-4.803083	0.117612
Н	3.076449	-4.035055	-1.479367
С	-3.116130	-3.351172	-5.022522
Н	-2.694984	-3.567803	-6.015596
Н	-3.857421	-2.549704	-5.152806
Н	-3.642209	-4.252602	-4.676647
С	0.846196	-6.120160	0.204193
Н	-0.240731	-6.153776	0.364645
Н	1.341675	-6.056359	1.185026
Н	1.137431	-7.074795	-0.258884

compound 7

Energy= -10967.1420189

Ga	2.193182	-0.494696	-0.312174
Ga	-2.216648	0.315097	0.593172
Ni	-0.141255	-0.087636	-0.317165
Ni	1.060660	-2.347850	-0.831497
Ρ	-0.924043	-2.117725	-0.075673
Ρ	0.472946	1.954108	-0.440136
Si	-3.397151	-1.233716	-1.718688
Si	3.314627	1.949308	1.296653
Ν	3.635102	0.414833	0.529288
Ν	-3.771973	-0.143095	-0.413237
С	1.388028	2.329266	-1.985185
С	-2.567193	1.283482	2.285817
С	4.925344	-0.155977	0.267357
С	-5.933152	1.023317	-0.309293
С	-1.098931	3.969120	-1.702612
Н	-0.704821	3.588867	-2.644090
С	1.189081	1.492291	-3.092805
Н	0.605956	0.577317	-2.964965
С	-2.170150	-0.395817	-2.911611
Н	-1.238493	-0.384202	-2.288447
С	-0.736566	3.358507	-0.491145

С	-2.412550	-2.697526	-0.991346	С	-1.881476	-1.234518	-4.163858	
Н	-3.073651	-3.252261	-0.311792	Н	-2.719276	-1.179187	-4.875255	
Н	-2.088657	-3.392648	-1.778817	Н	-1.718270	-2.297120	-3.935460	
С	4.877552	0.818823	-2.126724	Н	-0.984024	-0.870325	-4.690240	
Н	3.999020	1.330180	-1.710002	С	-4.992713	-1.922767	-2.499350	
С	5.517540	-0.000686	-1.017535	н	-5.716945	-1.915667	-1.663767	
С	-5.446169	-0.762875	1.299689	С	6.729008	-0.645268	-1.301440	
С	-5.053061	0.020732	0.182258	н	7.168701	-0.530926	-2.293915	
С	-1.097223	-2.733563	1.632440	С	1.932731	-2.897708	-2.694395	
С	0.699301	-3.523421	-2.492272	Н	1.934970	-2.024257	-3.349833	
Н	-0.158620	-3.106712	-3.023671	С	-7.547848	0.464105	1.425279	
С	5.599625	-0.945293	1.242359	Н	-8.510308	0.638254	1.908729	
С	2.166701	3.486933	-2.128401	С	5.083534	-1.109679	2.660574	
Н	2.312302	4.155029	-1.279906	Н	4.095026	-0.639041	2.696847	
С	-2.476410	1.058901	-3.275001	С	-7.165945	1.225809	0.320557	
Н	-1.654316	1.495134	-3.866473	н	-7.838369	1.998093	-0.055166	
Н	-2.606050	1.679942	-2.379581	С	4.181256	4.714162	0.859563	
Н	-3.392286	1.141217	-3.879500	Н	4.185766	4.991527	1.922751	
С	3.335711	1.831243	3.200971	Н	3.184358	4.961909	0.466769	
Н	4.325576	1.437277	3.471227	Н	4.904454	5.371545	0.349970	
С	-6.688813	-0.522262	1.900819	С	-1.939096	5.083985	-1.710002	
Н	-6.984721	-1.122364	2.763488	Н	-2.199045	5.554454	-2.659509	
С	-0.449106	-2.029226	2.662304	С	2.736878	3.803018	-3.361809	
Н	0.045425	-1.086735	2.415220	Н	3.350439	4.699304	-3.461969	
С	-4.569876	-1.869584	1.856365	С	-4.309063	-1.729811	3.362628	
Н	-3.594318	-1.805564	1.354174	Н	-3.882591	-0.746054	3.596574	
С	-1.262422	3.868928	0.708017	Н	-3.599491	-2.499803	3.695395	
Н	-1.011481	3.408306	1.661826	Н	-5.234801	-1.848298	3.945199	
С	1.528931	2.523601	0.946982	С	2.766281	-3.238882	0.034105	
Н	0.940523	2.263593	1.840156	Н	3.105107	-2.729658	0.939097	
Н	1.554199	3.624313	0.924704	С	3.273499	-3.581365	-2.463813	
С	4.558004	3.239172	0.650991	Н	4.008207	-3.178244	-3.175410	
Н	4.578751	3.054381	-0.436873	Н	3.172043	-4.649347	-2.709565	
С	1.632804	-4.061112	0.167037	С	6.809012	-1.566777	0.908571	
Н	1.134393	-4.066181	1.138439	Н	7.314117	-2.175334	1.660992	
С	-5.500587	1.914898	-1.456352	С	-1.525130	1.358170	3.225496	
н	-4.824838	1.318317	-2.083796	Н	-0.600067	0.809067	3.040988	

С	3.167867	3.186483	3.908285	Н	4.473372	-4.287448	-0.774242	
Н	2.241342	3.695810	3.599696	Н	4.497732	-2.544471	-0.998970	
Н	4.006061	3.866037	3.704863	С	-2.443519	5.595622	-0.511356	
Н	3.112815	3.051685	5.001085	Н	-3.100854	6.465881	-0.519852	
С	1.731211	1.827106	-4.335667	С	6.016208	-0.386950	3.651455	
Н	1.556474	1.179149	-5.195457	Н	6.987846	-0.900447	3.707858	
С	0.505583	-4.931532	-1.966173	н	5.582632	-0.374931	4.662758	
Н	0.686070	-5.674311	-2.766888	н	6.214066	0.648906	3.344149	
Н	-0.554179	-5.037561	-1.687766	С	7.377464	-1.431362	-0.354738	
С	2.507041	2.981435	-4.471329	н	8.316072	-1.931258	-0.597411	
Н	2.940536	3.238178	-5.438830	С	2.271130	0.839985	3.703561	
С	-1.688485	-3.971017	1.935355	Н	2.472144	0.528777	4.740663	
Н	-2.169573	-4.551451	1.146839	Н	2.205671	-0.070961	3.088833	
С	-3.747402	2.000384	2.551098	Н	1.276492	1.308624	3.699150	
Н	-4.584868	1.958247	1.854566	С	5.832020	1.895808	-2.666799	
С	-0.420040	-2.525196	3.963262	Н	6.201983	2.543604	-1.859911	
Н	0.073368	-1.951925	4.749553	Н	5.313214	2.523825	-3.404150	
С	-1.024994	-3.752856	4.259045	Н	6.706766	1.448897	-3.161502	
Н	-1.005597	-4.144891	5.276389	С	-4.676294	3.097960	-0.932324	
С	-2.112794	4.976056	0.695933	Н	-5.273144	3.716466	-0.245239	
Н	-2.514017	5.350398	1.638270	н	-4.337700	3.734888	-1.760114	
С	-6.655396	2.410488	-2.334247	Н	-3.785100	2.759637	-0.387136	
Н	-7.296851	1.583342	-2.670029	С	-5.166778	-3.246120	1.519498	
Н	-6.258339	2.921138	-3.223740	н	-6.153504	-3.367533	1.991066	
Н	-7.291644	3.134146	-1.802973	н	-4.514121	-4.052570	1.883873	
С	1.374480	-5.264318	-0.728392	н	-5.303409	-3.368209	0.434836	
Η	0.872508	-6.046568	-0.140769	С	5.969331	2.961309	1.202224	
Η	2.336132	-5.694165	-1.046715	Н	6.708656	3.641839	0.748985	
С	-5.573879	-1.053295	-3.625964	Н	6.298618	1.932792	1.002124	
Н	-4.902131	-1.025487	-4.496882	Н	6.007516	3.121224	2.291085	
Н	-5.748472	-0.018732	-3.308402	С	-1.651630	-4.474507	3.238377	
Н	-6.537951	-1.459922	-3.972598	н	-2.116917	-5.437039	3.457469	
С	4.390895	-0.099742	-3.258728	С	4.920987	-2.577650	3.087699	
Н	5.208964	-0.735524	-3.628127	Н	5.889958	-3.097761	3.110883	
Н	4.000198	0.487967	-4.098784	н	4.262358	-3.134629	2.409738	
Н	3.586393	-0.759609	-2.903866	н	4.491637	-2.632362	4.098930	
С	3.834763	-3.420399	-1.027977	С	-3.868382	2.775870	3.708588	

H -4.791143 3.328854 3.894357
C -4.833563 -3.376814 -2.976994
H -5.785653 -3.758969 -3.379900
H -4.522178 -4.050556 -2.166815
H -4.085421 -3.457757 -3.780712
C -1.640632 2.123607 4.388651
H -0.816885 2.162233 5.104578
C -2.816410 2.842522 4.628207
H -2.914551 3.448064 5.530819

4. References

- 1. P. M. Keil, T. Szilvási, T. J. Hadlington, *Chem. Sci.* **2021**, *12*, 5582-5590.
- 2. A. J. Sicard, R. T. Baker, Organic Process Research & Development 2020, 24, 2950-2952.
- 3. J. R. McAtee, S. E. Martin, D. T. Ahneman, K. A. Johnson, D. A. Watson, *Angew. Chem. Int. Ed.* **2012**, *51*, 3663.
- 4. M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, R. A. Fischer, *Dalton Trans.* **2021**, *50*, 9031-9036.
- 5. J. Beamish, M. Wilkinson, I. Worrall, *Inorg. Chem.* **1978**, *17*, 2026-2027.
- 6. J. C. Beamish, A. Boardman, R. W. Small, I. J. Worrall, *Polyhedron* **1985**, *4*, 983-987.
- 7. M. R. Elsby, S. A. Johnson, J. Am. Chem. Soc. 2017, 139, 9401-9407.
- 8. G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Göttingen, 1997.
- 9. G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian, Inc., Wallingford CT*, **2016**.
- 11. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- 12. Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- 13. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- 14. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- 15. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 16. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- 17. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
- 18. Glendening ED, Landis CR., Weinhold F. J. Comput. Chem. 2019, 40, 2234–2241.
- 19. T. A. K. AIMAII (Version 17.11.14), TK Gristmill Software, Overland Park KS, USA, 2017.
- 20. Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, Sherbrooke (Québec) Canada, **2009**; <u>http://www.cylview.org</u>.
- 21. Ziegler, T.; Rauk, A. Theor. Chim. Acta. 1977, 46, 1-10.
- 22. Zhao, L.; Hopffgarten, M. V.; Andrada, D. M.; Frenking, G. WIREs Comput. Mol. Sci. 2018, 8, e1345.
- 23. Mitoraj, M.; Michalak, A. Organometallics. 2007, 26, 6576-6580.
- 24. Mitoraj, M.; Michalak, A. J. Mol. Model. 2008, 14, 681-687.
- 25. Amsterdam Density Functional 2019 (ADF2019), Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands, <u>http://www.scm.com</u>.
- 26. Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. F.; Gisbergen, S. J. A. V.; Snijders, J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931-967.
- 27. Lenthe, E. V.; Baerends, E. J. J. Comput. Chem. 2003, 24, 1142-1156.
- 28. Van Lenthe E, Baerends EJ, Snijders JG. Relativistic regular two-component Hamiltonians. J Chem Phys. **1993**, *99*, 4597.
- 29. Bickelhaupt, F. M.; Nibbering, N. M. M.; Wezenbeek, E. M. V.; Baerends, E. J.. *J. Phys. Chem.* **1992**, *96*, 4864-4873.
- 30. Krapp, A.; Bickelhaupt, F. M.; Frenking, G, Chem. Eur. J. 2006, 12, 9196-9216.
- 31. Bickelhaupt, F. M.; Frenking, G. in *The chemical bond fundamental aspects of chemical bonding,* Frenking, G.; Shaik, S. S. Eds. (Wiley-VCH, Weinheim, 2014), pp. 121-157.
- 32. Zhao, L.; Hermann, M.; Schwarz, W. H. E.; Frenking, G. Nat. Rev. Chem. 2019, 3, 48-63.
- 33. Zhao, L.; Hermann, M.; Holzmann, N.; Frenking, G. Coord. Chem. Rev. 2017, 344, 163-204.