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S1 Description of Contents of Raw Data Files

All the code and data, including the modified REINVENT packages, initial ChEMBL prior network,

scripts for setting up configurations and running REINVENT, calibration set along with TD-DFT

results and references, and generated molecules in this study are provided at the following GitHub

repository:

https://github.com/Tabor-Research-Group/reinvent qc.
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S2 Implementation Details for REINVENT

The REINVENT learning cycle mainly consists of two parts, agent and score modulating block.S1,S2

The agent network samples the SMILES string from building sequences of tokens. The score

modulating block evaluates the augmented score for a batch of SMILES sampled by the agent

network. The scoring modulating block is made up of prior, scoring function, and diversity filter.

The negative log-likelihood (NLL) to sample each SMILES string X from prior would be evaluated

as following,

NLLPrior(X) = −
N∑
i=1

logP (Ti|Ti−1...T1) (1)

where P (Ti|Ti−1...T1) is the probability of sampling the token Ti at step i given the tokens sampled

at previous steps. For each valid SMILES sampled by the agent, it would be given a score in the

range [0,1] based the the scoring function S. However, a SMILES string would be given a zero if

that SMILES string is sampled before or there are too many similar molecules sampled depending

on the diversity filter. Finally, the loss function can be calculated as the squared difference between

the augmented and agent likelihood.

NLLAugmented(X) = NLLPrior(X)− σ × S(X) (2)

loss = [NLLAugmented(X)−NLLAgent(X)]2 (3)

The agent network is updated at each epoch such that the loss function is minimized.

For the first-step curriculum learning, we ran 1,000 iterations with a batch size of 128 molecules,

sigma scalar factor of 128, learning rate of 0.001. We implemented diversity filter with a bucket

size of 16 and identify molecules with the same BemisMurcko scaffoldS3 in the same bucket if

all cheminformatics criteria are satisfied. For the second-step curriculum learning, we ran 500

iterations with a batch size of 64 molecules, sigma scalar factor of 128, learning rate of 0.001.

We implemented diversity filter with a bucket size of 16 and identify molecules with the same

carbon skeleton dervied from the BemisMurcko scaffoldS3 in the same bucket with a minscore of

0.5. Inception was implemented in this step with a memory size of 100 and sample size of 10.
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Here, we provide the list of SMARTS strings and show unrealistic substructures from our initial

searches that are used to exclude forbidden substructures:

"[*;r3]", "[*;r4]", "[*;r7]", "[*;r8]", "[*;r9]", "[*;r10]", "[*;r11]",

"[*;r12]", "[*;r13]", "[*;r14]", "[*;r15]", "[*;r16]", "[*;r17]", "[#7]~[#7]",

"N=c1[nH]cccc1", "N=c1ccc[nH]1", "c1onccc1", "[#8]~[#8]", "[#7]~[#8]", "[#6;+]",

"[#16][#16]", "[#7;!n][S;!$(S(=O)=O)]", "[#7;!n][#7;!n]",

"[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]", "[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]",

"[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]",

"[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]", "[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]",

"C=c1ccccc1=C", "N=c1cc-ccc1", "Cn1cccc1=C", "Cn1ccc(=C)c1", "n1cccc1=C",

"n1ccc(=C)c1", "C1C=c2ccccc2=N1", "c1sc(=N)[nH]c1", "c1[nH]c(=O)ccc1",

"N=c1nccc[nH]1", "N=c1ncc[nH]1", "[*]=N~[*]", "[*;+]", "[*;-]",

"[*]~1~[*]~[*]=[#6]=[*]~[*]~1", "[*]~1~[*]=[#6]=[*]~[*]~1"

Fig. S1: Forbidden substructures generated from initial REINVENT searches.

S5



S3 Comparison of SCScore between Molecules from

REINVENT and Calibration Set

a) b)

Fig. S2: Distributions of the SCScore for a) top-scoring molecules generated by REINVENT
without restrictions on synthesizability and b) molecules in the calibration set for the TD-
DFT benchmark study.
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S4 Scoring Transformation for Excited-state Energy

Gaps

a) b)

Fig. S3: a) Double-sigmoid transformation for S1/T1 energy gap and b) sigmoid transfor-
mation for T2/T1 energy gap
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S5 TD-DFT Benchmark Results

Table S1: Average walltime (second) for excited-state methods

Environment Ground State Optimization B3LYP/6-31G(d) ωB97X-D/def2-SV(P)

Vacuum GFN2-xTB 41 133
PBEh-3c 168 242

Implicit Toluene GFN2-xTB 34 328
PBEh-3c 102 412

Table S2: Mean absolute error (eV) of S1/T1 energies for excited-state methods

Environment Ground State Optimization B3LYP/6-31G(d) ωB97X-D/def2-SV(P)

Vacuum GFN2-xTB 0.13/0.12 0.15/0.12
PBEh-3c 0.13/0.12 0.15/0.12

Implicit Toluene GFN2-xTB 0.13/0.13 0.15/0.12
PBEh-3c 0.13/0.13 0.15/0.12
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S6 Top-10 Average Electronic Scores for Exploratory

and Exploitative Cases

a) b)

a) b)

c) d)

a) b)

Fig. S4: The optimization curves of top-10 average on a) S1/T1 gap score and b) T2/T1 gap
score.

Table S3: AUC top-10 of S1/T1 gap score and T2/T1 gap score for exploratory and exploita-
tive cases

Exploratory Case Exploitative Case

S1/T1 gap score 0.722±0.034 0.490±0.019

T2/T1 gap score 0.525±0.122 0.494±0.024
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S7 Excited-State Analysis for SF/TTA Candidates

a) b)

a) b)

c) d)

Fig. S5: Distribution of a) S1 energies, b) T1 energies, c) S0 − S1 oscillator strength, and d)
S1 − T1 spin-orbit couplings of SF/TTA candidates meeting both S1/T1 and T2/T1 criteria.

S10



References

[S1] Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep

reinforcement learning. J. Cheminform. 2017, 9, 48.
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