Supporting Information for

Mechanistic insights into NH4OAc-promoted imine dance in Rhcatalysed multicomponent double C-H annulations through Nretention/-exchange dual channel

Shiqing Li,*,^{a,b,+} Shihai Lv,^{a,+} Yanyan Yang,^{a,+} Peiyan Zhu,^a Dongbing Zhao,^{b,*} and Ming-Hua Zeng^{*,a,c}

- ^aGuangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; orcid.org/0000-0001-9883-4553; Email: <u>lisq@glut.edu.cn</u>
- ^bState Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; orcid.org/0000-0003-2583-1575; E-mail: <u>dongbing.chem@nankai.edu.cn</u>

^cState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China; orcid.org/0000-0002-7227-7688; Email: <u>zmh@mailbox.gxnu.edu.cn</u>

Table of Contents

1 General remarks	S3
2 General procedure for the syntheses	S3
2.1 General procedure A (GP A) for the synthesis of 2 <i>H</i> -imidazoles 1	S3
2.2 General procedure B (GP B) for the four-component reaction to synthesize 1,1'-BIQs	S6
2.3 General procedure C (GP C) for the six-component reaction to synthesize 1,1'-BIQs	S7
2.4 General procedure D (GP D) for the synthesis of non-symmetric 1,1'-BIQs	S8
2.5 General procedure E (GP E) for one-pot, two-step synthesis of non-symmetric 1,1'-BIQs	S8
2.6 General procedure F (GP F) for the synthesis of C-bridged 1,1'-bisisoquinolines	S8
3 Control experiments for mechanistic studies	S9
3.1 Synthesis of compound Int-C	S9
3.2 Hofmann elimination proof (converting Int-C to 3a')	S10
3.3 Synthesis of 3a from Int-C	S 11
3.4 Synthesis of 3a from 3a'	S 11
4 Isotope labeling experiments	S 11
4.1 H/D exchange experiments	S11
4.2 Kinetic isotope effect (KIE) studies	S14
4.3 ¹⁸ O labeling experiment	S17
4.4 ¹⁵ N labeling experiments	S18
5 ESI-MS studies	S25
5.1 Detecting the four-component reaction mixture at 30 min	S25
5.2 Detecting the six-component reaction mixture in the presence of ¹⁵ NH ₄ OAc	. S31
5.3 Time-dependent ESI-MS to monitor the reaction process	S36
5.4 Time-dependent ESI-MS in the synthesis of mix- ¹⁵ N-3a	S 37
6 Synthetic applications	S39
6.1 Scale-up reactions (1 mmol)	. S39
6.2 General procedure for the synthesis of 1,1'-biisoquinolinium salts 7	. S40
6.3 Synthesis of trisubstituted 1,1'-biisoquinoline 8	. S40
6.4 Synthesis of 3a from furoxan 9	. S41
6.5 Synthesis of 3a from diimine 10	. S 41
6.5 Synthesis of di-¹⁵N-3a with full ¹⁵ N-labeling	S 42
6.6 Synthesis of mono-¹⁵N-3a with full ¹⁵ N-labeling	. S43
6.7 Adjusting the ¹⁵ N incorporation of mix-¹⁵N-3a by reaction acidity	S 44
7 Using 1,1'-BIQ as ligand in double N-arylation to synthesize benzo[c]cinnolines	. S46
8 Experimental data for the described substances	. S47
9 References	. S62
10 Copies of ¹ H and ¹³ C and ¹⁹ F spectra	. S64
11 X-ray crystallographic data	S101

1 General remarks

NMR spectra were recorded on a BRUKER Ascend 500. The ¹H NMR (500 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (125 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). Highresolution mass spectra (HRMS) were obtained with a BRUKER solanX 70 FT-MS (ESI⁺). Melting points were determined with SGW_® X-4 and are uncorrected. The diffraction data of crystals were collected on a Bruker APEX-II CCD with Ga- Ka radiation, λ = 1.34139 Å) at 260 K. at Shiyanjia lab (www.Shiyanjia.com).

All reagents were obtained from commercial suppliers and used without further purification. All reaction mixtures were heated with aluminum heating blocks and detected by TLC (thin layer chromatography) with silica gel-coated plates. $[(Cp*RhCl_2)_2]^1$, alkynes 2^2 , furoxan 9^3 , hexahydroquinoxaline 10^4 and cyclic iodoniums 12^5 were prepared according to the literature procedures.

2 General procedure for the syntheses

2.1 General procedure A (GP A) for the synthesis of 2H-imidazoles 1

A solution of benzil (1 mmol), acetone (1.03 mmol, 1.03 equiv), NH₄OAc (504 mg, 7 mmol, 7 equiv) in glacial acetic acid (2 mL) was reacted at 120 °C for 2 h under air. After reaction completed, the reaction mixture was cooled to room temperature, then extracted with ethyl acetate. The combine organic phase was washed with saturated aq. NaHCO₃, dried with MgSO₄ and concentrated under vacuum to obtain crude products. The crude products were eluted by flash chromatography with petroleum ether/ethyl acetate (10/1) to afford the 2*H*-imidazole products **1**.

2,2-dimethyl-4,5-diphenyl-2*H*-imidazole (1a)

2,2-dimethyl-4,5-di-*p*-tolyl-2*H*-imidazole (1b)

Brown solid (173.5 mg, 81% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = 10/1, v/v). M.p.: 131.0–133.0 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.41 (d, *J* = 8.0 Hz, 4H), 7.16 (d, *J* = 7.5 Hz, 4H), 2.38 (s, 6H), 1.64 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 164.3, 140.4, 130.1, 129.1, 129.0, 101.3, 24.4, 21.6 ppm. HRMS (ESI) *m/z*: calcd for C₁₉H₂₁N₂

([M+H]⁺) 277.1699, found 277.1694.

4,5-bis(4-chlorophenyl)-2,2-dimethyl-2*H*-imidazole (1c)

Brown solid (175 mg, 55% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $20/1 \rightarrow 10/1$, v/v). M.p.: 157–159 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.44 (d, J = 8.5 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 1.64 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 163.0, 136.8, 131.0, 130.3, 128.9, 102.2, 24.2 ppm. HRMS (ESI) *m*/*z*: calcd for C₁₇H₁₅Cl₂N₂

([M+H]⁺) 317.0607, found 317.0608.

4,5-bis(4-fluorophenyl)-2,2-dimethyl-2*H*-imidazole (1d)

Brown solid (137 mg, 48% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = 10/1, v/v). M.p.: 108–110 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.51–7.49 (m, 4H), 7.07 (t, *J* = 8.5 Hz, 4H), 1.64 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 164.1 (d, *J*_{C-F}= 249.5 Hz), 163.1,

131.1 (d, *J*_{C-F}= 8.6 Hz), 128.8 (d, *J*_{C-F}= 3.1 Hz), 115.7 (d, *J*_{C-F}= 21.8 Hz), 101.8, 24.2 ppm. **HRMS** (**ESI**) *m/z*: calcd for C₁₇H₁₅N₂F₂ ([M+H]⁺) 285.1198, found 285.1195.

2,2-dimethyl-4,5-di-*m*-tolyl-2*H*-imidazole (1e)

Brown oil (181.1 mg, 65% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $20/1 \rightarrow 10/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 7.50 (s, 2H), 7.29 (d, J = 2.5 Hz, 2H), 7.26–7.25 (m, 4H, cover the solvent), 2.39 (s, 6H), 1.71 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 164.5, 138.3, 132.8, 131.1, 129.6, 128.1, 126.2, 101.5, 24.4, 21.5 ppm. HRMS

(ESI) m/z: calcd for C₁₉H₂₁N₂ ([M+H]⁺) 277.1699, found 277.1697.

2,2-dimethyl-4,5-di(thiophen-2-yl)-2H-imidazole (1f)

Brown solid (131.4 mg, 50% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $20/1 \rightarrow 10/1$, v/v). M.p.: 120–122 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.50 (d, J = 4.5 Hz, 2H), 7.41 (d, J = 3.0 Hz, 2H), 7.08 (t, J = 4.3 Hz, 2H), 1.63 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.4,

134.9, 130.4, 129.6, 127.6, 101.7, 24.5 ppm. **HRMS (ESI)** *m*/*z*: calcd for C₁₃H₁₃N₂S₂ ([M+H]⁺) 261.0515, found 261.0514.

4-(4-ethoxyphenyl)-2,2-dimethyl-5-(*p*-tolyl)-2*H*-imidazole (1g)

Brown oil (236.5 mg, 77% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $10/1 \rightarrow 2/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 7.46 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 7.5 Hz, 2H), 7.16 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 4.04 (q, J = 7.0 Hz, 2H), 2.38 (s, 3H), 1.63 (s, 6H), 1.41 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ

= 164.4, 163.8, 160.6, 140.3, 130.7, 130.2, 129.1, 128.9, 125.0, 114.2, 101.1, 63.6, 24.4, 21.6, 14.8 ppm. **HRMS (ESI)** *m/z*: calcd for C₂₀H₂₃N₂O ([M+H]⁺) 307.1805, found 307.1805.

2.2 General procedure B (GP B) for the four-component reaction to synthesize 1,1'-BIQs

The mixture of 2*H*-imidazole **1** (0.1 mmol), alkyne **2** (0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H_2O (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 8/1, v/v) to afford products **3**.

Table S1. Optimization of the four-component reaction conditions^a

entry	variation from the standard conditions	yield $(\%)^b$
1	none	93
2	without NH ₄ OAc	26
3	NH ₄ OAc (1 equiv)	74
4	NH ₄ Cl or (NH ₄) ₂ CO ₃ instead of NH ₄ OAc	trace
5	RhCl ₃ ·3H ₂ O as catalyst	n.d.
6	Cp*Co(CO)I ₂ as catalyst	n.d.
7	[Ru(<i>p</i> -cymene)Cl ₂] ₂ as catalyst	trace
8	without Cu(OAc) ₂ ·H ₂ O	35
9	under N ₂	42
10	without Cu(OAc) ₂ ·H ₂ O under N ₂	18
11	$Cu(OAc)_2 \cdot H_2O$ (0.5 equiv)	67
12	Cu(OAc) ₂ ·H ₂ O (2 equiv)	89
13	$Cu(OAc)_2 \cdot H_2O$ (2 equiv) under N ₂	85
14	Ag ₂ CO ₃ or AgOTf as oxidant	72, 54
15	HFIP as solvent	82
16	MeOH as solvent	12
17	DCE as solvent	trace
18	1,4-dioxane as solvent	n.d.

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), NH₄OAc (2 equiv), $[Cp*RhCl_2]_2$ (2.5 mol%) and Cu(OAc)₂·H₂O (1 equiv) in TFE (2 mL) at 120 °C for 12 h under air. ^{*b*}Isolated yield. TFE = trifluoroethanol, HFIP = hexafluoroisopropanol, DCE = 1,2-dichloroethane. n.d. = not detected.

2.3 General procedure C (GP C) for the six-component reaction to synthesize 1,1'-BIQs

The mixture of benzil (0.1 mmol), alkyne (0.2 mmol, 2 equiv), acetone (8.7 mg, 0.15 mmol, 1.5 equiv), [(Cp*RhCl₂)₂] (1.6 mg, 2.5 mol%), Cu(OAc)₂·H₂O (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (30.8 mg, 0.4 mmol, 4 equiv) and TFE (2 mL) was stirred at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 8/1, v/v) to afford compounds **3**.

Table S2. Optimization of the six-component reaction conditions

	+ Ph-Ph	$(1.5 eq)$ $[Cp*RhCl_2]_2 (2.5 mol\%)$ $Cu(OAc)_2 H_2O (1 eq)$ $NH_4OAc (4 eq)$ air, TFE, 120 °C 3	Ph Ph N Ph Ph
entry	acetone	NH4OAc	yield $(\%)^b$
1	none	2 equiv	n.d.
2	1.5 equiv	2 equiv	25%
3	1.5 equiv	4 equiv	52%

^{*a*}Reaction conditions: benzil (0.1 mmol), alkyne **2a** (0.2 mmol), acetone (x equiv), NH₄OAc (y equiv), $[Cp*RhCl_2]_2$ (2.5 mol%) and Cu(OAc)₂·H₂O (1 equiv) in TFE (2 mL) at 120 °C for 12 h under air. ^{*b*}Isolated yield. TFE = trifluoroethanol, n.d. = not detected.

2.4 General procedure D (GP D) for the synthesis of non-symmetric 1,1'-BIQs

The mixture of **3'** (0.1 mmol), alkyne **2** (0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 8/1, v/v) to afford non-symmetric products **4**.

2.5 General procedure E (GP E) for one-pot, two-step synthesis of non-symmetric 1,1'-BIQs

A solution of **1a** (24.8 mg, 0.1 mmol), alkyne **2a** (17.8 mg, 0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv) and TFE (2 mL) was reacted at 120 °C for 6 h under air, then another molecule of alkyne **2** (0.1 mmol, 1 equiv) and NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) were added to the reactor. The resulting mixture was stirred at 120 °C for another 6 h under air. After reaction complete, the reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 8/1, v/v) to afford non-symmetric products **4**. (Notably, this reaction shows high chemo-selectivity, giving **4** solely without generation of **4'** and **4''**).

2.6 General procedure F (GP F) for the synthesis of C-bridged 1,1'-bisisoquinolines

The mixture of 1,3-diketone (0.1 mmol), alkyne (0.2 mmol, 2 equiv), NH₄OAc (54 mg, 0.7 mmol, 7 equiv), [(Cp*RhCl₂)₂] (1.6 mg, 2.5 mol%), Cu(OAc)₂·H₂O (40 mg, 0.2 mmol, 2 equiv), PivOH (102 mg, 0.5 mmol, 5 equiv) and TFE (2 mL) was stirred at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by flash chromatography with petroleum ether/ethyl acetate (80/1 \rightarrow 40/1, v/v) to afford compounds **5**.

3 Control experiments for mechanistic studies

3.1 Synthesis of compound Int-C

A solution of **1a** (24.8 mg, 0.1 mmol), alkyne **2a** (17.8 mg, 0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (0.6 mg, 1 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv) and TFE (2 mL) was reacted at 120 °C for 12 h under air. Then NaBF₄ (110 mg, 1 mmol, 10 equiv) was added to the reaction mixture for reacting at room temperature for another 1h. The reaction mixture was concentrated under vacuum and the residue was purified by a silica gel (100–200 mesh) column, eluting with CH₂Cl₂/CH₃OH (80/1 \rightarrow 10/1, v/v) to afford **Int-C** as a yellow solid.

3,3-dimethyl-1,5,6-triphenyl-3*H*-imidazo[5,1-*a*]isoquinolin-4-ium tetrafluoroborate (Int-C)

Yellow solid (46.3mg, 90% yield). M.p.: >250 °C. ¹H NMR (500MHz, DMSO- d_6): $\delta = 8.19$ (t, J = 7.5 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.97 (t, J = 7.5 Hz, 1H), 7.89–7.87 (m, 2H), 7.81–7.78 (m, 3H), 7.62–7.58 (m, 3H), 7.48–7.36 (m, 6H), 7.24 (d, J = 6.5 Hz, 2H), 1.77 (s, 6H) ppm. ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 162.3$, 146.3, 142.8, 139.6, 139.3, 136.8, 133.2, 132.6, 132.6, 131.3, 131.2, 130.5, 130.0, 129.6, 129.3, 128.7, 128.6, 128.3, 127.4, 127.0,

126.3, 122.1, 104.0, 24.5 ppm. ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = -148.35, -148.45 ppm. HRMS (ESI) *m*/*z*: calcd for C₃₁H₂₅N₂ ([M–BF₄⁻]⁺ 425.2012, found 425.2010.

3.2 Hofmann elimination proof (converting Int-C to 3a')

A solution of **In-C** (51.2 mg, 0.1 mmol), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a silica gel (100–200 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 80/1, v/v) to afford **3a'** as a white solid (35.6 mg, 92% yield).

(3,4-diphenylisoquinolin-1-yl)(phenyl)methanone (3a')

Yellow solid (36.5 mg, 95% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $100/1 \rightarrow 80/1$, v/v). ¹H NMR (500MHz, CDCl₃): $\delta = 8.25$ (d, J = 8.5 Hz, 1H), 8.12 (d, J = 7.0 Hz, 2H), 7.76 (d, J = 8.5 Hz, 1H), 7.66-7.58 (m, 3H), 7.52 (t, J = 7.8 Hz, 2H), 7.43-7.37 (m, 5H), 7.32-7.31 (m, 2H), 7.18-7.17 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 194.9$,

155.9, 149.0, 140.2, 137.2, 137.1, 136.8, 133.8, 132.5, 131.3, 131.1, 130.8, 130.5, 128.6, 128.6, 127.8, 127.4, 126.4, 126.1, 125.2 ppm. The NMR data are consistent with the literature.⁷

3.3 Synthesis of 3a from Int-C

A solution of **Int-C** (51.2 mg, 0.1 mmol), alkyne **2a** (17.8 mg, 0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at 120 °C for 12 h under air. The reaction gave **3a** as a white solid (39.2 mg, 70% yield) by purifying through a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 80/1, v/v).

3.4 Synthesis of 3a from 3a'

The reaction of **3a'** (38.5 mg, 0.1 mmol), alkyne **2a** (17.8 mg, 0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) at 120 °C for 12 h under air afforded **3a** as a white solid (55 mg, 98% yield).

4 Isotope labeling experiments

4.1 H/D exchange experiments

The mixture of **1a** (12.4 mg, 0.05 mmol), $[(Cp*RhCl_2)_2]$ (0.8 mg, 2.5 mol %), $Cu(OAc)_2 \cdot H_2O$ (10 mg, 0.05 mmol, 1 equiv) in TFE (1 mL) and CD₃OD (0.2 mL) was reacted at 120 °C for 0.5 h under air. After the reaction was cooled down, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/EtOAc (10/1 \rightarrow 5/1, v/v) to afford [**D**₄]-**1a**. ¹H NMR analysis showed that (4-2.88)/4=28% hydrogen at the *ortho* positions of the phenyl ring was deuterated.

The mixture of **3a'** (19.3 mg, 0.05 mmol), $[(Cp*RhCl_2)_2]$ (0.8 mg, 2.5 mol %), Cu(OAc)_2·H_2O (10 mg, 0.05 mmol, 1 equiv), with or without NH₄OAc (7.7 mg, 0.1 mmol, 2 equiv) in TFE (1 mL) and CD₃OD (0.2 mL) was reacted at 120 °C for 0.5 h under air. After the reaction was cooled down, the solvent was evaporated under reduced pressure and the residue was purified by flash

column chromatography on silica gel, eluting with petroleum ether/EtOAc ($10/1 \rightarrow 5/1$, v/v) to afford **[D₂]-3a'**. ¹H NMR analysis showed that 0% hydrogen at the *ortho* positions of the phenyl ring was deuterated.

4.2 Kinetic isotope effect (KIE) studies

KIE of the first C-H activation

The mixture of **1a** (12.4 mg, 0.05 mmol), [**D**₁₀]-**1a** (12.9 mg, 0.05 mmol), **2a** (0.05 mmol, 8.9 mg, 1 equiv), [(Cp*RhCl₂)₂] (1.6 mg, 2.5 mol %), Cu(OAc)₂·H₂O (20 mg, 0.05 mmol, 1 equiv) and TFE (2 mL) was reacted at 120 °C for 3 h under air. After the reaction was cooled down the solvent was evaporated under reduced pressure and the residue was purified by a silica gel (100–200 mesh) column, eluting with CH₂Cl₂/CH₃OH (80/1 \rightarrow 10/1, v/v) to afford the mixture of **Int-C** and [**D**₉]-**Int-C**. The ratio of **Int-C/([D**₉]-**Int-C**) was determined to be 2.3 (*k*_H/*k*_D \approx 0.7/[1-0.7] =2.3) by ¹H NMR.

¹H NMR (500 MHz, DMSO-*d*₆) of Int-C and [D₉]-Int-C

KIE of the second C-H activation

The mixture of **Int-C** (25.6 mg, 0.05 mmol), **[D₉]-Int-C** (26.1 mg, 0.05 mmol), **2a** (0.05 mmol, 8.9 mg, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 0.05 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.1 mmol, 2 equiv) and TFE (2 mL) was reacted at 120 °C for 3 h under air. After the reaction was completed, the solvent was evaporated and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 60/1, v/v) to afford the mixture of **3a** and **[D₈]-3a**. The ratio of **3a**/(**[D₈]-3a**) was determined to be 1.0 ($k_{\rm H}/k_{\rm D} \approx 1/[2-1] = 1.0$) by ¹H NMR.

KIE of the double C-H activation

The mixture of **1a** (12.4 mg, 0.05 mmol), [**D**₁₀]-**1a** (12.9 mg, 0.05 mmol), **2a** (0.1 mmol, 17.8 mg, 2 equiv), [(Cp*RhCl₂)₂] (1.6 mg, 2.5 mol %), Cu(OAc)₂·H₂O (20 mg, 0.05 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.1 mmol, 2 equiv) and TFE (2 mL) was reacted at 120 °C for 3 h under air. The reaction was cooled down before the solvent was evaporated under reduced pressure. The residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 50/1, v/v) to afford the mixture of **3a** and [**D**₈]-**3a**. The ratio of **3a**/([**D**₈]-**3a**) was determined to be 3.0 ($k_{\rm H}/k_{\rm D} \approx 1.5/[2-1.5]=3.0$) by ¹H NMR.

8.094 -8.078 -8.078 -8.078 -7.765 -7.755 -7.765 -7.775 -7.755 -7.775 -7.755 -7.

4.3 ¹⁸O labeling experiment

The mixture of **Int-C** (51.2 mg, 0.1 mmol), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv), H₂¹⁸O (18 μ L, 1 mmol, 10 equiv) and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was purified by a silica gel (100–200 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 40/1, v/v) to afford ¹⁸O-3a' as a yellow solid (36.6 mg, 95% yield).

¹⁸*O*-3a' was dissolved in methanol and filtered with a cotton pad, and the filtrate was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap). HRMS analysis showed that the abundance of ¹⁸*O* in **3a'** was 27%.

4.4¹⁵N labeling experiments

Synthesis: The mixture of 1 (0.1 mmol), 2 (0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was reacted at 120 °C for 10 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 40/1, v/v) to afford product **mix-¹⁵N-3**.

¹⁵N test: mix-¹⁵N-3 was dissolved in methanol and filtered with a cotton pad, and the filtrate was diluted with the methanol and analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap).

Determination of ¹⁵N Incorporation: Percent ¹⁵N isotope incorporation was determined by comparison of the mass spectral patterns of ¹⁵N-labeled product versus ¹⁴N-counterpart and calculated by the expressions below.⁸

% ¹⁵N incorp. = [(Corrected abundance of ¹⁵N) / (Corrected abundance of ¹⁵N + Observed abundance of ¹⁴N], where observed abundance of ¹⁴N is obtained from the mass signal intensities at [M] (m/z).

Corrected Abundance of ¹⁵N = Observed abundance of ¹⁵N – (Observed abundance of ¹⁴N × Relative natural abundance of ¹⁵N / 100), where observed abundance of ¹⁵N is obtained from the mass signal intensities at [M+1] (m/z).

Representative Example (mix-¹⁵N-3a):

Corrected abundance of ¹⁵N of $3a = 100 - (91.19 \times 45.4/100) = 100 - 41.4 = 58.6\%$ % ¹⁵N incorp. of 3a = 58.6/(58.6+91.19) = 58.6/149.79 = 39%

According to above procedure,	mix- ¹⁵ N-3a was	s obtained	as with	solid	(51.6	mg,	92%	yield),
and HRMS analysis showed that th	ne abundance of	^{15}N in mix	x- ¹⁵ N-3a	was 3	39%.			

According to above procedure, **mix-**¹⁵**N-3b** was obtained as with solid (33.4 mg, 57% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3b** was 30%.

According to above procedure, **mix-**¹⁵**N-3c** was obtained as with solid (46.9 mg, 77% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3c** was 9%.

According to above procedure, **mix-**¹⁵**N-3d** was obtained as with solid (24.3 mg, 41% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3d** was 16%.

According to above procedure, **mix-**¹⁵**N-3j** was obtained as with solid (32.7 mg, 48% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3j** was 67%.

According to above procedure, **mix-**¹⁵**N-3k** was obtained as with solid (44.6 mg, 64% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3k** was 28%.

According to above procedure, **mix-**¹⁵**N-3m** was obtained as with solid (60.8 mg, 73% yield), and HRMS analysis showed that the abundance of ${}^{15}N$ in **mix-**¹⁵**N-3m** was 30%.

5 ESI-MS studies

5.1 Detecting the four-component reaction mixture at 30 min

The mixture of **1a** (0.1 mmol), **2a** (0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 1 equiv), NH₄OAc (15.4 mg, 2 equiv) and TFE (2 mL) was stirred at 120 °C for 0.5 h under air. After 0.5 h, the reaction mixture was filtered with a cotton pad, and the

filtrate was diluted with the methanol and analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The HRMS spectrum clearly displays the intermediates, Cp*(OAc)Rh⁺, Int-A, Int-B, Int-C, Int-F, Int-G, **3a'**, and **3a**.

Intermediates	Formula	Calculated	Observed
$Cp*(OAc)Rh^+[M]^+$	$C_{12}H_{18}O_2Rh$	297.04	297.03
Int-A [M] ⁺	$C_{27}H_{30}N_2Rh$	485.15	485.14
Int-B [M] ⁺	$C_{41}H_{40}N_2Rh$	663.22	663.22
Int-C [M] ⁺	$C_{31}H_{25}N_2$	425.20	425.20
Int-F [M] ⁺	C45H33N2	601.26	601.26
Int-G $[M + H]^+$	$C_{28}H_{21}N_2$	385.17	385.17
$3a' [M + H]^+$	C ₂₈ H ₂₀ NO	386.15	386.15
$3a [M + H]^+$	$C_{42}H_{29}N_2$	561.23	561.23

 Table S3 ESI-MS data found at 30 min

S27

Figure S1 Isotopic distribution vs the mass spectrum simulated for Cp*(OAc)Rh⁺

Figure S2 Isotopic distribution vs the mass spectrum simulated for Int-A

Figure S3 Isotopic distribution vs the mass spectrum simulated for Int-B

Figure S4 Isotopic distribution vs the mass spectrum simulated for Int-C/ Int-C'

Figure S5 Isotopic distribution vs the mass spectrum simulated for Int-G

Figure S6 Isotopic distribution vs the mass spectrum simulated for Int-F

Figure S7 Isotopic distribution vs the mass spectrum simulated for 3a'

Figure S8 Isotopic distribution vs the mass spectrum simulated for 3a

5.2 Detecting the six-component reaction mixture in the presence of ¹⁵NH₄OAc

The mixture of benzil (10.5 mg, 0.05 mmol), diphenylacetylene (17.8 mg, 0.1 mmol, 2 equiv), acetone (0.075 mmol, 1.5 equiv), $[(Cp*RhCl_2)_2]$ (0.8 mg, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (10 mg, 0.05 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 4 equiv) and TFE (1 mL) was stirred at 120 °C for 5 h under air. After 5 h, the reaction mixture was filtered with a cotton pad, and the filtrate was diluted with the methanol and analysed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The HRMS spectrum clearly displays the intermediates, $Cp*(OAc)Rh^+$, *di-¹⁵N*-1a, *di-¹⁵N*-Int-C, ¹⁵N-3a', *di-¹⁵N*-Int-F, and *di-¹⁵N*-3a.

Intermediates	Formula	Calculated	Observed
$\mathbf{Cp*(OAc)Rh^{+} [M]^{+}}$	$C_{12}H_{18}O_2Rh$	297.04	297.04
$di^{-15}N$ -1a [M + H] ⁺	$C_{17}H_{17}^{15}N_2$	251.13	251.13
<i>di-¹⁵N</i> -Int-C [M] ⁺	$C_{31}H_{25}{}^{15}N_2$	427.20	427.19
¹⁵ <i>N</i> -3a' $[M + H]^+$	$C_{28}H_{20}{}^{15}NO$	387.15	387.15
<i>di-¹⁵N-</i> Int-F [M] ⁺	$C_{45}H_{33}{}^{15}N_2$	603.26	603.26
$di^{-15}N^{-3}a [M + H]^+$	$C_{42}H_{29}{}^{15}N_2$	563.23	563.22

Table S4 ESI-MS data found for six-component reaction in the presence of ¹⁵NH₄OAc

Figure S9 Isotopic distribution vs the mass spectrum simulated for di-¹⁵N-1a

Figure S10 Isotopic distribution vs the mass spectrum simulated for di-¹⁵N-Int-C

Figure S11 Isotopic distribution vs the mass spectrum simulated for ¹⁵N-3a'

Figure S12 Isotopic distribution vs the mass spectrum simulated for di-¹⁵N-Int-F

Figure S13 Isotopic distribution vs the mass spectrum simulated for di-¹⁵N-3a
5.3 Time-dependent ESI-MS to monitor the reaction process

(1) In neutral system:

The mixture of **1a** (24.8 mg, 0.1 mmol), **2a** (35.6 mg, 0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H_2O (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at room temperature for 5 min under air, then moved to heat at 120 °C. At the reaction time of 5 min (rt), 0.5 h (120 °C), 2 h (120 °C), 6 h (120 °C), 10 h (120 °C) and 12 h (120 °C), the reaction mixture was extracted with a micro injector. The reaction mixture was diluted with methanol and filtered by cotton pad, and the filtrate was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The Time-dependent ESI-MS spectrum clearly showed the change trend in the relative intensity of intermediates (Table S5).

	5 min	0.5 h	2 h	6 h	10 h	12 h
1a	8659657728	3711735296	628686144	147309856	79096224	78157600
Int-A	3228962.5	192570.4	133243	25267.8	20237.8	19962.7
Int-B	4197236	1869430.4	Not found	Not found	Not found	Not found
Int-C/C'	4948361216	11091359744	14646522880	11478876160	6540953088	6532972032
Int-F	Not found	6585557.5	32953764	63775988	104018872	101017182
Int-G	2418946.8	890194.1	1707117	1274590.9	840716.5	983024.1
3a'	32065688	16364353	17705166	17394136	11195047	11828096
3a	Not found	18205718	238285584	314316960	355185088	495769408

Table S5 Intensity of the intermediates according to time in ESI-MS

5.4 Time-dependent ESI-MS in the synthesis of mix-¹⁵N-3a

The mixture of **1a** (24.8 mg, 0.1 mmol), **2a** (35.6 mg, 0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.6 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at room temperature for 5 min under air, then moved to heat at 120 °C. At the reaction time of 5 min, 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h, the reaction mixture was extracted with a micro injector. The reaction mixture was diluted with methanol and filtered by cotton pad, and the filtrate was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The ¹⁵N-labeling ratio of **3a** was clearly tracked by the time-dependent ESI-MS.

Table S6. Intensity of the peak ([M+H] and [M+H+1]) according to time in ESI-MS

	5 min	2 h	4 h	6 h	8 h	10 h	12 h
Intensity	41763176	114854160	259384320	302288096	348470784	428523776	449511648
[M+H]	561.23	561.23	561.23	561.23	561.23	561.23	561.23
Intensity	47364584	128923232	273356576	320238272	389003424	340005760	526074144
[M+H+1]	562.23	562.23	562.23	562.23	562.23	562.23	562.23
¹⁵ N ratio	40.5%	40.1%	37.5%	37.7%	39.8%	41.4%	41.7%

(2) In acidic system:

The mixture of **1a** (24.8 mg, 0.1 mmol), **2a** (35.6 mg, 0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)_2·H₂O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.6 mg, 0.2 mmol, 2 equiv), HOAc (11µl, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at room temperature for 5 min under air, then moved to heat at 120 °C. At the reaction time of 5 min, 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h, the reaction mixture was extracted with a micro injector. The reaction mixture was diluted with methanol and filtered by cotton pad, and the filtrate was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The ¹⁵N-labeling ratio of **3a** was clearly tracked by the time-dependent ESI-MS.

Table S7. Intensity of the peak ([M+H] and [M+H+1]) according to time in ESI-MS when adding HOAc

	5 min	2 h	4 h	6 h	8 h	10 h	12 h
Intensity	17051444	27897696	48938864	56579532	5178050.5	79532904	90193704
[M+H]	561.23	561.23	561.23	561.23	561.23	561.23	561.23
Intensity	13669079	17924206	34024300	49847268	4290084.5	74332088	103594040
[M+H+1]	562.23	562.23	562.23	562.23	562.23	562.23	562.23
¹⁵ N ratio	41.3%	35.1%	37.3%	43.8%	42.1%	45.5%	50.8%

(3) In basic system:

The mixture of **1a** (24.8 mg, 0.1 mmol), **2a** (35.6 mg, 0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), Cu(OAc)₂·H₂O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.6 mg, 0.2 mmol, 2 equiv), NaOAc (16.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at room temperature for 5 min under air, then moved to heat at 120 °C. At the reaction time of 5 min, 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h, the reaction mixture was extracted with a micro injector. The reaction mixture was diluted with methanol and filtered by cotton pad, and the filtrate was analyzed by HRMS analysis

using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. The ¹⁵N-labeling ratio of **3a** was clearly tracked by the time-dependent ESI-MS.

10 h 5 min 2 h 4 h 6 h 8 h 12 h 6533618.5 4917115.5 10278779 33717960 26260442 30985018 31880254 Intensity [M+H] 561.23 561.23 561.23 561.23 561.23 561.23 561.23 Intensity 2505176.3 2001445.8 34024300 19582682 18282992 18008446 18475614 [M+H+1] 562.23 562.23 562.23 562.23 562.23 562.23 562.23 ¹⁵N ratio 22.0% 27.1% 37.3% 32.4% 32.4% 23.4% 32.4%

Table S8. Intensity of the peak ([M+H] and [M+H+1]) according to time in ESI-MS when adding NaOAc

6 Synthetic applications

6.1 Scale-up reactions (1 mmol)

Synthesis of Int-C. The mixture of 2*H*-imidazole 1a (248 mg, 1 mmol), alkyne 2a (178 mg, 1 mmol, 1equiv), [(Cp*RhCl₂)₂] (6 mg, 1 mol%), Cu(OAc)₂·H₂O (200 mg, 1 mmol, 2 equiv), and TFE (10 mL) was stirred at 120 °C for 12 h under air. Then, NaBF₄ (110 mg, 2 mmol, 10 equiv), was added to the reaction mixture, stir at room temperature for 1 h. After reaction completed, the mixture was concentrated under vacuum and the residue was purified by a silica gel (100–200 mesh) column, eluting with CH₂Cl₂/CH₃OH (80/1 \rightarrow 10/1, v/v) to afford Int-C as a yellow solid (451 mg, 88% yield).

Synthesis of 3a'. A solution of In-C (451 mg, 0.88 mmol), NH₄OAc (136 mg, 1.76 mmol, 2 equiv) and TFE (9 mL) was reacted at 120 °C for 12 h under air. The solvent was removed under vacuum and the residue was purified by a silica gel (100–200 mesh) column, eluting with petroleum ether/EtOAc (100/1 \rightarrow 80/1, v/v) to afford 3a' as a white solid (305 mg, 90% yield).

6.2 General procedure for the synthesis of 1,1'-biisoquinolinium salts 7

The mixture of **3a'** (38.5 mg, 0.1 mmol), alkyne **2** (0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), aniline **6** (14 mg, 1.5 mmol, 1.5 equiv), $Zn(OTf)_2$ (36.4 mg, 0.1 mmol, 1 equiv), HOAc (6 µL, 0.1 mmol, 1 equiv) and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a silica gel (200–300 mesh) column, eluting with CH₂Cl₂/CH₃OH (80/1 \rightarrow 8/1, v/v) to afford salts **7**.

6.3 Synthesis of trisubstituted 1,1'-biisoquinoline 8

To a dry Schlenk tube with a magnetic stir bar was added 3a' (77.1 mg, 0.2 mmol), NH₂OH • HCl (34.7 mg, 0.5 mmol, 2.5 equiv), pyridine (23.7 mg, 0.3 mmol, 1.5 equiv) and EtOH (2 mL). The mixture was stirred at 90 °C for 10 h. After cooling down to room temperature, a large amount of solid is precipitated. The precipitate was collected by filtration and washed with EtOH (2 mL) to afford (3,4-diphenylisoquinolin-1-yl)(phenyl)methanone oxime **3a'-OH** as a white solid (73.6 mg, 92% yield).

Then, **3a'-OH** (40 mg, 0.1 mmol), acrolein (16.8 mg, 0.3 mmol, 3 equiv), [(Cp*RhCl₂)₂] (1.3 mg, 2.0 mol%), Ag₂CO₃ (55.1 mg, 2 equiv), PivOH (20.4 mg, 2 equiv) and MeCN (1 mL) were added to a dry Schlenk tube for stirring at room temperature for 18 h under air. The residue was

purified by a silica gel (100–200 mesh) column, eluting with petroleum ether/EtOAc (10/1, v/v) to afford **8** as a yellowish solid (20.1 mg, 46%).

6.4 Synthesis of 3a from furoxan 9

To a dry Schlenk tube with a magnetic stir bar was added furoxan **9** (23.8 mg, 0.1 mmol), alkyne **2a** (35.6 mmol, 0.2 mmol, 2 equiv), [(Cp*RhCl₂)₂] (1.6 mg, 2.5 mol%), Cu(OAc)₂·H₂O (40 mg, 0.2 mmol, 2 equiv), and MeOH (2 mL). The reaction mixture was stirred at 110 °C for 10 h under nitrogen atmosphere before concentrated under vacuum. The residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (40/1 \rightarrow 8/1, v/v) to afford **3a** as a white solid (47.6 mg, 84%).

6.5 Synthesis of 3a from diimine 10

The mixture of **10** (28.8 mg, 0.1 mmol), alkyne **2a** (35.6 mmol, 0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 0.1 mmol, 1 equiv), NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was stirred at 120 °C for 20 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (40/1 \rightarrow 8/1, v/v) to afford **3a** as a white solid (17.0 mg, 30% yield). While **3a** was not detected when NH₄OAc was absent.

6.5 Synthesis of di-¹⁵N-3a with full ¹⁵N-labeling

The mixture of benzil (21 mg, 0.1 mmol), **2a** (35.6 mmol, 0.2 mmol, 2 equiv), acetone (1.5 mmol, 1.5 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), $Cu(OAc)_2 \cdot H_2O$ (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (30.8 mg, 0.4 mmol, 4 equiv) and TFE (2 mL) was reacted at 120 °C for 12h under air. The reaction mixture was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 8/1, v/v) to afford **di**-¹⁵N-**3a** as a white solid (28 mg, 50% yield). The ¹⁵N ratio was determined by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap). HRMS analysis showed that the abundance of ¹⁵N in **3a** was close to 100%.

Figure S14 ESI-MS of di-¹⁵N-3a

6.6 Synthesis of mono-¹⁵N-3a with full ¹⁵N-labeling

The mixture of **3a'** (38.5 mg, 0.1 mmol), **2a** (17.8 mg, 0.1 mmol, 1 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), Cu(OAc)_2·H_2O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv) and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was purified by a neutral aluminum oxide (200–300 mesh) column, eluting with petroleum ether/EtOAc (80/1 \rightarrow 40/1, v/v) to afford *mono-¹⁵N-3a* as a white solid (50.2 mg, 90% yield). The ¹⁵N ratio was determined by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap). HRMS analysis showed that the abundance of ¹⁵N in **3a** was 100%.

Figure S15 ESI-MS of mono-¹⁵N-3a

6.7 Adjusting the ¹⁵N incorporation of mix-¹⁵N-3a by reaction acidity

With acid HOAc: The mixture of 1 (0.1 mmol), 2 (0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), Cu(OAc)_2·H_2O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv), HOAc (11 µL, 0.2 mmol, 2 equiv), and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. HRMS analysis showed that the abundance of ¹⁵N in **3a** was 58%.

With base NaOAc: The mixture of 1 (0.1 mmol), 2 (0.2 mmol, 2 equiv), $[(Cp*RhCl_2)_2]$ (1.6 mg, 2.5 mol %), Cu(OAc)_2·H_2O (20 mg, 0.1 mmol, 1 equiv), ¹⁵NH₄OAc (15.4 mg, 0.2 mmol, 2 equiv), NaOAc (16.4 mg, 0.2 mmol, 2 equiv), and TFE (2 mL) was reacted at 120 °C for 12 h under air. The reaction mixture was analyzed by HRMS analysis using Vanquish-Exactive Plus liquid chromatography mass spectrometry (ion trap) without any purification. HRMS analysis showed that the abundance of ¹⁵N in **3a** was 27%.

Figure S17 ESI-MS of mix-¹⁵N-3a in the presence of NaOAc

7 Using 1,1'-BIQ as ligand in double *N*-arylation to synthesize benzo[*c*]cinnolines

The mixture of phthalhydrazide **11** (32.4 mg, 0.2 mmol), **12** (0.25 mmol, 1.25 equiv), CuI (2 mg, 5 mol%), ligand (5 mol%), K₂CO₃ (55.2 mg, 0.4 mmol, 2 equiv) and DMF (1 mL) was stirred at 120 °C for 12 h under air. The reaction mixture was concentrated under vacuum and the residue was purified by a silica gel (100–200 mesh) column, eluting with petroleum ether/EtOAc (10/1 \rightarrow 5/1, v/v) to afford **13a** or **13b**.

Entry	Iodonium	Ligand	Yield $(\%)^b$
1	12a	none	67 (13a)
2	12a	2,2'-Bipy	90 (13a)
3	12a	1,10-Phen	90 (13a)
4	12a	DMEDA	90 (13a)
5	12a	3 a	95 (13a)
6	12b	2,2'-Bipy	35 (13b)
7	12b	3 a	95 (13b)
8	12b	3 e	80 (13b)
9	12b	Зј	82 (13b)
10	12b	3m	78 (13b)
11	12b	30	89 (13b)

Table S9. Reaction data of 10 and 11

8 Experimental data for the described substances

3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3a)

White solid (From GP B: 52.1 mg, 93% yield; From GP C, 29.0 mg, 52% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.09 (d, *J* = 8.5 Hz, 2H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.44–7.35 (m, 14H), 7.20–7.14 (m, 6H) ppm. The NMR data are consistent with the literature.⁹

6,6'-dimethyl-3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3b)

White solid (37.7 mg, 64% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = 80/1 \rightarrow 60/1, v/v). ¹H NMR (500MHz, CDCl₃): δ = 7.97 (d, *J* = 8.5 Hz, 2H), 7.51 (s, 2H), 7.43–7.33 (m, 16H), 7.18–7.12 (m, 6H), 2.45 (s, 6H) ppm. The NMR data are consistent with the literature.⁹

6,6'-dichloro-3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3c)

White solid (From GP B: 48.5 mg, 77% yield; From GP C, 30.4 mg, 48% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹**H NMR (500MHz, CDCl₃):** δ = 8.09 (d, *J* = 8.0 Hz, 2H), 7.75 (s, 2H), 7.49 (d, *J* = 9.0 Hz, 2H), 7.46–7.38 (m, 10H), 7.32 (d, *J* = 7.0 Hz, 4H), 7.21–7.15 (m, 6H) ppm. The NMR data are consistent with the literature.⁹

6,6'-difluoro-3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3d)

White solid (34.4 mg, 58% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): $\delta = 8.19-8.16$ (m, 2H), 7.45–7.39 (m, 12H), 7.32–7.30 (m, 6H), 7.19–7.15 (m, 6H) ppm. The NMR data are consistent with the literature.⁹

7,7'-dimethyl-3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3e)

White solid (47.2 mg, 80% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = 80/1 \rightarrow 40/1, v/v). ¹H NMR (500MHz, CDCl₃): δ = 7.83 (s, 2H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.48–7.46 (m, 2H), 7.44–7.35 (m, 14H), 7.20–7.13 (m, 6H), 2.47 (s, 6H) ppm. The NMR data are consistent with the literature.⁹

4,4',5,5'-tetraphenyl-3a,7a-dihydro-7,7'-bithieno[2,3-c]pyridine (3f)

White solid (22.4 mg, 39% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = 80/1 \rightarrow 20/1, v/v). M.p.: >250 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.78 (d, *J* = 5.5 Hz, 2H), 7.67 (d, *J* = 7.0 Hz, 4H), 7.41–7.29 (m, 18H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 147.7, 139.9, 138.3, 136.4, 135.3, 131.0, 130.8, 128.4, 127.9, 127.8, 127.6, 127.4, 127.2, 125.4, 122.7 ppm. HRMS (ESI) *m/z*: calcd for C₃₈H₂₅N₂S₂ ([M+H]⁺) 573.1459, found 573.1458.

6-ethoxy-6'-methyl-3,3',4,4'-tetraphenyl-1,1'-biisoquinoline (3g)

White solid (From GP B: 46.4 mg, 75% yield; From GP C, 36.6 mg, 59% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): $\delta = 8.00-7.97$ (m, 2H), 7.52 (s, 1H), 7.42–7.35 (m, 15H), 7.17–7.14 (m, 7H), 7.00 (s, 1H), 3.96 (q, *J* = 7.0 Hz, 2H), 2.45 (s, 3H), 1.39 (t, *J* = 7.0 Hz, 3H) ppm. The NMR data are consistent with the literature.⁹

3,3',4,4'-tetrakis(2-methoxyphenyl)-1,1'-biisoquinoline6 (3h)

White solid (37.6 mg, 69% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $10/1 \rightarrow 2/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.33 (s, 2H), 7.58–7.56 (m, 4H), 7.52–7.50 (m, 2H), 7.29–7.26 (m, 2H), 7.19–7.11 (m, 6H), 6.91–6.86 (m, 4H), 6.75 (s, 4H), 3.71 (s, 6H), 3.60 (s, 6H) ppm. The NMR data are consistent with the literature.⁹

3,3',4,4'-tetrakis(3-bromophenyl)-1,1'-biisoquinoline (3i)

White solid (43.6 mg, 50% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = 80/1 \rightarrow 20/1, v/v). M.p.: >250 °C . ¹H NMR (500MHz, CDCl₃): δ = 7.98 (d, *J* = 8.5 Hz, 2H), 7.76–7.67 (m, 6H), 7.59–7.54 (m, 6H), 7.34–7.31 (m, 4H), 7.26–7.24 (m, 4H), 7.05 (t, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.9, 148.2, 142.3, 139.2, 136.9, 134.1, 133.5, 131.2, 131.1, 130.6, 130.3, 130.2, 130.1, 129.4, 129.1, 127.8, 127.5, 127.0, 125.9, 122.7, 122.2 ppm. The NMR data are consistent with the literature.¹⁰

3,3',4,4'-tetrakis(4-methoxyphenyl)-1,1'-biisoquinoline (3j)

White solid (From GP B: 34.4 mg, 51% yield; From GP C, 31.6 mg, 46% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $20/1 \rightarrow 8/1$, v/v). ¹**H NMR (500MHz, CDCl₃):** δ = 8.04 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 4H), 7.26–7.25 (m, 4H), 6.98 (d, *J* = 8.5 Hz, 4H), 6.72 (d, *J* = 8.5 Hz, 4H), 3.89 (s, 6H), 3.74 (s, 6H) ppm. The NMR data are consistent with the literature.⁹

3,3',4,4'-tetrakis(4-chlorophenyl)-1,1'-biisoquinoline (3k)

White solid (49.2 mg, 70% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $100/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.01 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.67 (t, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.0 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 4H), 7.33 (d, *J* = 8.5 Hz, 4H), 7.28–7.26 (m, 4H), 7.18 (d, *J* = 8.5 Hz, 4H) ppm. The NMR data are consistent with the literature.⁹

3,3',4,4'-tetrakis(4-bromophenyl)-1,1'-biisoquinoline (3l)

White solid (73.3 mg, 84% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $100/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.00 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.66 (t, J = 7.8 Hz, 2H), 7.60–7.53 (m, 6H), 7.34 (d, J = 7.0 Hz, 4H), 7.27 (d, J = 9.0 Hz, 4H, cover the solvent), 7.21 (d, J = 6.5 Hz, 4H) ppm. The NMR data are consistent with the literature.⁹

3,3',4,4'-tetrakis(4-(trifluoromethyl)phenyl)-1,1'-biisoquinoline (3m)

White solid (From GP B: 68.4 mg, 82% yield; From GP C, 43.3 mg, 52% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $100/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.07 (d, J = 8.0 Hz, 2H), 7.75–7.70 (m, 8H), 7.62 (t, J = 6.0 Hz, 2H), 7.52–7.46 (m, 12H) ppm. The NMR data are consistent with the literature.¹⁰

3,3',4,4'-tetra(thiophen-2-yl)-1,1'-biisoquinoline (3n)

White solid (26.4 mg, 45% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): $\delta = 8.28$ (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 7.69–7.64 (m, 4H), 7.51 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 3.8 Hz, 2H), 7.28–7.27 (m, 2H), 7.25–7.24 (m, 2H), 6.91 (t, J = 4.0 Hz, 2H), 6.82 (d, J = 3.0 Hz, 2H) ppm. The NMR data are consistent with the literature.¹⁰

3,3',4,4'-tetraethyl-1,1'-biisoquinoline (30)

White solid (30.1 mg, 81% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $60/1 \rightarrow 10/1$, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.08 (d, J = 8.0 Hz, 2H), 7.67–7.63 (m, 4H), 7.33 (t, J = 8.0 Hz, 2H), 3.20 (q, J = 7.3 Hz, 4H), 3.10 (q, J = 7.7 Hz, 4H), 1.39 (t, J = 6.8 Hz, 12H) ppm. The NMR data are consistent with the literature.⁹

4,4'-diethyl-3,3'-diphenyl-1,1'-biisoquinoline (3p)

White solid (24.3 mg, 52% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $60/1 \rightarrow 10/1$, v/v) afforded the mixture of **3p**, **3p'** and **3p''** (**3p**:**3p'**:**3p''** = 3:1:0). ¹H NMR (500MHz, CDCl₃, major): δ = 8.17 (d, *J* = 8.5 Hz, 2H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.74 (t, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.0 Hz, 4H), 7.48–7.42 (m, 7H), 7.38–7.35 (m, 3H), 3.14 (q, *J* = 7.0 Hz, 4H), 1.34 (t, *J* = 7.3 Hz, 6H) ppm. The NMR data are consistent with the literature.⁹

3,4-bis(3-bromophenyl)-3',4'-diphenyl-4a,8a-dihydro-1,1'-biisoquinoline (4ai)

White solid (From GP D: 70.2 mg, 98% yield; From GP E, 25.1 mg, 35% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 20/1$, v/v). M.p.: >250 °C. ¹H NMR (500MHz, CDCl₃): δ = 8.10 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.71–7.63 (m, 3H), 7.60–7.53 (m, 4H), 7.44–7.40 (m, 5H), 7.36 (d, J = 6.5 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.27–7.25 (m, 2H, cover the solvent), 7.21–7.16 (m, 3H), 7.06 (t, J = 7.8 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 158.3, 157.1, 149.8, 148.2, 142.4, 140.8, 139.3, 137.4, 137.3, 136.9, 134.1, 133.5, 131.4, 131.1, 131.0, 130.6, 130.5, 130.5, 130.3, 130.1, 130.0, 129.3, 129.1, 128.5, 127.8, 127.7, 127.6, 127.6, 127.2, 127.2, 127.1, 126.8, 126.3, 125.8, 122.7, 122.2 ppm. HRMS (ESI) *m/z*: calcd for C₄₂H₂₇Br₂N₂ ([M+H]⁺) 717.0541, found 717.0540.

3,4-bis(4-methoxyphenyl)-3',4'-diphenyl-4a,8a-dihydro-1,1'-biisoquinoline (4aj)

White solid (From GP D: 58.0 mg, 93% yield; From GP E, 24.6 mg, 40% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $20/1 \rightarrow 2/1$, v/v). ¹**H NMR (500MHz, CDCl₃):** δ = 8.09–8.04 (m, 2H), 7.77 (t, *J* = 7.8 Hz, 2H), 7.64–7.59 (m, 2H), 7.53–7.48 (m, 2H), 7.42–7.34 (m, 9H), 7.26–7.24 (m, 2H), 7.19–7.13 (m, 3H), 6.98 (d, *J* = 7.5 Hz,

2H), 6.73 (d, J = 8.0 Hz, 2H), 3.89 (s, 3H), 3.74 (s, 3H) ppm. The NMR data are consistent with the literature.⁹

3,4-bis(4-bromophenyl)-3',4'-diphenyl-4a,8a-dihydro-1,1'-biisoquinoline (4al)

White solid (From GP D: 70.1 mg, 97% yield; From GP E, 32.5 mg, 45% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 20/1$, v/v). M.p.: 237–239 °C. ¹H NMR (500MHz, CDCl₃): $\delta = 8.09$ (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.68–7.51 (m, 6H), 7.43–7.41 (m, 5H), 7.35 (d, J = 8.5 Hz, 4H), 7.30 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.18–7.14 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.2$, 157.2, 149.8, 148.4, 140.8, 139.5, 137.4, 137.3, 137.0, 136.2, 133.01, 132.2, 132.0, 131.4, 131.4, 131.1, 130.9, 130.6, 130.5, 130.0, 128.5, 127.8, 127.8, 127.6, 127.5, 127.3, 127.2 (2C), 127.0, 126.8, 126.3, 125.8, 122.1, 121.9 ppm. HRMS (ESI) m/z: calcd for C₄₂H₂₇Br₂N₂ ([M+H]⁺) 717.0541, found 717.0545.

3,4-diethyl-3',4'-diphenyl-4a,8a-dihydro-1,1'-biisoquinoline (4ao)

White solid (45.0 mg, 97% yield), purification via a neutral aluminum oxide (200–300 mesh) column (petroleum ether/EtOAc = $80/1 \rightarrow 20/1$, v/v). M.p.: 164–166 °C. ¹H NMR (500MHz, CDCl₃): $\delta = 8.11$ (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.74 (d, J

= 8.5 Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.45–7.38 (m, 7H), 7.33 (d, J = 7.0 Hz, 2H), 7.17–7.13 (m, 3H), 3.21 (q, J = 7.5 Hz, 2H), 3.11 (q, J = 7.5 Hz, 2H), 1.42–1.39 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 158.0, 156.0, 149.7, 141.0, 137.7, 137.3, 136.3, 131.5, 130.6, 130.4, 130.0, 129.7, 128.5, 128.1, 127.7, 127.6, 127.5, 127.1, 127.0, 126.9, 126.8, 126.1, 125.9, 123.2, 28 8, 21.2, 15.4, 15.3 ppm. HRMS (ESI) *m/z*: calcd for C₃₄H₂₉N₂ ([M+H]⁺) 465.2331, found 465.2327.

1,1'-(propane-2,2-diyl)bis(3,4-diphenylisoquinoline) (5a)

White solid (14.7 mg, 24% yield), purification via filtration. M.p.: >250 °C. ¹H NMR (500MHz, CDCl₃): δ = 7.82 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 4H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.43–7.36 (m, 6H), 7.32–7.28 (m, 12H), 7.08 (t, *J* = 7.5 Hz, 2H), 2.31 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 165.9, 147.9, 141.4, 138.2, 137.5, 131.6, 130.8, 129.5, 129.1, 128.5, 127.7, 127.4, 127.2, 126.6, 126.2, 125.9, 125.5, 52.5, 30.9. ppm. HRMS (ESI) *m*/*z*: calcd for C₄₅H₃₅N₂ ([M+H]⁺) 603.2800, found 603.2794.

1,1'-(propane-2,2-diyl)bis(4-methyl-3-phenylisoquinoline) (5b)

Light brown solid (8 mg, 17% yield), purification via filtration afforded the mixture of **5b**, **5b** and **5b''** (**5b**: **5b''** = 10:1:0). ¹**H** NMR (**500MHz, CDCl**₃, **major**): δ = 8.01 (d, *J* = 9.0 Hz, 2H),

7.87 (d, J = 7.5 Hz, 4H), 7.70 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 4H), 7.48–7.42 (m, 4H), 7.04 (d, J = 7.8 Hz, 2H), 2.72 (s, 6H), 2.16 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): $\delta = 164.4$, 149.5, 142.1, 137.7, 130.7, 129.0, 128.1, 127.6, 126.7, 125.5, 125.4, 124.4, 122.5, 51.8, 30.9, 16.1 ppm. HRMS (ESI) *m/z*: calcd for C₃₅H₃₁N₂ ([M+H]⁺) 479.2487, found 479.2483.

1,1'-(ethane-1,1-diyl)bis(3,4-diphenylisoquinoline) (5c)

White solid (23.6 mg, 40% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). M.p.: >250 °C. ¹H NMR (500MHz, CDCl₃): δ = 8.86 (d, J = 8.0 Hz, 2H), 7.63-7.61 (m, 2H), 7.48–7.46 (m, 8H), 7.37–7.35(m, 6H), 7.26–7.22(m, 10H, cover the solvent), 6.12 (q, J = 7.0 Hz, 1H), 2.32 (d, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 161.9, 148.7, 141.3, 138.0, 137.2, 131.5 (2C), 130.6, 129.6, 128.5, 128.4, 127.6, 127.3, 127.1, 126.5, 126.4, 126.3, 48.5, 19.4 ppm. HRMS (ESI) *m*/*z*: calcd for C₄₄H₃₂N₂Na ([M+Na]⁺) 611.2463, found 611.2462.

1,1'-(ethane-1,1-diyl)bis(3-methyl-4-phenylisoquinoline) (5d)

Yellow oil (28.8 mg, 62% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v) afforded the mixture of **5d**, **5d'** and **5d''** (**5d**: **5d'**: **5d''** = 4:1:0).¹H NMR (**500MHz, CDCl₃, major**): δ = 8.74 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J*

= 7.5 Hz, 4H), 7.59 (t, J = 7.8 Hz, 2H), 7.53(t, J = 7.5 Hz, 4H), 7.46–7.40 (m, 4H), 5.89 (q, J = 7.0 Hz, 1H), 2.61 (s, 6H), 2.18 (d, J = 7.9 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃, major): δ = 160.4, 150.2, 142.0, 137.3, 130.3, 129.5, 128.1, 127.5, 127.2, 126.3, 126.0, 124.3, 122.7, 49.2, 29.9, 19.4 ppm. HRMS (ESI) *m/z*: calcd for C₃₄H₂₉N₂ ([M+H]⁺) 465.2331, found 465.2328.

1,1'-(ethane-1,1-diyl)bis(4-ethyl-3-phenylisoquinoline) (5e)

Yellow oil (24.7 mg, 50% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = 80/1 \rightarrow 40/1, v/v). ¹H NMR (500MHz, CDCl₃): δ = 8.84 (d, *J* = 8.5 Hz, 2H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 7.5 Hz, 4H), 7.60 (t, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 4H), 7.48–7.41(m, 4H), 5.90 (q, *J* = 7.2 Hz, 1H), 3.02 (q, *J* = 7.5 Hz, 4H) 2.18 (d, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.5 Hz, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 160.3, 150.3, 142.4, 136.2, 129.6, 129.4, 129.0, 128.2, 127.7, 127.5, 126.9, 125.9, 124.2, 49.5, 21.9, 19.3, 15.9 ppm. HRMS (ESI) *m/z*: calcd for C₃₆H₃₃N₂ ([M+H]⁺) 493.2644, found 493.2641.

3-ethyl-1-(1-(4-ethyl-3-phenylisoquinolin-1-yl)ethyl)-4-phenylisoquinoline (5e')

Yellow oil (8 mg, 16% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = $80/1 \rightarrow 40/1$, v/v). ¹H NMR (500MHz, CDCl₃): $\delta = 8.88$ (d, J = 8.5 Hz, 1H), 8.78 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.50–7.40 (m, 6H), 7.38–7.34 (m, 2H), 7.31–7.28 (m, 2H), 5.91 (q, J = 7.2 Hz,

1H), 3.02 (q, J = 7.5 Hz, 2H), 2.77 (q, J = 7.5 Hz, 2H), 2.22 (d, J = 7.5 Hz, 3H), 1.31–1.28 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 161.6$, 160.4, 152.4, 150.3, 142.4, 138.3, 137.0, 136.3, 130.5 (2C), 129.6, 129.4, 129.2, 129.0, 128.5 (2C), 128.3, 127.8, 127.5, 127.4, 126.9, 126.6, 126.0, 125.8, 125.4, 124.2, 49.4, 31.8, 29.0, 21.9, 19.3, 15.9 ppm. HRMS (ESI) *m/z*: calcd for C₃₆H₃₃N₂ ([M+H]⁺) 493.2644, found 493.2639.

2,3,3',4,4'-pentaphenyl-4a,8a-dihydro-[1,1'-biisoquinolin]-2-ium triflate (7a)

Yellow solid (55.1 mg, 70% yield), purification via a silica (100-200 mesh) gel column (CH₂Cl₂/CH₃OH = 100/1 \rightarrow 60/1, v/v). M.p.: 151–153 °C. ¹H NMR (500MHz, CDCl₃): δ = 8.49 (d, *J* = 8.0 Hz, 1H), 8.04 (t, *J* = 7.3 Hz, 1H), 7.95 (t, *J* = 7.3 Hz, 2H), 7.84–7.77 (m, 4H), 7.67–7.59 (m, 3H), 7.45–7.41 (m, 3H), 7.31–7.27 (m, 4H), 7.20 (s, 5H), 7.13 (d, *J* = 7.0 Hz, 1H), 7.07–7.02 (m, 3H), 6.98 (t, *J* = 7.3 Hz, 1H), 6.94–6.89 (m, 3H), 6.84–6.79 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 156.5, 149.9, 149.6, 146.7, 140.5, 140.1, 140.0, 139.9, 137.2, 136.1, 135.9, 133.8, 133.2, 133.1, 132.2, 132.0, 131.9, 131.3, 131.1, 130.9, 130.4, 130.3, 130.1, 129.9, 129.7, 129.2, 129.0, 128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8(3C), 127.7, 127.3, 127.2, 127.0, 125.6 ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -78.40 ppm. HRMS (ESI) *m/z*: calcd for C₄₈H₃₃N₂ ([M–OTf⁻]⁺) 637.2638, found 637.2636.

3,4-bis(4-chlorophenyl)-2,3',4'-triphenyl-[1,1'-biisoquinolin]-2-ium triflate (7b)

Yellow solid (56.0 mg, 65% yield), purification via a silica (100-200 mesh) gel column (CH₂Cl₂/CH₃OH = 100/1 \rightarrow 60/1, v/v). M.p.: 177–179 °C. ¹H NMR (500MHz, CDCl₃): δ = 8.44 (d, *J* = 8.5 Hz, 1H), 8.07 (t, *J* = 7.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.83–7.77 (m, 4H), 7.64–7.59 (m, 3H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.40–7.34 (m, 2H), 7.31-7.28 (m, 3H), 7.19 (br s, 5H) 7.07–7.06 (m, 3H), 7.00–6.94 (m, 2H), 6.83 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.3, 149.9, 149.3, 145.5, 140.0, 139.8, 139.5, 137.6, 136.0, 135.9, 135.6, 135.2, 134.4, 133.5, 133.3, 132.3, 132.0, 131.6, 131.5, 131.1, 130.9, 130.6, 130.2, 130.1, 130.0, 129.9, 129.8, 129.2, 129.0, 128.7, 128.4, 128.3, 128.1 (2C), 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 125.7 ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -78.46 ppm. HRMS (ESI) *m/z*: calcd for C₄₈H₃₁Cl₂N₂ ([M–OTf⁻]⁺) 705.1859, found 705.1856.

3,4-diethyl-2,3',4'-triphenyl-[1,1'-biisoquinolin]-2-ium (7c)

Yellow solid (42.2 mg, 61% yield), purification via a silica (100-200 mesh) gel column (CH₂Cl₂/CH₃OH = 100/1 \rightarrow 60/1, v/v). M.p.: 110–112 °C. ¹H NMR (500MHz, CDCl₃): δ = 8.45 (d, *J* = 9.0 Hz, 1H), 8.14 (t, *J* = 7.5 Hz, 1H), 8.02 (t, *J* = 7.0 Hz, 1H), 7.77 (t, *J* = 7.3 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 2H), 7.64–7.57 (m, 3H), 7.47–7.41 (m, 2H), 7.36–7.33 (m, 3H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.25–7.24 (m, 1H), 7.19 (s, 5H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.0 Hz, 1H), 3.57–3.50 (m, 1H), 3.47–3.40 (m, 1H), 3.23–3.15 (m, 1H), 3.00–2.93 (m, 1H), 1.60 (t, *J* = 7.5 Hz, 3H), 1.23

(t, J = 7.8 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 155.4$, 149.8, 148.7, 140.0, 139.8, 139.3, 139.1, 136.9, 136.1, 135.8, 132.9, 132.1, 131.1, 130.9, 130.7, 130.6, 129.9, 129.8, 129.7, 128.7, 128.4, 128.0, 128.0, 127.9, 127.7, 127.7, 127.1, 127.0, 125.7, 124.8, 24.7, 22.6, 14.9, 13.9 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -78.42$ ppm. HRMS (ESI) *m/z*: calcd for C₄₀H₃₃N₂ ([M–OTf⁻]⁺) 541.2638, found 541.2637.

3',4'-diphenyl-[1,1'-biisoquinoline]-3-carbaldehyde (8)

Yellowish solid (20.1 mg, 46% yield), purification via a silica (100-200 mesh) gel column (petroleum ether/EtOAc = 20/1 \rightarrow 10/1, v/v). M.p.: > 250 °C. ¹H NMR (500MHz, CDCl₃): δ = 10.35 (s, 1H), 8.57 (s, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.84 (t, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.72 (t, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.43–7.40 (m, 5H), 7.35 (d, *J* = 6.0 Hz, 2H), 7.19–7.16 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ =193.8, 159.4, 156.4, 150.0, 146.0, 140.6, 137.3, 136.7, 131.7, 131.5, 131.4, 130.7, 130.5, 130.4, 129.3, 128.6, 128.0, 127.8, 127.7, 127.4, 127.3, 126.9, 126.6, 126.4, 121.6 ppm. HRMS (ESI) *m/z*: calcd for C₃₁H₂₁N₂O ([M+H]⁺) 437.1649, found 437.1646.

9 References

[1] Du, Y.; Hyster, T. K.; Rovis, T. Rhodium(III)-Catalyzed Oxidative Carbonylation of Benzamides with Carbon Monoxide. *Chem. Commun.* **2011**, *47*, 12074–12076.

[2] (a) Villar, J. M.; Suárez, J.; Varela, J. A.; Saá, C. N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C–H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes. *Org. Lett.* 2017, *19*, 1702–1705. (b) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. Synthesis of

Symmetrical and Unsymmetrical Diarylalkynes from Propiolic Acid Using Palladium-Catalyzed Decarboxylative Coupling. *J. Org. Chem.* **2010**, *75*, 6244–6251.

[3] Zhang, Q.; Zhao, C.; Zhang, X.; He, C. Pang, S. Oxidation of *o*-dioxime by (diacetoxyiodo)benzene: green and mild access to furoxans. *New J. Chem.*, **2022**, *46*, 1489–1493.

[4] Delpivo, C.; Micheletti, G.; Boga, C. A Green Synthesis of Quinoxalines and 2,3-Dihydropyrazines. *Synthesis* **2013**; *45(11)*, 1546–1552.

[5] Liu, Z.; Zhu, D.; Luo, B.; Zhang, N.; Liu, Q.; Hu, Y.; Pi, R.; Huang, P.; Wen, S. Mild Cu(I)catalyzed cascade reaction of cyclic diaryliodoniums, sodium azide, and alkynes: Efficient synthesis of triazolophenanthridines, *Org. Lett.*, **2014**, *16*, 5600–5603.

[6] Wu, X.-L.; Dong, L. Synthesis of α-Ketone-isoquinoline Derivatives via Tandem Ruthenium(II)-Catalyzed C–H Activation and Annulation. *Org. Lett.* **2018**, *20*, 6990–6993.

[7] Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Visible-Light-Initiated, Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with N-Heterocycles. *Org. Lett.* **2018**, *20*, *15*, 4686–4690.

[8] Bsharat, O.; Doyle, M. G. J.; Munch, M.; Mair, B. A.; Cooze, C. J. C.; Derdau, V.; Bauer, A.; Kong, D.; Rotstein, B. H.; Lundgre, R. J. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO₂. *Nat. Chem.* **2022**, *14*, 1367–1374.

[9] Li, S.; Lv, H.; Xie, R.; Yu, Y.; Ye, X.; Kong, X. The C–H Activation/Bidirecting Group Strategy for Selective Direct Synthesis of Diverse 1,1['] -Biisoquinolines. *Org. Lett.* **2020**, *22*, 4207–4212.

[10] Lv, S.; Tian, Y.-N.; Yang, Y.; Wen, C.; Li, S. Rh(III)-Catalyzed One-Pot Three-Component Diannulation of Benzils, Ammonium Acetate, and Alkynes to Build 1,1'-Biisoquinolines. *J. Org. Chem.* **2022**, *87*, 16019–16025.

10 Copies of ¹H and ¹³C and ¹⁹F spectra

¹H NMR (500 MHz, CDCl₃) of 1c

S67

¹⁹F NMR (470 MHz, DMSO-*d*₆) of **Int-C**

Ph Ph N+ BF

 $<^{-148.353}_{-148.445}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22(fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$^{1}\text{H}-^{1}\text{H}$ Noesy of **5e**

f1 (ppm)

¹⁹F NMR (470 MHz, CDCl₃) of **7a**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

^{19}F NMR (470 MHz, CDCl₃) of 7b

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22(fl (ppm)

^{19}F NMR (471 MHz, CDCl₃) of 7c

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22(fl (ppm)

11 X-ray crystallographic data

General crystal growing conditions of Int-C: X-ray quality single crystal of Int-C was grown from the co-solvent of DCM and *n*-hexane (10:1, v/v) at room temperature by slow evaporation for 3 days.

Figure S18 The molecular structure of *Int-C* (CCDC 2266530). Thermal ellipsoids are shown at the 50% probability level.

Table S10 Crystal data and structure refinement for 1_tw.

Identification code	1_tw
Empirical formula	$C_{31}H_{25}BF_4N_2$
Formula weight	512.34
Temperature/K	260.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.5802(9)
b/Å	19.2499(19)
c/Å	15.3566(17)
α/°	90
β/°	94.856(6)

$\gamma/^{\circ}$	90
Volume/Å ³	2527.3(5)
Z	4
$\rho_{calc}g/cm^3$	1.347
μ/mm^{-1}	0.523
F(000)	1064.0
Crystal size/mm ³	$0.03 \times 0.02 \times 0.01$
Radiation	Ga Ka ($\lambda = 1.34139$)
2Θ range for data collection/	6.42 to 114.274
Index ranges	$-10 \le h \le 10, -24 \le k \le 24, -2 \le l \le 19$
Reflections collected	5143
Independent reflections	5143 [R _{int} =?, R _{sigma} =0.0630]
Data/restraints/parameters	5143/0/347
Goodness-of-fit on F ²	1.116
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1200, wR_2 = 0.3367$
Final R indexes [all data]	$R_1 = 0.1623$, $wR_2 = 0.3513$
Largest diff. peak/hole / e Å-3	30.44/-0.44

Table S11 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 1_tw. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
N1	2734(7)	1386(3)	8347(4)	30.0(13)
C2	2870(8)	1071(3)	7545(4)	30.7(15)
C3	2948(8)	299(4)	9122(4)	31.1(15)
C4	2845(5)	1487(2)	6725(2)	32.1(15)
C7	1424(5)	1605(3)	6244(3)	38.3(17)
C14	1386(5)	1953(3)	5449(3)	47(2)
C25	2769(7)	2183(3)	5135(3)	51(2)
C18	4190(5)	2064(3)	5617(3)	49(2)
C10	4228(5)	1716(3)	6411(3)	39.5(18)
C5	3017(9)	364(4)	7528(5)	33.0(16)
C6	2714(8)	1023(3)	9093(5)	30.9(15)
C8	2446(9)	1555(4)	9779(5)	35.8(17)
C9	3090(10)	-100(4)	9901(5)	41.7(19)
C11	3125(9)	-37(4)	8307(5)	34.8(16)
N13	2471(8)	2172(3)	9474(4)	38.6(15)
F15	6810(70)	730(30)	7980(40)	96(16)
C16	3437(11)	-1131(4)	9068(6)	48(2)
C17	2647(10)	2157(4)	8546(5)	37.4(17)

Table S11 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 1_tw. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
C22	3310(10)	-798(4)	9868(5)	47(2)
C24	1195(11)	2491(4)	8098(6)	49(2)
F26	9150(60)	940(30)	8500(30)	98(13)
C28	3331(11)	-766(4)	8309(5)	46(2)
C30	4133(10)	2524(4)	8348(5)	47(2)
C33	1099(6)	918(3)	10919(3)	44.8(19)
C21	2129(6)	1434(3)	10698(2)	38.0(17)
C23	2865(6)	1853(2)	11346(3)	46(2)
C31	2571(7)	1757(3)	12214(3)	57(2)
C29	1541(7)	1241(3)	12434(3)	55(2)
C27	805(6)	822(3)	11787(3)	54(2)
F34	7700(70)	1651(19)	7720(90)	210(40)
C36	3089(9)	-791(3)	5157(3)	77(4)
C32	1678(7)	-563(3)	5437(4)	61(3)
C20	1666(5)	-175(3)	6200(4)	50(2)
C12	3065(6)	-14(2)	6681(3)	37.8(17)
C19	4476(5)	-242(3)	6400(4)	54(2)
C35	4488(7)	-631(3)	5638(4)	65(3)
B37	7989(14)	1048(6)	7909(8)	58(3)
F1	8030(50)	1260(20)	7055(18)	93(12)
F15A	6800(40)	548(17)	8082(17)	61(5)
F26A	9400(40)	847(12)	8360(30)	114(12)
F1A	8440(40)	830(40)	7129(18)	177(18)
F34A	7570(30)	1677(10)	8300(13)	87(7)

Table S12 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 1_tw. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

U 11	U 22	U 33	U 23	U 13	U12
27(3)	29(3)	33(3)	-1(2)	1(2)	3(2)
33(4)	29(3)	30(3)	-2(3)	3(3)	4(3)
27(4)	32(3)	34(4)	3(3)	0(3)	2(3)
40(4)	26(3)	31(4)	0(3)	4(3)	2(3)
40(4)	40(4)	34(4)	4(3)	-5(3)	1(3)
58(6)	45(5)	35(4)	7(3)	-6(4)	3(4)
78(7)	39(4)	38(4)	7(3)	11(5)	1(4)
59(6)	42(4)	48(5)	5(4)	15(4)	-5(4)
39(4)	40(4)	39(4)	1(3)	4(3)	-3(3)
36(4)	29(3)	35(4)	-1(3)	8(3)	1(3)
	U11 27(3) 33(4) 27(4) 40(4) 40(4) 58(6) 78(7) 59(6) 39(4) 36(4)	U11U22 $27(3)$ $29(3)$ $33(4)$ $29(3)$ $27(4)$ $32(3)$ $40(4)$ $26(3)$ $40(4)$ $40(4)$ $58(6)$ $45(5)$ $78(7)$ $39(4)$ $59(6)$ $42(4)$ $39(4)$ $40(4)$ $36(4)$ $29(3)$	$\begin{array}{c ccccc} U_{11} & U_{22} & U_{33} \\ 27(3) & 29(3) & 33(3) \\ 33(4) & 29(3) & 30(3) \\ 27(4) & 32(3) & 34(4) \\ 40(4) & 26(3) & 31(4) \\ 40(4) & 40(4) & 34(4) \\ 58(6) & 45(5) & 35(4) \\ 78(7) & 39(4) & 38(4) \\ 59(6) & 42(4) & 48(5) \\ 39(4) & 40(4) & 39(4) \\ 36(4) & 29(3) & 35(4) \end{array}$	U11U22U33U23 $27(3)$ $29(3)$ $33(3)$ $-1(2)$ $33(4)$ $29(3)$ $30(3)$ $-2(3)$ $27(4)$ $32(3)$ $34(4)$ $3(3)$ $40(4)$ $26(3)$ $31(4)$ $0(3)$ $40(4)$ $40(4)$ $34(4)$ $4(3)$ $58(6)$ $45(5)$ $35(4)$ $7(3)$ $78(7)$ $39(4)$ $38(4)$ $7(3)$ $59(6)$ $42(4)$ $48(5)$ $5(4)$ $39(4)$ $40(4)$ $39(4)$ $1(3)$ $36(4)$ $29(3)$ $35(4)$ $-1(3)$	U11U22U33U23U13 $27(3)$ $29(3)$ $33(3)$ $-1(2)$ $1(2)$ $33(4)$ $29(3)$ $30(3)$ $-2(3)$ $3(3)$ $27(4)$ $32(3)$ $34(4)$ $3(3)$ $0(3)$ $40(4)$ $26(3)$ $31(4)$ $0(3)$ $4(3)$ $40(4)$ $40(4)$ $34(4)$ $4(3)$ $-5(3)$ $58(6)$ $45(5)$ $35(4)$ $7(3)$ $-6(4)$ $78(7)$ $39(4)$ $38(4)$ $7(3)$ $11(5)$ $59(6)$ $42(4)$ $48(5)$ $5(4)$ $15(4)$ $39(4)$ $40(4)$ $39(4)$ $1(3)$ $4(3)$ $36(4)$ $29(3)$ $35(4)$ $-1(3)$ $8(3)$

Table S12 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 1_tw. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
C6	28(4)	30(3)	34(4)	0(3)	2(3)	4(3)
C8	41(4)	32(4)	34(4)	-6(3)	3(3)	-3(3)
C9	48(5)	40(4)	38(4)	9(3)	10(4)	7(4)
C11	37(4)	32(4)	35(4)	1(3)	4(3)	6(3)
N13	46(4)	33(3)	38(3)	-7(3)	8(3)	-1(3)
F15	74(18)	100(30)	110(30)	49(17)	-20(16)	-42(17)
C16	61(6)	29(4)	55(5)	7(4)	12(4)	12(4)
C17	49(5)	28(3)	35(4)	-1(3)	0(3)	1(3)
C22	54(5)	39(4)	47(5)	18(4)	3(4)	8(4)
C24	57(5)	34(4)	55(5)	-4(4)	-6(4)	17(4)
F26	41(17)	150(30)	100(20)	-4(18)	-27(13)	10(16)
C28	63(6)	30(4)	46(4)	3(3)	18(4)	6(4)
C30	51(5)	47(5)	45(5)	-6(4)	7(4)	-15(4)
C33	39(5)	44(4)	53(5)	-9(4)	11(4)	-7(4)
C21	43(4)	33(4)	39(4)	-1(3)	9(3)	3(3)
C23	50(5)	46(4)	43(4)	-8(4)	5(4)	-8(4)
C31	63(6)	71(6)	39(5)	-18(4)	6(4)	-11(5)
C29	55(6)	64(6)	49(5)	0(4)	24(4)	0(5)
C27	57(6)	46(5)	62(6)	0(4)	27(5)	-4(4)
F34	120(40)	70(20)	400(110)	60(40)	-120(50)	20(20)
C36	134(11)	52(6)	45(5)	-13(4)	15(6)	0(7)
C32	75(7)	51(5)	53(5)	-14(4)	-17(5)	-3(5)
C20	61(6)	40(4)	49(5)	-5(4)	-2(4)	-3(4)
C12	50(5)	28(3)	35(4)	1(3)	4(3)	-1(3)
C19	59(6)	52(5)	53(5)	-13(4)	13(4)	-2(4)
C35	72(7)	65(6)	61(6)	-19(5)	23(5)	7(5)
B37	51(7)	57(7)	67(7)	14(6)	5(6)	-10(6)
F1	100(20)	150(30)	37(11)	15(14)	32(11)	-4(19)
F15A	55(8)	74(13)	54(8)	7(9)	9(6)	-24(9)
F26A	43(11)	51(9)	240(30)	29(12)	-29(14)	4(7)
F1A	130(20)	310(50)	91(13)	30(20)	55(13)	-30(30)
F34A	102(12)	60(8)	105(12)	2(8)	44(11)	8(7)
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
N1	C2	1.387(9)	C16	C28	1.356(11)	
N1	C6	1.342(9)	C17	C24	1.514(11)	
N1	C17	1.520(9)	C17	C30	1.511(11)	
C2	C4	1.491(7)	F26	B37	1.31(4)	
C2	C5	1.367(9)	C33	C21	1.3900	

Atom	Atom	Le	ngth/Å	Atom	Atom	Leng	gth/Å
C3	C6	1.	408(9)	C33	C27	1.3	900
C3	C9	1.4	418(10)	C21	C23	1.3	900
C3	C11	1.4	428(10)	C23	C31	1.3	900
C4	C7	1	.3900	C31	C29	1.3	900
C4	C10	1	.3900	C29	C27	1.3	900
C7	C14	1	.3900	F34	B37	1.22	2(3)
C14	C25	1	.3900	F34	F1	1.32	(15)
C25	C18	1	.3900	C36	C32	1.3	900
C18	C10	1	.3900	C36	C35	1.3	900
C5	C11	1.4	420(10)	C32	C20	1.3	900
C5	C12	1.	493(8)	C20	C12	1.3	900
C6	C8	1.	501(9)	C12	C19	1.3	900
C8	N13	1.	278(9)	C19	C35	1.3	900
C8	C21	1.	479(8)	B37	F1	1.3	7(3)
C9	C22	1.3	359(11)	B37	F15A	1.44	4(3)
C11	C28	1.4	415(10)	B37	F26A	1.40	0(3)
N13	C17	1.	446(9)	B37	F1A	1.30	5(4)
F15	B37	1	.20(6)	B37	F34A	1.4	1(2)
C16	C22	1.3	398(12)				
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	N1	C17	127.9(6)	C24	C17	N1	112.1(6)
C6	N1	C2	122.6(6)	C30	C17	N1	111.1(6)
C6	N1	C17	109.4(5)	C30	C17	C24	112.7(7)
N1	C2	C4	121.3(5)	C9	C22	C16	120.4(7)
C5	C2	N1	117.8(6)	C16	C28	C11	120.9(8)
C5	C2	C4	120.9(6)	C21	C33	C27	120.0
C6	C3	C9	124.4(7)	C33	C21	C8	121.1(4)
C6	C3	C11	116.5(6)	C23	C21	C8	118.9(4)
C9	C3	C11	119.0(6)	C23	C21	C33	120.0
C7	C4	C2	119.1(4)	C31	C23	C21	120.0
C7	C4	C10	120.0	C23	C31	C29	120.0
C10	C4	C2	120.8(4)	C31	C29	C27	120.0
C4	C7	C14	120.0	C29	C27	C33	120.0
C7	C14	C25	120.0	B37	F34	F1	65(5)
C14	C25	C18	120.0	C32	C36	C35	120.0
C10	C18	C25	120.0	C20	C32	C36	120.0
C18	C10	C4	120.0	C12	C20	C32	120.0
C2	C5	C11	121.6(7)	C20	C12	C5	119.0(5)

C20

C19

C12

C12

C19

C5

120.7(6)

117.7(6)

120.0

120.8(5)

C2

C11

C5

C5

C12

C12

Atom	A	tom	Atom	Angle/°	Atom	Α	tom	Atom	Angle/°
N1	C	6	C3	122.0(6)	C12	(C19	C35	120.0
N1		C6	C8	104.9(6)	C19	(235	C36	120.0
C3		C6	C8	133.1(7)	F15	F	3 37	F26	117(4)
N13	3	C8	C6	111.7(6)	F15	F	3 37	F34	111(4)
N13	3	C8	C21	120.4(6)	F15	F	3 37	F1	109(3)
C21		C8	C6	127.9(6)	F26	F	3 37	F1	129(3)
C22	2	C9	C3	120.5(7)	F34	I	337	F26	117(4)
C5		C11	C3	119.2(6)	F34	I	337	F1	61(8)
C28	8	C11	C3	118.1(7)	F26A	I	337	F15A	108.7(19)
C28	8	C11	C5	122.7(7)	F26A	I	337	F34A	105.5(18)
C8		N13	C17	110.4(6)	F1A	I	337	F15A	102(2)
C28	8	C16	C22	120.9(7)	F1A	I	337	F26A	93(3)
N13	3	C17	N1	103.2(5)	F1A	I	337	F34A	138(3)
N13	3	C17	C24	106.8(7)	F34A	I	337	F15A	106.7(15)
N13	3	C17	C30	110.4(6)	F34		F1	B37	54(3)
Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
N1	C2	C4	C7	-90.9(7)	C6	C8	C21	C23	138.1(7)
N1	C2	C4	C10	93.2(7)	C8	N13	C17	N1	-0.3(9)
N1	C2	C5	C11	-3.7(11)	C8	N13	C17	C24	118.0(7)
N1	C2	C5	C12	176.0(6)	C8	N13	C17	C30	-119.1(7)
N1	C6	C8	N13	-6.2(9)	C8	C21	C23	C31	179.1(6)
N1	C6	C8	C21	171.8(7)	C9	C3	C6	N1	173.6(7)
C2	N1	C6	C3	4.9(11)	C9	C3	C6	C8	-4.8(13)
C2	N1	C6	C8	-176.3(6)	C9	C3	C11	C5	-178.7(7)
C2	N1	C17	N13	178.4(7)	C9	C3	C11	C28	4.2(11)
C2	N1	C17	C24	63.9(10)	C11	C3	C6	N1	-3.2(11)
C2	N1	C17	C30	-63.3(9)	C11	C3	C6	C8	178.3(8)
C2	C4	C7	C14	-175.9(5)	C11	C3	C9	C22	-3.4(12)
C2	C4	C10	C18	175.8(5)	C11	C5	C12	C20	96.9(7)
C2	C5	C11	C3	5.2(12)	C11	C5	C12	C19	-79.1(7)
C2	C5	C11	C28	-177.8(8)	N13	C8	C21	C33	135.1(6)
C2	C5	C12	C20	-82.8(8)	N13	C8	C21	C23	-44.0(9)
C2	C5	C12	C19	101.2(7)	F15	B37	F1	F34	104(4)
C3	C6	C8	N13	172.4(8)	C17	N1	C2	C4	-4.0(11)
C3	C6	C8	C21	-9.5(14)	C17	N1	C2	C5	176.4(7)
C3	C9	C22	C16	1.5(14)	C17	N1	C6	C3	-173.1(7)
C3	C11	C28	C16	-3.3(13)	C17	N1	C6	C8	5.7(8)
C4	C2	C5	C11	176.7(6)	C22	C16	C28	C11	1.5(14)
C4	C2	C5	C12	-3.6(11)	F26	B37	F1	F34	-102(5)
C4	C7	C14	C25	0.0	C28	C16	C22	C9	-0.5(15)

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
C7	C4	C10	C18	0.0	C33	C21	C23	C31	0.0
C7	C14	C25	C18	0.0	C21	C8	N13	C17	-174.3(7)
C14	C25	C18	C10	0.0	C21	C33	C27	C29	0.0
C25	C18	C10	C4	0.0	C21	C23	C31	C29	0.0
C10	C4	C7	C14	0.0	C23	C31	C29	C27	0.0
C5	C2	C4	C7	88.6(7)	C31	C29	C27	C33	0.0
C5	C2	C4	C10	-87.2(8)	C27	C33	C21	C8	-179.1(6)
C5	C11	C28	C16	179.7(8)	C27	C33	C21	C23	0.0
C5	C12	C19	C35	176.0(5)	C36	C32	C20	C12	0.0
C6	N1	C2	C4	178.3(6)	C32	C36	C35	C19	0.0
C6	N1	C2	C5	-1.3(11)	C32	C20	C12	C5	-176.0(5)
C6	N1	C17	N13	-3.7(8)	C32	C20	C12	C19	0.0
C6	N1	C17	C24	-118.2(7)	C20	C12	C19	C35	0.0
C6	N1	C17	C30	114.6(7)	C12	C5	C11	C3	-174.6(6)
C6	C3	C9	C22	179.8(8)	C12	C5	C11	C28	2.4(11)
C6	C3	C11	C5	-1.6(11)	C12	C19	C35	C36	0.0
C6	C3	C11	C28	-178.8(7)	C35	C36	C32	C20	0.0
C6	C8	N13	C17	3.9(9)	F1	F34	B37	F15	-101(5)
C6	C8	C21	C33	-42.8(10)	F1	F34	B37	F26	122(4)

Table S13 Hydrogen Atom Coordinates $(\mathring{A} \times 10^4)$ and Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 1_tw.

Atom x		у	z	U(eq)
H7	498.22	1452.11	6453.51	46
H14	435.25	2032.79	5127.17	56
H25	2744.04	2415.43	4603.82	61
H18	5115.81	2217.39	5406.79	59
H10	5178.82	1636.71	6733.14	47
H9	3032.65	117.42	10437.7	50
H16	3595.69	-1608.38	9055.5	58
H22	3376.93	-1056.89	10381.41	56
H24A	1285.27	2510.91	7479.9	74
H24B	1084.81	2953.04	8320.42	74
H24C	292.82	2220.82	8210.52	74
H28	3394.4	-999.1	7782.74	55
H30A	5020.42	2252.53	8565.38	71
H30B	4178.44	2971.57	8625.46	71
H30C	4144.7	2581.85	7727.7	71
H33	607.07	638.1	10485.4	54
H23	3554.32	2198.48	11198.36	55
H31	3063.5	2037.02	12647.12	69
Table S13 Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 1_tw.

x	у	Z	U(eq)	
1344.46	1176.1	13015.03	66	
116.23	476.63	11934.18	65	
3097.03	-1051.12	4646.46	92	
742.49	-670.65	5115.29	73	
722.35	-22.17	6387.7	61	
5411.29	-134.62	6722.47	65	
5431.46	-783.1	5450.06	78	
	x 1344.46 116.23 3097.03 742.49 722.35 5411.29 5431.46	xy1344.461176.1116.23476.633097.03-1051.12742.49-670.65722.35-22.175411.29-134.625431.46-783.1	x y z 1344.461176.113015.03116.23476.6311934.183097.03-1051.124646.46742.49-670.655115.29722.35-22.176387.75411.29-134.626722.475431.46-783.15450.06	

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
F15	0.39(6)	F26	0.39(6)	F34	0.39(6)
F1	0.39(6)	F15A	0.61(6)	F26A	0.61(6)
F1A	0.61(6)	F34A	0.61(6)		