Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Supporting Information

S1

Rh(III)-Catalyzed Vinylic C–H Activation/Annulation of 4-Amino-2-quinolones with Alkynes: Thermodynamically Controlled Site-Selectivity via Reversible Alkyne Insertion

Naohiro Hirako, Takeshi Yasui,* and Yoshihiko Yamamoto*

Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8603, Japan

t-yasui@ps.nagoya-u.ac.jp, yamamoto-yoshi@ps.nagoya-u.ac.jp

Table of Contents

1.	Optimization of Reaction Conditions	S2
2.	General Information	S4
3.	Representative Procedure for the Rhodium-Catalyzed C-H Functionalization of 1	S4
4.	Characterization of 3,4-Fused 2-Quinolone Derivatives 3	S4
5.	Isolation and Characterization of C5-Functionalized 2-Quinolone Derivatives 4 and 5	S16
6.	Synthesis and Characterization of 2-Quinolone substrates 1	S18
7.	Mechanistic Studies	S29
8.	X-Ray Diffraction Analysis	S42
9.	DFT Calculations	S48
10.	Reference	S59
11.	NMR Spectra	S62

1. Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions^a

	NHAC NHAC Ph 2 eq. Me 1b 2a				ol%) ──≻	$\begin{array}{c} \begin{array}{c} AcN \\ H \\ $
entry	additive	solvent	3ba (%)	4ba (%)	1b (%)) memo
1 ^b	AgSbF ₆ (10 mol%)	DCE	43	n.d.	n.d.	5ba was obtained in 48% yield.
2 ^b	-	DCE	63	n.d.	n.d.	
3	-	DCE	10	7	59	AgOAc(2 eq.) was used instead of Cu(OAc) ₂ ·H ₂ O
4	-	DCE	62	n.d.	n.d.	A trace amount of 5ba was obtained.
5	-	DCE	n.d.	n.d.	91	Run at 100 °C
6	-	<i>t-</i> AmOH	20	n.d.	67	
7	-	DMF	n.d.	n.d.	27	3ba' was obtained in 54% yield.
8	-	DMA	n.d.	n.d.	21	3ba' was obtained in 54% yield.
9	-	MeCN	n.d.	n.d.	-	complex mixture
10	-	toluene	n.d.	n.d.	87	
11	-	$PhCF_3$	68	n.d.	n.d.	
12	AgOAc (10 mol%)	$PhCF_3$	25	35	n.d.	
13	NaOAc (2 eq.)	$PhCF_3$	18	n.d.	40	

^{*a*}Reaction conditions: **1b** (0.2 mmol), **2a** (0.4 mmol), Cu(OAc)₂·H₂O (20 mol%), [Cp*RhCl₂]₂ (2.5 mol%), solvent (2 mL). Isolated yields are reported. ^{*b*}Cu(OAc)₂·H₂O (2 eq.) were used under an Ar atmosphere. n.d. = not detected.

NHAc NHAc + Ne 1b		Ph PhC	PhCF ₃ , <i>T</i> °C, time 2 eq. under Air		AcN AcN R H R H C Me 3ba		R NHAc N O Me 4ba
entry	R	Rh cat. (mol%)	additive (eq.)	Т	time	3ba (%) ^b	4ba (%) ^b
1	Ph	[Cp*RhCl ₂] ₂ (2.5)	-	110	19 h	(68)	n.d.
2	Me	[Cp*RhCl ₂] ₂ (2.5)	-	110	12 h	87(85)	n.d.
3	Ph	Cp*Rh(OAc) ₂ •H ₂ O (5)	-	110	19 h	61(65)	6(5)
4	Me	Cp*Rh(OAc)₂▪H₂O (5)	-	110	12 h	75(75)	8(8)
5 ^c	Ph	[Cp*RhCl ₂] ₂ (2.5)	-	100	19 h	n.d.	n.d.
6 ^c	Ph	Cp*Rh(OAc)₂⁼H₂O (5)	-	100	19 h	23	10
7 ^c	Ph	Cp*Rh(OAc) ₂ •H ₂ O (5)	-	70	6 days	29(27)	23(24)
8 ^c	Me	Cp*Rh(OAc)₂∙H₂O (5)	-	40	7 days	13	8
9	Ме	[Cp*RhCl ₂] ₂ (2.5)	AcOH (1)	110	19 h	n.d.	n.d.
10	Ме	[Cp*RhCl ₂] ₂ (2.5)	HFIP (1)	110	19 h	24	n.d.
11	Ме	Cp*Rh(OAc) ₂ •H ₂ O (5)	TBACI (0.2)	70	24 h	n.d.	n.d.
12	Ph	[CpRhl ₂] ₂ (5)	-	110	19 h	n.d.	n.d.
13	Ph	[Cp ^E RhCl ₂] ₂ (5)	-	110	19 h	14	n.d.

Table S2. Effect of rhodium catalysts and temperature^a

^aReaction conditions: **1b** (0.2 mmol), **2** (0.4 mmol), Cu(OAc)₂·H₂O (20 mol%), Rh cat. (2.5 or 5 mol%), PhCF₃ (2 mL). ^bYields were determined by ¹H NMR analysis. Isolated yields are shown in parentheses. ^cDCE was used as a solvent. n.d. = not detected.

2. General Information

General Considerations: All air- and moisture-sensitive reactions were performed under an argon (Ar) atmosphere. Analytical thin layer chromatography was performed using 0.25 mm silica gel plate (Merck TLC Silica gel 60 F_{254}). Column chromatography was performed on silica gel (Cica silica gel 60N) with solvents specified below. Melting points were recorded on SRS OptiMelt MPA100. NMR spectra were recorded on JEOL ESC-400 spectrometer (¹H/400 MHz,¹³C/100 MHz and ¹⁹F/376 MHz,) for samples in CDCl₃ and DMSO-*d*₆, CD₃OD solutions at 25 °C. ¹H NMR chemical shifts are reported in terms of chemical shift (δ , ppm) relative to the singlet at (CDCl₃ and CD₃OD δ 0.00 ppm for tetramethylsilane, DMSO-*d*₆ δ 2.49 ppm for the DMSO). ¹³C NMR spectra were fully decoupled and are reported in terms of chemical shift (δ , ppm) relative to the solvent peak (CDCl₃, δ 77.00 ppm, DMSO, δ 39.52 ppm). ¹⁹F NMR spectra are reported in terms of chemical standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet. Coupling constants are reported in Hz. Infrared spectra were recorded on JASCO FT/IR-230 spectrometer. High-resolution mass spectra were recorded on JEOL JMS-T100LP mass spectrometer.

Reagents and Solvents: Alkynes $2\mathbf{b}$ - \mathbf{f}^2 , $2\mathbf{h}$ - \mathbf{j}^3 , $2\mathbf{k}^4$, $2\mathbf{l}^4$, $2\mathbf{m}^5$, $2\mathbf{n}^4$, $2\mathbf{o}^3$, $2\mathbf{p}^4$, $2\mathbf{r}^6$, $2\mathbf{s}^7$, $2\mathbf{t}^8$, $Cp*Rh(OAc)_2 \cdot H_2O^9$ and $[Cp*RhCl_2]_2^{10}$ were prepared according to the literature. Unless otherwise noted below, commercial reagents and solvents were purchased from Aldrich, Kanto Chemical, TCI, and Wako and used as received.

3. Representative Procedure for the Rhodium-Catalyzed C–H Functionalization of 1

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (7.9 mg, 0.040 mmol, 20 mol%), **1b** (43.2 mg, 0.20 mmol), **2a** (71.4 mg, 0.40 mmol) and PhCF₃ (2.0 mL). The reaction mixture was stirred at 110 °C for 19 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc = 3:1) to give **3ba**.

4. Characterization of 3,4-Fused 2-Quinolone Derivatives 3 1-Acetyl-5-methyl-2,3-diphenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3ba)

Analytical data for 3ba: 68% yield; white solid. Colorless crystals (mp 230.5–230.9 °C) for X-ray crystallographic analysis were obtained by recrystallization from DCM and hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.5, 1.4 Hz, 1H), 7.55-7.43 (m, 2H), 7.36-7.20 (m, 11H), 3.76 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 159.2, 138.3, 134.2, 132.8, 132.7, 131.0 (2C), 130.7 (2C), 128.59, 128.55 (2C), 128.3, 127.3 (2C), 126.8, 124.0, 122.3, 121.7, 115.5, 115.3, 113.5, 29.6, 29.3, One Csp² signal

is missing due to overlapping; IR (neat) 3002, 1749, 1654 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₂₆H₂₁N₂O₂ 393.1603, found 393.1624.

1-Acetyl-2,3-bis(4-chlorophenyl)-5-methyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bb)

3bb was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1 to 3:1). **Analytical data for 3bb:** 60% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.2, 1.4 Hz, 1H), 7.56-7.43 (m, 2H), 7.34-7.30 (m, 2H), 7.25-7.16 (m, 7H), 3.76 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 175.9, 159.1, 138.4, 135.1, 133.1, 133.04, 133.00, 132.8, 132.3 (2C), 132.0 (2C), 131.0, 129.0 (2C), 128.6, 127.8 (2C), 123.1, 122.3, 121.9, 115.6, 115.0,

3bb 113.3, 29.7, 29.4; IR (KBr) 3061, 1751, 1655 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺

calcd for $C_{26}H_{18}Cl_2N_2NaO_2$ 483.0643, found 483.0657.

1-Acetyl-2,3-bis(4-fluorophenyl)-5-methyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bc)

3bc was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bc: 63% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.0, 1.1 Hz, 1H), 7.55-7.47 (m, 2H), 7.26-7.21 (m, 5H), 7.08-7.00 (m, 2H), 7.00-6.93 (m, 2H), 3.76 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 162.8 (d, ¹ J_{CF} = 250.2 Hz), 162.0 (d, ¹ J_{CF} = 246.3 Hz), 159.2, 138.3, 133.2, 132.8, 132.7 (d, ³ J_{CF} = 8.6 Hz, 2C), 132.6 (d, ³ J_{CF} = 8.6 Hz, 2C), 128.5 (d, ⁴ J_{CF} = 3.8 Hz), 126.4 (d, ⁴ J_{CF} = 3.8 Hz), 123.2, 122.3, 121.9, 115.9 (d, ² J_{CF} = 22.0 Hz, 2C), 115.6, 115.1, 114.5 (d, ² J_{CF} = 21.1 Hz, 2C),

113.4, 29.6, 29.4, One Csp^2 signal is missing due to overlapping; ¹⁹F NMR (376 MHz, CDCl₃): δ –112.4, – 116.5; IR (KBr) 3005, 1760, 1656 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₁₈F₂N₂NaO₂ 451.1234, found 451.1216.

1-Acetyl-5-methyl-2,3-bis(4-(trifluoromethyl)phenyl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bf)

3bf was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bf: 32% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 1.1 Hz, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.57-7.49 (m, 4H), 7.42-7.36 (m, 4H), 7.31-7.27 (m, 1H), 3.77 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 159.0, 138.5, 136.2, 133.7, 133.5, 132.8, 131.3, 131.1, 130.9 (q, ² J_{CF} = 32.6 Hz, 2C), 129.2 (q, ² J_{CF} = 32.6 Hz, 2C), 129.0, 125.7 (q, ³ J_{CF} = 3.8 Hz, 2C), 124.5 (q, ³ J_{CF} = 3.8 Hz, 2C), 124.2 (q, ¹ J_{CF}

= 272.2 Hz), 123.7 (q, ${}^{1}J_{CF}$ = 271.3 Hz), 123.5, 122.3, 122.1, 115.7, 114.9, 113.1, 29.7, 29.4; ${}^{19}F$ NMR (376 MHz, CDCl₃): δ –63.4, –63.7; IR (neat) 1654, 1612 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₂₈H₁₉F₆N₂O₂ 529.1351, found 529.1368.

3bf' was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 1:1).

Analytical data for 3bf': 21% yield; white solid. Colorless crystals (mp 171.2–172.0 °C) for X-ray crystallographic analysis were obtained by recrystallization from CHCl₃ and hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.48 (m, 5H), 7.48-7.39 (m, 6H), 7.25-7.15 (m, 6H), 7.11 (s, 1H), 6.99 (d, *J* = 7.8 Hz, 2H), 3.79 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 170.4, 158.6, 142.1, 141.4, 140.1, 140.0, 139.6, 136.2, 135.6, 135.5, 133.9, 132.9, 131.6, 130.9, 130.8 (q, ${}^{2}J_{CF} = 32.6$ Hz, 2C), 130.6, 130.3 (q, ${}^{2}J_{CF} = 32.6$ Hz, 2C), 129.8 (q, ${}^{2}J_{CF} = 32.6$ Hz, 2C), 129.4, 129.2 (q, ${}^{2}J_{CF} = 32.6$ Hz, 2C), 128.7, 126.4, 125.6 (q, ${}^{3}J_{CF} = 3.8$ Hz, 2C), 125.0, 124.9 (q, ${}^{3}J_{CF} = 3.8$ Hz, 2C), 124.4 (q, ${}^{3}J_{CF} = 3.8$ Hz, 2C), 124.3, 124.1 (q, ${}^{1}J_{CF} = 272.2$ Hz), 123.9 (q, ${}^{1}J_{CF} = 272.2$ Hz), 123.8 (q, ${}^{1}J_{CF} = 272.2$ Hz), 123.6 (q, ${}^{1}J_{CF} = 277.0$ Hz), 118.8, 115.6, 112.8, 29.9, 28.4, One Csp² signal is missing due to overlapping; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.5 (3F), -63.6 (6F), -63.8 (3F); IR (neat) 1654 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₄₄H₂₆F₁₂N₂NaO₂ 865.1700, found 865.1687.

1-Acetyl-3,5-dimethyl-2-phenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bg)

3bg was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bg: 85% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.2, 0.9 Hz, 1H), 7.53-7.36 (m, 7H), 7.20 (ddd, J = 8.7, 5.3, 2.5 Hz, 1H), 3.80 (s, 3H), 2.45 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 160.4, 138.3, 133.7, 132.9, 131.3, 130.3 (2C), 128.8 (2C), 128.6, 128.1, 122.6, 121.6,

119.5, 116.6, 115.4, 114.0, 29.3, 29.2, 10.7; IR (neat) 1734, 1648 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₂₁H₁₉N₂O₂ 331.1447, found 331.1429.

The stereochemistry of **3bg** was assigned by NOESY experiments. The arrows shown below indicate the observed cross peaks.

2,5-Dimethyl-3-phenyl-1-pivaloyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3b'g)

3b'g was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3b'g: 95% yield; white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.2 Hz, 1H), 7.51-7.43 (m, 6H), 7.41-7.35 (m, 1H), 7.18 (ddd, J = 8.0, 5.0, 3.0 Hz, 1H), 3.80 (s, 3H), 2.58 (s, 3H), 0.82 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 160.6, 138.0, 133.5, 132.0, 131.0, 130.7, 128.6, 128.2, 127.9,

121.6, 121.3, 118.0, 115.4, 115.0, 114.2, 45.9, 29.0, 27.4, 10.9; IR (KBr) 1736, 1649 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₂₄N₂NaO₂ 395.1736, found 395.1739. The stereochemistry of **3b'g** was assigned by NOE experiments. The arrows shown below indicate the observed cross peaks.

1-Acetyl-3,5-dimethyl-2-(p-tolyl)-1,5-dihydro-4H-pyrrolo[3,2-c]quinolin-4-one (3bh)

3bh was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bh: 79% yield; white solid (mp 206.7–208.8 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1H), 7.50-7.42 (m, 2H), 7.32-7.27 (m, 4H), 7.19 (ddd, J = 8.1, 5.6, 2.8 Hz, 1H), 3.80 (s, 3H), 2.44 (s, 3H), 2.43 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 160.4, 138.6, 138.3, 133.8, 132.8, 130.2 (2C), 129.5 (2C), 128.3, 128.0, 122.6, 121.6, 119.2, 116.7, 115.3, 114.0, 29.4, 29.2, 21.4, 10.7; IR (KBr) 1743, 1647 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₂₀N₂NaO₂

367.1422, found 367.1411.

1-Acetyl-2-(4-methoxyphenyl)-3,5-dimethyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bi)

3bi was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 2:1).

Analytical data for 3bi: 71% yield; white solid (mp 170.3–173.2 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 1H), 7.48-7.44 (m, 2H), 7.34-7.29 (m, 2H), 7.19 (ddd, J = 8.4, 5.4, 2.8 Hz, 1H), 7.04-6.99 (m, 2H), 3.88 (s, 3H), 3.80 (s, 3H), 2.43 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 160.4, 159.8, 138.2, 133.6, 132.6, 131.6 (2C), 127.9, 123.3, 122.5, 121.6, 119.0, 116.6, 115.3, 114.2 (2C), 114.0, 55.3, 29.3, 29.2, 10.7; IR (neat) 3003, 1739, 1648, 1250 cm⁻¹; HRMS (DART) *m/z*:

 $[M+H]^+$ calcd for $C_{22}H_{21}N_2O_3$ 361.1552, found 361.1543.

1-Acetyl-3,5-dimethyl-2-(4-(trifluoromethyl)phenyl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bj)

3bj was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1). The obtained solid was reprecipitated from CHCl₃ and Et₂O for melting point determination.

Analytical data for 3bj: 85% yield; white solid (mp 190.5–191.0 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.58-7.44 (m, 4H), 7.22 (ddd, J = 8.2, 6.6, 1.6 Hz, 1H), 3.80 (s, 3H), 2.47 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 160.2, 138.5, 134.9, 133.5, 132.1, 130.7, 130.5 (q, ² $_{JCF}$ = 32.6 Hz, 2C), 128.5, 125.7 (q, ³ $_{JCF}$ = 2.9 Hz, 2C), 123.9 (q, ¹ $_{JCF}$ = 272.2 Hz), 122.6,

121.8, 120.6, 116.6, 115.5, 113.7, 29.5, 29.2, 10.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –63.6; IR (neat) 1739, 1653, 1325 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₂₂H₁₈F₃N₂O₂ 399.1320, found 399.1309.

1-Acetyl-2-(4-bromophenyl)-3,5-dimethyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bk)

3bk was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3bk: 83% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.2, 0.9 Hz, 1H), 7.65-7.60 (m, 2H), 7.51-7.43 (m, 2H), 7.28-7.25 (m, 2H), 7.21 (ddd, J = 8.2, 6.4, 1.8 Hz, 1H), 3.80 (s, 3H), 2.44 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 160.3, 138.4, 133.2, 132.4, 132.0 (2C), 131.9 (2C), 130.1, 128.3, 123.0, 122.6, 121.7, 119.9, 116.6, 115.4, 113.8, 29.4, 29.2, 10.7; IR (KBr) 1744, 1646 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₁H₁₇BrN₂NaO₂

431.0371, found 431.0398.

1-Acetyl-2-(4-fluorophenyl)-3,5-dimethyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bl)

3bl was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3bl: 80% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 8.4, 1.4 Hz, 1H), 7.50-7.45 (m, 2H), 7.41-7.35 (m, 2H), 7.24-7.16 (m, 3H), 3.80 (s, 3H), 2.43 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 162.8 (d, ¹ $J_{CF} = 250.2$ Hz), 160.3, 138.3, 133.0, 132.6, 132.3 (d, ³ $J_{CF} = 8.6$ Hz, 2C), 128.2, 127.2 (d, ⁴ $J_{CF} = 2.9$ Hz), 122.6, 121.7, 119.7, 116.6, 115.9 (d, ² $J_{CF} = 21.1$ Hz, 2C), 115.4, 113.9, 29.3, 29.2, 10.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.9; IR (KBr) 2928, 1748, 1647 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₁H₁₇FN₂NaO₂ 371.1172,

found 371.1142.

4-(1-Acetyl-3,5-dimethyl-4-oxo-4,5-dihydro-1*H*-pyrrolo[3,2-*c*]quinolin-2-yl)benzonitrile (3bm)

3bm was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 2:1).

Analytical data for 3bm: 67% yield; white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 3H), 7.58-7.46 (m, 4H), 7.26-7.21 (m, 1H), 3.80 (s, 3H), 2.48 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 160.2, 138.6, 135.8, 133.9, 132.4 (2C), 131.7, 130.9 (2C), 128.7, 122.7, 121.9, 121.2, 118.4, 116.7, 115.6, 113.6, 112.2, 29.5, 29.3, 10.8; IR (KBr) 3066, 2226, 1739, 1651 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₇N₃NaO₂ 378.1219, found 378.1228.

1-Acetyl-2-(3-methoxyphenyl)-3,5-dimethyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bn)

3bn was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1 to 3:1).

Analytical data for 3bn: 78% yield; yellow solid (mp 139.7–142.1 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.5, 1.4 Hz, 1H), 7.49-7.44 (m, 2H), 7.40 (m, 1H), 7.19 (ddd, J = 8.2, 6.0, 2.3 Hz, 1H), 7.00-6.92 (m, 3H), 3.86 (s, 3H), 3.80 (s, 3H), 2.47 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 160.3, 159.7, 138.3, 133.4, 132.8, 132.6, 129.9, 128.0, 122.6, 122.5, 121.6, 119.4, 116.5, 115.8, 115.3, 114.1, 113.9, 55.3, 29.3, 29.2, 10.7; IR (KBr) 3058, 1746, 1640 cm⁻

¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₀N₂NaO₃ 383.1372, found 383.1348.

1-Acetyl-2-(3-chlorophenyl)-3,5-dimethyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bo)

3bo was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bo: 80% yield; yellow solid (mp 191.5–192.8 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 8.7, 0.9 Hz, 1H), 7.52-7.44 (m, 3H), 7.44-7.39 (m, 4H), 7.23-7.18 (m, 1H), 3.80 (s, 3H), 2.45 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 160.3, 138.4, 134.7, 133.3, 133.0, 132.1, 130.3, 130.0, 128.8, 128.6, 128.3, 122.7, 121.7, 120.2, 116.6, 115.4, 113.8, 29.4, 29.2, 10.7; IR (KBr) 3049, 1749, 1642 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₁₇ClN₂NaO₂

387.0876, found 387.0857.

1-Acetyl-3,5-dimethyl-2-(naphthalen-2-yl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bp)

3bp was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3bp: 75% yield; white solid (mp 213.0–213.9 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.7 Hz, 1H), 7.94-7.89 (m, 2H), 7.87 (d, J = 8.2 Hz, 2H), 7.61-7.54 (m, 2H), 7.53-7.45 (m, 3H), 7.21 (ddd, J = 8.8, 4.9, 2.8 Hz, 1H), 3.82 (s, 3H), 2.50 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 160.4, 138.4, 133.7, 133.12, 133.10, 132.9, 129.7, 128.7, 128.6, 128.2, 128.1, 127.8, 127.5, 126.9, 126.8, 122.7, 121.7, 120.0, 116.7, 115.4, 114.0, 29.4, 29.2, 10.8; IR (KBr) 2928, 1743, 1645cm⁻

¹; HRMS (ESI) m/z: $[M+Na]^+$ calcd for C₂₅H₂₀N₂NaO₂ 403.1423, found 403.1397.

1-Acetyl-5-methyl-2-phenyl-3-propyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bq)

3bq was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3bq: 81% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.50-7.44 (m, 5H), 7.40-7.36 (m, 2H), 7.19 (ddd, J = 8.1, 5.6, 2.8 Hz, 1H), 3.80 (s, 3H), 2.78-2.74 (m, 2H), 2.20 (s, 3H), 1.69-1.64 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 159.9, 138.3, 133.8, 133.2,

131.5, 130.5 (2C), 128.7 (2C), 128.4, 128.0, 124.4, 122.6, 121.5, 116.2, 115.3, 113.8, 29.30, 29.26, 26.8, 24.7, 14.2; IR (neat) 2959, 1741, 1649, 1251 cm⁻¹; HRMS (DART) m/z: $[M+H]^+$ calcd for C₂₃H₂₃N₂O₂ 359.1760, found 359.1730.

3br was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 10:1).

Analytical data for 3br: 80% yield; colorless gum; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.2, 0.9 Hz, 1H), 7.62-7.53 (m, 2H), 7.51-7.41 (m, 5H), 7.18 (ddd, J = 8.2, 6.2, 2.1 Hz, 1H), 4.96 (s, 2H), 3.79 (s, 3H), 2.24 (s, 3H), 0.90 (s, 9H), 0.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 159.5, 138.3, 136.4, 132.7, 130.7,

130.4 (2C), 128.9, 128.5 (2C), 128.1, 122.2, 122.0, 121.6, 115.4, 115.3, 113.7, 55.5, 29.5, 29.4, 26.1 (3C), 18.6, -5.2 (2C); IR (neat) 2928, 1748, 1652, 1254 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₂₇H₃₃N₂O₃Si 461.2260, found 461.2283.

1-Acetyl-5-methyl-3-(phenoxymethyl)-2-phenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bs)

3bs was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1). **Analytical data for 3bs:** 76% yield; yellow solid (mp 209.5–211.3 °C); ¹H NMR

Analytical data for 565: 76% yield; yellow solid (mp 209.3–211.3 °C); H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.7, 0.9 Hz, 1H), 7.54-7.48 (m, 4H), 7.47-7.42 (m, 3H), 7.29-7.18 (m, 3H), 7.03-6.98 (m, 2H), 6.93 (ddd, J = 7.1, 7.1, 0.9 Hz, 1H), 5.31 (s, 2H), 3.80 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 159.6, 158.8,

138.4, 137.3, 133.0, 130.2 (2C), 130.0, 129.3 (2C), 129.2, 128.9 (2C), 128.4, 122.3, 121.8, 120.7, 117.8, 115.6, 115.5, 115.1 (2C), 113.6, 60.7, 29.5, 29.3; IR (neat) 1749, 1653 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₂₇H₂₃N₂O₃ 423.1709, found 423.1712.

tert-Butyl((1-acetyl-5-methyl-4-oxo-2-phenyl-4,5-dihydro-1*H*-pyrrolo[3,2-*c*]quinolin-3-yl)methyl)carbamate (3bt)

3bt was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3bt: 66% yield; white solid (mp 178.5–180.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1H), 7.60-7.41 (m, 7H), 7.23 (ddd, J = 8.4, 5.8, 2.8 Hz, 1H), 6.60 (br s, 1H), 4.39 (d, J = 6.0 Hz, 2H), 3.84 (s, 3H), 2.20 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 160.2, 155.7, 138.2,

134.2, 133.4, 130.5 (2C), 130.0, 129.2, 129.0 (2C), 128.5, 122.5, 122.0, 120.1, 116.1, 115.6, 113.7, 78.6, 35.3, 29.6, 29.4, 28.5 (3C); IR (neat) 3392, 2978, 1748, 1707, 1636 cm⁻¹; HRMS (DART) m/z: $[M+H]^+$ calcd for C₂₆H₂₈N₃O₄ 446.2080, found 446.2108.

1-Acetyl-2-(3,5-dichlorophenyl)-5-methyl-3-(*p*-tolyl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one with 1-acetyl-3-(3,5-dichlorophenyl)-5-methyl-2-(*p*-tolyl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3bu)

3bu was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1). Regioisomers (1:1) could be separated by column chromatography.

Analytical data for 3bu: regioisomer-1 20 % yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 1H), 7.58-7.42 (m, 2H), 7.25-7.20 (m, 2H), 7.20-7.10 (m, 6H), 3.76 (s, 3H), 2.38 (s, 3H), 2.29 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 159.0, 139.3, 138.3, 136.2, 134.9, 133.6, 132.6, 130.5 (C2), 129.6 (C4), 128.5, 127.0, 126.7, 122.3, 121.8, 120.9, 115.6, 114.9, 113.3, 29.6, 29.5, 21.4 One C*sp*² signals are missing due to overlapping; IR (KBr) 1408, 1360 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₇H₂₀Cl₂N₂NaO₂ 497.0800, found 497.0812. **regioisomer-2** 20% yield; yellow amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.57-7.45 (m, 2H), 7.33-7.25 (m, 2H), 7.20-7.05 (m, 6H), 3.74 (s, 3H), 2.39 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 159.1, 138.6, 137.0, 135.1, 133.7, 133.5, 131.2, 130.6 (2C), 129.3 (2C), 128.9 (2C), 128.8, 128.5 (2C), 126.2, 125.6, 122.6, 122.0, 115.7, 115.5, 113.4, 29.8, 29.5, 21.4; IR (KBr) 1645, 1402, 1360; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₇H₂₀Cl₂N₂NaO₂ 497.0800, found 497.0783.

1-Acetyl-5,8-dimethyl-2,3-diphenyl-1,5-dihydro-4H-pyrrolo[3,2-c]quinolin-4-one (3ca)

3ca was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3ca: 69% yield; yellow solid (mp 177.5–179.4 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.40-7.17 (m, 12H), 3.73 (s, 3H), 2.44 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 159.1, 136.4, 134.1, 132.9, 132.6, 131.1, 131.0 (2C), 130.8 (2C), 129.5, 128.54, 128.52 (2C), 127.3 (2C), 126.8, 124.1, 122.3, 115.4, 113.5, 29.6, 29.3, 21.1, Two Csp² signals are missing due to

overlapping; IR (KBr) 2919, 1753, 1646 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₇H₂₂N₂NaO₂ 429.1579, found 429.1573.

1-Acetyl-5-methyl-2,3-diphenyl-8-(trifluoromethyl)-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3da)

3da was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 4:1).

Analytical data for 3da: 74% yield; yellow solid (mp 210.3–211.4 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 0.9 Hz, 1H), 7.72 (dd, J = 8.9, 1.6 Hz, 1H), 7.55 (d, J = 9.2 Hz, 1H), 7.37-7.30 (m, 3H), 7.28-7.23 (m, 7H), 3.77 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 159.1, 140.2, 135.1, 132.4, 131.9, 130.9 (2C), 130.6 (2C), 128.9, 128.7 (2C), 127.4 (2C), 127.0, 124.6, 124.4, 124.1 (q, ¹J_{CF}

= 272.2 Hz), 123.7 (q, ${}^{2}J_{CF}$ = 32.6 Hz), 120.0, 119.9 (q, ${}^{3}J_{CF}$ = 3.8 Hz), 116.1, 115.7, 113.5, 29.6, 29.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.7; IR (KBr) 3059, 1750, 1659 cm⁻¹; HRMS (ESI) *m*/*z*: [M+Na]⁺ calcd for C₂₇H₁₉F₃N₂NaO₂ 483.1296, found 483.1289.

1-Acetyl-8-fluoro-5-methyl-2,3-diphenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3ea)

3ea was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3ea: 57% yield; white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 10.3, 6.0 Hz, 1H), 7.41 (dd, J = 9.2, 5.0 Hz, 1H), 7.36-7.30 (m, 3H), 7.25-7.19 (m, 8H), 3.74 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 158.8, 157.4 (d, ¹ $J_{CF} = 240.6$ Hz), 134.9, 134.7, 132.6, 131.8, 130.9 (2C),

130.6, 130.5 (2C), 128.8, 128.7 (2C), 127.4 (2C), 126.9, 124.3, 116.8 (d, ${}^{3}J_{CF} = 8.6$ Hz), 116.1, 115.7 (d, ${}^{2}J_{CF} = 23.0$ Hz), 114.4 (d, ${}^{3}J_{CF} = 8.6$ Hz), 108.4 (d, ${}^{2}J_{CF} = 25.9$ Hz), 29.63, 29.56; ${}^{19}F$ NMR (376 MHz, CDCl₃) $\delta - 121.1$; IR (KBr) 3060, 1734, 1647 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₁₉FN₂NaO₂ 433.1328, found 433.1312.

1-Acetyl-7-bromo-5-methyl-2,3-diphenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3fa)

3fa was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3fa: 73% yield; yellow solid (mp 191.3–192.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 2.3 Hz, 1H), 7.57 (dd, J = 9.2, 2.3 Hz, 1H), 7.37-7.31 (m, 3H), 7.28-7.23 (m, 8H), 3.82 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 158.8, 137.1, 134.9, 132.5, 131.3, 130.9 (2C), 130.7, 130.6 (2C),

128.8, 128.7, 128.6 (2C), 127.4 (2C), 126.9, 124.9, 124.2, 117.0, 116.0, 115.2, 114.7, 29.50, 29.46; IR (KBr) 3056, 1751, 1653 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₆H₁₉BrN₂NaO₂ 493.0528, found 493.0540.

1-Acetyl-7-methoxy-5-methyl-2,3-diphenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3ga)

3ga was prepared following the representative procedure and purified by flash column chromatography on silica gel (Hexane/EtOAc = 3:1).

Analytical data for 3ga: 72% yield; white solid (mp 183.8–184.9 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.7 Hz, 1H), 7.36-7.19 (m, 10H), 6.92 (d, J = 2.3 Hz, 1H), 6.83 (dd, J = 8.7, 2.3 Hz, 1H), 3.93 (s, 3H), 3.71 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 159.7, 159.4, 140.1, 133.33, 133.28,

133.0, 131.0 (2C), 130.6 (2C), 128.5 (2C), 128.4, 127.3 (2C), 126.7, 124.0, 123.8, 113.6, 108.4, 107.5, 100.4, 55.5, 29.5, 29.4, One Csp^2 signal is missing due to overlapping; IR (KBr) 3006, 1735, 1641 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for $C_{27}H_{22}N_2NaO_3$ 445.1528, found 445.1509.

5-Methyl-2,3-diphenyl-1,5-dihydro-4*H*-pyrrolo[3,2-*c*]quinolin-4-one (3ba')

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (8.0 mg, 0.040 mmol, 20 mol%), **1b** (43.2 mg, 0.20 mmol), **2a** (71.3 mg, 0.40 mmol), and DMF (2.0 mL). The reaction mixture was stirred at 110 °C for 19 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After concentration in vacuo, the residue was purified by silica gel column

chromatography (Hexane/EtOAc = 3:1) to give **3ba'** (38.1 mg, 54%) as a yellow solid (mp 217.2–218.1 °C). **Analytical data for 3ba':** ¹H NMR (400 MHz, CDCl₃) δ 9.18 (br s, 1H), 7.84-7.77 (m, 1H), 7.51-7.40 (m, 4H), 7.31-7.20 (m, 9H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 137.6, 134.0, 133.9, 132.5, 131.9, 131.0 (2C), 128.4 (2C), 127.9 (2C), 127.6 (2C), 127.3, 126.6, 121.7, 121.2, 120.6, 115.2, 113.62, 113.58, 29.0, One Csp² signal is missing due to overlapping; IR (neat) 3178, 1615, 1575 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₄H₁₈N₂NaO 373.1317, found 373.1303.

5. Isolation and Characterization of C5-Functionalized 2-Quinolone Derivatives 4 and 5 (*E*)-*N*-(5-(1,2-Diphenylvinyl)-1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (4ba)

This product was observed when Cp*Rh(OAc)₂·H₂O (3.7 mg, 0.010 mmol, 5 mol%) was used instead of [Cp*RhCl₂]₂ in the representative procedure (Table 1, entry 5). Purified by silica gel column chromatography (Hexane/EtOAc = 3:1 to 1:1) afforded **4ba** (3.9 mg, 5%) as a yellow solid along with **3ba** (51.0 mg, 65%). Colorless crystals (mp 123.0–123.6 °C) for X-ray crystallographic analysis were obtained by recrystallization from toluene. **Analytical data for 4ba:** ¹H NMR (400 MHz, CDCl₃) δ 9.32 (br s, 1H), 7.72 (br s, 1H), 7.54 (dd, *J* = 8.5, 7.6 Hz, 1H), 7.42 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.30-7.22 (m,

8H), 7.19-7.15 (m, 2H), 7.01 (dd, J = 7.3, 0.9 Hz, 1H), 6.87 (s, 1H), 3.74 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 162.4, 142.3, 142.1, 141.5, 140.1, 138.1, 135.4, 132.2, 129.6, 129.3 (2C), 129.2 (2C), 128.8 (2C), 128.6 (2C), 128.3, 126.4, 114.8, 113.3, 109.9, 30.0, 25.5, One Csp^2 signal is missing due to overlapping; IR (KBr) 3378, 1712, 1650 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₂N₂NaO₂ 417.1579, found 417.1568.

tert-Butyl 1-methyl-2-oxo-5,6-diphenyl-1,2-dihydro-4*H*-benzo[*de*][1,6]naphthyridine-4-carboxylate (5aa)

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (7.9 mg, 0.40 mmol, 20 mol%), **1a** (55.1 mg, 0.20 mmol), **2a** (71.2 mg, 0.40 mmol), and DCE (2.0 mL). The reaction mixture was stirred at 110 °C for 24 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc =

1:1) to give **5aa** (72.8 mg, 78%) as a yellow solid (mp 242.2–242.7 °C). **Analytical data for 5aa:** ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 8.0, 8.0 Hz, 1H), 7.25-7.13 (m, 8H), 7.06 (dd, J = 7.8, 1.4 Hz, 2H), 7.0 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 6.29 (s, 1H), 3.60 (s, 3H), 1.08 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 150.5, 144.9, 140.7, 136.8, 135.6, 135.1, 133.6, 131.7, 131.2 (2C), 130.2 (2C), 128.3 (2C), 127.7 (2C), 127.1, 120.0, 116.0, 113.5, 110.8, 93.4, 85.5, 29.2, 28.2, 26.8 (3C); IR (KBr) 2981, 1758, 1634 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₉H₂₆N₂NaO₃ 473.1841, found 473.1841.

4-Acetyl-1-methyl-5,6-diphenyl-1*H*-benzo[*de*][1,6]naphthyridin-2(4*H*)-one (5ba)

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), AgSbF₆ (7.1 mg, 0.020 mmol, 10 mol%), Cu(OAc)_2·H₂O (79.8 mg, 0.40 mmol), **1b** (43.2 mg, 0.20 mmol), **2a** (71.3 mg, 0.40 mmol), and DCE (2.0 mL). The reaction mixture was stirred at 110 °C for 19 h under Ar atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through pad of Celite® with CHCl₃ to remove the metal

salts. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc = 4:1 to 2:1) to give **5ba** (37.2 mg, 47%) as a yellow solid (along with **3ba** (34.0 mg, 43%). The obtained solid was reprecipitated from CHCl₃ and hexane for melting point determination (mp 171.2–172.0 °C). **Analytical data for 5ba:** ¹H NMR (400 MHz, CDCl₃) δ 7.42 (t, J = 8.2 Hz, 1H), 7.34-7.22 (m, 4H), 7.20-7.05 (m, 7H), 6.72 (s, 1H), 6.67 (d, J = 7.8 Hz, 1 H), 3.64 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 161.6, 140.8, 139.2, 138.5, 136.2, 134.5, 132.8, 130.9, 129.5 (2C), 129.2 (2C), 128.5 (2C), 128.0 (2C), 127.7, 127.3, 126.2, 122.1, 118.1, 114.3, 30.0, 23.3, One Csp² signal is missing due to overlapping; IR (neat) 3001, 1625, 1592 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₂₆H₂₁N₂O₂ 393.1603, found 393.1615.

4-Acetyl-1,3-dimethyl-5,6-diphenyl-1*H*-benzo[*de*][1,6]naphthyridin-2(4*H*)-one (5ha)

A Schlenk tube was charged with Cp*Rh(OAc)₂·H₂O (3.7 mg, 0.010 mmol, 5 mol%), Cu(OAc)₂·H₂O (7.9 mg, 0.040 mmol), **1h** (46.1 mg, 0.20 mmol), **2a** (71.1 mg, 0.40 mmol), and PhCF₃ (2.0 mL). The reaction mixture was stirred at 110 °C for 43 h under Ar atmosphere using oil bath. Then, the mixture was cooled to room temperature and filtered through pad of Celite® with CHCl₃ to remove the metal salts. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc = 2:1 to 1:1 to EtOAc only) to give **5ha** (29.4 mg, 36%) as a white solid along with **4ha**

(6.5 mg, 8%). Colorless crystals (mp 213.1–213.5 °C) for X-ray crystallographic analysis were obtained by recrystallization from CHCl₃ and hexane. **Analytical data for 5ha:** ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.33 (m, 4H), 7.25-7.20 (m, 3H), 7.20-7.14 (m, 5H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.76 (s, 3H), 2.31 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 162.9, 139.8, 138.0, 137.0, 136.2, 136.0, 131.2, 130.4 (2C), 130.2, 129.5, 129.2 (2C), 128.7 (2C), 128.1 (2C), 127.9, 127.6, 124.9, 119.6, 116.7, 112.7, 30.0, 25.5, 15.6; IR (neat) 2922, 1695, 1641 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₇H₂₂N₂NaO₂ 429.1579, found 429.1589.

6. Synthesis and Characterization of 2-Quinolone substrates 1

4-Chloro-1-methylquinolin-2(1*H*)-one (S2)¹¹

To a dioxane suspension (20 mL) of **S1** (3.50 g, 20.0 mmol) was added POCl₃ (6.13 g, 40.0 mmol) at room temperature in a 200 mL flask. The reaction mixture was stirred at 110 °C for 2 h. After cooling to room temperature, the mixture was poured into 40 mL of iced water. The resulting solution was neutralized with 0.5 M NaOH aq. The solution was extracted with diethyl ether (3 x 40 mL). The combined organic layer was washed with water (2 x 60 mL) and brine (40 mL), dried over MgSO₄, and concentrated in vacuo. Reprecipitation of the

product from ethanol to give **S2** (3.53 g, 91%) as a white amorphous solid. **Analytical data for S2:** ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 8.2, 1.4 Hz, 1H), 7.65 (ddd, J = 8.6, 7.2, 1.4 Hz, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.33 (ddd, J = 7.6, 7.6, 0.9 Hz, 1H), 6.91 (s, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 144.2, 139.7, 131.8, 126.2, 122.6, 121.0, 119.2, 114.3, 29.5; IR (neat) 3085, 1644 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₀H₉CINO 194.0373, found 194.0390.

4-Azido-1-methylquinolin-2(1H)-one (S3)

To a DMF suspension (50 mL) of **S2** (3.87 g, 20.0 mmol) and NaN₃ (6.61 g, 101.6 mmol) was added 15-crown-5 (4.0 mL, 20.0 mmol) at room temperature in a 200 mL flask. The reaction mixture was stirred at 100 °C for 20 h. After cooling to room temperature, the mixture was poured into water (100 mL). The precipitated solid was filtered, washed with water (50 ml) and hexane (20 ml). The product **S3** (3.92 g, 98%) was obtained as a yellow solid (mp 246.5–248.3 °C). **Analytical data for S3:** ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd,

J = 8.2, 1.4 Hz, 1H), 7.63 (ddd, J = 8.5, 7.1, 1.4 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.25-7.23 (m, 1H), 6.48 (s, 1H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 148.4, 140.0, 131.9, 123.9, 122.0, 115.8, 114.2, 106.6, 29.3; IR (neat) 2128, 1639 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₀H₉N₄O 201.0776, found 201.0775.

1-Methyl-4-((triphenyl-l⁵-phosphaneylidene)amino)quinolin-2(1*H*)-one (S4)

A suspension of **S3** (2.00 g, 10.0 mmol) and PPh₃ (2.62 g, 10.0 mmol) in toluene (20 mL) was stirred at 100 °C for 3 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was triturated with diethyl ether (50 mL) and filtered to give **S4** (4.34 g, quant.) as a white solid (mp 244.5–246.3 °C). **Analytical data for S4:** ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 8.0, 1.8 Hz, 1H), 7.83-7.78 (m, 6H), 7.59-7.54 (m,

3H), 7.52-7.47 (m, 7H), 7.28-7.23 (m, 2H), 5.58 (d, J = 0.9 Hz, 1H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 157.0, 140.3, 132.6 (d, J = 9.6 Hz, C6), 132.2 (d, J = 1.9 Hz, C3), 129.9, 129.0 (d, J = 100.6 Hz, C3), 128.9 (d, J = 12.5 Hz, C6), 126.2, 123.4 (d, J = 24.9 Hz), 120.6, 113.6, 103.2 (d, J = 11.5 Hz), 28.6; ³¹P NMR (162 MHz, CHCl₃) δ 10.02; IR (neat) 1614, 1278 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₈H₂₃N₂NaOP 457.1446, found 457.1428.

4-Amino-1-methylquinolin-2(1*H*)-one (S5)

A solution of S4 (1.30 g, 3.00 mmol) in AcOH (22.5 mL) and H₂O (7.5 mL) was stirred at 100 °C for 3 h. After cooling to room temperature, the mixture was neutralized with 0.5 M NaOH aq. The mixture was extracted with DCM (3 x 20 mL). The combined organic layer was washed with water (2 x 20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH = 9:1) to furnish S5 (334.5 mg, 64%) as a white solid (mp 216.5–217.2 °C). Analytical data

for S5: ¹H NMR (400 MHz, CDCl₃) δ 7.59 (td, J = 7.9, 1.1 Hz, 1H),7.55 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.23 (m, 1H), 5.93 (s, 1H), 4.48 (br s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.1, 152.0, 140.1, 130.7, 123.0, 120.5, 114.72, 114.67, 93.3, 28.1; IR (neat) 3196, 2873, 1625 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₀H₁₁N₂O 175.0871, found 175.0855.

During our study, we found that S5 can also be prepared from S3 as shown below.

To a MeOH suspension (100 ml) of **S3** (3.92 g, 19.6 mmol) was added $Pd(OH)_2$ (280.8 mg, 2 mmol) under Ar atmosphere. Subject the vessel twice to evacuation followed by purging with a hydrogen balloon. After the reaction mixture was stirred at room temperature for 15 h, filtered through a pad of Celite® with MeOH to remove the metal salts, and concentrated in vacuo to afford **S5** (3.24 mg, 95%) as a yellow solid.

To a pyridine solution (1.5 mL) of **S5** (541.5 mg, 3.11 mmol) was added Boc₂O (2.1 mL, 9.00 mmol) in a 100 mL flask. The reaction mixture was stirred at 80 °C for 20 h. After cooling to room temperature, the resulting mixture was concentrated in vacuo. The residue was dissolved in DCM (6 ml), to which $Cu(OTf)_2$ (228.0 mg, 0.630 mmol) was added, and the mixture was stirred at room temperature for 24 h. The reaction mixture was quenched with water (20 mL) and the whole mixture was extracted with DCM (3 x 20 mL). The

combined organic layer was washed with water (2 x 20 mL), brine (20 mL), and dried over MgSO₄, and concentrated. The residue was purified by a silica gel column chromatography to furnish **1a** (724.2 mg, 85%) as a yellow amorphous solid. **Analytical data for 1a:** ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.51 (m, 2H), 7.45-7.36 (m, 2H), 7.30-7.22 (m, 1H), 6.93 (br s, 1H), 3.69 (s, 3H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CD₃OD) δ 162.9, 151.9, 142.1, 140.1, 131.0, 121.8, 121.0, 115.1, 106.7, 82.1, 29.3, 28.7, 28.3 (3C); IR (neat) 3234, 2980, 1736, 1637, 1618, 1583, 1537, 1152 cm⁻¹; HRMS (DART) *m/z* [M+H]⁺ calcd for C₁₅H₁₉N₂O₄ 275.1396, found 275.1403.

N-(1-Methyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1b)

An Ac₂O solution (5 mL) of **S5** (334.5 g, 1.92 mmol) was stirred at 100 °C for 2 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH = 19:1) to furnish **1b** (348.8 mg, 84%) as a white solid (mp 213.8–216.4 °C). **Analytical data for 1b:** ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.46 (m, 4H), 7.42 (d, *J* = 8.7 Hz, 1H), 7.32-7.27 (m, 1H), 3.71 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 161.8, 146.7, 140.5, 131.9, 123.4, 123.0,

122.6, 118.4, 115.1, 29.7, 26.3; IR (neat) 3309, 1708, 1638, 1579 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₂H₁₃N₂O₂ 217.0977, found 217.0985.

N-(1-Methyl-2-oxo-1,2-dihydroquinolin-4-yl)pivalamide (1b')

NHPiv NHO Me 1b' To a suspension of **S5** (88.8 mg, 0.51 mmol), Et₃N (153 μ L, 1.10 mmol) and DMAP (18.4 mg, 0.15 mmol) in DCE (3 mL) was added pivaloyl chloride (67 μ L, 0.55 mmol) at room temperature under Ar atmosphere. The reaction mixture was stirred at 60 °C for 96 h. After cooling to room temperature, the mixture was diluted with water and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layer was washed with water (2 x 40 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was

purified by silica gel column chromatography (EtOAc only) to furnish **1b'** (50.4 mg, 38%) as a white solid (mp 208.8–210.5 °C). **Analytical data for 1b':** ¹H NMR (400 MHz, CDCl₃) δ 7.78 (br s, 1H), 7.64-7.59 (m, 2H), 7.48-7.41 (m, 2H), 7.31-7.26 (m, 1H), 3.71 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 162.7, 140.9, 140.2, 131.0, 121.8, 120.2, 115.6, 115.2, 109.9, 40.5, 29.3, 27.6 (3C); IR (neat) 3308, 1638, 1618, 1584 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₅H₁₉N₂O₂ 259.1447, found 259.1417.

Synthesis and Characterization of 1c-g

S22

N-(2-Cyano-4-methylphenyl)acrylamide (S7c)

To a suspension of $\mathbf{S6c}^{12}$ (1.18 g, 8.9 mmol) and NaHCO₃ (901.5 mg, 10.7 mmol) in 2-butanone (30 mL) was added acryloyl chloride (792 µL, 9.8 mmol) at room temperature under Ar atmosphere. The reaction mixture was stirred at 100 °C for 24 h. After cooling to room temperature, the mixture was diluted with water and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layer

was washed with water (2 x 40 mL) and brine (40 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc = 8:1) to furnish **S7c** (1.30 g, 78%) as a white solid. The obtained solid was reprecipitated from CHCl₃ and hexane for melting point determination (mp 189.1–189.5 °C). **Analytical data for S7c:** ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.2 Hz, 1H), 7.63 (br s, 1H), 7.46-7.36 (m, 2H), 6.49 (dd, *J* = 16.9, 0.9 Hz, 1H), 6.31 (ddd, *J* = 17.2, 10.3, 0.9 Hz, 1H), 5.87 (dd, *J* = 10.0, 0.9 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 137.9, 135.1, 134.4, 132.2, 130.5, 129.2, 121.3, 116.5, 101.9, 20.5; IR (KBr) 3675, 2230, 1662 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₁H₁₁N₂O 187.0871, found 187.0856.

N-(2-Cyano-4-methylphenyl)-*N*-methylacrylamide (S8c)

To a suspension of S7c (1.30 g, 7.0 mmol) and K₂CO₃ (2.13 g, 15.4 mmol) in acetone (35 mL) was added MeI (654 µL, 10.5 mmol) at room temperature under Ar atmosphere. The reaction mixture was stirred at 40 °C for 16 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc = 4:1) to give **S8c** (1.32 g, 94%)

as a white amorphous solid. **Analytical data for S8c:** ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.47 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 1H), 6.42 (d, *J* = 16.9 Hz, 1H), 5.90 (dd, *J* = 16.7, 10.3 Hz, 1H), 5.57 (d, *J* = 10.1 Hz, 1H), 3.37 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 143.4, 139.1, 135.0, 134.2, 129.2, 128.8, 127.4, 115.8, 112.2, 36.9, 20.8; IR (KBr) 3036, 2231, 1666 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃N₂O 201.1028, found 201.1053.

N-(1,6-Dimethyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1c)

S8c (801 mg, 4.0 mmol), TBHP (70% aqueous solution, 769 μ L, 8.0 mmol), and THF (25 mL) were added in a sealed tube with a Teflon-lined cap. The mixture was stirred at 100 °C for 8 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc only) to give **S9c**, which still contained a small amount of inseparable impurities. This mixture was used for the next reaction without further purification. An

Ac₂O solution (2 mL) of **S9c** was stirred at 100 °C for 2 h. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/MeOH = 19:1). A white solid (mp 189.9–190.1 °C) was obtained by reprecipitation from CHCl₃ and Et₂O to furnish **1c** (237 mg, 18%). **Analytical data for 1c:** ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.79 (br s, 1H), 7.92 (s, 1H), 7.50-7.41 (m, 2H), 7.24 (s, 1H) 3.55 (s, 3H), 2.41 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.0, 162.1, 161.5, 142.6, 141.6, 124.9, 109.1, 108.9, 106.0, 99.1, 55.6, 29.0, 24.3; IR (KBr) 3258, 2945, 1645 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₃H₁₅N₂O₂ 231.1134, found 231.1123.

N-(2-Cyano-4-(trifluoromethyl)phenyl)acrylamide (S7d)

This compound was prepared from S6d¹³ in 71% yield in a similar manner to the synthesis of S7c from S6c. Analytical data for S7d: white solid (mp 148.9–150.7 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 8.2 Hz, 1H), 7.91 (br s, 1H), 7.88-7.82 (m, 2H), 6.55 (dd, J = 16.9, 0.9 Hz, 1H), 6.36 (dd, J = 16.9, 11.0 Hz, 1H), 5.96 (dd, J = 10.1, 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 143.2, 131.2

(q, ${}^{3}J_{CF} = 3.8 \text{ Hz}$), 130.5, 130.0, 129.5 (q, ${}^{3}J_{CF} = 3.8 \text{ Hz}$), 126.4 (q, ${}^{2}J_{CF} = 34.5 \text{ Hz}$), 122.8 (q, ${}^{1}J_{CF} = 272.2 \text{ Hz}$), 121.1, 115.1, 101.7; 19 F NMR (376 MHz, CDCl₃): δ –63.6; IR (KBr) 3340, 2236, 1689 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₁H₈F₃N₂O 241.0559, found 241.0586.

N-(2-Cyano-4-(trifluoromethyl)phenyl)-N-methylacrylamide (S8d)

This compound was prepared from **S7d** in 82% yield in a similar manner to the synthesis of **S8c** from **S7c**. **Analytical data for S8d**: white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 1.8 Hz, 1H), 7.93 (dd, J = 8.5, 2.0 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 6.75 (s, 1H), 6.49 (dd, J = 16.5, 1.4 Hz, 1H), 5.94 (br s, 1H), 5.70 (d, J = 10.1 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1,

149.2, 131.1 (q, ${}^{3}J_{CF} = 2.8$ Hz), 130.942 (q, ${}^{3}J_{CF} = 2.8$ Hz), 130.942 (q, ${}^{2}J_{CF} = 35.5$ Hz), 130.2, 130.1, 126.9, 122.5 (q, ${}^{1}J_{CF} = 273.2$ Hz), 114.6, 113.3, 37.2; ${}^{19}F$ NMR (376 MHz, CDCl₃): δ –63.9; IR (KBr) 3079, 2233, 1668 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₂H₁₁F₃N₂O 255.0745, found 255.0771.

N-(1-Methyl-2-oxo-6-(trifluoromethyl)-1,2-dihydroquinolin-4-yl)acetamide (1d)

This compound was prepared from **S8d** in 23% yield in a similar manner to the synthesis of **1c** from **S8c**. **Analytical data for 1d**: yellow solid (mp 196.4–198.4 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 10.06 (s, 1H), 8.52 (s, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.39 (s, 1H), 3.62 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 170.3, 161.6, 142.1 (q, ³ $J_{CF} = 3.8$ Hz), 127.20, 127.17, 124.4 (q, ¹ $J_{CF} =$

271.5 Hz), 121.9 (q, ${}^{2}J_{CF}$ = 32.6 Hz), 120.9, 116.2, 115.1, 109.6, 29.2, 24.4; ${}^{19}F$ NMR (376 MHz, DMSO-*d*₆): δ –62.6; IR (KBr) 3275, 2959, 1684 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₃H₁₂F₃N₂O₂ 285.0851, found 285.0865.

N-(2-Cyano-4-fluorophenyl)acrylamide (S7e)

This compound was prepared from 2-amino-5-fluorobenzonitrile **S6e**^{12, 14} in 75% yield in a similar manner to the synthesis of **S7c** from **S6c**. **Analytical data for S7e**: white solid (mp 161.0–162.3 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 9.4, 4.8 Hz, 1H), 7.69 (br s, 1H), 7.39-7.28 (m, 2H), 6.51 (dd, J = 16.5, 0.9 Hz, 1H), 6.32 (dd, J =16.9, 10.1 Hz, 1H), 5.90 (dd, J = 10.1, 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

163.5, 158.0 (d, ${}^{1}J_{CF} = 248.2 \text{ Hz}$), 136.9 (d, ${}^{4}J_{CF} = 2.9 \text{ Hz}$), 130.2, 129.7, 123.6 (q, ${}^{3}J_{CF} = 7.7 \text{ Hz}$), 121.8 (d, ${}^{2}J_{CF} = 22.0 \text{ Hz}$), 118.5 (d, ${}^{2}J_{CF} = 25.9 \text{ Hz}$), 115.2 (d, ${}^{4}J_{CF} = 2.9 \text{ Hz}$), 103.2 (d, ${}^{3}J_{CF} = 8.6 \text{ Hz}$); ¹⁹F NMR (376 MHz, CDCl₃): δ –116.4; IR (KBr) 3271, 2231, 1666 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₀H₈FN₂O 191.0621, found 191.0629.

N-(2-Cyano-4-fluorophenyl)-*N*-methylacrylamide (S8e)

This compound was prepared from **S7e** in 88% yield in a similar manner to the synthesis of **S8c** from **S7c**. **Analytical data for S8e:** brown solid (mp 91.2–93.5 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, J = 7.3, 2.3 Hz, 1H), 7.43-7.36 (m, 1H), 7.36-7.30 (m, 1H), 6.45 (d, J = 16.9 Hz, 1H), 5.87 (dd, J = 16.5, 10.5 Hz, 1H), 5.62 (d, J = 10.5 Hz, 1H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 161.0 (d, ¹ $_{JCF}$ = 253.0

Hz), 142.4, 131.5 (d, ${}^{3}J_{CF} = 8.6$ Hz), 129.5, 127.0, 121.8 (d, ${}^{2}J_{CF} = 22.0$ Hz), 120.7 (d, ${}^{2}J_{CF} = 25.9$ Hz), 114.5, 114.1 (d, ${}^{3}J_{CF} = 9.6$ Hz), 37.0; ${}^{19}F$ NMR (376 MHz, CDCl₃): δ –110.6; IR (KBr) 3073, 2235, 1664 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₁H₁₀FN₂O 205.0777, found 205.0804.

N-(6-Fluoro-1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1e)

This compound was prepared from **S8e** in 16% yield in a similar manner to the synthesis of **1c** from **S8c**. **Analytical data for 1e:** white solid (mp 225.1–227.5 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.92 (br s, 1H), 8.04 (dd, *J* = 10.3, 2.5 Hz, 1H), 7.58-7.48 (m, 2H), 7.31 (s, 1H), 3.56 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.2, 161.3, 157.0 (d, ¹*J*_{CF} = 238.7 Hz), 141.8 (d, ⁴*J*_{CF} = 2.9 Hz), 136.5, 118.5 (d, ²*J*_{CF} = 24.0 Hz), 117.1 (d, ³*J*_{CF} = 7.7 Hz), 116.2 (d, ³*J*_{CF} = 8.6 Hz), 109.5, 109.0 (d, ²*J*_{CF} = 24.9 Hz), 29.1,

24.3; ¹⁹F NMR (376 MHz, DMSO- d_6): δ –122.6; IR (KBr) 3323, 3061, 1642 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₂H₁₂FN₂O₂ 235.0883, found 235.0861.

N-(5-Bromo-2-cyanophenyl)acrylamide (S7f)

This compound was prepared from **S6f**¹⁵ in 90% yield in a similar manner to the synthesis of **S7c** from **S6c**. **Analytical data for S7f**: white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 9.6 Hz, 1H), 7.75-7.69 (m, 2H), 7.65 (br s, 1H), 6.51 (dd, J = 16.9, 0.9 Hz, 1H), 6.31 (dd, J = 16.9, 10.1 Hz, 1H), 5.91 (d, J = 10.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 139.5, 137.4, 134.4, 130.2, 129.9, 122.6, 116.4,

115.0, 103.4; IR (KBr) 3342, 2229, 1683 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₀H₈BrN₂O 250.9820, found 250.9829.

N-(5-Bromo-2-cyanophenyl)-*N*-methylacrylamide (S8f)

This compound was prepared from **S7f** in 83% yield in a similar manner to the synthesis of **S8c** from **S7c**. **Analytical data for S8f**: white solid (mp 98.7–99.7 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 2.3 Hz, 1H), 7.79 (dd, J = 8.2, 2.3 Hz, 1H), 7.20 (d, J = 8.7 Hz, 1H), 6.45 (dd, J = 16.9, 1.4 Hz, 1H), 5.89 (br s, 1H), 5.63 (d, J = 8.7 Hz, 1H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 145.0, 137.4, 136.4,

130.8, 129.6, 127.0, 121.9, 114.4, 114.2, 36.9; IR (KBr) 2236, 1664 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₁H₁₀BrN₂O 264.9977, found 264.9962.

N-(7-Bromo-1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1f)

This compound was prepared from **S8f** in 7% yield in a similar manner to the synthesis of **1c** from **S8c**. **Analytical data for 1f**: white amorphous solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.82 (s, 1H), 8.31 (d, *J* = 1.8 Hz, 1H), 7.75 (dd, *J* = 9.2, 2.3 Hz, 1H), 7.45 (d, *J* = 8.7 Hz, 1H), 7.27 (s, 1H), 3.51 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.2, 161.3, 141.5, 138.9, 133.5, 125.3, 117.4, 116.8, 113.9, 109.4, 29.0, 24.4; IR

(KBr) 3060, 1635, 1612 cm⁻¹; HRMS (DART) m/z: $[M+H]^+$ calcd for $C_{12}H_{12}BrN_2O_2$ 295.0082, found 295.0105.

This compound was prepared from **S6g**^{12, 14} in 75% yield in a similar manner to the synthesis of **S7c** from **S6c**. **Analytical data for S7g:** white solid (mp 141.5–143.7 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.3 Hz, 1H), 7.69 (br s, 1H), 7.49 (d, J = 8.7 Hz, 1H), 6.71 (dd, J = 8.7, 2.8 Hz, 1H), 6.50 (dd, J = 16.9, 0.9 Hz, 1H), 6.31 (dd, J = 16.9, 10.1 Hz, 1H), 5.89 (dd, J = 10.1, 0.9 Hz, 1H), 3.89 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 164.1, 163.7, 142.3, 133.3, 130.5, 129.5, 116.8, 111.6, 105.5, 93.1, 55.7; IR (KBr) 3240, 2222, 1672 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₁H₁₁N₂O₂ 203.0821, found 203.0848.

N-(2-Cyano-5-methoxyphenyl)-*N*-methylacrylamide (S8g)

This compound was prepared from **S7g** in 95% yield in a similar manner to the synthesis of **S8c** from **S7c**. **Analytical data for S8g:** white solid (mp 81.5–82.7 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.7 Hz, 1H), 6.97 (dd, J = 8.7, 2.3 Hz, 1H), 6.80 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 16.7, 1.6 Hz, 1H), 5.94 (dd, J = 16.3, 10.3 Hz, 1H), 5.61 (d, J = 10.1 Hz, 1H), 3.88 (s, 3H), 3.39 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 165.1, 163.7, 147.6, 135.1, 128.8, 127.3, 116.0, 115.2, 114.2, 103.8, 55.9, 36.7; IR (KBr) 2228, 1664 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₂H₁₃N₂O₂ 217.0977, found 217.0961.

N-(7-Methoxy-1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1g)

This compound was prepared from **S8g** in 36% yield in a similar manner to the synthesis of **1c** from **S8c**. **Analytical data for 1g:** white solid (mp 251.3–253.4 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 9.77 (s, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.10 (s, 1H), 6.96-6.89 (m, 2H), 3.90 (s, 3H), 3.56 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 170.0, 162.0, 161.5, 142.6, 141.6, 124.9, 109.1, 108.9, 106.0, 99.1, 55.6, 28.9, 24.3; IR (KBr) 2956, 1645, 1614 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for

 $C_{13}H_{15}N_2O_3$ 247.1083, found 247.1076.

Synthesis and Characterization of 1h

4-Hydroxy-1,3-dimethylquinolin-2(1*H*)-one (S10)¹⁶

A mixture of diethyl methylmalonate (3.42 mL, 20.0 mmol) and *N*-methylaniline (2.16 mL, 20.0 mmol) was heated to 220 °C in a 10 mL round bottomed flask topped with a short path distillation head. After finishing the generation of EtOH, the mixture solidified upon cooling to room temperature. The crude product was washed with H_2O (40 mL) and DCM (40 mL) and dried in vacuo to afford **S10** (2.59 g, 69%) as a white solid (mp 194.1–

195.4 °C). Analytical data for S10¹⁷: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.08 (s, 1H), 7.95 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 3.56 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.0, 155.9, 138.1, 130.0, 122.8, 121.2, 116.2, 114.1, 106.4, 29.1, 10.3; IR (KBr) 3165, 3090, 1644 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₁H₁₂NO₂ 190.0868, found 190.0887.

1,3-Dimethyl-2-oxo-1,2-dihydroquinolin-4-yl trifluoromethanesulfonate (S11)¹⁸

To a solution of **S10** (1.89 g, 10.0 mmol) and Et_3N (1.7 mL, 12.0 mmol) in dry DCM (100 mL) was slowly added Tf₂O (2.0 mL, 12.0 mmol) at 0 °C under Ar atmosphere. The reaction mixture was gradually warmed to room temperature and kept stirring for 5 h. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc = 1:1) to give **S11** (2.36g, 73%) as a yellow amorphous solid. **Analytical**

data for S11¹⁸: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.0, 1.1 Hz, 1H), 7.65 (ddd, J = 8.5, 7.1, 1.4 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.35 (dd, J = 7.3, 0.9 Hz, 1H), 3.78 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 149.6, 138.1, 131.3, 123.3, 122.9, 122.7, 118.5 (q, ³ J_{CF} = 320.1 Hz), 115.7, 114.3, 30.4, 12.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.7; IR (KBr) 1639 cm⁻¹; HRMS (DART) m/z: [M+H]⁺ calcd for C₁₂H₁₁F₃NO₄S 322.0361, found 322.0337.

N-(1,3-Dimethyl-2-oxo-1,2-dihydroquinolin-4-yl)acetamide (1h)

A Schlenk tube was charged with Pd₂(dba)₃·CHCl₃ (14.1 mg, 0.025 mmol, 5.0 mol%), Xantphos (14.2 mg, 0.025 mmol, 5.0 mol%), **S11** (160.5 mg, 0.50 mmol), K₃PO₄ (212.5 mg, 1.0 mmol), acetamide (36.1 mg, 0.60 mmol) and dry dioxane (8 mL) under Ar atmosphere. The mixture was stirred at 100 °C for 12 h. After cooling to room temperature, the mixture was diluted with water and the aqueous layer was extracted with DCM (3 x 20

mL). The combined organic layer was washed with water (2 x 40 mL), dried over MgSO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc only) to give **1h** (65.9 mg, 57%) as a white amorphous solid; **Analytical data for 1h:** This compound was observed as a mixture of rotamers (ratio 3.75:1) at 25 °C. ¹H NMR (400 MHz, CDCl₃) discernible data for major rotamer: δ 7.60 (d, *J* = 8.2 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 8.7 Hz, 1H), 7.26-7.21 (m, 1H), 7.05 (br s, 1H), 3.75 (s, 3H), 2.34 (s, 3H), 2.20 (s, 3H); discernable data for minor rotamer: δ 7.75 (d, *J* = 7.3 Hz, 1H), 7.43 (d, *J* = 8.7 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 1H), 6.80 (br s, 1H), 3.79 (s, 3H), 2.29 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.2, 161.9, 139.6, 138.0, 130.0, 125.2, 124.4, 121.7, 118.5, 114.5, 29.6, 22.8, 13.3; IR (KBr) 3258, 1638, 1597 cm⁻¹; HRMS (DART) *m/z*: [M+H]⁺ calcd for C₁₃H₁₅N₂O₂ 231.1134, found 231.1122.

7. Mechanistic Studies

7-1. H/D Exchange Experiments

H/D exchange experiment with 1a in the presence of CD₃OD at 110 °C.

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.0 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (8.0 mg, 0.040 mmol, 20 mol%), **1a** (54.7 mg, 0.20 mmol), and **2a** (71.5 mg, 0.40 mmol) . PhCF₃ (2.0 mL) and CD₃OD (0.40 mL) were added, and the mixture was stirred at 110 °C for 6 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After evaporation of the solvents under reduced pressure, the residue was purified by a silica gel column chromatography (Hexane/EtOAc = 1:1) to afford a mixture of **1a**-*d*₂ and **5aa**-*d*₁. This mixture was further purified by preparative HPLC to give pure **1a**-*d*₂ (24%) and **5aa**-*d*₁ (23%). ¹H NMR analysis (400 MHz, CD₃OD or CDCl₃) showed that only 43% deuterium incorporation at the C5 position was observed in **1a**. In **5aa**, 48% deuterium incorporation at the C3 position was observed.

Figure S1. ¹H NMR spectrum (CD₃OD) of 1a after the H/D exchange experiment.

Figure S2. ¹H NMR spectrum (CDCl₃) of 5aa after the H/D exchange experiment.

H/D exchange experiment with *1b* in the presence of D_2O or *AcOD* at 80 °C.

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 H_2O$ (8.0 mg, 0.040 mmol, 20 mol%), **1b** (43.2 mg, 0.20 mmol), and **2a** (71.3 mg, 0.40 mmol). PhCF₃ (2.0 mL) and D₂O (or AcOD) (0.40 mL) were added, and the mixture was stirred at 80 °C for 19 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After evaporation of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (EtOAc only) to recover **1b** in 89% (or 93%) yield. ¹H NMR analysis (400 MHz, CD₃OD) showed that the deuterium incorporation at the C3- and C5 positions was not observed.

H/D exchange experiment with 1b in the presence of CD_3OD at 110 °C.

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol, 2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (8.0 mg, 0.040 mmol, 20 mol%), **1b** (43.2 mg, 0.20 mmol), and **2a** (71.3 mg, 0.40 mmol). PhCF₃ (2.0 mL) and CD₃OD (0.40 mL) were added, and the mixture was stirred at 110 °C for 6 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After evaporation of the solvents under reduced pressure, the residue was purified by a silica gel column chromatography (Hexane/EtOAc = 3:1 to EtOAc only) to afford **1b**-*d*₂ in 77% yield and **3ba**-*d*₁ in 13% yield. ¹H NMR analysis (400 MHz, CD₃OD) showed that 26% deuterium incorporation at the C3 position and 39% deuterium incorporation at the C5 position were observed in **1b**. In **3ba**, 75% deuterium incorporation at the C5 position was observed.

Figure S3. ¹H NMR spectrum of 1b after the H/D exchange experiment.

Figure S4. ¹H NMR spectrum of **3ba** after the H/D exchange experiment.

Supporting Information

A Schlenk tube was charged with $[Cp*RhCl_2]_2$ (1.5 mg, 0.0025 mmol, 2.5 mol%), Cu(OAc)_2·H_2O (4.0 mg, 0.020 mmol, 20 mol%), **1b** (21.3 mg, 0.10 mmol), and **2a** (36.4 mg, 0.20 mmol). PhCF₃ (1.0 mL) and CD₃OD (0.20 mL) were added, and the mixture was stirred at 80 °C for 19 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After evaporation of the solvents under reduced pressure, the residue was purified by silica gel column chromatography (EtOAc only) to afford **1b**-*d*₂ in 84% yield. ¹H NMR analysis (400 MHz, CD₃OD)showed that the deuterium incorporation at both the C3 position (33%) and the C5 position (46%) were observed.

Figure S5. ¹H NMR spectrum of 1b after the H/D exchange experiment.

7-2. ¹H NMR Monitoring of the Reaction

A J.Young. NMR tube was charged with $Cp*Rh(OAc)_2 \cdot H_2O(3.8 \text{ mg}, 0.010 \text{ mmol})$, **1b** (2.1 mg, 0.010 mmol), **2a** (3.7 mg, 0.020 mmol), Et₃N (2.5 μ L (1.8 mg), 0.18 mmol), and CDCl₃ (0.50 mL) under Ar atmosphere. The reaction mixture was stirred at 40 °C using an oil bath and the reaction was monitored by ¹H NMR.

Figure S6. Monitoring of the reaction.

7-3. Isolation of Complex A

A J. Young. NMR tube was charged with $Cp*Rh(OAc)_2 \cdot H_2O(11.2 \text{ mg}, 0.030 \text{ mol})$, **1b** (6.5 mg, 0.030 mmol), **2a** (10.7 mg, 0.060 mmol), Cs_2CO_3 (19.5 mg, 0.060 mmol), and $CDCl_3$ (0.50 mL) under Ar atmosphere. The reaction mixture was stirred at 40 °C using an oil bath and the reaction was monitored by ¹H NMR. After 12 h, $CDCl_3$ was removed under reduced pressure. The residue was purified by silica gel column chromatography (Hexane/EtOAc = 1:1). Red crystals were obtained by recrystallization from CHCl₃ and hexane. The structure of complex **A** was determined by X-Ray diffraction analysis. Other than that, only ¹H NMR analysis was conducted using a mixture of **A** and **3ba** because **A** was immediately converted to **3ba** in CDCl₃.

¹H NMR (400 MHz, CDCl₃) δ 7.77-7.65 (m, 3H), 7.53-7.37 (m, 3H), 7.35-7.28 (m, 3H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.17-7.10 (m, 2H), 7.06-6.95 (m, 2H), 3.55 (s, 3H), 1.68 (s, 3H), 1.13 (s, 15H).

7-4. Preparation and Characterization of Complex B-Me

A Schlenk tube was charged with Cp*Rh(OAc)₂·H₂O (11.1 mg, 0.030 mmol), **1h** (6.5 mg, 0.030 mmol), **2a** (10.7 mg, 0.060 mmol), Cs₂CO₃ (19.5 mg, 0.060 mmol), and CDCl₃ (0.50 mL) under Ar atmosphere. The reaction mixture was stirred at 40 °C using an oil bath for 12 h. The solvent was removed under reduced pressure. This crude product was treated with DCM and hexane at room temperature to form a reddish-orange solid, which was collected by filtration (12.7 mg, 66%). The obtained solid was recrystallized from diethyl ether/hexane. **Analytical data for B-Me:** ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 1H), 7.14 (dd, *J* = 7.6, 6.2 Hz, 2H), 7.07-6.98 (m, 4H), 6.91-6.85 (m, 3H), 6.82-6.77 (m, 1H), 6.74-6.70 (m, 2H), 3.80 (s, 3H), 2.28 (s, 3H), 1.89 (s, 3H), 1.29 (s, 15H); ¹³C NMR data could not be obtained due to the instability of the complex over the timescale required for the experiment; HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₃₇H₃₇N₂NaO₂Rh 667.1808, found 667.1817.

Comparison of ¹H NMR spectra of **B** and **B-Me**.

Figure S7. ¹H NMR spectra of **B** (reaction mixture) and **B-Me** (purified).

A Schlenk tube was charged with Cp*Rh(OAc)₂·H₂O (3.7 mg, 0.010 mmol, 5 mol%), Cu(OAc)₂·H₂O (7.9 mg, 0.040 mmol, 20 mol%), **1h** (46.1 mg, 0.20 mmol), **2a** (71.1 mg, 0.40 mmol), and PhCF₃ (2.0 mL). The reaction mixture was stirred at 110 °C for 43 h under air atmosphere using an oil bath. Then, the mixture was cooled to room temperature and filtered through a pad of Celite® with CHCl₃ to remove the metal salts. After concentration in vacuo, the residue was purified by silica gel column chromatography (Hexane/EtOAc = 2:1 to 1:1 to EtOAc only).

7-6. Experiments with B-Me

Table S3. Screening some additives to promote the β -carbon elimination.

Me Me				
Me Me Me Rh-O Ph N Me Ph Me	additive ────► condition	NHAc Me NO	Ph H Ph NHAc Me	Ph NAc NAc NO
Ме B-Me		Ме 1h	М́е 4ha	М́е 5ha
additive	condition	1h	4ha	5ha
-	PhCF ₃ , 110 °C, 13 h	n.d.	n.d.	major
AcOH- <i>d</i> ₄ (1 eq.)	CDCl ₃ , 60 °C, 3 h	n.d.	major	n.d.
MeOH- <i>d</i> ₄ (1 eq.)	CDCl ₃ , 60 °C, 4 days	n.d.	trace	major
1b (10 eq.)	CDCl ₃ , 60 °C, 4 days	n.d. major (1		(1 : 1)
Cu(OAc) ₂ ·H ₂ O (1 eq.)	PhCF ₃ , 110 °C, 13 h	n.d.	n.d.	major
NaOAc (1 eq.)	PhCF ₃ , 110 °C, 13 h	n.d.	n.d.	major
3ba (1 eq.)	PhCF ₃ , 110 °C, 13 h	n.d.	n.d.	major
Cp*Rh(OAc) ₂ ·H ₂ O(1 eq.)	PhCF ₃ , 110 °C, 13 h		major (1 : 1.2 : 1.2)	
Heating **B-Me** at 110 °C.

A Schlenk tube was charged with **B-Me** (0.6 mg, 0.0010 mmol) and PhCF₃ (1.0 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 13 h under Ar atmosphere using an oil bath. The resulting solution was concentrated. ¹H NMR analysis of the crude product mixture showed that **5ha** was mainly observed while **1h** was not detected.

Addition of acetic acid (1 eq.) at 60 °C.

A crimp vial was loaded with AcOH- d_4 (6.4 mg, 0.010 mmol) and dissolved in 5 mL of CDCl₃ to obtain a 0.002 M AcOH- d_4 solution in CDCl₃. A J. Young NMR tube was charged with **B-Me** (0.6 mg, 0.0010 mmol) and the prepared solution (0.50 mL) under Ar atmosphere. The reaction mixture was stirred at 60 °C using an oil bath and the reaction was monitored by ¹H NMR. After 3h at this temperature, **B-Me** was completely consumed and **4ha** was mainly observed while **1h** was not detected by ¹H NMR.

Addition of methanol (1 eq.) as a proton source at 60 °C.

A crimp vial was loaded with MeOH- d_4 (3.6 mg, 0.010 mmol) and dissolved in 5 mL of CDCl₃ to obtain a 0.002 M MeOH- d_4 solution in CDCl₃. A J. Young NMR tube was charged with **B-Me** (0.6 mg, 0.0010 mmol) and the prepared solution (0.50 mL) under Ar atmosphere. The reaction mixture was stirred at 60 °C using an oil bath and the reaction was monitored by ¹H NMR. After 4 days at this temperature, **B-Me** was completely consumed and **5ha** was mainly observed while **1h** was not detected by ¹H NMR.

A J. Young NMR tube was charged with **B-Me** (0.6 mg, 0.0010 mmol), **1b** (2.2 mg, 0.010 mmol), CDCl₃ (0.5 mL) under Ar atmosphere. The reaction mixture was stirred at 60 °C using an oil bath and the reaction was monitored by ¹H NMR. After 4 days at this temperature, **4ha** and **5ha** were observed as the major products, while other products such as **1h**, **3ba**, **4ba**, **A**, and **B** were not detected in this experiment.

Heating **B-Me** with $Cu(OAc)_2 \cdot H_2O$ (1 eq) at 110 °C.

A Schlenk tube was charged with **B-Me** (0.6 mg, 0.0010 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.2 mg, 0.0010 mmol) and PhCF₃ (1.0 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 13 h under Ar atmosphere using an oil bath. The resulting solution was concentrated, and the ¹H NMR analysis of the crude product mixture showed that **5ha** was mainly observed while **1h** was not detected.

Heating **B-Me** with NaOAc (1 eq) at 110 °C.

A Schlenk tube was charged with **B-Me** (0.6 mg, 0.0010 mmol), NaOAc (0.08 mg, 0.0010 mmol) and PhCF₃ (1.0 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 13 h under Ar atmosphere using an oil bath. The resulting solution was concentrated, and the ¹H NMR analysis of the crude product mixture showed that **5ha** was mainly observed while **1h** was not detected.

Heating **B-Me** with **3ba** (1 eq.) at 110 °C.

A Schlenk tube was charged with **B-Me** (0.6 mg, 0.0010 mmol), **3ba** (0.4 mg, 0.0010 mmol) and PhCF₃ (1.0 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 6 h under Ar atmosphere using an oil bath. The resulting solution was concentrated, and the ¹H NMR analysis of the crude product mixture showed that **5ha** was mainly observed while **1h** was not detected.

Heating **B-Me** with $Cp*Rh(OAc)_2 \cdot H_2O$ (1 eq.) at 110 °C.

A Schlenk tube was charged with **B-Me** (0.6 mg, 0.0010 mmol), $Rh(OAc)_2 \cdot H_2O$ (0.4 mg, 0.0010 mmol) and $PhCF_3$ (1.0 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 13 h under Ar atmosphere using an oil bath. The resulting solution was concentrated, and the ¹H NMR analysis of the crude product mixture showed that **4ha**, **5ha**, and **1h** were obtained (**4ha/5ha/1h** = 1.2:1.2:1).

Figure S8. ¹H NMR spectra of the crude product.

Isolated of **1h** from the reaction of **B-Me** with $Cp*Rh(OAc)_2 \cdot H_2O$.

A Schlenk tube was charged with **B-Me** (19.3 mg, 0.030 mmol), $Rh(OAc)_2 \cdot H_2O$ (11.2 mg, 0.030 mmol) and $PhCF_3$ (30 mL) under Ar atmosphere. The reaction mixture was stirred at 110 °C for 19 h under Ar atmosphere using an oil bath. The resulting solution was concentrated and the ¹H NMR analysis of the crude product mixture showed that **4ha**, **5ha**, and **1h** were obtained (**4ha/5ha/1h** =29%:38%:19%). The crude product purified by preparative TLC (Hexane/EtOAc = 1:1 to EtOAc only) to give **1h** (0.50 mg, 14%).

8. X-Ray Diffraction Analysis

X-Ray Diffraction Analysis of 3ba

Diffraction data were collected in θ ranges specified in Table S4 at 123 K on a Rigaku R-AXIS Rapid diffractometer with graphite monochromatized Cu-Ka radiation ($\lambda = 1.54187$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S4. The supplementary crystallographic data for this paper (CCDC2278040) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk/.

Figure S9. ORTEP plot of 3ba

Table S4. Selected crystallographic data and collection parameters for 3ba.

formula	$C_{26}H_{20}N_2O_2$	crystal size, mm	0.2 x 0.15 x 0.1
FW	392.46	maximum 20, deg	136.3
crystal system	monoclinic	reflections collected	22156
space group	P21/n (#14)	independent reflections [R(int)]	3536 [R(int) = 0.0272]
<i>a</i> , Å	10.3174(4)	max. and min. transmission	0.935/0.699
<i>b</i> , Å	18.8450(7)	goodness-of-fit on F^2	1.044
<i>c</i> , Å	10.3316(4)	$R_1 \left[I > 2\sigma(I) \right]$	0.0406
volume, Å ³	1956.84(14)	R, wR_2 (all data)	0.0433, 0.1085
β, °	103.056(7)	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
Ζ	4		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
D (calcd), Mg m ⁻³	1.332	largest diff. peak and hole, e Å ⁻³	0.19 and -0.26
μ , cm ⁻¹	6.763		
<i>F</i> (000)	824.00		

X-Ray Diffraction Analysis of 3bf' · CHCl₃

Diffraction data were collected in θ ranges specified in Table S5 at 123 K on a Rigaku R-AXIS Rapid diffractometer with graphite monochromatized Cu-Ka radiation ($\lambda = 1.54187$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S5. The supplementary crystallographic data for this paper (CCDC2278041) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk/.

Figure S10. ORTEP plot of 3bf'·CHCl₃

Table S5. Selected crystall	ographic data and	collection parameter	s for 3bf'·CHCl ₃ .
-----------------------------	-------------------	----------------------	---------------------------------------

formula	$C_{45}H_{27}Cl_3F_{12}N_2O_2$	μ , cm ⁻¹	29.459
FW	962.06	F(000)	972.00
crystal system	triclinic	crystal size, mm	0.3 x 0.1 x 0.05
		maximum 20, deg	136.4
space group	P-1 (#2)	reflections collected	23137
<i>a</i> , Å	10.1061(11)	independent reflections [R(int)]	7190 [R(int) = 0.1528]
<i>b</i> , Å	14.1090(14)	max. and min. transmission	0.863/0.329
<i>c</i> , Å	14.8443(15)	goodness-of-fit on F^2	1.072
volume, Å ³	2017.9(4)	$R_1 \left[I > 2\sigma(I) \right]$	0.1199
α, °	85.453(6)	R, wR_2 (all data)	0.2328, 0.4302
β, °	83.081(6)	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
γ, °	74.047(5)		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
Ζ	2	largest diff. peak and hole, e Å ⁻³	0.52 and -0.40
D (calcd), Mg m ⁻³	1.583		

Diffraction data were collected in θ ranges specified in Table S6 at 123 K on a Rigaku R-AXIS Rapid diffractometer with graphite monochromatized Cu-Ka radiation ($\lambda = 1.54187$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S6. The supplementary crystallographic data for this paper (CCDC2278042) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Figure S11. ORTEP plot of 4ba

Table S6. Selected crystallographic data and collection parameters for 4ba.

formula	$C_{26}H_{22}N_2O_2$	crystal size, mm	0.1 x 0.1 x 0.1
FW	394.47	maximum 20, deg	136.3
crystal system	monoclinic	reflections collected	10978
space group	P21 (#4)	independent reflections [R(int)]	3580 [R(int) = 0.1214]
<i>a</i> , Å	11.2867(14)	max. and min. transmission	0.937/0.538
b, Å	7.6954(9)	goodness-of-fit on F^2	0.991
<i>c</i> , Å	11.8213(14)	$R_1 \left[I > 2\sigma(I) \right]$	0.0904
volume, Å ³	1014.9(2)	R, wR_2 (all data)	0.1934, 0.2730
β, °	98.725(7)	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
Ζ	2		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
D (calcd), Mg m ⁻³	1.291	largest diff. peak and hole, e Å ⁻³	0.18 and -0.18
μ , cm ⁻¹	6.523		
<i>F</i> (000)	416.00		

X-Ray Diffraction Analysis of 5ha

Diffraction data were collected in θ ranges specified in Table S7 at 123 K on a Rigaku PILATUS200K diffractometer with graphite monochromatized MoKa radiation ($\lambda = 0.71075$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S7. The supplementary crystallographic data for this paper (CCDC2278043) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk/.

Figure S12. ORTEP plot of 5ha

Table S7. Selected crystallographic data and collection parameters for 5ha.

formula	$C_{27}H_{22}N_2O_2$	crystal size, mm	0.15 x 0.1 x 0.075
FW	406.48	maximum 2θ, deg	55.0
crystal system	monoclinic	reflections collected	17132
space group	P21/n (#14)	independent reflections [R(int)]	4658 [R(int) = 0.1149]
<i>a</i> , Å	9.0396(15) Å	max. and min. transmission	0.994/0.569
<i>b</i> , Å	21.882(4) Å	goodness-of-fit on F^2	0.824
<i>c</i> , Å	10.4133(18) Å	$R_1\left[I > 2\sigma(I)\right]$	0.0524
volume, Å ³	2043.5(6)	R , wR_2 (all data)	0.0706, 0.1152
β, °	97.221(4)	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
Ζ	4		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
D (calcd), Mg m ⁻³	1.321	largest diff. peak and hole, e Å ⁻³	0.26 and -0.27
μ , cm ⁻¹	0.838		
<i>F</i> (000)	856.00		

X-Ray Diffraction Analysis of A

Diffraction data were collected in θ ranges specified in Table S8 at 123 K on a Rigaku R-AXIS Rapid diffractometer with graphite monochromatized Cu-Ka radiation ($\lambda = 1.54187$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S8. The supplementary crystallographic data for this paper (CCDC2278044) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk/.

Figure S13. ORTEP plot of A

Table S8. Selected crystallographic data and collection parameters for A.

formula	$C_{72}H_{70}N_4O_4Rh_2$	crystal size, mm	0.6 x 0.1 x 0.1
FW	1261.18	maximum 20, deg	136.3
crystal system	orthorhombic	reflections collected	51511
space group	Pna21 (#33)	independent reflections [R(int)]	10423 [R(int) = 0.0926]
<i>a</i> , Å	21.2877(5)	max. and min. transmission	0.600/0.262
b, Å	9.8400(2)	goodness-of-fit on F^2	1.029
<i>c</i> , Å	27.3069(6)	$R_1 \left[I > 2\sigma(I) \right]$	0.0570
volume, Å ³	5720.0(2)	R, wR_2 (all data)	0.0728, 0.1341
Ζ	4	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
D (calcd), Mg m ⁻³	1.464		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
μ , cm ⁻¹	51.065	largest diff. peak and hole, e Å ⁻³	1.22 and -0.68
<i>F</i> (000)	2608.00		

X-Ray Diffraction Analysis of B-Me

Diffraction data were collected in θ ranges specified in Table S9 at 123 K on a Rigaku R-AXIS Rapid diffractometer with graphite monochromatized Cu-Ka radiation ($\lambda = 1.54187$ Å). The Lorenz polarization absorption correction was applied. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were refined using the riding model. Final refinement details are compiled in Table S9. The supplementary crystallographic data for this paper (CCDC2278045) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk/.

Figure S14. ORTEP plot of B-Me

Table S9. Selected crystallographic data and collection parameters for B-Me.

formula	$C_{37}H_{37}N_2O_2Rh$	crystal size, mm	0.3 x 0.1 x 0.1
FW	644.62	maximum 20, deg	136.5
crystal system	orthorhombic	reflections collected	63038
space group	Pbca (#61)	independent reflections [R(int)]	5468 [R(int) = 0.0759]
<i>a</i> , Å	17.6227(4)	max. and min. transmission	0.613/0.369
b, Å	18.3009(4)	goodness-of-fit on F^2	1.115
<i>c</i> , Å	18.5577(4)	$R_1 \left[I > 2\sigma(I) \right]$	0.0511
volume, Å ³	5985.1(2)	R, wR_2 (all data)	0.0632, 0.1233
Ζ	8	Weighting scheme	$R_1 = \Sigma Fo - Fc / \Sigma Fo $
D (calcd), Mg m ⁻³	1.431		$wR_2 = [\Sigma(w(Fo^2 -$
			$(Fc^2)^2)/\Sigma w(Fo^2)^2$] ^{1/2}
μ , cm ⁻¹	48.925	largest diff. peak and hole, e Å ⁻³	0.98 and -0.37
<i>F</i> (000)	2672.00		

9. DFT Calculations

The Gaussian 16 program package was used for all geometry optimizations.¹⁹ Geometry optimization and energy calculations were performed with B3LYP²⁰ with GD3BJ²¹ empirical dispersion along with a combined basis set. The Lanl2DZ basis set²² with ECP was used for Rh, and the 6-31G(d) basis set²³ was used for other atoms. Thermal correction to Gibbs free energy (TCGFE) including zero-point energy were calculated at the same level of theory. Harmonic frequency calculations were performed at the same level for each stationary point to ensure that it is either an energy minimum (no imaginary frequency) or a transition state (only one imaginary frequency). The connectivity of each step was also confirmed using intrinsic reaction coordinate (IRC)²⁴ calculation from the transition states, followed by optimization of the resultant geometries. Final energies were obtained using the more extended 6-311+G(d,p)²⁵ basis set for all atoms except Rh for which SDD²⁶ was used. To examine the solvent effect, the above single-point energy calculations were performed using the SMD model²⁷ with dichloroethane as the solvent because the ε value of DiChloroEthane (10.36) is similar to that of CF₃C₆H₅ (9.18). The obtained energies, TCGFEs, and IF are summarized in Table S10.

Table S10. Summary of theoretical calculations.

Model	TCGFE/au	Energy/au	imaginary frequency /cm ⁻¹
В	0.551908	-1764.175154	
С	0.551336	-1764.166298	
TS _{CD}	0.548677	-1764.126033	288.73i
D	0.549077	-1764.148695	
TS _{BE}	0.550221	-1764.131682	302.52i
Ε	0.550802	-1764.135307	

Cartesian coordinates

B

1.93549	4.15741	8.45946
3.91833	5.19347	9.00998
-0.41838	8.10964	13.09314
2.11672	5.26961	10.23063
-1.07716	5.92287	12.79251
2.55771	2.64536	9.65069
0.38702	4.35022	11.64007
2.82901	1.76246	11.96937
2.0679	2.48995	10.90322
3.57198	1.7773	9.02533
4.22257	-0.47351	8.34057
4.02813	-1.54285	8.33959
1.47134	4.87776	6.29133
0.5634	2.94099	7.23738
1.20603	5.48624	11.24449
4.23627	1.85121	11.9734
4.72838	2.43186	11.2026
2.22745	1.05781	13.02751
1.14862	0.99938	13.09614
0.40674	5.28731	7.10623
	3.91833 -0.41838 2.11672 -1.07716 2.55771 0.38702 2.82901 2.0679 3.57198 4.22257 4.02813 1.47134 0.5634 1.20603 4.23627 4.72838 2.22745 1.14862	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-0.186	7.00401	12.60591
С	4.38729	0.4964	13.97091
Н	4.98345	0.00727	14.73612
С	4.70457	2.27653	8.353
Н	4.88929	3.34437	8.36835
С	0.71212	3.00719	11.31253
С	5.00283	1.22042	12.94759
Н	6.08556	1.30796	12.91483
С	-1.7806	3.61728	12.50688
Н	-2.72498	3.82745	12.99061
С	1.61391	3.42167	6.39888
С	3.39194	5.58802	10.10638
С	4.21556	6.28123	11.15548
Н	4.4614	7.29694	10.82593
Н	5.15575	5.73639	11.2812
Н	3.68953	6.33916	12.11083
С	2.99542	0.42886	14.0076
Н	2.49689	-0.11455	14.80609
С	-0.12147	4.09411	7.76851
С	-0.82945	4.639	12.32005
С	3.35014	0.38555	9.00619
Н	2.48469	-0.01012	9.52852
С	-0.27478	2.03014	11.4777
Н	-0.05365	1.01001	11.181
С	5.34278	0.03613	7.6809
Н	6.02398	-0.63185	7.16127
С	-2.29308	6.20134	13.54943
Н	-2.35541	5.55569	
Н	-3.18219	6.04703	12.92826
Н	-2.23829	7.24315	13.85881
C	-1.51267	2.33716	12.04903
H	-2.26268	1.55982	12.16502
C	5.58024	1.41326	7.69875
Н	6.45469	1.81916	7.19645
C	-1.32956	4.08808	8.64959
Н	-1.37209	3.19346	9.27218
H	-2.24263	4.128	8.03963
H C	-1.33712	4.95508 2.5904	9.31543 5.61676
Н	2.58245 3.54824	2.3904	
Н	2.20443	2.39411	4.60375
Н	2.20443	1.63076	4.60373 6.10518
C	0.23179	1.51061	7.52264
Н	-0.22923	1.40314	8.50758
Н	1.12695	0.88436	7.50096
Н	-0.47187	1.12568	6.77268
C	2.39523		5.48906
e e	2.57525	5.75014	5.10700

Н	2.26817	5.54854	4.41543
Н	3.43974	5.52436	5.7399
Н	2.21848	6.80082	5.67009
С	-0.08645	6.67712	7.36686
Н	-0.16578	6.87037	8.44231
Н	-1.08134	6.83368	6.92991
Н	0.58649	7.42756	6.94449
С	0.93899	6.72928	11.73758
Н	1.50789	7.59366	11.41698
С			
Rh	0.57209	0.89394	0.14567
С	2.13739	2.275	-0.3795
С	3.12405	2.12769	-1.48948
С	0.90246	3.07274	-0.46032
С	0.36622	3.64232	-1.73505
С	0.32454	3.10122	0.8131
С	-0.98651	3.69938	1.21811
С	1.19163	2.33094	1.71947
С	0.91164	2.1392	3.17604
С	2.34885	1.9179	1.00765
С	3.55881	1.22968	1.55392
Н	-2.31079	-0.17264	4.28009
Н	-0.44955	-1.35337	3.1248
Н	2.61399	1.85741	-2.41563
Н	3.85418	1.3473	-1.26628
Н	3.66511	3.07332	-1.63579
Н	0.51606	2.93444	-2.55445
Н	0.88543	4.57508	-1.99193
Н	-0.70261	3.85878	-1.66041
Н	-1.57884	2.98917	1.80659
Н	-1.5801	3.98506	0.34626
Н	-0.83925	4.59517	1.83575
Н	-0.13359	1.86107	3.34256
Н	1.10358	3.06755	3.73055
Н	1.53976	1.35352	3.60256
Н	4.35105	1.9599	1.76509
Н	3.95254	0.49685	0.84633
Н	3.33271	0.69942	2.48251
Н	-4.09504	0.89473	2.97172
Ν	-0.58423	0.21381	-1.48919
С	-1.88623	0.23703	-1.03894
С	-2.96072	0.72395	-1.73282
С	-4.21081	1.08299	-1.10767
С	-2.24721	-0.16526	3.19571
С	-1.19424	-0.80807	2.55448
С	-1.0934	-0.81529	1.15185
С	-2.04882	-0.06971	0.39065

С	-3.18964	0.47828	1.05238
С	-3.25535	0.44718	2.45681
Н	-2.87811	1.00582	-2.77391
С	-0.16257	0.06296	-2.77016
0	0.96448	0.43147	-3.13132
С	-1.05889	-0.65793	-3.77027
Н	-1.89079	-1.19229	-3.3077
Н	-1.46071	0.05773	-4.49631
Н	-0.42778	-1.35984	-4.32208
Ν	-4.22556	1.0224	0.31079
0	-5.18707	1.51181	-1.7209
С	-5.41915	1.52575	0.97872
Н	-5.88833	0.74079	1.58175
Н	-5.17529	2.37647	1.62532
Н	-6.1036	1.84503	0.1952
С	1.0966	-1.06827	0.20479
С	-0.01605	-1.7255	0.58118
С	2.43133	-1.56977	-0.10781
С	3.05464	-1.29894	-1.33976
С	3.14698	-2.2883	0.86908
С	4.35242	-1.74752	-1.58324
Н	2.5074	-0.74106	-2.09308
С	4.44634	-2.72519	0.62246
Н	2.66613	-2.49959	1.81963
С	5.05591	-2.45623	-0.60567
Н	4.81729	-1.53949	-2.54341
Н	4.98412	-3.27657	1.38919
Н	6.06948	-2.7964	-0.79873
С	-0.29104	-3.18007	0.53635
С	0.47235	-4.03172	-0.28801
С	-1.35383	-3.75199	1.25978
С	0.2035	-5.3946	-0.35513
Н	1.27116	-3.61631	-0.8893
С	-1.62403	-5.11799	1.18628
Н	-1.9768	-3.12442	1.88747
С	-0.84353	-5.95027	0.38516
Н	0.80907		
Н	-2.45059	-5.53009	1.75913
Н	-1.05302	-7.01467	0.32849
7 70			
TS _{CD}	0 70000	0 11017	0.05460
Rh	0.72332	-0.11015	
C	2.4948	1.33808	0.00925
C	3.49826	1.64032	-1.05792
C C	1.25523	2.07725	
C C	0.72824	3.10472	
С	0.70109	1.69311	1.46931

С	-0.53853	2.23042	2.11452
C	1.54314	0.64389	2.00252
C		-0.00394	3.34601
	1.39777		
C	2.66227	0.46107	1.11678
C	3.80306	-0.48277	1.34468
Н	-3.17012	-1.38001	3.36257
H	-0.78554	-1.48605	
Н	3.01783	1.69906	-2.03483
Н	4.27747	0.87471	-1.09972
Н	3.98988	2.60013	
Н	0.89152	2.77667	-1.76081
Н	1.24307	4.06381	-0.58534
Н	-0.34261	3.27047	-0.59015
Н	-1.15365	1.42511	2.52808
Н	-1.15247	2.77452	1.39222
Н	-0.29152	2.92172	2.93109
Н	0.39554	0.14325	3.75282
Н	2.11296	0.43069	4.05709
Н	1.59283	-1.08036	3.30188
Н	4.60739	0.00286	1.91307
Н	4.22116	-0.83725	
Н	3.48009	-1.36001	1.91318
Н	-4.91018	-1.01344	
N	-0.38112	-0.06017	
C	-1.73589	-0.27073	-1.63376
C	-2.72111	0.00189	-2.55344
C C	-4.12841	-0.14867	-2.272
C C	-2.87964	-1.19925	2.33107
C	-1.52896	-1.21838	
C	-1.14729	-0.99372	0.65439
C		-0.70729	
C C	-3.51283	-0.7467	0.031220
C	-3.86875	-0.99541	
	-3.80873		
Н			
C	0.26942	0.07824	
0	1.35615		-3.04418
C	-0.27781	-0.58842	-4.22438
Н	-1.0435	-1.33961	-4.02423
Н	-0.6908	0.16005	-4.90941
Н	0.57805	-1.05042	-4.72415
N	-4.4678	-0.5165	-0.94204
0	-5.01704	0.06053	-3.09964
С	-5.88484	-0.5927	-0.61482
Н	-6.13774	-1.58213	-0.2184
Н	-6.15889	0.16856	
Н	-6.42876	-0.41364	-1.54057
С	1.14889	-2.00812	-0.59536

С	0.17313	-2.39565	0.16322
С	2.17741	-2.59034	-1.43332
С	2.29049	-3.99201	-1.54215
С	3.07586	-1.78036	-2.14623
С	3.28939	-4.55861	-2.32633
Н	1.59401	-4.62598	-1.00366
С	4.07477	-2.35485	-2.93013
Н	2.94495	-0.70817	-2.11516
С	4.1898	-3.74278	-3.01929
Н	3.36657	-5.63993	-2.39951
Н	4.75662	-1.71385	-3.48188
Н	4.96865	-4.18899	-3.63128
С	-0.20753	-3.57912	0.92757
С	0.77483	-4.25791	1.66811
С	-1.51608	-4.08953	0.89444
С	0.45624	-5.4283	2.35625
Н	1.78487	-3.85974	1.68937
С	-1.82741	-5.26089	1.57648
Н	-2.27672	-3.55657	0.33416
С	-0.84452	-5.93194	2.31151
Н	1.22274	-5.94383	2.9279
Н	-2.8395	-5.6532	1.53758
Н	-1.09381	-6.84336	2.84732
D	0.((22	0.40007	0.00400
Rh	0.6622	0.48886	0.28483
Rh C	2.64441	1.80444	0.10701
Rh C C	2.64441 3.74438	1.80444 1.70379	0.10701 -0.9001
Rh C C C	2.64441 3.74438 1.50061	1.80444 1.70379 2.62156	0.10701 -0.9001 -0.00212
Rh C C C C	2.64441 3.74438 1.50061 1.14162	1.80444 1.70379 2.62156 3.50933	0.10701 -0.9001 -0.00212 -1.14939
Rh C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952	1.80444 1.70379 2.62156 3.50933 2.47095	0.10701 -0.9001 -0.00212 -1.14939 1.20782
Rh C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408
Rh C C C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213
Rh C C C C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213 3.55788
Rh C C C C C C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821 2.5912	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695	$\begin{array}{c} 0.10701 \\ -0.9001 \\ -0.00212 \\ -1.14939 \\ 1.20782 \\ 1.54408 \\ 2.11213 \\ 3.55788 \\ 1.40691 \end{array}$
Rh C C C C C C C C C C C C	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821 2.5912 3.65488	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625	$\begin{array}{c} 0.10701 \\ -0.9001 \\ -0.00212 \\ -1.14939 \\ 1.20782 \\ 1.54408 \\ 2.11213 \\ 3.55788 \\ 1.40691 \\ 1.96597 \end{array}$
Rh C C C C C C C C C C H	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821 2.5912 3.65488 -2.64571	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441	$\begin{array}{c} 0.10701\\ -0.9001\\ -0.00212\\ -1.14939\\ 1.20782\\ 1.54408\\ 2.11213\\ 3.55788\\ 1.40691\\ 1.96597\\ 4.03805 \end{array}$
Rh C C C C C C C C C H H	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821 2.5912 3.65488 -2.64571 -0.37605	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402	0.10701 - 0.9001 - 0.00212 - 1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448
Rh C C C C C C C C C H H H	2.64441 3.74438 1.50061 1.14162 0.70952 -0.51896 1.45425 1.14821 2.5912 3.65488 -2.64571 -0.37605 3.33272	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402 1.62205	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 -1.90881
Rh C C C C C C C C C H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\end{array}$	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402 1.62205 0.83072	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 -1.90881 -0.72706
Rh C C C C C C C C C C H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\end{array}$	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402 1.62205 0.83072 2.59424	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 -1.90881 -0.72706 -0.86006
Rh C C C C C C C C C H H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\\ 1.59658\end{array}$	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402 1.62205 0.83072 2.59424 3.1583	0.10701 -0.9001 -0.00212 -1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 -1.90881 -0.72706 -0.86006 -2.07528
Rh C C C C C C C C C C H H H H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\\ 1.59658\\ 1.47703\end{array}$	$\begin{array}{c} 1.80444\\ 1.70379\\ 2.62156\\ 3.50933\\ 2.47095\\ 3.25829\\ 1.62286\\ 1.39795\\ 1.14695\\ 0.25625\\ -1.09441\\ -0.81402\\ 1.62205\\ 0.83072\\ 2.59424\\ 3.1583\\ 4.53622\end{array}$	0.10701 - 0.9001 - 0.00212 - 1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 - 1.90881 - 0.72706 - 0.86006 - 2.07528 - 0.94949
Rh C C C C C C C C C H H H H H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\\ 1.59658\\ 1.47703\\ 0.05884\end{array}$	$\begin{array}{c} 1.80444\\ 1.70379\\ 2.62156\\ 3.50933\\ 2.47095\\ 3.25829\\ 1.62286\\ 1.39795\\ 1.14695\\ 0.25625\\ -1.09441\\ -0.81402\\ 1.62205\\ 0.83072\\ 2.59424\\ 3.1583\\ 4.53622\\ 3.53581\end{array}$	0.10701 - 0.9001 - 0.00212 - 1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 - 1.90881 - 0.72706 - 0.86006 - 2.07528 - 0.94949 - 1.29813
Rh C C C C C C C C C C H H H H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\\ 1.59658\\ 1.47703\\ 0.05884\\ -1.12565\end{array}$	1.80444 1.70379 2.62156 3.50933 2.47095 3.25829 1.62286 1.39795 1.14695 0.25625 -1.09441 -0.81402 1.62205 0.83072 2.59424 3.1583 4.53622 3.53581 2.74101	0.10701 - 0.9001 - 0.00212 - 1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 - 1.90881 - 0.72706 - 0.86006 - 2.07528 - 0.94949 - 1.29813 2.29092
Rh C C C C C C C C C H H H H H H H H H H	$\begin{array}{c} 2.64441\\ 3.74438\\ 1.50061\\ 1.14162\\ 0.70952\\ -0.51896\\ 1.45425\\ 1.14821\\ 2.5912\\ 3.65488\\ -2.64571\\ -0.37605\\ 3.33272\\ 4.37608\\ 4.38634\\ 1.59658\\ 1.47703\\ 0.05884\end{array}$	$\begin{array}{c} 1.80444\\ 1.70379\\ 2.62156\\ 3.50933\\ 2.47095\\ 3.25829\\ 1.62286\\ 1.39795\\ 1.14695\\ 0.25625\\ -1.09441\\ -0.81402\\ 1.62205\\ 0.83072\\ 2.59424\\ 3.1583\\ 4.53622\\ 3.53581\end{array}$	0.10701 - 0.9001 - 0.00212 - 1.14939 1.20782 1.54408 2.11213 3.55788 1.40691 1.96597 4.03805 3.10448 - 1.90881 - 0.72706 - 0.86006 - 2.07528 - 0.94949 - 1.29813

Н	0.07545	1.43849	3.75428
Н	1.63323	2.17402	4.16583
Н	1.51863	0.42941	3.9061
Н	4.43555	0.85238	2.45771
Н	4.13476	-0.33204	1.18152
Н	3.24651	-0.43456	2.70921
Н	-4.64056	-0.46117	2.75601
N	-0.70546	0.66017	
C	-2.03362		-0.89574
С	-3.13	1.13243	-1.6101
С	-4.47498		-1.07614
С	-2.52502	-0.6788	3.04053
С	-1.23505		
С	-1.07947	0.00812	1.23824
С	-2.21984	0.31171	0.47766
С	-3.52181	0.17722	1.0105
С	-3.65999	-0.32877	2.31657
Н	-3.07461	1.52395	-2.61419
С	-0.23525	0.66381	-2.57269
0	0.96416	0.86682	-2.8085
С	-1.15408		
Н	-1.99939	-0.2946	
Н	-1.55064		-4.18837
Н	-0.54145	-0.15611	
N	-4.61186	0.53716	0.23215
0	-5.47037	1.41984	
		0.42017	
C	-5.96086		
Н	-6.18884	-0.6222	
H	-6.07684		1.66775
Н	-6.63916	0.77264	-0.00785
С		-1.41079	
С	0.65189	-1.82318	-0.04837
С	2.9431	-1.53637	-1.28034
С	3.95821	-2.20924	-0.56902
С	3.20957	-1.06895	-2.57823
С	5.21574	-2.39162	-1.13726
Н	3.74147	-2.59014	0.42389
С	4.46906	-1.26658	-3.14011
Н	2.43314	-0.53476	-3.11106
С	5.4767	-1.91743	-2.42543
Н	5.98897	-2.91016	-0.57752
Н	4.66574	-0.90097	-4.14397
Н	6.45793	-2.05912	-2.86934
C	-0.36196	-2.71453	0.43602
C C	-0.09925	-2.71433	0.43002 1.54979
C			
	-1.62554	-2.766	-0.17616
С	-1.08702	-4.375	2.04577

Н	0.87682	-3.47944	2.02259
С	-2.60954	-3.60797	0.33054
Н	-1.82662	-2.12843	-1.02902
С	-2.346	-4.411	1.44321
Н	-0.87675	-5.00118	2.90814
Н	-3.58801	-3.63177	-0.13986
Н	-3.1197	-5.06278	1.83859
TO			
TS _{BE}	0.00022	1 02570	1 52004
Rh	0.88832	1.03578	
C C	1.36173		
C	1.49665	3.63739	
C	0.23758	3.30716	-1.43824
C	-1.13551	3.7987	-1.77299
C	0.58852		
C	-0.30078	2.72068	1.05602
С	1.99917	2.40465	-0.14193
С	2.78324	1.93067	1.04027
С	2.44717	2.59439	
С	3.83714	2.39572	-1.99811
Н	-2.87094	0.26624	3.96326
Н	-0.69144	-0.603	3.22355
Н	1.91082	2.82334	-4.29347
Н	2.17144	4.49756	-3.79386
Н	0.53091	3.91295	-4.11967
Н	-1.39892	4.67736	-1.16963
Н	-1.88895	3.02784	-1.57205
Н	-1.21925	4.07697	-2.82661
Н	0.00399	1.98439	1.80068
Н	-1.34062	2.51211	0.79385
Н	-0.26613	3.71485	1.52377
Н	3.70055	1.41899	0.73485
Н	2.19734	1.23233	1.64545
Н	3.07124	2.77125	1.68626
Н	3.82543	1.97325	-3.00808
Н	4.41189	1.72059	-1.35789
Н	4.3786	3.35059	-2.04738
Н	-4.60929	0.88565	2.34166
Ν	-0.6293	-0.46157	-1.70562
С	-1.91165	-0.13716	-1.24722
С	-2.89156	0.22088	-2.13689
C	-4.20509	0.63366	-1.71499
C	-2.66893	0.15714	2.90098
C	-1.43889	-0.32964	
C	-1.12749	-0.45665	
C	-2.12812	-0.06919	0.17041
C C	-3.40423	0.39234	0.61071
~	5.10 (25	0.57254	0.010/1

С	-3.65781	0.5164	1.98562
Н	-2.71024	0.26724	-3.20267
С	-0.3215	-0.84549	-3.00596
0	0.73476	-0.35904	-3.44784
С	-1.11219	-1.89005	-3.73725
Н	-2.00229	-2.19124	-3.18379
Н	-1.40506	-1.5187	-4.72419
Н	-0.45665	-2.75578	-3.88622
Ν	-4.39053	0.71406	-0.31653
0	-5.11144	0.9346	-2.49431
С	-5.69719	1.16869	0.14315
Н	-6.17015	0.40789	0.77315
Н	-5.60482	2.09797	0.71614
Н	-6.3004	1.34227	-0.74565
С	0.65564	-0.82218	-0.59467
С	0.13558	-1.01727	0.69508
С	1.56494	-1.87282	-1.1535
С	1.09316	-3.1881	-1.26891
С	2.87063	-1.58549	-1.56498
С	1.91044	-4.19423	-1.78124
Н	0.08525	-3.41487	-0.93383
С	3.69813	-2.59297	-2.05696
Н	3.22841	-0.56341	-1.49076
С	3.21824	-3.89933	-2.17217
Н	1.53148	-5.20906	-1.86486
Н	4.71496	-2.35761	-2.35878
Н	3.85966	-4.68322	-2.56502
С	0.87276	-1.90838	1.62887
С	0.20905	-2.93702	2.32417
С	2.25842	-1.77901	1.82551
С	0.90109	-3.80061	3.16907
Н	-0.8609	-3.05966	2.18581
С	2.95534	-2.64829	2.66299
Н	2.79124	-0.99131	1.30524
С	2.28109	-3.6638	3.34156
Н	0.36353	-4.59155	3.6857
Н	4.02777	-2.52597	2.79044
Н	2.82195	-4.33977	3.99786
E			
Rh	0.91764	0.95325	
С	1.02789		
С	0.71436	3.88348	
С	0.18068	3.07603	
С	-1.26716	3.42728	-0.09295
С	0.93909	2.36602	0.83578
С	0.4211	2.10785	2.21567

С	2.30122	2.24656	0.41441
С	3.48051	1.84579	1.24555
С	2.31232	2.62781	-0.96486
C	3.50739	2.61246	-1.86718
Н	-3.50104	0.0286	4.25581
Н	-1.24446		
		-0.78222	3.75676
Н	1.07677	3.26662	
H	1.18682	4.87053	-2.73429
Н	-0.36284	4.01548	-2.7682
Н	-1.42047	4.20861	0.66328
Н	-1.85451	2.55645	0.22109
Н	-1.68053	3.78371	-1.03952
Н	0.89455	1.23129	2.66486
Н	-0.65607	1.93126	2.21533
Н	0.6202	2.97284	2.86366
Н	4.16347	1.18517	0.70092
Н	3.16826	1.32667	2.15459
Н	4.05892	2.72874	1.55432
Н	3.22369	2.37697	
Н	4.2434	1.87243	-1.54058
Н	3.99971	3.59487	
Н	-5.05055	0.71202	2.47436
N	-0.63109	-0.60409	-1.08824
C	-1.9465	-0.19114	-0.79134
C C	-1.9403	0.29123	-0.79134 -1.78746
C	-4.09584	0.74548	-1.51685
C	-3.18023	-0.04883	3.22012
C	-1.90822	-0.51703	
С	-1.44842	-0.62464	1.60741
С	-2.34416	-0.19211	0.57417
С	-3.6525	0.28836	0.87602
С	-4.06806	0.34535	2.21204
Н	-2.42412	0.39854	-2.81165
С	-0.24877	-0.91715	-2.43529
0	0.77104	-0.35717	-2.82677
С	-0.99814	-1.95791	-3.20658
Н	-1.99674	-2.12475	-2.80289
Н	-1.05814	-1.67377	-4.26011
Н	-0.41905	-2.88751	-3.13326
Ν	-4.48726	0.7039	-0.15625
0	-4.86715	1.1637	-2.38302
C C	-5.82957	1.17901	0.15309
Н	-6.40394	0.39832	0.66305
Н	-5.78858	2.06609	0.79539
H	-6.30159	1.43235	-0.79399
С			
	0.35598	-1.03541	-0.0587
С	-0.15294	-1.12285	1.26848

С	1.25133	-2.16138	-0.52342
С	0.72528	-3.46081	-0.53608
С	2.57456	-1.96382	-0.92362
С	1.50338	-4.53909	-0.95544
Н	-0.29531	-3.6184	-0.19767
С	3.36067	-3.04152	-1.33117
Н	2.97339	-0.95391	-0.91178
С	2.82607	-4.3305	-1.35292
Н	1.08235	-5.54064	-0.96113
Н	4.39073	-2.87379	-1.633
Н	3.43754	-5.16955	-1.67283
С	0.72355	-1.74748	2.28004
С	0.24928	-2.72492	3.17506
С	2.08828	-1.41149	2.34367
С	1.09885	-3.32511	4.10123
Н	-0.79279	-3.02498	3.12617
С	2.94069	-2.016	3.265
Н	2.47193	-0.67207	1.65208
С	2.45022	-2.97345	4.15397
Н	0.70716	-4.08186	4.77591
Н	3.9905	-1.73512	3.28985
Н	3.11181	-3.44435	4.8755

10. References

- Shibata, Y.; Tanaka, K. Catalytic [2+2+1] Cross-cyclotrimerization of Silylacetylenes and Two Alkynyl Esters to Produce Substituted Silylfulvenes. *Angew. Chem. Int. Ed.* 2011, *50*, 10917–10921.
- (2) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. One-pot Synthesis of Symmetrical and Unsymmetrical Bisarylethynes by a Modification of the Sonogashira Coupling Reaction. *Org. Lett.* **2002**, *4*, 3199–3202.
- (3) Yan, Q.; Shen, X.; Zi, G.; Hou, G. Rh-catalyzed Asymmetric Hydrogenation of α,β- and β,β-disubstituted Unsaturated Boronate Esters. *Chem. – Eur. J.* 2020, *26*, 5961–5964.
- (4) Davison, R. T.; Parker, P. D.; Hou, X.; Chung, C. P.; Augustine, S. A.; Dong, V. M. Enantioselective Addition of A-nitroesters to Alkynes. *Angew. Chem. Int. Ed.* **2021**, *60*, 4599–4603.
- (5) Okuno, Y.; Yamashita, M.; Nozaki, K. One-pot Carboboration of Alkynes Using Lithium Borylcyanocuprate and the Subsequent Suzuki-miyaura Cross-coupling of the Resulting Tetrasubstituted Alkenylborane. *Eur. J. Org. Chem.* 2011, 2011, 3951–3958.
- (6) Zubar, V.; Sklyaruk, J.; Brzozowska, A.; Rueping, M. Chemoselective Hydrogenation of Alkynes to (Z)-Alkenes Using an Air-Stable Base Metal Catalyst. Org. Lett. 2020, 22, 5423–5428.
- (7) Wang, Y.-L.; Zhang, W.-M.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Cu-catalyzed intramolecular hydroarylation of alkynes. *RCS Adv.* **2014**, *4*, 61706–61710.
- (8) Wong, V. H. L.; White, A. J. P.; Hor, T. S. A.; Hii, K. K. M. Silver-Catalyzed Cyclization of Propargylic Amides to Oxazolines. *Adv. Synth. Catal.* 2015, *357*, 3943–3948.
- (9) Boyer, P. M.; Roy, C. P.; Bielski, J. M.; Merola, J. S. Pentamethylcyclopentadienylrhodium biscarboxylates: monohapto carboxylate coordination, dihapto carboxylate coordination, and water coordination to Cp*Rh. *Inorg. Chim. Acta.* **1996**, *245*, 7–15.
- (10) Kang, J. W.; Moseley, K.; Maitlis, P. M. Pentamethylcyclopentadienylrhodium and -iridium Halides. I. Synthesis and Properties. J. Am. Chem. Soc. **1969**, *91*, 5970–5977.
- (11) Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. Microwave-Assisted Multistep Synthesis of Functionalized 4-Arylquinolin-2(1*H*)-ones Using Palladium-Catalyzed Cross-Coupling Chemistry. J. Org. Chem. 2005, 70, 3864–3870.
- (12) Yuan, H.; Yoo, W.-J.; Miyamura, H.; Kobayashi, S. A Cooperative Catalytic System of Platinum/Iridium Alloyed Nanoclusters and a Dimeric Catechol Derivative: An Efficient Synthesis of Quinazolines Through a Sequential Aerobic Oxidative Process. *Adv. Synth. Catal.* **2012**, *354*, 2899–2904.
- (13) Smith, C. J.; Ali, A.; Hammond, M. L.; Li, H.; Lu, Z.; Napolitano, J.; Taylor, G. E.; Thompson, C. F.; Anderson, M. S.; Chen, Y.; Eveland, S. S.; Guo, Q.; Hyland, S. A.; Milot, D. P.; Sparrow, C. P.; Wright, S. D.; Cumiskey, A.-M.; Latham, M.; Peterson, L. B.; Rosa, R.; Pivnichny, J. V.; Tong, X.; Xu, S. S.; Sinclair, P. J. Biphenyl-Substituted Oxazolidinones as Cholesteryl Ester Transfer Protein Inhibitors: Modifications of the Oxazolidinone Ring Leading to the Discovery of Anacetrapib. *J. Med. Chem.* 2011, 54, 4880–4895.

- (14) Adepu, R.; Rajitha, A.; Ahuja, D.; Sharma, A. K.; Ramudu, B.; Kapavarapu, R.; Parsa, K. V. L.; Pal, M. A direct access to bioactive fused N-heterocyclic acetic acid derivatives. *Org. Biomol. Chem.* 2014, *12*, 2514–2518.
- (15) Bagheri, M.; Azizi, N.; Saidi, M. R. An intriguing effect of lithium perchlorate dispersed on silica gel in the bromination of aromatic compounds by N-bromosuccinimide. *Can. J. Chem.* **2005**, *83*, 146–149.
- (16) Dooley, J. D.; Reddy Chidipudi, S.; Lam, H. W. Catalyst-Controlled Divergent C–H Functionalization of Unsymmetrical 2-Aryl Cyclic 1,3-Dicarbonyl Compounds with Alkynes and Alkenes. J. Am. Chem. Soc. 2013, 135, 10829–10836.
- (17) Dittmer, D. C.; Li, Q.; Avilov, D. V. Synthesis of Coumarins, 4-Hydroxycoumarins, and 4-Hydroxyquinolinones by Tellurium-Triggered Cyclizations. J. Org. Chem. 2005, 70, 4682–4686.
- (18) Yamamoto, Y.; Hirako, N.; Yasui, T. A Combined Experimental and Computational Study on the Palladium-Catalyzed Sequential [2+2+1] Spirocyclization/Arene C–H Activation of 4-Iodo-2-quinolones with Diphenylacetylene. *Bull. Chem. Soc. Jpn.* **2021**, *94*, 623–631.
- (19) Gaussian 16, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- (20) a) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785–789. b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 1993, *98*, 5648–5652. c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *Ab Initio* Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* 1994, *98*, 11623–11627. d) Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure. *J. Phys. Chem.* 1996, *100*, 12974–12980.
- (21) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.
- (22) Hay, P. J.; Wadt, W. R. *Ab initio* effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals *J. Chem. Phys.* **1985**, *82*, 299–310.
- (23) a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. b) Hariharan, P. C.; Pople, J. A. The Influence of Polarization

Functions on Molecular Orbital Hydrogenation Energies. *Theor. Chim. Acta* 1973, 28, 213–222. c) Fracl,
M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. *J. Chem. Phys.* 1982, 77, 3654–3665.

- (24) a) Fukui, K. The Path of Chemical Reactions The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368.
 b) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. c) Gonzalez, C.; Schlegel, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
- (25) a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* 1980, 72, 650–654. b) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. *J. Chem. Phys.* 1980, 72, 5639–5648. c) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. *J. Chem. Phys.* 1984, 80, 3265–3269. d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-row Elements, Li-f. *J. Comput. Chem.* 1983, *4*, 294–301.
- (26) a) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted*ab initio* pseudopotentials for the second and third row transition elements *Theor. Chim. Acta.* 1990, 77, 123–141. b) Martin, J. M. L.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga–kr and In–xe. *J. Chem. Phys.* 2001, *114*, 3408–3420.
- (27) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

¹³C NMR (100 MHz, CDCl₃) of S2

¹³C NMR (100 MHz, CDCl₃) of S3

¹³C NMR (100 MHz, CDCl₃) of S4

³¹P NMR (162 MHz, CHCl₃) of S4

ана и на проставите у ставление на просто и на просто на просто на проставата се ставлята на ставление и на ст На селото на проставите просто на редит раста на просто на проставата и редителита рас Спорта раста на просто на На селото на проставите проставите редите раставата на проставата и редителите проставата раста на просто на пр	ne, and the provide house the description of the second
340.0 320.0 300.0 280.0 260.0 240.0 220.0 200.0 180.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0	20.0 -20.0 -40.0 -50.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0 -200.0 -220.0 -240.0 -260.0 -280.0 -300.0 -320.0 -340.0
X : parts per Million : Phosphorus31	10.021

¹³C NMR (100 MHz, DMSO-*d*₆) of S5

¹³C NMR (100 MHz, CDCl₃) of 1b'

¹³C NMR (100 MHz, CDCl₃) of S8c

¹H NMR (400 MHz, DMSO-*d*₆) of 1c

¹³C NMR (100 MHz, DMSO-*d*₆) of 1c

¹H NMR (400 MHz, CDCl₃) of S7d

¹³C NMR (100 MHz, CDCl₃) of S7d

_

¹⁹F NMR (376 MHz, CDCl₃) of S7d

	00
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 40.0 -50.0 -60.	
	-63.63
X : parts per Million : Fluorine19	

¹H NMR (400 MHz, CDCl₃) of S8d

¹³C NMR (100 MHz, CDCl₃) of S8d

_

	3.00
	l
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60	
170.0 180.0 170.0 190.0 130.0 140.0 130.0 120.0 110.0 100.0 70.0 80.0 70.0 80.0 30.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -30.0 -80	0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -100.0 -170.0 -180.0 -190.0
	915
X : parts per Million : Fluorine 19	-63.915
A . parto par Million . 1 Romer //	

¹H NMR (400 MHz, DMSO-d₆) of 1d

¹³C NMR (100 MHz, DMSO-*d*₆) of 1d

¹H NMR (400 MHz, CDCl₃) of S7e

¹³C NMR (100 MHz, CDCl₃) of S7e

	10
	1.00
	·
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -80.0 -90.0 -100.0 -110.0	-120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0
	371
	-116.371
: parts per Million : Fluorine19	

¹H NMR (400 MHz, CDCl₃) of S8e

¹³C NMR (100 MHz, CDCl₃) of S8e

r

	0001
	u
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -10	0.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0
	- 110.624
X : parts per Million : Fluorine19	7

¹H NMR (400 MHz, DMSO-*d*₆) of 1e

¹³C NMR (100 MHz, DMSO-*d*₆) of 1e

r

¹⁹F NMR (376 MHz, CDCl₃) of 1e

	0
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0	
X : parts per Million : Fluorine 19	

¹H NMR (400 MHz, CDCl₃) of S7f

¹³C NMR (100 MHz, CDCl₃) of S7f

¹H NMR (400 MHz, CDCl₃) of S8f

¹³C NMR (100 MHz, CDCl₃) of S8f

¹H NMR (400 MHz, DMSO-*d*₆) of 1f

¹³C NMR (100 MHz, DMSO-*d*₆) of 1e

¹H NMR (400 MHz, CDCl₃) of S7g

¹³C NMR (100 MHz, CDCl₃) of S7g

¹H NMR (400 MHz, CDCl₃) of S8g

¹³C NMR (100 MHz, CDCl₃) of S8g

¹H NMR (400 MHz, DMSO-*d*₆) of 1g

¹³C NMR (100 MHz, DMSO-*d*₆) of 1g

¹H NMR (400 MHz, DMSO-*d*₆) of S10

¹³C NMR (100 MHz, DMSO-*d*₆) of S10

¹³C NMR (100 MHz, CDCl₃) of S11

¹⁹F NMR (376 MHz, CDCl₃) of S11

	3.00
	<u> </u>
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 50.0 -60.0 -70.	
- 1900 1800 1700 1800 1200 1400 1200 1200 1200 1000 900 800 700 800 200 400 200 200 100 0 -100 -200 -300 -400 -300 -600 -70	J -80.0 -90.0 -100.0 -110.0 -120.0 -150.0 -140.0 -150.0 -160.0 -1/0.0 -180.0 -190.0
	~
	-73.718
X : parts per Million : Fluorine19	n

¹H NMR (400 MHz, CDCl₃) of 1h

¹³C NMR (100 MHz, DMSO-d₆) of 1h

¹H NMR (400 MHz, CDCl₃) of 3ba

¹³C NMR (100 MHz, CDCl₃) of 3ba

¹³C NMR (100 MHz, CDCl₃) of 3bb

¹H NMR (400 MHz, CDCl₃) of 3bc

¹³C NMR (100 MHz, CDCl₃) of 3bc

¹H NMR (400 MHz, CDCl₃) of 3bf

¹³C NMR (100 MHz, CDCl₃) of 3bf

¹⁹F NMR (376 MHz, CDCl₃) of 3bf

	3.9.7
	3.00
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60	λ
X : parts per Million : Fluorine19	4.6.6 6.1.6 2.5 2.1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

¹H NMR (400 MHz, CDCl₃) of 3bf'

¹³C NMR (100 MHz, CDCl₃) of 3bf'

¹⁹F NMR (376 MHz, CDCl₃) of 3bf'

¹H NMR (400 MHz, CDCl₃) of 3bg

¹³C NMR (100 MHz, CDCl₃) of 3bg

¹H NMR (400 MHz, CDCl₃) of 3b'g

¹³C NMR (100 MHz, CDCl₃) of 3b'g

¹H NMR (400 MHz, CDCl₃) of 3bh

¹³C NMR (100 MHz, CDCl₃) of 3bh

¹H NMR (400 MHz, CDCl₃) of 3bi

¹³C NMR (100 MHz, CDCl₃) of 3bi

¹H NMR (400 MHz, CDCl₃) of 3bj

¹³C NMR (100 MHz, CDCl₃) of 3bj

r

¹⁹F NMR (376 MHz, CDCl₃) of 3bj

	3.00
	k
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.	70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0
	809
X : parts per Million : Fluorine19	- 6 3, 6 0 8
¹H NMR (400 MHz, CDCl₃) of 3bk

¹³C NMR (100 MHz, CDCl₃) of 3bk

¹H NMR (400 MHz, CDCl₃) of 3bl

¹³C NMR (100 MHz, CDCl₃) of 3bl

¹⁹F NMR (376 MHz, CDCl₃) of 3bl

De enterne de la plan enterne de la fandelante personantina en la fandela de la plante enterne de la production de la plante de la plante enterne de la plante de la p	انه سر این از مراحل میشند. از محمد مردو و زمان آخرین اور آمری از محمد میرد از باز این است ایر سام اس میشند. از م ایر از محمد این مراحل میشند از محمد ایر است و بردو و محمد موجد ایر محمد از ایر سر ایر ایر محمد میشند.
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -	
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -3	50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0
	- 112.898
X : parts per Million : Fluorine19	-

¹H NMR (400 MHz, CDCl₃) of 3bm

¹³C NMR (100 MHz, CDCl₃) of 3bm

¹H NMR (400 MHz, CDCl₃) of 3bn

¹³C NMR (100 MHz, CDCl₃) of 3bn

¹H NMR (400 MHz, CDCl₃) of 3bo

¹³C NMR (100 MHz, CDCl₃) of 3bo

¹H NMR (400 MHz, CDCl₃) of 3bp

¹³C NMR (100 MHz, CDCl₃) of 3bp

¹H NMR (400 MHz, CDCl₃) of 3bq

¹³C NMR (100 MHz, CDCl₃) of 3bq

¹H NMR (400 MHz, CDCl₃) of 3br

¹³C NMR (100 MHz, CDCl₃) of 3br

¹H NMR (400 MHz, CDCl₃) of 3bs

¹³C NMR (100 MHz, CDCl₃) of 3bs

¹H NMR (400 MHz, CDCl₃) of 3bt

¹³C NMR (100 MHz, CDCl₃) of 3bt

¹H NMR (400 MHz, CDCl₃) of 3bu

¹³C NMR (100 MHz, CDCl₃) of 3bu

¹H NMR (400 MHz, CDCl₃) of 3ca

¹³C NMR (100 MHz, CDCl₃) of 3ca

¹H NMR (400 MHz, CDCl₃) of 3da

¹³C NMR (100 MHz, CDCl₃) of 3da

¹⁹F NMR (376 MHz, CDCl₃) of 3da

	60 60	
190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.	0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -170.0 -180.0 -190.0	
	-62.717	
X : parts per Million : Fluorine19		

¹H NMR (400 MHz, CDCl₃) of 3ea

¹³C NMR (100 MHz, CDCl₃) of 3ea

¹⁹F NMR (376 MHz, CDCl₃) of 3ea

¹H NMR (400 MHz, CDCl₃) of 3fa

¹³C NMR (100 MHz, CDCl₃) of 3fa

¹H NMR (400 MHz, CDCl₃) of 3ga

¹³C NMR (100 MHz, CDCl₃) of 3ga

¹H NMR (400 MHz, CDCl₃) of 3ba'

¹³C NMR (100 MHz, CDCl₃) of 3ba'

¹H NMR (400 MHz, CDCl₃) of 4ba

¹³C NMR (100 MHz, CDCl₃) of 4ba

¹H NMR (400 MHz, CDCl₃) of 5aa

¹³C NMR (100 MHz, CDCl₃) of 5aa

¹H NMR (400 MHz, CDCl₃) of 5ba

¹³C NMR (100 MHz, CDCl₃) of 5ba

¹H NMR (400 MHz, CDCl₃) of 5ha

¹³C NMR (100 MHz, CDCl₃) of 5ha

¹H NMR (400 MHz, CDCl₃) of A

¹H NMR (400 MHz, CDCl₃) of B-Me

