Supplementary Information

New insights into H₂ activation by intramolecular Frustrated Lewis Pairs based on aminoboranes: The local electrophilicity index of boron as a suitable indicator to tune the reversibility of the process

Table of Contents

Figure S1. Gibbs free energy associated with the H_2 activated activation of the term of term o	ation employing all the possible combination	is of substituents and
linkers		S1
Figure S2. Gibbs free energy associated with the H2	activation process employing all the possi	ible combinations of
substituents and linkers. The linear fitted functions are:	$\Delta G_{linker 1} = 0.73 \Delta G_{linker 3} + 2.1; R^2 = 0$).67 for linker 1 and
$\Delta G_{linker 2} = 0.94 \Delta G_{linker 3} + 6.4; R^2 = 0.93$	for	linker
2	S2	
Figure S3. Conformational equilibrium of the aminoborane	es for each linker	S3
Table S1. Gibbs free energy in kcal/mol (at 298 K) of the in	nterconversion between the three different o	onformers. NF means
no formed. The percentage from Boltzmann distribution is	s also shown	S4

Figure S4. Relationship between ΔG° and the ratio of philicities condensed to boron and nitrogen for CH3 and Ph attached

$\Delta G^{\circ} = 24.2$	$\left(\frac{\omega_B^+}{-1}\right)^{-1} - 50.9$		$\Delta G^{\circ} = 41.0 \left(\frac{\omega_{E}}{\omega} \right)^{\circ}$	$\left(-\frac{1}{2}\right)^{-1} - 45.8$
to nitrogen. The linear fit equations are:	$\left(\omega_{N}^{-}\right)$	for CH3 (R2 = 0.95) and	$\left(\omega_{N}\right)$	for
Ph (R2 = 0.89)				S6

Table S3. Global electrophilicity, condensed-to-boron Fukui index, condensed-to-boron electrophilicity index, boronnitrogen internuclear distance, predicted Gibbs free energy change from the relation ($\Delta G_{H_2} \leftrightarrow \omega_B^+$) shown in Fig. 7a, computed Gibbs free energy change of H activation and provious experimental data for two of the experimentally tested

Figure S5. $\Delta G_{H_2} \leftrightarrow \omega_B$ relationship found in this work and in reference 33 $\Delta G_{H_2} = -80.7 \omega^{Def2} - TZVP + 22.3$

Figure S1. Gibbs free energy associated with the H_2 activation employing all the possible combinations of substituents and linkers.

Figure S2. Gibbs free energy associated with the H₂ activation process employing all the possible combinations of substituents and linkers. The linear fitted functions are: $\Delta G_{linker 1} = 0.73 \Delta G_{linker 3} + 2.1; R^2 = 0.67$ for linker 1 and $\Delta G_{linker 2} = 0.94 \Delta G_{linker 3} + 6.4; R^2 = 0.93$ for linker 2.

Figure S3. Conformational equilibrium of the aminoboranes for each linker.

LB center	LA center	FLP (gauche or Z)	Anti or E Lewis addu		FLP/ <i>anti</i> or <i>E/</i> Lewis adduct					
Linker 1										
CH₃	FMes	0.0	1.9	12.0	96/ 4/0					
Mes	C ₆ F₅	0.0	-5.9	-1.9	0/100/0					
	Linker 2									
н	CF3	0.0	-2.6	-2.2	1/ 66/33					
<i>t</i> -but	н	0.0	-7.7	-0.6	0/100/0					
<i>t</i> -but	FMes	0.0	-17.2	3.5	0/100/0					
Ph	CF₃	0.0	-8.6	5.5	0/100/0					
Linker 3										
CH₃	C ₆ F₅	C ₆ F ₅ 0.0 NF		-2.2	2/ NF/98					
CH₃	FMes	0.0	NF	16.6	100/ NF/0					
<i>t</i> -but	н	0.0	NF	-3.2	1/ NF/99					

Table S1. Gibbs free energy in kcal/mol (at 298 K) of the interconversion between the three different conformers.

 NF means no formed. The percentage from Boltzmann distribution is also shown.

Table S2. Activation Gibbs free energy and overall Gibbs free energy change for the H_2 activation process employing CH_3 and Ph in nitrogen and all substituted studied in boron. Electrophilic and nucleophilic Fukui function condensed on boron and nitrogen. respectively. are shown for each system.

LB	LA	Linker 3						
center	center	$\Delta G_{act.H_2}$	ΔG_{H_2}	f_B^+	f_N^-	ω	ω_B^+	ω_N^-
	Н	12.4	3.3	0.193	0.398	1.22	0.235	0.486
	CF ₃	12.1	-20.4	0.214	0.293	1.76	0.377	0.516
CH ₃	PF <i>t</i> B	17.2	-29.2	0.358	0.306	1.92	0.687	0.588
	C ₆ F ₅	18.7	-2.6	0.167	0.333	1.91	0.319	0.636
	FMes	25.5	-1.4	0.166	0.363	1.78	0.295	0.646
	SD						0.178	0.072
	н	11.2	17.2	0.181	0.245	1.33	0.241	0.326
	CF ₃	11.9	-6.9	0.230	0.237	1.96	0.451	0.465
Ph	PF <i>t</i> B	20.4	-17.0	0.363	0.248	2.21	0.802	0.548
	C ₆ F ₅	19.3	10.7	0.163	0.241	1.94	0.316	0.468
	FMes	26.9	11.8	0.166	0.236	1.95	0.324	0.460
	SD						0.223	0.080

SD: Standard Deviation

Figure S4. Relationship between ΔG_{H_2} and the ratio of philicities condensed to boron and nitrogen for CH₃ and Ph

 $\Delta G_{H_2} = 24.1 \left(\frac{\omega_B^+}{\omega_N^-} \right)^{-1} - 50.9$ for CH₃ (R² = 0.95) and

$$\Delta G_{H_2} = 41.0 \left(\frac{\omega_B^+}{\omega_N^-}\right)^{-1} - 45.8$$
 for Ph (R² = 0.89).

attached to nitrogen. The linear fit equations are:

Table S3. Global electrophilicity, condensed-to-boron Fukui index, condensed-to-boron electrophilicity index, boron-nitrogen internuclear distance, predicted Gibbs free energy change from the relation (${}^{\Delta G}_{H_2} \leftrightarrow \omega_B^+$) shown in Fig. 7a, computed Gibbs free energy change of H₂ activation, and previous experimental data for two of the experimentally tested intramolecular FLPs showed in Fig. 5.

System	ω	f_B^+	ω_B^+	d _{B-N}	$\begin{array}{ c c } \textbf{Predicted} \\ \Delta G_{H_2} \end{array}$	$\begin{array}{c} \textbf{Computed} \\ \Delta G_{H_2} \end{array}$	Experimental data
B(C ₆ F ₅) ₂	1.82	0.178	0.324	3.043	-10.5	-11.4	Non-reversible
N BH ₂	1.33	0.198	0.263	2.967	-0.3	-2.1	Reversible

Figure S5. $\Delta G_{H_2} \leftrightarrow \omega_B$ relationship found in this work and in reference 33 ($\Delta G_{H_2} = -80.7 \omega^{Def2} - \frac{TZVP}{B} + 22.3$).

Fig. S5 shows both fitting functions. where we can see that both are almost equivalent in the ${}^{\omega_B}$ range of 0.22 to 0.75 eV. which is the range of values analyzed in the previous work (notice that a relationship between ${}^{\omega_B}$ values at the corresponding level of theories of each case was found: ${}^{\omega_{-311}} {}^{+G(d.p)}_{B} = 0.681 \omega^{Def2} {}^{-TZVP}_{B} + 0.048$. and it was used to perform the comparison). At lower ${}^{\omega_B}$ values. the function found in this work grows faster than the linear one. tending to infinity as ${}^{\omega_B}$ tends to zero. while at larger ${}^{\omega_B}$ values. the decay of is ${}^{\Delta G}{}^{H_2}$ almost linear with a lower slope than the linear relationship. in addition. it depends on the electronic and steric nature of the substituents.