Asymmetric Friedel-Crafts reaction of unsaturated carbonyl-tethered heteroarenes via vinylogous activation of $\operatorname{Pd}^{0}-\pi$-Lewis base catalysis

Bo Jiang, ${ }^{\text {a }}$ Wu-Tao Gui, ${ }^{\text {a }}$ Hao-Tian Wang, ${ }^{\text {a Ke Xie, }}{ }^{\text {a }}$ Zhi-Chao Chen, ${ }^{\text {a }}$ Lei Zhu, ${ }^{\text {b }}$ Qin Ouyang, ${ }^{* b}$ Wei Du, ${ }^{* a}$ and Ying-Chun Chen*a,b
${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
${ }^{\mathrm{b}}$ College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China. Email: ouyangq@tmmu.edu.cn; duweiyb@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

Table of contents

1. General methods .. S2
2. Procedure for the preparation of 2-indolyl propiolates... S4
3. Optimisations for the asymmetric [3+2] annulation of 2-indolyl propiolates $\mathbf{1}$ with enone $\mathbf{2 a} . S 7$
4. Optimisations for the asymmetric [3+2] annulation of 2-indolyl propiolate $\mathbf{1 b}$ with enone $\mathbf{5 a}$........................ S8
5. Optimisations for the asymmetric Friedel-Crafts reaction of 2-alkenyl indole 7 with imine 8a S9
6. Optimisations for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrrole $\mathbf{1 0}$ with imine $\mathbf{8 a}$. S11
7. Optimisations for the asymmetric Friedel-Crafts reaction of 2-alkenyl furan 12 with 1-azadiene 13............. S13
8. General procedure for the asymmetric [3+2] or [3+4] annulations of 2-indolyl propiolates $\mathbf{1}$ with enones $\mathbf{2}$
9. General procedure for the asymmetric [3+2] annulations of 2-indolyl propiolate $\mathbf{1 b}$ with enones $\mathbf{5} \ldots \mathrm{S} 40$
10. General procedure for the asymmetric Friedel-Crafts reaction of 2-alkenyl indole 7 with imines 8............. S44
11. General procedure for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrroles $\mathbf{1 0}$ with imines $\mathbf{8} \ldots$. S63
12. General procedure for the asymmetric Friedel-Crafts reaction of 2-alkenyl furan 12 with 1-azadiene 13..... S68
13. Asymmetric reaction on a 1.0 mmol scale ... S69
14. Transformations of products ..S70
15. More investigation on substrates scope ..S76
16. X-ray crystallographic data and structural refinement..S79
17. Mechanism studies.. S87
18. NMR, HRMS spectra and HPLC chromatograms... S103
19. Computational details ... S363

1. General methods

${ }^{1} \mathrm{H}$ NMR (400 or 600 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 or 150 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker Ascend ${ }^{\mathrm{TM}} 400$ instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double doublet, $\mathrm{dt}=$ double triplet; $\mathrm{td}=$ triple doublet; $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker APEX-II CCD diffractometer, and the data obtained were deposited at the Cambridge Crystallographic Data Centre (CCDC 2251805-2251810). In each case, diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IA Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak IB Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak IC Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak ID Column $(250 \times 4.6$ $\mathrm{mm})$, Chiralpak IE Column ($250 \times 4.6 \mathrm{~mm}$), Chiralcel IF Column $(250 \times 4.6 \mathrm{~mm})$. UV detection was monitored at 254 nm . The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl_{3} solution at $25^{\circ} \mathrm{C}$. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether or dichloromethane (DCM)/methanol (MeOH). TLC was performed on glass-backed silica plates. UV light, I_{2}, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether $\left(60-90{ }^{\circ} \mathrm{C}\right)$ was redistilled. 2-Indolyl propiolate $\mathbf{1 ,}{ }^{1}$ enones $\mathbf{2},{ }^{2}$ enones $5,{ }^{3}$ 2-indolyl acrylates $7,{ }^{4}$ imines $\mathbf{8},{ }^{5}$ 2-pyrrolyl acrylates 10, ${ }^{6}$ 2-furyl acrylate $\mathbf{1 2},{ }^{7}$ 1-azadiene $\mathbf{1 3},{ }^{8} \mathbf{L 2}, \mathbf{L 3},{ }^{9}$ bifuncational chiral ligands $\mathbf{L 6}$ and $\mathbf{L 7},{ }^{10}$ were synthesized following the literature procedures.

References

1. H. K. Grover, T. P. Lebold and M. A. Kerr, Org. Lett., 2011, 13, 220.
2. (a) S. J. Deshpande, P. R. Leger and S. R. Sieck, Tetrahedron Lett., 2012, 53, 1772; (b) R. Maity
and S. C. Pan, Eur. J. Org. Chem., 2017, 871.
3. E. Li, Y. Huang, L. Liang and P. Xie, Org. Lett., 2013, 15, 3138.
4. (a) F. Sha, Y. Tao, C.-Y. Tang, F. Zhang and X.-Y. Wu, J. Org. Chem., 2015, 80, 8122; (b) K. Zhang, X. Xu, J. Zheng, H. Yao, Y. Huang and A. Lin, Org. Lett., 2017, 19, 2596.
5. (a)S. Morales, F. G. Guijarro, J. L. García Ruano and M. B. Cid, J. Am. Chem. Soc., 2014, 136, 1082; (b) H. Cai, Y. Zhou, D. Zhang, J. Xu and H. Liu, Chem. Commun., 2014, 50, 14771.
6. (a) D. G. Stark, P. Williamson, E. R. Gayner, S. F. Musolino, R. W. F. Kerr, J. E. Taylor, A. M. Z. Slawin, T. J. C. O'Riordan, S. A. Macgregor and A. D. Smith, Org. Biomol. Chem., 2016, 14, 8957; (b) D. Bensinger, D. Stubba, A. Cremer, V. Kohl, T. Waßmer, J. Stuckert, V. Engemann, K. Stegmaier, K. Schmitz and B. Schmidt, J. Med. Chem., 2019, 62, 2428.
7. A. E. Bober, J. T. Proto and K. M. Brummond, Org. Lett., 2017, 19, 1500.
8. Z. Q. Rong, M. Wang, C. H. E. Chow and Y. Zhao, Chem. Eur. J., 2016, 22, 9483.
9. B. M. Trost, D. J. Michaelis, J. Charpentier and J. Xu, Angew. Chem., Int. Ed., 2012, 51, 204.
10. (a) X.-X. Yang, R.-J. Yan, G.-Y. Ran, C. Chen, J.-F. Yue, X. Yan, Q. Ouyang, W. Du and Y.-C. Chen, Angew. Chem., Int. Ed., 2021, 60, 26762; (b) C. Chen, X.-X. Yang, Z. Zhao, B. Han, W. Du and Y.-C Chen, Chem. Commun., 2022, 58, 5502.

2. Procedure for the preparation of 2-indolyl propiolates

To a stirred solution of 1 H -indole-2-carbaldehyde ($1.45 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in DMF (10 mL) was added $\mathrm{KOH}\left(1.12 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0\right.$ equiv) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 min , and benzyl bromide ($1.42 \mathrm{~mL}, 12.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The resulting mixture was stirred at rt for 2 h before the reaction was quenched by pouring it into ice water. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water (20 mL) and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $\left.=20 / 1\right)$ to give 1-benzyl- 1 H -indole-2-carbaldehyde as a colorless oil ($2.12 \mathrm{~g}, 90 \%$ yield).

1-Benzyl- $1 H$-indole-2-carbaldehyde ($2.12 \mathrm{~g}, 9.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeOH} / \mathrm{THF}$ ($20 / 10 \mathrm{~mL}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.73 g , $27.0 \mathrm{mmol}, 3.0$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. Then dimethyl (1 -diazo-2-oxopropyl)phosphonate ($1.62 \mathrm{~mL}, 10.8 \mathrm{mmol}, 1.2$ equiv) was added by dropwise before the mixture was allowed to warm to room temperature. The mixture was stirred until completion (monitored by TLC). The reaction was quenched with water and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water (20 mL) and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=30 / 1)$ to give 1 -benzyl-2-ethynyl- $1 H$-indole as a yellow solid $(1.30 \mathrm{~g}, 62 \%$ yield).

To a solution of 1-benzyl-2-ethynyl-1H-indole ($1.30 \mathrm{~g}, 5.60 \mathrm{mmol}, 1.0$ equiv) in THF was added $n-\mathrm{BuLi}\left(2.4 \mathrm{M}, 2.80 \mathrm{~mL}, 6.72 \mathrm{mmol}, 1.2\right.$ equiv) dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred for 30 min . Methyl chloroformate ($0.63 \mathrm{~mL}, 6.7 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stirred at the same temperature for 3 h . Then the solution was warmed to room temperature, quenched with water and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=15 / 1$) to give $\mathbf{1 b}$.

Compound 1b: yellow solid, $1.32 \mathrm{~g}, 82 \%$ yield; mp 113-115 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.06(\mathrm{~m}$,

4H), $5.48(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 154.2,137.6,137.0,128.7$, 127.7, 127.0, 126.9, 125.0, 121.9, 120.9, 118.2, 113.3, 110.5, 87.4, 79.1, 52.8, 48.3; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$290.1176; Found 290.1186.

To a stirred solution of $\mathbf{1 b}(2.89 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added aqueous $\mathrm{NaOH}\left(1 \mathrm{M}, 30 \mathrm{~mL}, 30 \mathrm{mmol}, 3.0\right.$ equiv) at rt . The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 5 h . After completion, the solvent was removed in vacuo, diluted with water and acidified with aqueous HCl (1 $\mathrm{M}, 30 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude carboxylic acid $(2.56 \mathrm{~g}, 93 \%$ yield).

To a solution of carboxylic acid ($275 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.26$ $\mathrm{mL}, 2.0 \mathrm{mmol}, 2.0$ equiv) was added oxalyl chloride ($102 \mu \mathrm{~L}, 1.30 \mathrm{mmol}, 1.3$ equiv) dropwise at $0^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred for 5 min . Estrone or prochlorperazine $(1.10 \mathrm{mmol}$, 1.1 equiv) was added and the mixture was stirred at rt for 1 h . After completion, the solvent was removed in vacuo, and the residue was purified by column chromatography (SiO_{2}, petroleum ether/EtOAc $=5 / 1$) to give pure product.

Compound 11: yellow solid, $426 \mathrm{mg}, 64 \%$ yield; mp $48-49{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.54(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 6 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.74(\mathrm{~m}, 4 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H})$, $4.25(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.31(\mathrm{~m}, 10 \mathrm{H}), 1.88-$ $1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 153.6,146.4,144.4,137.6,136.9,133.1,128.7$, $127.8,127.6,127.43,127.35,127.0,126.8,125.0,124.7,123.4,122.8,122.2,121.9,120.9,118.2$, 115.8, 115.7, 113.2, 110.4, 87.5, 79.1, 63.3, 56.3, 55.4, 53.3, 53.1, 48.2, 45.3, 24.2; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}$661.2399; Found 661.2402.

Compound 1m: yellow solid, $386 \mathrm{mg}, 73 \%$ yield; $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.21 (m, 6H), 7.20-7.10 (m, 4H), 6.95 (dd, $J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=9.3,4.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=18.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.36(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 220.7, 152.5, 148.1, 138.3, 138.1, 137.8, 137.0, 128.8, 127.8, 127.1, 127.0, 126.6, 125.4, 122.1, $121.5,121.1,118.7,118.0,114.1,110.6,87.5,81.6,50.5,48.4,48.0,44.2,38.0,35.9,31.6,29.4,26.3$, 25.8, 21.6, 13.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Na}^{+} 550.2353$; Found 550.2359 .

3. Optimisations for the asymmetric [$3+2$] annulations of 2 - indolyl propiolates $\mathbf{1}$ with enone

 2aTable S1. Ligand screenings for the asymmetric [3+2] annulation of 2-indolyl propiolate 1a with enone $2 \mathbf{a}^{a}$

$42 \%,-21 \%$ ee

$48 \%,-53 \%$ ee

NR

$37 \%, 82 \%$ ee

30% conv., 86% ee

30% conv., 79% ee

NR

$73 \%, 30 \%$ ee

$50 \%, 59 \%$ ee
${ }^{a}$ Reactions were carried out with $\mathbf{1 a}(0.025 \mathrm{mmol}), \mathbf{2 a}(0.03 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathbf{L}(10 \mathrm{~mol} \%)$ in toluene $(0.25 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ under Ar.

Table S2. Other condition screenings for the asymmetric [3+2] annulations of 2-indolyl propiolates 1 with enone $2 \mathrm{a}^{a}$

		$\frac{-\mathrm{CO}_{2} \mathrm{H}}{-\mathrm{OH}}$				
Entry	$\mathrm{R}^{1}, \mathrm{R}^{2}$			Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{b}$ (conv.)	ee (\%) ${ }^{c}$
1	Me, Me	1	Toluene	60	3a, 68	89
2	Me, Me	A3	Toluene	60	3a, (80)	89
3	Me, Me	A2	Toluene	60	3a, (60)	88
4	Me, Me	A4	Toluene	60	3a, 52	89
5	Me, Me	A1	Toluene	60	3a, 49 (90)	90
6	Me, Me	A5	Toluene	60	3a, nr	/

7	Me, Me	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Toluene	60	3a, 61	86
8	Me, Me	DIPEA	Toluene	60	3a, 42	89
9	Me, Me	TBAB	Toluene	60	3a, 86	86
10	Me, Me	1	EtOAc	60	3a, 46	81
11	Me, Me	1	MeCN	60	3a, 93	30
12	Me, Me	1	$i-\mathrm{PrOH}$	60	3a, 91	65
13	Me, Me	/	1,4-Dioxane		3a, 81	89
14	Me, Me	TBAB	1,4-Dioxane		3a, 89	84
15	Me, i - Pr	TBAB	1,4-Dioxane		3ah, 51	79
16	Me, Bn	TBAB	1,4-Dioxane		3ai, 48	89
17	Bn, Me	TBAB	1,4-Dioxane		3b, 70	91
18	Bn, Me	1	1,4-Dioxane		3b, 49	92
19	Bn, Me	TBAB	1,4-Dioxane		3b, 70	91
20	Bn, Me	TBAB	1,4-Dioxane		3b, 69	89
$21^{\text {d }}$	Bn, Me	TBAB	1,4-Dioxane		3b, 81	92
$22^{\text {d,e }}$	Bn, Me	TBAB	1,4-Dioxane		3b, 86	92
$23^{\text {d,e }}$	Bn, Me	TBAI	1,4-Dioxane		3b, 81	91
$24^{\text {d,e }}$	Bn, Me	TBAC	1,4-Dioxane		3b, 76	92
$25^{\text {d,e }}$	Bn, Me	TBAHS	1,4-Dioxane		3b, 79	90
$26^{\text {d,e }}$	Bn, Me	KBr	1,4-Dioxane		3b, 52	92

${ }^{a}$ Unless noted otherwise, reactions were carried out with 1 (0.025 mmol), 2a (0.03 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L 1}(10 \mathrm{~mol} \%)$ and additive $\mathbf{A}(20 \mathrm{~mol} \%)$ in solvent $(0.25 \mathrm{~mL})$ at $60{ }^{\circ} \mathrm{C}$ under Ar. ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d} C=0.2 \mathrm{M} .{ }^{e}$ The ratio of $\mathbf{1 b} / \mathbf{2 a}$ was $1 / 1.3$.

4. Optimisations for the asymmetric [3+2] annulation of 2-indolyl propiolate 1 b with enone 5 a

Table S3. Screenings for the asymmetric [3+2] annulation of 2-indolyl propiolate $\mathbf{1 b}$ with enone $5 \mathbf{a r}^{a}$

Entry	A	Solvent	$\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)^{b}$	ee $(\%)^{c}$
1^{d}	$/$	MeCN	70	62	$/$
2	$/$	MeCN	70	60	42
3	$/$	Toluene	70	84	90
4	1	1,4-Dioxane	70	80	89
5	$/$	MeOH	70	99	3

6	$/$	DCE	70	65	69
7^{e}	$/$	Toluene	70	81	90
8^{e}	TBAB	Toluene	70	76	89

${ }^{a}$ Unless noted otherwise, reactions were carried out with $\mathbf{1 b}(0.025 \mathrm{mmol}), \mathbf{5 a}(0.03 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L 1}(10 \mathrm{~mol} \%)$ and additive $\mathbf{A}(20 \mathrm{~mol} \%)$ in solvent $(0.125 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ under Ar. ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ With $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%) .{ }^{e}$ On a 0.1 mmol scale.

5. Optimisations for the asymmetric Friedel-Crafts reaction of 2-alkenyl indoles 7 with imine

 8aTable S4. Ligand screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl indole 7k with imine 8a ${ }^{a}$

NR

NR

NR

$52 \%, 40 \%$ ee
${ }^{a}$ Reactions were carried out with $7 \mathbf{k}(0.025 \mathrm{mmol}), \mathbf{8 a}(0.05 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathbf{L}(10 \mathrm{~mol} \%)$ in toluene $(0.25 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 24 h under Ar .

Table S5. Ligand screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl indole 7a with imine 8a ${ }^{a}$

${ }^{a}$ Reactions were carried out with $7 \mathbf{a}(0.025 \mathrm{mmol}), \mathbf{8 a}(0.05 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L}(10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(10.0$ $\mathrm{mg})$ in toluene $(0.25 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 60 h under Ar .

Table S6. Other condition screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl indole 7a with imine 8a ${ }^{a}$

Entry	A ($\mathrm{mol} \%$)	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	A3 (30)	Toluene	60	92	70
2	A1 (30)	Toluene	60	95	86
3	A6 (30)	Toluene	60	57	87
4	A7 (30)	Toluene	60	60	45
5	A2 (30)	Toluene	60	93	0
6	A4 (30)	Toluene	60	71	93
7	A1 (10)	Toluene	60	90	85
8	A1 (10)	Toluene	50	94	90
9	A1 (10)	Toluene	40	62	92

10	A1 (5)	Toluene	50	90	92
11	$\mathbf{A 1}(5)$	THF	50	32	92
12	$\mathbf{A 1}(5)$	CHCl $_{3}$	50	65	87
13	$\mathbf{A 1}(5)$	Xylene	50	93	92
14	$\mathbf{A 1}(5)$	PhCF $_{3}$	50	97	67

${ }^{a}$ Unless noted otherwise, reactions were carried out with 7a (0.025 mmol), 8a $(0.05 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L 5}(10 \mathrm{~mol} \%)$, additive $\mathbf{A}(\mathrm{mol} \%)$ and $4 \AA \mathrm{MS}(10.0 \mathrm{mg})$ in solvent $(0.25$ mL) at $60{ }^{\circ} \mathrm{C}$ for 60 h under Ar. ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase.

6. Optimisations for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrrole 10 with imine 8a

At first, substrate 10d with an N-methyl group was employed for the Friedel-Crafts reaction with 8a under palladium catalysis. After extensive screenings, only low conversions and poor enantioselectivity were attained. Therefore, some other substrates were tested as well (see Table S7).

Table S7. Ligand screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrrole 10d with imine 8a ${ }^{a}$

39%, 21\% ee

NR

$10 \%, 23 \%$ ee

NR

$30 \%, 15 \%$ ee

${ }^{a}$ Reactions were carried out with $\mathbf{1 0 d}(0.05 \mathrm{mmol}), \mathbf{8 a}(0.05 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L}(10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(20.0$ $\mathrm{mg})$ in toluene $(0.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 60 h under Ar .

It was found that substrate 10a with a free NH group underwent the desired reaction smoothly in combination with ligands derived from trans-1,2-diphenylaminoethanol. It was assumed that the NH of 10a might interact with the ligands via H -bonding, and the NH of the ligands might also activate imine via H -bonding interaction.

Table S8. Ligand screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrrole 10a with imine 8a ${ }^{a}$

${ }^{a}$ Reactions were carried out with $\mathbf{1 0 a}(0.03 \mathrm{mmol}), \mathbf{8 a}(0.025 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L}(20 \mathrm{~mol} \%), \mathbf{A 3}(10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(10.0 \mathrm{mg})$ in toluene $(0.25 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for 48 h under Ar .

Table S9. Other condition screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrrole $10 a$ with imine $8 a^{a}$

8	$\mathbf{A 2}$	$1 / 1$	Toluene	82	98
9^{d}	$\mathbf{A 2}$	$1 / 1$	Toluene	74	97

${ }^{a}$ Unless noted otherwise, reactions were carried out with 10a $(0.03 \mathrm{mmol}), 8 \mathbf{8}(0.025 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L 6}(10 \mathrm{~mol} \%)$, additive $\mathbf{A}(10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(10.0 \mathrm{mg})$ in solvent $(0.25$ $\mathrm{mL})$ at $50{ }^{\circ} \mathrm{C}$ for 48 h under Ar. ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ Performed on a 0.1 mmol scale for 60 h .

7. Optimisations for the asymmetric Friedel-Crafts reaction of $\mathbf{2}$-alkenyl furan 12 with 1azadiene 13

Table S10. Ligand screenings for the asymmetric Friedel-Crafts reaction of 2-alkenyl furan 12 with 1azadiene $\mathbf{1 3}^{a}$

${ }^{a}$ Reactions were carried out with $\mathbf{1 2}(0.1 \mathrm{mmol}), \mathbf{1 3}(0.05 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$, and $\mathbf{L}(10 \mathrm{~mol} \%)$ in toluene $(0.5$ mL) at $50^{\circ} \mathrm{C}$ for 36 h under Ar.

8. General procedure for the asymmetric [3+2] or [3+4] annulations of 2-indolyl propiolates

 1 with enones 2

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1 ($0.10 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2}$ (0.13 mmol , 1.3 equiv) or enone $\mathbf{2 h}(0.15 \mathrm{mmol}, 1.5$ equiv), TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and back-filled three times with argon, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then heated to $60^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give product $\mathbf{3}$ or $\mathbf{4}$. Racemic $\mathbf{3}$ or $\mathbf{4}$ was obtained under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ in MeCN (0.5 mL).

Methyl (E)-2-((1S,2R)-2-benzoyl-2-cyano-4-methyl-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate 1a ($22.7 \mathrm{mg}, 0.106 \mathrm{mmol}, 1.0$ equiv), enone 2a (30.3 $\mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=30 / 10 / 1$) to give product 3a: 39.7 mg , as a yellow solid, 89% yield; >19:1 dr; >19:1 E/Z; mp 81-83 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-26.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 84 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=13.39 \mathrm{~min}, \mathrm{t}($ minor $)=22.12 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.95(\mathrm{dd}, J=7.2$ $\mathrm{Hz}, 1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (dd, $J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.98(\mathrm{~m}$, $2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $189.9,165.8,147.3,145.6,140.2,136.4,134.4,133.3,130.9,129.7,129.2,128.8,128.6,128.4,126.0$,
$122.2,121.0,120.8,117.0,110.3,108.4,68.5,53.7,51.6,31.3$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 469.1523$; Found 469.1519.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-

 dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3b): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2a (30.3 $\mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-8 / 1$) to give product $\mathbf{3 b}$: 44.8 mg , as a yellow solid, 86% yield; >19:1 dr; >19:1 E/Z; mp 93-94 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-10.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $15.21 \mathrm{~min}, \mathrm{t}($ minor $)=24.49 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.55 (dd, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (d, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=7.9,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, 2H), $5.06(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.7, 165.7, 146.6, 145.5, $140.1,136.3,136.2,134.3,133.3,131.4,129.6,129.2,129.0,128.9,128.7,128.4,128.0,126.3,125.9$, 122.5, 121.3, 121.1, 116.8, 110.7, 109.0, 68.7, 53.5, 51.5, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$545.1836; Found 545.1841.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(3-methoxy
phenyl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3c): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 b}$ ($34.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand L1 ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room
temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3c: 49.1 mg , as a yellow solid, 89% yield; $>19: 1 \mathrm{dr}$; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 100-102{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-6.4(c=$ 0.25 , in CHCl_{3}); 92% ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \mathrm{PrOH} / n \mathrm{Hexane}=$ 20/80, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=15.08 \mathrm{~min}, \mathrm{t}($ minor $)=26.63 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.94(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.34-$ 7.25 (m, 3H), 7.20-7.13 (m, 3H), 7.06 (ddd, $J=8.0,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (ddd, $J=8.3,2.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.55$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.8,165.7,159.6,146.6,145.5,140.1,137.9,136.3$, $134.4,133.3,131.4,129.7,129.2,129.1,128.4,128.0,126.3,125.9,122.5,121.9,121.3,121.2,116.9$, 115.2, 114.5, 110.7, 109.0, 68.5, 55.2, 53.5, 51.6, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$575.1942; Found 575.1940.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-methoxy
phenyl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3d):
An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2c ($39.4 \mathrm{mg}, 0.149 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 96 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3d: 34.9 mg , as a yellow solid, 63% yield; >19:1 dr; >19:1 E/Z; mp 108$109^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+34.6\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 89 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=20.11 \mathrm{~min}, \mathrm{t}($ minor $)=37.53$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J$ $=8.2,6.8 \mathrm{~Hz}, 7 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{ddd}, J=8.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.14(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 189.8, 165.7, 159.9, 146.7, 145.5, 139.9, 136.3, 134.3, 133.3, 131.8, 130.8, 129.2, 129.1, 128.4, $128.2,128.0,126.3,125.9,122.5,121.2,121.1,117.0,114.1,110.7,109.0,68.9,55.2,53.1,51.5$,

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-fluoro phenyl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3e): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2 d ($32.6 \mathrm{mg}, 0130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3e: 45.6 mg , as a yellow solid, 84% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z}$; mp $112-$ $114{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+36.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \operatorname{PrOH} / n H$ exane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=11.19 \mathrm{~min}, \mathrm{t}($ minor $)=16.97$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.88(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.43-$ 7.27 (m, 7H), 7.24-7.19 (m, 2H), 7.19-7.15 (m, 2H), 7.14-7.04 (m, 4H), $6.15(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H})$, 5.06 (s, 1H), 3.55 (s, 3H).; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.5,165.7,163.1$ (d, $J=246.6$ $\mathrm{Hz}), 146.3,145.5,140.0,136.2,134.2,133.4,132.1,131.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.9,129.2,128.9,128.4$, $128.1,126.4,125.9,122.3,121.4,121.0,116.8,115.8(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 110.8,109.3,68.8,52.7,51.6$, 47.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-112.64$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$563.1742; Found 563.1742.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-1-(2-chlorophenyl)-2-cyano-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3f): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathbf{e}\left(40.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB $(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room
temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 96 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3f: 33.2 mg , as a yellow solid, 60% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z}$; $\mathrm{mp} 102-104{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-22.2(c=$ 0.25 , in CHCl_{3}); 65% ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=$ 20/80, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=13.47 \mathrm{~min}, \mathrm{t}($ minor $)=21.42 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.93-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.31$ (m, 9H), 7.28 (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=3.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18$ (s, $1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.3,165.6$, $146.5,145.5,140.0,136.2,134.6,134.3,134.2,133.3,131.9,131.8,130.0,129.7,129.3,129.1,128.3$, 128.1, 127.2, 126.4, 125.9, 122.1, 121.4, 120.8, 117.0, 110.7, 109.4, 68.2, 51.6, 48.9, 47.9; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 579.1446\left({ }^{35} \mathrm{Cl}\right)$, $580.1480\left({ }^{37} \mathrm{Cl}\right)$; Found $579.1447\left({ }^{35} \mathrm{Cl}\right), 580.1471\left({ }^{37} \mathrm{Cl}\right)$.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-1-(3-chlorophenyl)-2-cyano-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3g): An

 oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathbf{f}$ ($34.8 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $3 \mathrm{~g}: 46.3 \mathrm{mg}$, as a yellow solid, 83% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / Z ; \mathrm{mp} 106-108{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+26.0(c=$ 0.1 , in CHCl_{3}); 95% ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \mathrm{PrOH} / n \mathrm{Hexane}=$ 20/80, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.40 \mathrm{~min}, \mathrm{t}($ minor $)=16.89 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.90(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.36-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.0,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}$, $1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.4,165.7$, $146.1,145.5,140.2,138.5,136.1,134.5,134.1,133.5,130.4,130.0,129.7,129.3,129.2,129.0,128.5$, 128.1, 127.8, 126.4, 125.9, 122.3, 121.5, 120.9, 116.7, 110.8, 109.3, 68.4, 52.9, 51.6, 47.9; HRMS(ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 579.1446\left({ }^{35} \mathrm{Cl}\right)$, $580.1480\left({ }^{37} \mathrm{Cl}\right)$; Found $579.1449\left({ }^{35} \mathrm{Cl}\right), 580.1475\left({ }^{37} \mathrm{Cl}\right)$.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-nitrophenyl) -1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3h): An ovendried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2 g ($36.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), ligand L1 ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB (6.4 mg , $0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=8 / 1-4 / 1$) to give product $3 \mathrm{~h}: 40.2 \mathrm{mg}$, as a yellow solid, 71% yield; $10: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 136-138{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}$ $=+16.1\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 89 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=21.73 \mathrm{~min}, \mathrm{t}($ minor $)=35.46$ min]; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.55$ (m, 1H), 7.43-7.35 (m, 9H), $7.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 189.1, 165.7, 148.2, 145.6, 145.5, 143.7, 140.3, 136.0, 133.9, 133.6, 130.5, 129.3, 129.2, 128.8, 128.5, 128.2, 126.7, 125.8, 124.0, 122.1, 121.8, 120.7, 116.4, 111.0, 109.8, 68.5, 52.6, 51.7, 48.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}^{+}$590.1687; Found 590.1688.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3i): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathrm{~h}\left(36.8 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting
solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=8 / 1-4 / 1$) to give product $3 \mathrm{i}: 56.1 \mathrm{mg}$, as a white solid, 98% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 119-$ $121^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+62.0\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=13.09 \mathrm{~min}, \mathrm{t}($ minor $)=22.11$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=9.0,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.79-7.73 (m, 2H), 7.59-7.54 (m, 1H), 7.52-7.47 (m, 2H), 7.43-7.35 (m, 5H), 7.37-7.27 (m, 3H), 7.20 (dd, $J=7.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (ddd, $J=8.0,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}$, 1H), $5.61(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.7, 165.7, $146.6,145.5,140.1,136.3,134.3,133.9,133.5,133.3,133.2,131.5,129.24,129.15,128.6,128.4$, $128.1,128.0,127.8,126.8,126.5,126.30,126.28,125.9,122.5,121.3,121.1,117.0,110.7,109.1$, 68.4, 53.7, 51.6, 47.9; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 595.1993$; Found 595.2001 .

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(thiophen-2-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3j): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathbf{i}\left(31.1 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand L1 ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $\mathbf{3 j}: 46.7 \mathrm{mg}$, as a yellow solid, 88% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 87-89^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-4.8(c=0.25$, in CHCl_{3}); 91% ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=15.46 \mathrm{~min}, \mathrm{t}($ minor $)=25.33 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=7.9,6.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.7, 165.7, 146.6, 145.5, 140.1, 136.33, 136.25, 134.2, 133.3, 131.4, 129.6, 129.2, 129.0, 128.9,

Methyl (E)-2-((1R,2R)-2-benzoyl-4-benzyl-2-cyano-1-(pyridin-3-yl)-1,4-dihydrocyclopenta $[b]$ indol-3(2H)-ylidene)acetate (3 k): An ovendried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 j}$ ($30.4 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 72 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1-3 / 1$) to give product $\mathbf{3 k}$: 34.2 mg , as a yellow solid, 65% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / Z ; \mathrm{mp} 105-107^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+2.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 91% ee, determined by HPLC analysis [Chiralpak column IB, $i \operatorname{PrOH} / n H$ exane $=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=24.50 \mathrm{~min}, \mathrm{t}($ minor $)=37.80 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $8.67(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ 7.52 (m, 2H), 7.44-7.30 (m, 8H), 7.20-7.14 (m, 2H), 7.10-7.06 (m, 2H), 6.18 (s, 1H), 5.61 (s, 2H), $5.07(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.2,165.7,150.5,150.3,146.0$, $145.5,140.2,137.0,136.1,134.1,133.5,132.5,129.9,129.3,128.9,128.5,128.1,126.5,125.8,123.7$, 122.1, 121.6, 120.7, 116.8, 110.9, 109.5, 68.4, 51.7, 50.8, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}$546.1789; Found 546.1780.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(2-methylbenzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (31): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 k}$ ($32.1 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then
at $60{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 31: 43.8 mg , as a yellow solid, 82% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 107-109{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+12.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 90% ee, determined by HPLC analysis [Chiralpak column IB, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=11.42 \mathrm{~min}, \mathrm{t}($ minor $)=14.81 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.69-7.63 (m, 1H), 7.42-7.28 (m, 10H), $7.26(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 191.6,166.0,147.1,145.5,140.6,140.3,136.8,136.2,133.5$, $132.4,131.9,131.8,129.7,129.2,128.8,128.7,128.2,128.0,126.2,125.9,124.6,122.5,121.2,121.1$, 116.9, 110.7, 108.5, 69.3, 53.9, 51.7, 47.9, 21.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$559.1993; Found 559.1992.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(3-methoxybenzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3m): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999$ $\mathrm{mmol}, 1.0$ equiv), enone $2 \mathbf{2 l}\left(34.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $\mathbf{3 m}: 47.5 \mathrm{mg}$, as a yellow solid, 86% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 93-95{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+8.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n \mathrm{Hexane}=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=13.85 \mathrm{~min}, \mathrm{t}($ minor $)=16.79 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.45-7.37 (m, 2H), 7.35-7.27 (m, 6H), 7.25 (dt, $J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13-$ 7.08 (m, 2H), 7.03 (dd, $J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (ddd, $J=8.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (s, 1H), 5.51 $(\mathrm{s}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.4,165.8$, $159.5,146.7,145.5,140.0,136.4,136.2,135.4,131.5,129.7,129.3,129.2,128.9,128.7,128.0,126.3$, $125.9,122.4,121.4,121.3,121.1,120.3,116.9,113.5,110.7,108.9,68.6,55.3,53.6,51.6,47.9 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$575.1942; Found 575.1941.

Methyl

(E)-2-((1S,2R)-4-benzyl-2-cyano-2-(4-methoxy benzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)ylidene)acetate (3n): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2 -indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 m}(34.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $3 \mathrm{n}: 48.8 \mathrm{mg}$, as a yellow solid, 88% yield; >19:1 dr; >19:1 E/Z; mp $162-$ $163{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+6.7\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IA}, i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=27.80 \mathrm{~min}, \mathrm{t}($ minor $)=30.85$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) \delta 7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{ddd}, J=7.9,6.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.2,165.6,163.6,146.7,145.5,140.1,136.5,136.3,131.6$, $131.5,129.7,129.2,128.8,128.7,128.0,126.8,126.2,125.9,122.5,121.2,121.1,117.2,113.7,110.7$, 109.1, 68.4, 55.5, 53.6, 51.5, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ 575.1942; Found 575.1944.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(4-fluorobenzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(30): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999$ mmol, 1.0 equiv), enone 2 n ($32.6 \mathrm{mg}, 0.130 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 30: 50.3 mg , as a
yellow solid, 93% yield; $>19: 1 \mathrm{dr}$; $>19: 1 \mathrm{E} / \mathrm{Z}$; mp $107-109^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-26.0\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 88% ee, determined by HPLC analysis [Chiralpak column IB, $i \operatorname{PrOH} / n H e x a n e=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=12.54 \mathrm{~min}, \mathrm{t}($ minor $)=23.05 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.99-7.93 (m, 2H), 7.43-7.36 (m, 6H), 7.36-7.30 (m, 2H), 7.23 (dd, J=7.5, 2.1 Hz, 2H), 7.19$7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, $3.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.3,165.8,165.7(\mathrm{~d}, J=254.5 \mathrm{~Hz}), 146.6$, $145.6,140.0,136.2,131.9(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 131.5,130.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.6,129.3,129.0,128.7$, 128.1, 126.4, 125.9, 122.4, 121.3, 121.1, 116.8, 115.7, 115.5, 110.7, 108.9, 68.3, 53.6, 51.6, 47.9; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$-104.17; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$563.1742; Found 563.1752.

Methyl (E)-2-((1S,2R)-4-benzyl-2-(2-chlorobenzoyl)-2-cyano-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3p): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 20 ($34.8 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1$ ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $\mathbf{3 p}: 49.7 \mathrm{mg}$, as a yellow solid, 89% yield; $>19: 1 \mathrm{dr}$; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 99-101^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+140.8\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 90% ee, determined by HPLC analysis [Chiralpak column IB, $i \operatorname{PrOH} / n H e x a n e=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=9.82 \mathrm{~min}, \mathrm{t}($ minor $)=15.11 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 8.33 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (dd, $J=8.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01$ $(\mathrm{m}, 3 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.7, 166.2, 145.9, 145.5, 140.3, 137.0, 136.2, 135.3, 132.3, 131.3, 131.0, 130.8, 129.2, 129.1, 128.7, $128.6,128.0,126.6,126.32,126.25,125.9,122.5,121.2,121.1,116.4,110.7,108.4,69.5,52.0,51.8$, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 579.1446\left({ }^{35} \mathrm{Cl}\right), 580.1480$ $\left({ }^{37} \mathrm{Cl}\right)$; Found $579.1447\left({ }^{35} \mathrm{Cl}\right)$, $580.1478\left({ }^{37} \mathrm{Cl}\right)$.

Methyl (E)-2-((1S,2R)-4-benzyl-2-(3-chlorobenzoyl)-2-cyano-1-phenyl-1,4-dihydrocyclopenta $[b]$ indol- $3(2 H)$-ylidene)acetate (3q): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 p}$ ($34.8 \mathrm{mg}, 0.130 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60{ }^{\circ} \mathrm{C}$ for 36 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $\mathbf{3 q}: 46.3 \mathrm{mg}$, as a yellow solid, 83% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 98-99^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-6.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=13.81 \mathrm{~min}, \mathrm{t}($ minor $)=32.35 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}$, $10 \mathrm{H}), 7.22$ (s, 1H), 7.20-7.15 (m, 2H), 7.11 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=8.0,6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.15(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.5$, $165.9,146.4,145.6,139.9,136.2,136.1,135.9,134.7,133.2,131.4,129.63,129.58,129.3,129.2$, $129.0,128.8,128.0,126.9,126.4,125.8,122.4,121.3,121.1,116.6,110.7,108.8,68.5,53.6,51.7$, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 579.1446\left({ }^{35} \mathrm{Cl}\right), 580.1480$ $\left({ }^{37} \mathrm{Cl}\right)$; Found $579.1452\left({ }^{35} \mathrm{Cl}\right), 580.1483\left({ }^{37} \mathrm{Cl}\right)$.

Methyl (E)-2-((1S,2R)-2-(2-naphthoyl)-4-benzyl-2-cyano-1-
phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3r): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999$ mmol , 1.0 equiv), enone $\mathbf{2 q}\left(36.8 \mathrm{mg}, 0.130 \mathrm{mmol}\right.$, 1.3 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash
chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $3 \mathrm{r}: 53.8 \mathrm{mg}$, as a yellow solid, 94% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 85-87^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+64.0\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 86 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=11.81 \mathrm{~min}, \mathrm{t}($ minor $)=14.74 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 8.48 (dd, $J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $J=8.5,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{ddd}, J=8.1,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.17(\mathrm{~m}$, $2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.9,6.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 191.6,166.0,147.0,145.5,140.3,136.8,136.3$, $134.2,133.2,131.70,131.66,130.8,129.6,129.3,128.8,128.6,128.5,128.0,127.9,127.6,126.5$, 126.3, 126.2, 125.9, 123.4, 122.5, 121.3, 121.2, 116.9, 110.7, 108.6, 69.8, 54.0, 51.7, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$595.1993; Found 595.1998.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(furan-2-carbonyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3s): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathbf{r}$ ($29.0 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1$ $(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{TBAB}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product $3 \mathrm{~s}: 46.1 \mathrm{mg}$, as a yellow solid, 90% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 82-84{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-60.6\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n \mathrm{Hexane}=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=17.84 \mathrm{~min}, \mathrm{t}($ minor $)=25.72 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.09$ (dt, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=8.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H})$, $5.60(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 178.0,165.8,149.2$, $147.5,145.50,145.47,140.2,136.4,136.3,131.3,129.6,129.2,128.9,128.6,128.5,128.0,126.2$, 126.0, 122.4, 121.2, 121.1, 120.8, 116.5, 112.5, 110.7, 109.0, 67.3, 54.0, 51.7, 47.9; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$535.1629; Found 535.1627.

Methyl (E)-2-((1S,2R)-1-(benzofuran-2-yl)-2-benzoyl-4-benzyl-2-cyano-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3t): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}$ ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2s ($35.5 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3t: 43.9 mg , as a yellow solid, 78% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z}$; mp $109-$ $110^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+18.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 98 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=13.48 \mathrm{~min}, \mathrm{t}($ minor $)=24.29$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.04$ (ddd, $J=8.1,6.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.6,165.7,155.5,152.8,145.9,145.4,140.2,136.1,134.4,133.4,129.3,128.5,128.1$, 127.93, 127.87, 126.3, 125.9, 124.8, 123.0, 122.4, 121.5, 121.4, 120.9, 116.6, 111.5, 110.8, 109.2, 107.5, 66.6, 51.7, 48.0, 47.7; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 585.1785$; Found 585.1792.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-oxo-4H-chromen-3-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3u): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone $2 t$ ($39.1 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6$ $\mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum
ether/EtOAc $=10 / 1-4 / 1$) to give product 3u: 51.5 mg , as a yellow solid, 87% yield; $>19: 1 \mathrm{dr} ;>19: 1$ $E / Z ; \mathrm{mp} 99-100{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-96.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 97 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=21.50$ $\min , \mathrm{t}($ major $)=44.83 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.31-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ (s, 1H), 7.70 (ddd, $J=8.7,7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48$ (m, 1H), 7.49-7.43 (m, 2H), 7.43-7.29 (m, 8H), 7.21-7.07 (m, 3H), 6.16 (s, 1H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.7, 176.0, 165.4, 156.8, 156.4, 145.9, 145.5, 140.3, $136.1,134.0,134.0,133.2,129.3,129.2,129.0,128.2,128.1,126.5,126.4,125.8,125.6,123.7,121.8$, 121.6, 121.3, 120.7, 118.3, 117.4, 111.0, 110.0, 69.2, 51.4, 47.9, 42.3; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$613.1734; Found 613.1739.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(cyclopropanecarbonyl)-1-phenyl-1,4-dihydrocyclopenta $[b]$ indol- $3(2 H)$-ylidene)acetate (3v): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 u}\left(29.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min . then at $80^{\circ} \mathrm{C}$ for 72 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product $3 \mathrm{v}: 39.4 \mathrm{mg}$, as a yellow solid, 81% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 86-$ $87^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-8.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 85 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{IB}, i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=9.74 \mathrm{~min}, \mathrm{t}($ minor $)=13.65$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04$ (ddd, $J=8.0,6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{tt}, J=7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddt}, J=9.1,4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 1 \mathrm{H})$, 1.21-1.15 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 199.8, 165.8, 145.4, 145.1, 140.4, 137.0, $136.2,131.4,129.2,129.1,128.80,128.77,127.9,126.1,125.9,122.4,121.2,121.0,116.7,110.7$, 108.7, 69.9, 53.9, 51.6, 47.9, 18.4, 13.9, 12.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$509.1836; Found 509.1830.

Methyl (S,E)-2-(10-benzyl-4-cyano-5-phenyl-3-(trifluoromethyl)-5,10-dihydro-1H-oxepino[3,4-b]indol-1-ylidene)acetate (4a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 v}(33.8 \mathrm{mg}$, $0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 24 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=20 / 1$) to give product 4a: 28.6 mg , as a yellow oil, 56% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;[\alpha]^{25} \mathrm{D}=-$ $48.0\left(c=0.25\right.$, in CHCl_{3}); 87% ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=5.52 \mathrm{~min}, \mathrm{t}($ major $)=6.47 \mathrm{~min}]$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.71(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33$ (ddd, $J=8.4,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 9 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 2 \mathrm{H})$, $5.17(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 164.2,154.6,149.3$ $(\mathrm{q}, ~ J=35.0 \mathrm{~Hz}), 138.0,137.5,136.7,128.8,128.7,127.8,127.7,126.8,126.3,125.2,125.0,124.4$, 121.3, 120.5, 118.9, 118.3 (q, $J=275.8 \mathrm{~Hz}$), 115.6, 111.4, 109.2, 103.0, 51.8, 48.0, 41.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-67.79$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$ 537.1397; Found 537.1395.

Methyl (S,E)-2-(10-benzyl-4-cyano-5-(p-tolyl)-3-(trifluoromethyl)-5,10-dihydro-1H-oxepino[3,4-b]indol-1-ylidene)acetate (4b): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 w}$ (35.8 $\mathrm{mg}, 0.150 \mathrm{mmol}$, 1.5 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 24 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to give product $\mathbf{4 b}$: 30.4 mg , as a yellow oil, 57% yield; $>19: 1 \mathrm{E} / Z ;[\alpha]^{25}{ }_{\mathrm{D}}=-10.9\left(c=1.52\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis
[Chiralpak column ID, $i \mathrm{PrOH} / n$ Hexane $=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=5.89 \mathrm{~min}$, t (major) $=8.07 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.87$ $(\mathrm{s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 164.3,154.7,149.2$ (q, $J=35.4 \mathrm{~Hz}$), 137.6, 137.5, 136.8, $135.0,129.4,128.8,127.8,126.8,126.3,125.3,125.0,124.5,121.3,120.6,119.0,118.3$ (q, $J=275.7$ $\mathrm{Hz}), 115.7,111.4,109.1,103.4,51.9,48.1,41.4,21.0 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-67.81$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 551.1553$; Found 551.1559.

Methyl (S,E)-2-(10-benzyl-5-(4-chlorophenyl)-4-cyano-3-(trifluoro methyl)-5,10-dihydro- 1 H -oxepino $[3,4-b]$ indol-1-ylidene)acetate (4c):

 An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \times\left(38.8 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 24 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to give product $4 \mathrm{c}: 23.3 \mathrm{mg}$, as a yellow oil, 43% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;[\alpha]^{25}{ }_{\mathrm{D}}=-14.9\left(c=1.16\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n$ Hexane $=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=5.43 \mathrm{~min}$, t (major) $=7.18 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=$ $8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (ddd, $J=8.4,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~s}$, $1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 164.2,154.3,149.6$ (q, $J=35.6 \mathrm{~Hz}$), 137.6, 136.59, 136.55, 133.7, 128.9, $128.8,128.3,127.8,126.3,125.4,124.8,124.4,121.4,119.8,118.8,118.2$ ($q, J=275.9 \mathrm{~Hz}$), 115.5 , 111.5, 109.5, 102.5, 51.9, 48.1, 41.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$-67.83; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 571.1007\left({ }^{35} \mathrm{Cl}\right)$, $572.1041\left({ }^{37} \mathrm{Cl}\right)$; Found $571.1016\left({ }^{35} \mathrm{Cl}\right), 572.1046\left({ }^{37} \mathrm{Cl}\right)$

Methyl (S,E)-2-(10-benzyl-4-cyano-5-(naphthalen-2-yl)-3-(trifluoro methyl)-5,10-dihydro- $1 H$-oxepino[3,4-b]indol-1-ylidene)acetate (4d):

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2 y ($41.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then stirred at $60^{\circ} \mathrm{C}$ for 24 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to give product $4 \mathrm{~d}: 31.0 \mathrm{mg}$, as a yellow oil, 55% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;[\alpha]^{25}{ }_{\mathrm{D}}=+91.3\left(c=1.38\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n$ Hexane $=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ minor $)=6.83 \mathrm{~min}, \mathrm{t}($ major $)=10.43 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.83-7.71(\mathrm{~m}, 3 \mathrm{H})$, 7.63 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{dd}, J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.94-$ $6.83(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}$, 3 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 164.3,154.8,149.4(\mathrm{q}, J=35.3 \mathrm{~Hz}), 137.7,136.7,135.2$, $133.1,132.6,128.84,128.77,128.0,127.8,127.5,126.4,126.33,126.32,125.7,125.3,125.0,124.9$, 124.6, 121.4, 120.0, 119.0, 118.3 (q, $J=275.7 \mathrm{~Hz}$), 115.8, 111.5, 109.0, 103.2, 51.8, 48.0, 41.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$-67.81; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$587.1553; Found 587.1562.

Methyl (S,E)-2-(10-benzyl-4-cyano-5-(thiophen-2-yl)-3-(trifluoro methyl)-5,10-dihydro- $1 H$-oxepino[3,4-b]indol-1-ylidene)acetate (4e): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathrm{z}\left(34.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 30 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to give product $4 \mathrm{e}: 25.5 \mathrm{mg}$, as a yellow oil, 49% yield; >19:1 E / Z;
$[\alpha]^{25}=42.6\left(c=1.27\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n \mathrm{Hexane}=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=6.88 \mathrm{~min}, \mathrm{t}($ major $)=8.63 \mathrm{~min}] ;$ ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.62(\mathrm{dt}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.21 (m, 1H), 7.17-7.10(m,5H), 6.86-6.70 (m, 4H), 5.92(s, 1H), $5.40(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $164.2,154.3,149.8(\mathrm{q}, J=35.4 \mathrm{~Hz}), 141.7,137.4,136.7,128.9,127.8,126.9,126.4,126.0,125.7$, 125.3, 124.7, 124.4, 121.4, 119.8, 118.9, 118.3 (q, $J=276.0 \mathrm{~Hz}$), 115.2, 111.5, 110.2, 101.9, 52.0, 48.2, 38.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-67.86$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$543.0961; Found 543.0966.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-8-methoxy-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta $[b]$ indol-3(2H)-ylidene) acetate (3w): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1c $(31.9 \mathrm{mg}$, $0.0999 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathrm{~h}(42.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3 w : 48.3 mg , as a yellow solid, 80% yield; $>19: 1$ $\mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 140-141^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+112.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $17.86 \mathrm{~min}, \mathrm{t}($ minor $)=34.82 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.85-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, 2 H), $5.25(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.8,165.9$, 154.6, 146.9, 146.5, 138.9, 136.3, 134.2, 133.30, 133.26, 133.2, 132.2, 129.3, 129.2, 128.9, 128.6, $128.42,128.36,128.0,127.8,127.7,127.5,127.2,126.4,126.0,125.9,117.5,114.2,107.9,103.3$, 101.1, 68.0, 55.0, 54.4, 51.5, 48.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ 625.2098; Found 625.2088.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-7-methoxy-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3x):

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 d}(31.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2a ($30.3 \mathrm{mg}, 0.130 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand L1 ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $\mathbf{3 x}: 50.8 \mathrm{mg}$, as a yellow solid, 92% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 102-104{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-8.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 91% ee, determined by HPLC analysis [Chiralpak column IB, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=22.03 \mathrm{~min}, \mathrm{t}($ minor $)=35.29 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22$ (m, 3H), 7.16 (dd, $J=7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ $(\mathrm{s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 189.7, 165.7, 154.9, 146.5, 140.8, 140.3, 136.4, 136.2, 134.3, 133.3, 130.5, 129.6, 129.2, 129.0, 128.9, 128.7, 128.4, 128.0, 125.8, 122.8, 117.1, 116.8, 111.6, 108.7, 101.8, 68.8, 55.7, 53.4, 51.5, 48.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$575.1942; Found 575.1948.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-6-methoxy-
1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(3y): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 e}(31.9 \mathrm{mg}, 0.0999$ $\mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 a}\left(30.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $3 \mathrm{y}: 52.8 \mathrm{mg}$, as a
yellow solid, 95% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 105-107^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-26.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 86% ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=40.89 \mathrm{~min}, \mathrm{t}($ minor $)=52.68 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (dd, $J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 189.7,165.9,159.7,146.9,146.4,139.2,136.4,136.2,134.3,133.2$, $132.0,129.6,129.2,129.0,128.8,128.6,128.3,128.0,125.9,122.0,116.9,116.8,111.8,107.1,93.6$, 68.8, 55.6, 53.4, 51.4, 47.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 575.1942$; Found 575.1945.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-7-chloro-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)

 acetate (3z): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $1 \mathrm{f}(32.3 \mathrm{mg}$, $0.0997 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 h}(42.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 30 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 3z: 39.0 mg , as a yellow solid, 64% yield; >19:1 $\mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 131-132{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+16.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=$ $18.01 \mathrm{~min}, \mathrm{t}($ minor $)=39.70 \mathrm{~min}]$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}$, 2H), 7.45-7.39 (m, 4H), 7.36 (dd, $J=8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27$ (m, 3H), 7.19 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 189.7, 165.6, 146.4, 143.7, 141.2, 135.8, 134.3, 133.61, 133.58, 133.5, 133.2, 130.5, 129.4, $129.3,129.2,128.8,128.5,128.24,128.15,127.9,127.2,126.8,126.64,126.60,126.5,125.8,123.3$, 120.2, 116.9, 111.9, 110.0, 68.1, 53.7, 51.7, 48.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for$\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 629.1603\left({ }^{35} \mathrm{Cl}\right), 630.1636\left({ }^{37} \mathrm{Cl}\right)$; Found $629.1603\left({ }^{35} \mathrm{Cl}\right), 630.1636\left({ }^{37} \mathrm{Cl}\right)$.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-6-chloro-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene) acetate (3aa): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 g}$ (32.3 mg , $0.0997 \mathrm{mmol}, 1.0$ equiv), enone $2 \mathrm{~h}(42.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 30 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product 3aa: 34.5 mg , as a yellow solid, 57% yield; >19:1 $\mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 138-140^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+27.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $14.77 \mathrm{~min}, \mathrm{t}($ minor $)=33.84 \mathrm{~min}]$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.86 (dd, $J=8.8,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.48$ (m, 2H), 7.45-7.35 (m, 6H), 7.27 (dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ (d, $J=1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 189.7, 165.6, 146.3, 145.7, 140.8, 135.7, 134.3, 133.7, 133.5, 133.4, 133.2, 132.4, 131.3, 129.4, $129.22,129.17,128.7,128.5,128.2,128.1,127.9,126.7,126.6,126.4,125.8,122.3,121.8,121.0$, 116.9, 110.8, 109.5, 68.2, 53.6, 51.7, 48.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 629.1603\left({ }^{35} \mathrm{Cl}\right), 630.1636\left({ }^{37} \mathrm{Cl}\right)$; Found $629.1601\left({ }^{35} \mathrm{Cl}\right), 630.1628\left({ }^{37} \mathrm{Cl}\right)$.

Phenyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3ab): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 h}(35.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2h ($42.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ mmol, $5 \mathrm{~mol} \%$), ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was
repeated three times, and degassed 1,4 -dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and then purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1)$ to give product 3ab: 39.4 mg , as a yellow solid, 62% yield; >19:1 dr; >19:1 $E / Z ; \mathrm{mp} 100-101{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+72.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n \mathrm{Hexane}=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=13.43$ $\min , \mathrm{t}($ minor $)=17.00 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.10$ (dd, $J=14.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H})$, $5.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.4,163.8,150.2,148.1,145.8,140.1,136.2$, $134.2,133.9,133.5,133.4,133.2,132.4,129.3,129.3,129.23,129.19,128.6,128.4,128.1,127.9$, $126.8,126.6,126.5,126.3,126.0,125.7,122.5,121.5,121.44,121.42,121.2,116.8,110.8,108.5$, 68.4, 53.8, 48.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$657.2149; Found 657.2152.

Benzyl
 (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3ac): An oven-dried

 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate $\mathbf{1 i}$ ($36.5 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2a (30.3 $\mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ EtOAc $=10 / 1-6 / 1$) to give product 3ac: 48.6 mg , as a yellow solid, 81% yield; >19:1 dr; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 88-89^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+2.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=21.62 \mathrm{~min}, \mathrm{t}($ minor $)=26.97 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.91-7.85(\mathrm{~m}$, $2 H), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{dd}, J=6.7$, $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{ddd}, J=8.0,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ $(\mathrm{s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.6, 165.4,$147.0,145.5,140.1,136.4,136.2,135.5,134.3,133.2,131.7,129.7,129.2,129.1,128.9,128.7$, $128.45,128.39,128.3,128.2,128.0,126.3,126.0,122.5,121.3,121.1,116.9,110.8,108.9,68.7,66.4$, 53.5, 47.9; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 621.2149$; Found 621.2148 .

(E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-dihydro cyclopenta[b]indol-3(2H)-ylidene)-N,N-dimethylacetamide (3ad): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolamide $\mathbf{1 j}(30.2 \mathbf{~ m g}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2a ($30.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand L1 ($6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=3 / 1-1 / 1$) to give product 3ad: 41.9 mg , as a yellow solid, 78% yield; $>19: 1 \mathrm{dr}$; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 132-134{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-22.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 97% ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=11.66 \mathrm{~min}, \mathrm{t}($ major $)=16.46 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.89 (dd, $J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.5,164.9$, $145.1,143.0,141.1,136.8,136.8,135.0,132.6,129.6,129.3,129.2,129.0,128.6,128.5,128.0,127.9$, 125.52, 125.46, 122.6, 121.0, 120.9, 117.4, 110.1, 109.7, 68.3, 53.5, 47.7, 36.8, 35.5; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}$558.2152; Found 558.2147.

(1S,2R,E)-2-benzoyl-4-benzyl-3-(2-morpholino-2-oxoethylidene)-1-
(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta $[b]$ indole-2carbonitrile (3ae): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolamide $\mathbf{1 k}(34.4 \mathrm{mg}$, $0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 h}(42.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$ and TBAB $(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was then
evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80{ }^{\circ} \mathrm{C}$ for 24 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=3 / 1-1 / 1$) to give product 3ae: 45.1 mg , as a yellow solid, 72% yield; $>19: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 145-147{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+2.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 97% ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=14.49 \mathrm{~min}, \mathrm{t}($ major $)=17.03 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) $7.89(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H})$, 7.43 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=8.0,6.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (ddd, $J=13.6,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.3$, $163.9,145.2,143.6,141.0,137.1,134.7,134.2,133.5,133.2,132.8,129.30,129.27,129.0,128.9$, $128.5,128.2,128.1,127.84,127.79,126.9,126.3,126.2,125.7,125.5,122.7,121.2,121.0,117.3$, 110.1, 109.6, 68.3, 66.7, 66.4, 53.6, 47.6, 45.8, 42.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{+} 650.2415$; Found 650.2421.

2-(4-(3-(2-chloro-10H-phenothiazin-10-yl) propyl)piperazin-1-yl)ethyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4dihydrocyclopenta $[b]$ indol-3(2 H)-ylidene)
acetate (3af): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 11 ($66.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone 2a ($30.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=3 / 1-1 / 1$) to give product 3af: 50.1 mg , as a yellow solid, 56% yield; 9:1 dr; >19:1 E / Z; mp 73-75 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-10.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=13.32 \mathrm{~min}, \mathrm{t}$ (minor)
$=18.42 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{ddd}, J=7.9,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.23(\mathrm{~m}, 12 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 189.6,165.4,146.7,146.5,145.5,144.5,140.1,136.34,136.28,134.4,133.22,133.18,131.5$, $129.6,129.2,129.1,128.9,128.7,128.3,128.0,127.8,127.5,127.4,126.3,125.9,124.7,123.5,122.9$, $122.5,122.2,121.3,121.1,116.8,115.81,115.79,110.8,109.2,68.7,62.1,56.3,55.4,53.5,53.2$, 53.1, 47.9, 45.3, 29.7, 24.2, 1.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{55} \mathrm{H}_{49} \mathrm{ClN}_{5} \mathrm{O}_{3} \mathrm{~S}^{+}$ 894.3240; Found 894.3237.

(8R,9S,13S, 14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta $[a]$ phenanthren-3-yl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(3ag): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate $\mathbf{1 m}$ ($52.7 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 a}$ ($30.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and TBAB ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4 -dioxane $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 72 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product 3ag: 39.1 mg , as a yellow solid, 51% yield; $16: 1 \mathrm{dr} ;>19: 1 \mathrm{E} / \mathrm{Z}$; mp $148-$ $150{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+2.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; determined by H-NMR analysis; ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm}) 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 11 \mathrm{H}), 7.24-7.20$ $(\mathrm{m}, 3 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{ddd}, J=8.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dd}$, $J=18.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$, $0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 220.9,189.2,164.0,148.0,147.8,145.7,140.1$, $137.7,137.2,136.3,136.2,134.1,133.3,132.2,129.6,129.3,129.2,128.9,128.7,128.3,128.1,126.6$, $126.1,126.0,122.5,121.5,121.4,121.2,118.6,116.6,110.8,108.6,68.7,53.5,50.4,48.0,47.9,44.1$, $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 783.3194$; Found 783.3189.

9. General procedure for the asymmetric [3+2] annulations of 2 -indolyl propiolate 1 b with enones 5

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1 ($0.10 \mathrm{mmol}, 1.0$ equiv), enone 5 (0.12 mmol , 1.2 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}$, $5 \mathrm{~mol} \%)$ and ligand $\mathbf{L 1}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and back-filled three times with argon, then degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $70^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$ for 72 h . After completion, the crude product was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give product 6. Racemic 6 was obtained under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{MeCN}(0.5 \mathrm{~mL})$ as solvent.

Methyl (S,E)-2-(4-benzyl-1',3'-dioxo-1-phenyl-1, 1', 3',4-tetrahydro$3 H$-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)acetate (6a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), enone $5 \mathbf{5}$ ($28.1 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $70^{\circ} \mathrm{C}$ for 72 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product 6a: 42.3 mg , as a yellow solid, 81% yield; >19:1 E/Z; mp 213-215 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+40.0$ ($c=0.25$, in CHCl_{3}); 90% ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}$ $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=10.88 \mathrm{~min}, \mathrm{t}($ major $)=13.15 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.5$,
$1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16-$ 7.07 (m, 1H), 7.09-7.02 (m, 2H), 7.03-6.94 (m, 2H), 6.18 ($\mathrm{s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 197.3, 196.3, 166.6, 145.7, 145.0, 142.8, 142.5, 141.9, $136.6,135.9,134.9,134.6,132.5,129.6,129.1,128.0,127.8,127.7,126.1,125.5,123.1,122.7,122.6$, 121.0, 120.7, 110.7, 107.5, 77.2, 54.7, 51.2, 48.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}$546.1676; Found 546.1676.

Methyl (S,E)-2-(4-benzyl-1-(4-methoxyphenyl)-1',3'-dioxo-1, 1',3',4-tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)
acetate ($\mathbf{6 b}$): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b $(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone $\mathbf{5 b}$ ($31.7 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $80^{\circ} \mathrm{C}$ for 72 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product $\mathbf{6 b}: 38.6 \mathrm{mg}$, as a yellow solid, 70% yield; >19:1 E/Z; mp 218-220 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+90.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=19.31$ \min , t (major) $=27.07 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.06(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29$ (m, 3H), $7.28-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, J=8.0,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H})$, $5.59(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 197.4, $196.5,166.7,158.9,145.8,145.1,142.6,142.6,141.9,136.6,134.9,134.6,132.9,130.7,129.1$, $127.83,127.75,126.1,125.5,123.1,122.8,122.6,121.0,120.7,113.1,110.6,107.5,77.3,55.1,54.1$, 51.2, 48.0; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}^{+} 576.1782$; Found 576.1791.

Methyl (S,E)-2-(4-benzyl-1-(4-cyanophenyl)-1',3'-dioxo-1,1',3',4-tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)
acetate ($\mathbf{6 c}$): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone 5 c ($31.1 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min . then at $70^{\circ} \mathrm{C}$ for 72 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product $\mathbf{6 c}$: 51.1 mg , as a yellow solid, 93% yield; >19:1 $E / Z ; \mathrm{mp} 151-152{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+139.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 87 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=23.66$ \min , t (major) $=29.42 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.08(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.83 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.32-7.26 (m, 2H), 7.25-7.20 (m, 2H), 7.06-6.93 (m, 3H), $6.20(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 196.6,195.9,166.6,145.0,144.9,143.0,142.2$, $142.0,141.7,136.3,135.3,135.1,130.7,130.3,129.1,127.9,126.1,125.8,123.3,122.8,122.2,121.1$, 120.5, 118.5, 111.6, 110.9, 108.0, 76.8, 54.0, 51.4, 48.0; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$571.1629; Found 571.1639.

Methyl
($\boldsymbol{S}, \boldsymbol{E}$)-2-(4-benzyl-1',3'-dioxo-1-(pyridin-4-yl)-1,1',3',4-tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene) acetate (6d): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone $5 \mathbf{5 d}\left(28.2 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L 1}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $70^{\circ} \mathrm{C}$ for 72 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=5 / 1-2 / 1$) to give product $\mathbf{6 d}$: 45.8 mg , as a yellow solid, 87% yield; $>19: 1$ E/Z; mp $95-96{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+29.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 80 \%$ ee, determined by HPLC analysis
[Chiralpak column ID, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (minor) $=27.86$ $\min , \mathrm{t}($ major $)=36.82 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.35-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21$ (m, 2H), 7.05-6.99 (m, 2H), 6.79-6.56 (m, 2H), 6.20 (s, 1H), 5.60 (s, 2H), 4.83 (s, 1H), 3.35 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 196.6,195.8,166.6,149.4,145.5,145.0,143.1,142.3,141.6$, $136.4,135.3,135.1,130.5,129.1,128.5,127.9,126.1,125.8,124.5,123.3,122.9,122.2,121.1,120.5$, $110.8,107.9,76.7,53.3,51.3,48.0$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$ 547.1629; Found 547.1627.

Methyl
(S,E)-2-(4-benzyl-1-(furan-2-yl)-1',3'-dioxo-1,1',3',4-tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene) acetate ($\mathbf{6 e}$): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone $5 \mathbf{5 e}\left(26.9 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $70^{\circ} \mathrm{C}$ for 96 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-5 / 1)$ to give product $6 \mathrm{e}: 29.2 \mathrm{mg}$, as a yellow solid, 57% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 108-109{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}=-26.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 94 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=31.31 \mathrm{~min}, \mathrm{t}$ (major) $=47.23$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}$, $1 \mathrm{H}), 5.93(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 197.1,195.8,166.6,149.9,145.97,145.96,142.5,142.3,142.2,141.8,136.5,134.9,134.7$, 129.6, 129.1, 127.8, 126.1, 125.6, 123.4, 122.7, 122.6, 120.9, 120.8, 110.7, 110.6, 110.1, 107.8, 75.9, 51.3, 48.1, 47.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+} 536.1469$; Found 536.1469.

Methyl
(S,E)-2-(4-benzyl-1-cyclohexyl-1',3'-dioxo-1,1',3',4-
tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)
acetate ($\mathbf{6 f}$): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate $\mathbf{1 b}(28.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), enone $5 f\left(28.8 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(6.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $90^{\circ} \mathrm{C}$ for 96 h . After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-3 / 1$) to give product $\mathbf{6 f}$: 16.3 mg , as a yellow solid, 31% yield; >19:1 $E / Z ; \mathrm{mp} 110-112{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+94.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 81 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=10.89$ $\min , \mathrm{t}($ major $)=13.21 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.18-7.09 (m, 3H), $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{dd}, J=26.8,13.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.96$ (ddd, $J=17.0,8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 0.44-0.30 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 197.8,195.4,166.7,145.7,144.7,142.91$, $142.89,140.6,136.7,135.4,134.9,132.3,129.0,127.7,126.0,125.1,123.8,123.7,123.2,122.2$, 120.6, 110.6, 106.3, 75.1, 55.1, 51.1, 47.8, 41.1, 34.2, 28.7, 27.1, 26.1, 26.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}^{+}$552.2146; Found 552.2155.

10. General procedure for the asymmetric Friedel-Crafts reaction of $\mathbf{2}$-alkenyl indole 7 with imines 8

An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7 ($0.10 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8}$ ($0.20 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}\right)_{3}(4.6$ $\mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5$ $\mathrm{mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at
room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ (monitored by TLC analysis). After completion, $\mathrm{Et}_{2} \mathrm{O}$ (3 mL) was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product 9 (The E-products 9 would be converted to the corresponding Z-isomers upon flash chromatography on silica gel, and a mixture of products was generally obtained). Racemic 9 was obtained under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and using $\mathbf{A 3}(30 \mathrm{~mol} \%)$ as an acidic additive.

($\boldsymbol{R}, \boldsymbol{E}$)-4-methyl- \boldsymbol{N}-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(phenyl)methyl)benzenesulfonamide (9a): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{a}$ ($26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}$ (51.8 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 4 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product 9a: 44.6 mg , as a yellow solid, 86% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; $\mathrm{mp} 203-$ $205^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-16.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=16.31 \mathrm{~min}, \mathrm{t}($ major $)=$ $28.02 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=8.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.7$, 142.7, 140.0, $138.5,137.6,136.7,133.1,133.0,131.2,128.73,128.72,128.6,128.5,127.7,127.2,126.9,125.8$, 124.9, 124.2, 120.6, 120.3, 116.6, 109.7, 54.1, 30.6, 21.3.; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$543.1713; Found 543.1722.

(R, E) N -((5-chloro-1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9b): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{b}$ ($29.5 \mathrm{mg}, 0.0997 \mathrm{mmol}, 1.0$ equiv), N sulfonylimine $\mathbf{8 a}\left(51.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA$ MS $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $\mathbf{9 b}: 34.8 \mathrm{mg}$, as a yellow solid, 63% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 168-16{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-12.8\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 98 \%$ ee, determined by HPLC analysis [Chiralpak column IC, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=12.28 \mathrm{~min}, \mathrm{t}($ minor $)=15.56 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.84-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, 3 H), $2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.6, 142.9, 139.6, 137.4, 136.6, 136.5, $134.3,133.2,130.8,128.9,128.7,128.6,128.5,128.0,127.2,126.9,126.8,126.1,126.0,124.3,119.6$, 115.5, 110.6, 54.1, 30.8, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$ $577.1324\left({ }^{35} \mathrm{Cl}\right)$; $578.1357\left({ }^{37} \mathrm{Cl}\right)$; Found $577.1327\left({ }^{35} \mathrm{Cl}\right)$; $578.1363\left({ }^{37} \mathrm{Cl}\right)$.

(R, E)- N-((5-methoxy-1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)1 H -indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9c): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{c}(29.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N sulfonylimine $8 \mathbf{~ a ~ (~} 51.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}$ ($6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room
temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with $\mathrm{DCM}(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product $9 \mathrm{c}: 51.7 \mathrm{mg}$, as a yellow solid, 94% yield; $>19: 1 \mathrm{E} / Z ; \mathrm{mp} 96-98{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-12.8\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=19.33 \mathrm{~min}, \mathrm{t}($ minor $)=30.61 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.81(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19$ $(\mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, \mathrm{J}=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.70(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.8,154.5,142.8,140.0,137.7,136.7,134.1$, 133.2, 133.1, 131.4, 128.8, 128.7, 128.6, 128.5, 127.7, 127.3, 126.9, 126.2, 124.2, 116.2, 115.3, 110.5, 101.0, 55.7, 54.0, 30.8, 21.4; HRMS (ESI-TOF) m/z: [M + Na] $]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+} 573.1819$; Found 573.1823.

($\boldsymbol{R}, \boldsymbol{E}$)- N -((1,6-dimethyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9d): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{d}$ ($27.5 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}$ (51.8 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$, A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product 9d: 48.2 mg , as a yellow solid, 90% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; mp $174-176^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}=-$ $11.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 94 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=10.42 \mathrm{~min}, \mathrm{t}$ (major) $=15.82$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}$,
$3 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.7, 142.7, 140.0, 139.1, 137.7, 136.6, 134.6, 133.0, 132.4, 131.4, 128.7, 128.6, 128.5, 127.6, 127.2, 126.9, 123.9, 123.7, 122.5, 120.0, 117.0, 109.5, 54.0, 30.6, 22.0, 21.3; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$557.1870; Found 557.1878.

(R, E)- N -((1,7-dimethyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1 \boldsymbol{H}-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9e): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7 e ($27.5 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}$ (51.8 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$, A1 $(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product 9e: 41.6 mg , as a yellow solid, 78% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 179-180^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-$ 6.4 ($c=0.25$, in CHCl_{3}); 97% ee, determined by HPLC analysis [Chiralpak column AD, $i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=13.19 \mathrm{~min}, \mathrm{t}($ major $)=15.37$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.84(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (t, J = 7.4 Hz, 1H), 7.36-7.51 (m, 4H), 7.34-7.24 (m, 5H), 7.20-7.09 (m, 2H), $6.92(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H})$, 2.24 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.7,142.7,140.1,137.9,137.6,136.7,134.4$, $133.2,131.6,128.8,128.7,128.59,128.58,127.7,127.23,127.18,126.9,126.5,125.6,121.5,120.7$, 118.4, 116.5, 54.0, 33.9, 21.4, 20.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$ 557.1870; Found 557.1875.

(R,E)-N-((2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl1 H -indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9f): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathrm{f}(27.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $8 \mathbf{a}$ ($51.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA$ MS $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ mL). The cake was collected and dissolved in DCM. The mixture was filtered again and wished with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathrm{f}: 46.8 \mathrm{mg}$, as a yellow solid, 87% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 149-150{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-36.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 98 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ minor $)=14.13 \mathrm{~min}, \mathrm{t}($ major $)=25.79 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.86(\mathrm{dd}, J=8.8$, $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.18$ (m, $3 \mathrm{H}), 7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 187.1, $165.7(\mathrm{~d}, J=253.7 \mathrm{~Hz}), 142.7,139.9,138.4,136.6,133.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.9,131.3(\mathrm{~d}, J=21.6$ $\mathrm{Hz}), 131.1,128.7,128.6,127.7,127.2,126.8,125.8,124.5,124.2,120.6,120.3,116.5,115.8(\mathrm{~d}, \mathrm{~J}=$ 21.7 Hz), 109.7, 54.1, 30.5, 21.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-104.83$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+} 561.1619$; Found 561.1626.

(R,E)-N-((2-(3-(3,4-dimethoxyphenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-indol-3-yl)(phenyl)methyl)-4-methylbenzene
sulfonamide ($\mathbf{9 g}$): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $\mathbf{7 g}$ ($32.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $8 \mathbf{~ (~} 51.8 \mathrm{mg}, 0.200$ mmol, 2.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene $(1.0 \mathrm{~mL})$ was added via syringe.

The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 5 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product 9 g: 54.2 mg , as a yellow solid, 93% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 201-202^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-25.6$ ($c=0.25$, in CHCl_{3}); 93% ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}$ $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=19.41 \mathrm{~min}, \mathrm{t}($ major $)=28.93 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 3 \mathrm{H})$, 7.34 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.15$ (m, 2H), 6.96 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.55(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 186.9,153.5,149.2$, $142.6,140.0,138.3,136.7,133.4,130.7,130.5,128.6,128.5,127.6,127.2,126.7,125.6,125.1,123.9$, 123.2, 120.4, 120.1, 115.7, 110.7, 110.2, 109.6, 56.1, 56.0, 54.1, 30.4, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}^{+}$603.1925; Found 603.1931.

(R, E)-4-methyl- N-((1-methyl-2-(3-(naphthalen-1-yl)-3-oxoprop-1-en-1-yl)-1H-indol-3-yl)(phenyl)methyl)benzenesulfonamide (9h):

An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathrm{~h}(31.1 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), N-sulfonylimine $\mathbf{8 a}$ ($51.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}$ $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 $\times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathrm{~h}: 38.4 \mathrm{mg}$, as a yellow solid, 67% yield; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 86-87^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+16.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (minor) $=23.38 \mathrm{~min}, \mathrm{t}($ major $)=32.11 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.35-$
$7.22(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 193.6$, $142.7,139.7,138.8,136.7,136.3,133.9,132.7,132.3,132.0,130.5,129.0,128.6,128.5,127.8,127.7$, $127.6,127.1,126.8,126.6,125.6,125.5,124.6,124.4,120.6,120.3,117.4,109.7,53.9,30.9,21.3$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$593.1870; Found 593.1874.

(R,E)-N-((2-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-

 indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9i): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2 -alkenyl indole $7 \mathbf{i}(25.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N sulfonylimine $8 \mathbf{~ (~} 51.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 5 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product 9i: 45.5 mg , as a yellow solid, 89% yield; >19:1 E / Z; mp 189 $191^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-41.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 97 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=13.63 \mathrm{~min}, \mathrm{t}($ major $)=$ $25.66 \mathrm{~min}]$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.73(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 176.5,153.3,147.0,142.7,139.9$, $138.6,136.6,132.8,130.3,128.6,127.6,127.1,126.8,125.5,124.3,124.2,120.5,120.3,118.3,116.9$, 112.6, 109.6, 54.0, 30.6, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$ 533.1506; Found 533.1512.

(R,E)-4-methyl- N-((1-methyl-2-(3-oxobut-1-en-1-yl)-1H-indol-3-yl) (phenyl)methyl)benzenesulfonamide (9j): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{j}$ ($19.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}(51.8 \mathrm{mg}$, $0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$, A1 $(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 7 d . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $9 \mathbf{j}$: 38.9 mg , as a yellow solid, 85% yield; $E / Z=16: 1 ; \mathrm{mp} 117-118{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-20.8$ ($c=0.25$, in CHCl_{3}); 90% ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n \mathrm{Hexane}$ $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=10.39 \mathrm{~min}, \mathrm{t}($ major $)=16.48 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.43(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.36(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, 3H), 2.29 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 197.3, 142.8, 139.7, 139.0, 136.8, 132.4, 130.1, 129.2, 128.7, 128.6, 127.7, 127.1, 126.8, 125.2, 124.3, 120.6, 120.3, 117.3, 109.7, 53.7, 31.1, 28.0, 21.4; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$481.1557; Found 481.1565.

(R,E)-ethyl-3-(1-methyl-3-(((4-methylphenyl)sulfonamido)(phenyl) methyl)-1H-indol-2-yl)acrylate (9k): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{k}$ ($22.9 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $8 \mathbf{~ (~} 51.8 \mathrm{mg}$, $0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 9k: 32.7 mg , as a yellow solid, 67% yield; $E / Z=10: 1 ; \mathrm{mp} 141-142^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+24.8$ ($c=0.25$, in CHCl_{3}); 76% ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}$ $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=7.39 \mathrm{~min}, \mathrm{t}($ major $)=18.63 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.51(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.96$ (ddd, $J=7.9,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.06-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm}) 166.2,142.7,139.8,138.6,136.6,132.4,131.5,128.6,128.5,127.6,127.1,126.9,125.0$, 124.0, 121.4, 120.4, 120.2, 116.4, 109.7, 60.8, 53.7, 30.9, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$511.1662; Found 511.1660.

(R,E)-3-(1-methyl-3-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-
$\mathbf{1 H}$-indol-2-yl)acrylic acid (91): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 71 ($20.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}$ ($51.8 \mathrm{mg}, 0.200$ mmol, 2.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%), \mathrm{A} 1(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 5 d . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=$ $20 / 5 / 1$) to give product 91: 31.3 mg , as a faint yellow solid, 68% yield; $E / Z=9: 1 ; \mathrm{mp} 180-182^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}=+20.0\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 62 \%$ ee, determined by HPLC analysis [Chiralpak column IC, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=10.39 \mathrm{~min}, \mathrm{t}($ major $)=14.62$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.64(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-$ 7.33 (m, 2H), $7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.09-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 170.9,142.9,139.7,139.1,136.6,133.6,131.9,128.8,128.6,127.7,127.1,127.0$, 125.0, 124.5, 120.6, 120.5, 119.6, 117.8, 109.8, 53.7, 31.2, 21.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+} 483,1349$; Found 483,1358.

(R, E)- N-((2-fluorophenyl)(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-
$1 H$-indol-3-yl)methyl)-4-methylbenzenesulfonamide (9 m): An oven-dried
10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 b}\left(55.5 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$
$\mathrm{mol} \%$), ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}$ $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 5 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 $\times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathrm{~m}: 49.5 \mathrm{mg}$, as a yellow solid, 92% yield; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 85-87^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+151.2\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (minor) $=21.47 \mathrm{~min}, \mathrm{t}($ major $)=25.57 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.93$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 2.22 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.8,160.1(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 143.4,138.6$, 137.7, 136.1, 133.1, 132.6, 131.2, 129.5, 129.4, 129.1, 128.9 (d, $J=3.1 \mathrm{~Hz}$), $128.8,128.6,127.3$, 127.2, 125.3 (d, $J=5.1 \mathrm{~Hz}$), 124.12, 124.10, 120.6, 120.4, 115.8, 115.6, 109.8, 49.5, 31.0, 21.3; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$-115.51; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{2} 7 \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$561.1619; Found 561.1624.

$(\boldsymbol{R}, E)-N$-((4-chlorophenyl)(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)methyl)-4-methylbenzenesulfonamide (9n): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $8 \mathbf{c}\left(58.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}$ $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 4 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product $9 \mathrm{n}: 42.1 \mathrm{mg}$, as a yellow solid, 76%
yield; >19:1 $\mathrm{E} / \mathrm{Z} ; \mathrm{mp} 112-114^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+24.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 98 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (minor) $=12.40 \mathrm{~min}, \mathrm{t}($ major $)=24.47 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19$ (m, 6H), 7.02 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.12$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 188.6,143.0,138.7,138.6,137.5,136.5,133.6,133.3,133.0,131.0,128.81,128.78,128.76$, 128.6, 128.5, 126.9, 125.3, 124.9, 124.4, 120.8, 120.0, 116.1, 109.8, 53.4, 30.7, 21.4; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+} 577.1324\left({ }^{35} \mathrm{Cl}\right)$, $578.1357\left({ }^{37} \mathrm{Cl}\right)$; Found $577.1314\left({ }^{35} \mathrm{Cl}\right), 578.1331\left({ }^{37} \mathrm{Cl}\right)$.

($\boldsymbol{R}, \boldsymbol{E}$)-4-methyl- N -((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(m-tolyl)methyl)benzenesulfonamide (90): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{7 a}$ ($26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 d}$ (54.6 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 5 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product 9o: 35.8 mg , as a yellow solid, 67% yield; >19:1 E / Z; mp 84 $85^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-10.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 99 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=12.74 \mathrm{~min}, \mathrm{t}($ major $)=$ $16.14 \mathrm{~min}]$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 188.7,142.6,139.9,138.5,138.4,137.6,136.6,133.1,132.9,131.3,128.7,128.6$, $128.57,128.52,128.4,127.8,126.8,125.9,124.8,124.3,124.1,120.6,120.3,116.7,109.6,54.1,30.5$,

(R, E)-4-methyl- N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1 H-indol-
3-yl)(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methyl)
benzenesulfonamide ($\mathbf{9 p}$): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}$, $0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 e}(77.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}$, $0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene $(1.0 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with $\mathrm{DCM}(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product $\mathbf{9 p}: 50.3 \mathrm{mg}$, as a yellow solid, 85% yield; $E / Z=8: 1 ; \mathrm{mp} 70-71^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+12.8\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, \mathrm{t}($ major $)=9.90 \mathrm{~min}, \mathrm{t}($ minor $)=11.18 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.99(\mathrm{~s}$, $1 \mathrm{H}), 7.85$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}$, 12H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.8,142.5,139.1,138.5,137.6,136.6,134.2,133.09$, 133.07, 133.0, 131.3, 130.1, 128.7, 128.6, 128.5, 128.0, 126.9, 126.8, 125.8, 125.0, 124.1, 120.5, 120.3, 116.5, 109.6, 83.9, 54.1, 30.5, 24.8, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{BN}_{2} \mathrm{O}_{5} \mathrm{SNa}^{+}$669.2565; Found 669.2569.

(R, E)-4-methyl- N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(3-(trifluoromethoxy)phenyl)methyl)benzenesulfonamide (9q): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2 -alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N sulfonylimine $\mathbf{8 f}$ ($68.6 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and
$4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene $(1.0 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 5 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give pure product $9 \mathbf{q}: 52.6 \mathrm{mg}$, as a yellow solid, 87% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 68-69{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+5.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right)$; 99% ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=9.58 \mathrm{~min}, \mathrm{t}($ minor $)=10.84 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.90(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.15$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 188.5, 149.5, 143.1, 142.7, 138.6, 137.5, 136.4, 133.3, 133.1, 131.0, 130.0, 128.9, 128.8, 128.5, 126.9, 125.7, 125.2, 125.0, 124.4, 120.9, 120.4 (q, $J=256.0 \mathrm{~Hz}$), 119.9, 119.8, 115.7, 109.9, 53.5, 30.8, 21.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-72.83$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$627.1536; Found 627.1532.

($\boldsymbol{R}, \boldsymbol{E}$)-4-methyl- N -((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-

 3-yl)(naphthalen-2-yl)methyl)benzenesulfonamide (9r): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 g}$ ($61.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), Pd_{2} (dba) $)_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand L5 ($6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 8 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathrm{r}: 48.9 \mathrm{mg}$, as a yellow solid, 86% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 157-159{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+96.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 99 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$$($ minor $)=16.21 \mathrm{~min}, \mathrm{t}($ major $)=33.57 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.89(\mathrm{~s}, 1 \mathrm{H})$, 7.82-7.67 (m, 6H), 7.54-7.41 (m, 4H), 7.39-7.29 (m, 5H), 7.26-7.18 (m, 3H), $6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.6, 142.7, 138.4, 137.5, 137.4, 136.7, 135.0, 133.2, 133.0, 132.7, 131.2, 128.6, 128.59, 128.57, 128.4, 128.2, 128.0, 127.5, 126.8, 126.3, 126.2, 125.8, 125.3, 124.9, 124.2, 120.6, 120.3, 116.4, 109.7, 54.2, 30.6, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$593.1870; Found 593.1876.

(R, E)- N-(furan-2-yl(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-

 indol-3-yl)methyl)-4-methylbenzenesulfonamide (9s): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 h}$ (49.8 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product $9 \mathrm{~s}: 49.1 \mathrm{mg}$, as a yellow solid, 96% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; mp $56-58{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=-20.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 85 \% \mathrm{ee}$, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=16.37 \mathrm{~min}, \mathrm{t}$ (major) $=27.17 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J$ $=19.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 188.9,152.2,142.9,142.5,138.4,137.6,136.5,133.3,133.1,131.2,128.8,128.7$, 128.6, 126.9, 125.8, 125.4, 124.1, 120.5, 120.5, 114.1, 110.5, 109.6, 108.2, 49.2, 30.7, 21.3; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}$533.1506; Found 533.1508.
(S,E)-4-methyl- N -((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(pyridin-3-yl)methyl)benzenesulfonamide (9t): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $\mathbf{7 a}$ ($26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), N-sulfonylimine $\mathbf{8 i}$ (52.0 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 8 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product 9t: 38.1 mg , as a yellow solid, 73% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; $\mathrm{mp} 88-$ $89^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-5.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column $\mathrm{AD}, i \operatorname{PrOH} / n H$ exane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=19.96 \mathrm{~min}, \mathrm{t}($ major $)=$ $31.55 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.98$ (ddd, $J=8.0,5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 188.6, 148.9, 148.7, 143.2, $138.7,137.5,136.4,135.8,134.9,133.3,133.1,131.0,128.9,128.8,128.5,126.9,125.0,124.9,124.4$, 123.3, 120.9, 119.9, 115.4, 109.9, 52.1, 30.9, 21.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}^{+}$544.1666; Found 544.1670.

(S,E)-4-methyl-N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(4-oxo-4H-chromen-3-yl)methyl)benzenesulfonamide (9u): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2 -alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N sulfonylimine $\mathbf{8 j}$ ($65.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand L5 ($6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was
stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 3 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathbf{u}: 52.9 \mathrm{mg}$, as a yellow solid, 90% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 178-180{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+297.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 88 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, \mathrm{t}($ minor $)=12.26 \mathrm{~min}, \mathrm{t}($ major $)=15.84 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.49$ $(\mathrm{s}, 1 \mathrm{H}), 8.19-8.09(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.6,177.2,156.2,155.4,143.9,138.4,137.6$, $135.0,133.8,133.5,133.1,130.7,129.5,128.8,128.7,127.4,126.7,125.7,125.2,125.1,123.9,123.8$, 122.8, 120.6, 120.2, 118.1, 113.1, 109.9, 48.7, 30.9, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}^{+}$611.1612; Found 611.1612.

(R,E)-N-(cyclopropyl(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-

 indol-3-yl)methyl)-4-methylbenzenesulfonamide (9v): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{a}$ ($26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 k}$ ($44.6 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 5}(6.8 \mathrm{mg}$, $0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-$ $4 / 1)$ to give product 9v: 42.8 mg , as a yellow oil, 88% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;[\alpha]^{25} \mathrm{D}=-12.8(c=0.25$, in CHCl_{3}); 88% ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n \mathrm{Hexane}=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=9.15 \mathrm{~min}, \mathrm{t}($ minor $)=10.66 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=13.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.49-0.34(\mathrm{~m}, 2 \mathrm{H}), 0.31-0.22(\mathrm{~m}, 1 \mathrm{H})$;${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.1,142.6,138.7,137.9,136.7,133.1,132.5,131.7,128.8$, $128.6,128.4,126.9,125.5,124.2,124.0,120.7,120.2,117.5,109.6,56.2,30.9,21.3,17.3,5.1,4.1$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$507.1713; Found 507.1719.

Ethyl (S,E)-2-(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)-
2-((4-methylphenyl)sulfonamido)acetate (9w): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 1}$ (51.0 $\mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 5}(6.8 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 4 d . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-$ $4 / 1)$ to give product $9 \mathrm{w}: 31.6 \mathrm{mg}$, as a yellow oil, 61% yield; $E / Z=17: 1 ;[\alpha]^{25} \mathrm{D}=+69.6(c=0.25$, in CHCl_{3}); 96% ee, determined by HPLC analysis [Chiralpak column AD, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=14.91 \mathrm{~min}, \mathrm{t}($ major $)=16.87 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dt}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (ddd, $J=8.0,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.9,169.8,142.9,138.0,137.6,136.3,134.5,133.3,130.9,128.8$, $128.8,128.6,126.9,126.6,125.2,124.0,120.8,120.1,110.6,109.5,62.5,52.9,30.6,21.3,14.0$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}^{+}$539.1612; Found 539.1620.

(R, E)- N -((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl) (phenyl)methyl)thiophene-2-sulfonamide (9x): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 m}$ ($50.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), Pd_{2} (dba) $)_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand L5 ($6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A1 ($0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated
three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 3 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathrm{x}: 48.2 \mathrm{mg}$, as a yellow solid, 94% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 185-187^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-1.6\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=7.66 \mathrm{~min}, \mathrm{t}($ minor $)=8.47 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=8.0,5.9,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.8,140.7,139.9,138.6,137.6,133.1,133.0,132.4,131.6$, 131.3, 128.7, 128.5, 127.7, 127.1, 126.6, 125.7, 125.0, 124.3, 120.7, 120.2, 116.7, 109.9, 54.4, 30.8;

HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Na}^{+}$535.1121; Found 535.1119.

(R, E) N -((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl) (phenyl)methyl)methanesulfonamide (9y): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole $7 \mathbf{~ a ~}(26.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 n}(36.6 \mathrm{mg}$, 0.200 mmol , 2.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 5}$ $(6.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}(0.9 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 7 d . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give pure product $9 \mathbf{y}: 41.1 \mathrm{mg}$, as a yellow solid, 92% yield; >19:1 E / Z; mp 171$173{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+34.4\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 99 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=8.86 \mathrm{~min}, \mathrm{t}$ (major) $=12.03 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.12$
$(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 188.9,140.2,138.7,137.5,133.1,133.0,131.2,128.9,128.7$, 128.6, 127.9, 127.2, 125.8, 125.6, 124.4, 120.9, 120.5, 116.7, 110.2, 54.4, 41.7, 31.0; HRMS (ESITOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$467.1400; Found 467.1408.

11. General procedure for the asymmetric Friedel-Crafts reaction of 2-alkenyl pyrroles 10 with imines 8

An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10 ($0.12 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8}$ ($0.10 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A2 ($1.4 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min . then stirred at $50^{\circ} \mathrm{C}$ (monitored by TLC analysis). After completion, product 11 was obtained by flash chromatography on silica gel (petroleum ether/DCM/EtOAc). Racemic 11 was obtained under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and using $\mathbf{A 2}(10 \mathrm{~mol} \%)$ as an acidic additive.

(R,E)-4-methyl- N-((5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl) (phenyl)methyl)benzenesulfonamide (11a): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole $10 \mathrm{a}(23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 a}(25.9 \mathrm{mg}$, $0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 2}(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 5 / 1$) to give product 11a: 33.6 mg , as a yellow oil, 74% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; $[\alpha]^{25}{ }_{\mathrm{D}}=+4.6\left(c=0.65\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 97 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=15.07 \mathrm{~min}, \mathrm{t}($ minor $)=17.69$
$\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 4 \mathrm{H})$, 7.40 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 191.0,143.5,138.4,138.3,136.8,136.4,134.8,132.4$, 129.8, 129.4, 128.6, 128.5, 128.3, 128.1, 127.2, 127.0, 116.3, 115.7, 111.1, 55.8, 21.4; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$479.1400; Found 479.1402.

(R, E)- N-((4-fluorophenyl)(5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl)methyl)-4-methylbenzenesulfonamide (11b): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl pyrrole 10a ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 o}$ ($27.7 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathbf{A 2}(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}$ $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene $(1.0 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 5 / 1$) to give product $11 \mathrm{~b}: 31.9 \mathrm{mg}$, as a yellow oil, 67% yield; >19:1 $\mathrm{E} / \mathrm{Z} ;[\alpha]^{25}{ }_{\mathrm{D}}=+106.3\left(c=0.16\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 99 \%$ ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n \mathrm{Hexane}=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=29.33$ $\min , \mathrm{t}($ minor $)=38.20 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=3.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 191.3, 162.3 $(\mathrm{d}, J=245.9 \mathrm{~Hz}), 143.7,138.3,136.8,136.1,134.9,134.1(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 132.5,129.9,129.4,129.1$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}), 128.5,128.3,127.0,116.1,115.9,115.4(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 111.2,55.2,21.4 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$-113.71; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$497.1306; Found 497.1305.

(R,E)-4-methyl- N-((5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl)(ptolyl)methyl)benzenesulfonamide (11c): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10a ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}$, 1.2 equiv), N-sulfonylimine $\mathbf{8 p}$ (27.3 mg , $0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 2}(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min . then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 5 / 1$) to give product 11c: 27.6 mg , as a yellow oil, 59% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; $[\alpha]^{25}{ }_{\mathrm{D}}=+43.6\left(c=0.2\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=16.84 \mathrm{~min}, \mathrm{t}($ minor $)=19.47$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.46(\mathrm{~m}$, $4 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 4 \mathrm{H})$, $6.43(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=3.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 190.8, 143.6, 138.4, 138.1, $136.7,136.6,135.2,134.6,132.4,129.7,129.44,129.35,128.5,128.3,127.2,127.0,116.2,115.6$, 111.0, 55.6, 21.4, 21.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$493.1557; Found 493.1556.

(R, E)- N-(cyclohexyl(5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl) methyl)-4-methylbenzenesulfonamide (11d): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl pyrrole 10a ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 q}$ ($26.5 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $\mathbf{A 2}(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}$ $(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene $(1.0 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at room temperature for 30 min . then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 5 / 1$) to give product 11d: 35.4 mg , as a yellow oil, 77% yield; $E / Z=17: 1 ;[\alpha]^{25}{ }_{\mathrm{D}}=+175.0\left(c=0.84\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 94 \%$ ee, determined by HPLC analysis [Chiralpak
column IB, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=8.98 \mathrm{~min}, \mathrm{t}$ (minor) $=12.28 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.51$ $(\mathrm{m}, 3 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=3.7,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=3.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=9.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (s, 3H), $1.87(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{dd}, J=12.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-0.95(\mathrm{~m}$, $3 \mathrm{H}), 0.97-0.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 192.7, 143.1, 138.5, 137.4, 137.2, $135.9,132.4,129.2,128.9,128.6,128.4,126.7,116.6,115.4,110.7,57.4,42.9,29.59,29.56,26.0$, 25.7, 21.4, 21.39; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+} 485.1870$; Found 485.1869.

(R, E)-4-methyl- N-((5-(3-oxobut-1-en-1-yl)-1H-pyrrol-2-yl)(phenyl) methyl)benzenesulfonamide (11e): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10b ($16.2 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 a}(25.9 \mathrm{mg}, 0.0999 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(7.6 \mathrm{mg}$, $0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A} 2(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 1 / 1$) to give product 11e: 18.8 mg , as a yellow oil, 48% yield; >19:1 E / Z; $[\alpha]^{25} \mathrm{D}=+121.4\left(c=0.28\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 90 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=32.41 \mathrm{~min}, \mathrm{t}($ major $)=34.33$ $\mathrm{min}] ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 200.4, 143.0, 139.1, 137.2, 137.1, 135.0, 129.1, 128.7, 128.6, 127.8, 127.0, 126.8, 120.4, 117.2, 111.1, 55.7, 25.8, 21.4; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$417.1244; Found 417.1237.

Ethyl (R,E)-3-(5-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-1H-pyrrol-2-yl)acrylate (11f): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10c ($19.8 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 a}$ ($25.9 \mathrm{mg}, 0.0999$ mmol, 1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}$ ($7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$), A2 ($1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 1 / 1$) to give product 11f: 25.2 mg , as a faint red oil, 59% yield; $>19: 1 \mathrm{E} / \mathrm{Z}$; $[\alpha]^{25}=+88.7\left(c=0.55\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Chiralpak column AD, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=12.14 \mathrm{~min}, \mathrm{t}($ major $)=17.87$ min]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.19$ (m, 3H), 7.13 (dd, $J=6.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ (t, $J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $168.1,143.5,138.5,136.9,135.4,134.2,129.4,128.9,128.6,128.0,127.2,126.9,114.9,111.1,110.5$, 60.5, 55.7, 21.4, 14.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+} 447.1349$; Found 447.1352.

Ethyl ($\boldsymbol{R}, \boldsymbol{E}$)-3-(5-(phenyl(thiophene-2-sulfonamido)methyl)-1H-pyrrol-2-yl)acrylate (11g): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10c ($19.8 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 m}$ ($25.1 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 2}(1.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA$ MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 60 h . After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=5 / 1 / 1$) to give product 11g: 35.7 mg , as a faint red oil, 86% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;[\alpha]^{25} \mathrm{D}=+47.2\left(c=0.55\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 86 \%$ ee, determined by

HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=10 / 90$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=17.40 \mathrm{~min}, \mathrm{t}($ minor $)=19.34 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.11(\mathrm{~s}, 1 \mathrm{H}), 7.50$ $(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=$ $5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{dd}, J=$ $8.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.03(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 168.0$, $140.7,138.1,135.1,134.1,132.7,132.3,129.0,128.8,128.4,127.3,127.2,114.9,111.4,110.7,60.6$, 56.0, 14.3; HRMS (ESI-TOF) m/z: $\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}^{+} 439.0757$; Found 439.0760 .

Methyl (E)-3-(5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl)-2,3-dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (11h): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole $\mathbf{1 0 a}(23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv), N-sulfonylimine $\mathbf{8 r}$ (22.5 mg , $0.0999 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, ligand $\mathbf{L 6}(7.6 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%), \mathbf{A 1}(1.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(40.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50{ }^{\circ} \mathrm{C}$ for 48 h . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-4 / 1$) to give product 11h: 35.8 mg , as a yellow oil, 85% yield; $E / Z=12: 1 ;[\alpha]^{25} \mathrm{D}=+151.1(c=0.4$, in CHCl_{3}); 83% ee, determined by HPLC analysis [Chiralpak column IA, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=17.05 \mathrm{~min}, \mathrm{t}($ minor $)=29.71 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 9.49(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}$, 1H), 7.64-7.56 (m, 2H), 7.54-7.48 (m, 1H), 7.44-7.37 (m, 2H), 7.12 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (dd, $J=3.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=3.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 189.9, 168.0, 138.3, 136.5, 134.0, 133.9, 133.6, 132.5, 132.1, 130.9, 130.2, 128.5, 128.3, 126.4, 121.3, 116.9, 116.1, 110.1, 66.6, 54.8; HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}^{+}$ 445.0829; Found 445.0820.
12. General procedure for the asymmetric Friedel-Crafts reaction of 2-alkenyl furan $\mathbf{1 2}$ with 1-azadiene 13

Ethyl (S,E)-3-(5-((3-((4-methylphenyl)sulfonamido)benzofuran-2-yl)(phenyl)methyl)furan-2yl)acrylate (14): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl furan 12 ($33.2 \mathrm{mg}, 0.200 \mathrm{mmol}$, 2.0 equiv), aza-diene $\mathbf{1 3}$ ($37.5 \mathrm{mg}, 0.0998$ mmol , 1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 7(6.4 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (0.5 mL) was added via syringe. Then the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 36 h . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-$ $6 / 1)$ to give product 14: 53.4 mg , as a yellow semisolid, 98% yield; $>19: 1 E / Z ;[\alpha]^{25}{ }_{\mathrm{D}}=+29.1(c=$ 0.35 , in CHCl_{3}); 97% ee, determined by HPLC analysis [Chiralpak column ID, $i \mathrm{PrOH} / n \mathrm{Hexane}=$ 40/60, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=9.95 \mathrm{~min}, \mathrm{t}$ (major) $=16.76 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.25 (m, 2H), 7.25-7.20 (m, 4H), 7.20-7.15 (m, 1H), 7.11-7.07 (m, 3H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}$, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 167.1,155.6,153.4$, $152.5,150.4,144.0,137.3,136.1,130.8,129.6,128.6,128.4,127.5,127.4,125.5,124.7,123.2,119.3$, 115.6, 115.4, 113.9, 111.6, 110.9, 60.4, 41.9, 21.5, 14.2; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{SNa}^{+}$564.1452; Found 564.1444.

13. Asymmetric reaction on a 1.0 mmol scale

An oven-dried 50 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b ($289 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), enone $\mathbf{2 a}$ ($303 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($22.9 \mathrm{mg}, 0.0250 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), ligand $\mathbf{L} 1(34.5 \mathrm{mg}, 0.0499 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and TBAB (64.0 $\mathrm{mg}, 0.200 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed 1,4-dioxane (5.0 mL) was added via syringe. The resulting solution
was stirred at room temperature for 30 min , then at $60^{\circ} \mathrm{C}$ for 96 h . After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-8 / 1$) to give product 3b: 454.1 mg , as a yellow solid, 87% yield; 92% ee; >19:1 dr; >19:1 E/Z.

An oven-dried 50 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7 f ($279 \mathrm{mg}, 0.999 \mathrm{mmol}, 1.0$ equiv), N-sulfonylimine $\mathbf{8 a}$ ($518 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.0$ equiv), Pd_{2} (dba) ${ }_{3}$ ($45.8 \mathrm{mg}, 0.0500 \mathrm{mmol}, 5 \mathrm{~mol} \%$), ligand $\mathbf{L 5}(68.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 1}$ ($9.0 \mathrm{mg}, 0.050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $4 \AA \mathrm{MS}(400 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (10 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min , then at $50^{\circ} \mathrm{C}$ for 10 d . After completion, $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0{ }^{\circ} \mathrm{C}$. The precipitates were filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM ($5 \times 5 \mathrm{~mL}$). The filtrate was concentrated to give product $\mathbf{9 f}$: 516.0 mg , as a yellow solid, 96% yield; $96 \% \mathrm{ee}$; >19:1 E / Z.

14. Transformations of products

To a solution of compound $\mathbf{3 b}(52.2 \mathrm{mg}, 0.0998 \mathrm{mmol}, 1.0$ equiv) in dry DCM, 1.0 M DIBAL$\mathrm{H}\left(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 5.0\right.$ equiv) was added drop wise at $-78^{\circ} \mathrm{C}$ under argon atmosphere, and the mixture was stirred for 12 h . Then the solution was warmed to room temperature, quenched with aqueous $\mathrm{HCl}(1 \mathrm{M}, 2 \mathrm{~mL})$ and stirred at rt for 30 min . The mixture was extracted with $\mathrm{DCM}(3 \times 2$ mL), and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residue was purified by column chromatography (petroleum ether/EtOAc $=10 / 1$) to give product 15 : 19.4 mg , as a red semisolid, 52% yield; $>19: 1 \mathrm{E} / \mathrm{Z} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.94-7.88$ (m, 2H), 7.61 (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.42$ (m, 1H), 7.29-7.21 (m, 4H), 7.17-7.12 (m, 1H), 7.09 (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{q}, J=7.7$
$\mathrm{Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 156.2,142.9$, $141.7,136.6,135.4,133.3,131.5,130.0,129.1,128.8,128.7,127.9,125.9,122.9,121.6,121.5,120.1$, 119.9, 119.8, 110.4, 92.6, 48.1, 15.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Na}^{+}$ 395.1519; Found 395.1526.

To a solution of $9 \mathbf{9 f}\left(53.8 \mathrm{mg}, 0.0999 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($149.1 \mathrm{mg}, 0.4002 \mathrm{mmol}, 4.0$ equiv), and NaBH_{4} ($15.1 \mathrm{mg}, 0.399 \mathrm{mmol}, 4.0$ equiv) was added slowly in two batches. The mixture was stirred at rt for 10 h . After completion (monitored by TLC analysis), it was quenched with water (3 mL). Then MeOH was evaporated under reduced pressure and the resulting aqueous phase was extracted with $\operatorname{DCM}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=6 / 1-3 / 1$) to give allyl alcohol product ($48.9 \mathrm{mg}, 94 \%$ yield). Then an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with the allyl alcohol product ($40.5 \mathrm{mg}, 0.0750 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8.7 \mathrm{mg}, 0.0075 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathbf{A 5}(3.7 \mathrm{mg}$, $0.015 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $4 \AA \mathrm{MS}(60.0 \mathrm{mg})$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (1.0 mL) was added via syringe. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 16: 21.9 mg , as a yellow solid, 42% overall yield; $>19: 1 \mathrm{dr}$; $>19: 1 \mathrm{E} / \mathrm{Z} ; \mathrm{mp} 101-102{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+11.6(c=0.25$, in CHCl_{3}); 94% ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ minor $)=5.66 \mathrm{~min}, \mathrm{t}($ major $)=6.33 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (ddd, $J=8.3,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04$ (m, 1H), 7.04-6.93 (m, 5H), 6.77 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ $(\mathrm{d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.88(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 162.7 (d, $J=246.7 \mathrm{~Hz}), 142.5,141.4,141.2,138.8,137.8,132.2,131.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.0$, $128.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.2,127.6,127.5,127.45(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.41,121.8,121.6,120.1,118.6$, $116.8,115.6(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 109.7,66.1,63.6,30.5,21.4,{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$

To a solution of $\mathbf{9 f}\left(107.7 \mathrm{mg}, 0.1999 \mathrm{mmol}, 1.0\right.$ equiv) in acetone (1.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($110.4 \mathrm{mg}, 0.7988 \mathrm{mmol}, 4.0$ equiv) and 3-bromopropylene ($69 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 4.0$ equiv). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After completion (determined by TLC analysis), solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=6 / 1$) to give product ($104.2 \mathrm{mg}, 0.1800 \mathrm{mmol}, 90 \%$ yield). Then an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with the N-allyl product ($57.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and Hoveyda-Grubbs catalyst ($3.2 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5$ $\mathrm{mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed dried DCM (1.0 mL) was added via syringe. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=30 / 30 / 1$) to give product 17: 23.3 mg , as a yellow solid, 49% overall yield; mp $59-61{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+114.9\left(c=0.35\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 86 \%$ ee, determined by HPLC analysis [Chiralpak column IA, $i \operatorname{PrOH} / n$ Hexane $=20 / 80$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=7.83 \mathrm{~min}, \mathrm{t}$ (minor) $=9.86 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 9 \mathrm{H})$, $7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{dd}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (ddd, $J=12.0,5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ddd}, J=19.9,5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.24$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 142.2,140.0,137.0,136.7,133.5,128.7,128.6,128.1$, 127.8, 127.7, 127.5, 126.7, 122.6, 120.0, 118.4, 118.4, 113.2, 109.0, 57.6, 44.8, 29.1, 21.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}^{+} 451.1451$; Found 451.1454.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 11a (45.6 $\mathrm{mg}, 0.0998 \mathrm{mmol}, 1.0$ equiv), (Z)-but-2-ene-1,4-diyldi-tert-butyl bis(carbonate) ($43.2 \mathrm{mg}, 0.150$
mmol, 1.5 equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed THF (1.0 mL) was added via syringe. The resulting mixture was stirred at rt for 3.5 h . After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc $=$ $20 / 10 / 1)$ to give product 18: 26.4 mg , as a yellow oil, 52% yield; $3: 1 \mathrm{dr} ;[\alpha]^{25}{ }_{\mathrm{D}}=+8.6(c=0.73$, in CHCl_{3}); 99% ee, determined by HPLC analysis [Chiralpak column IB, $i \mathrm{PrOH} / n \mathrm{Hexane}=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ (major) $=5.35 \mathrm{~min}, \mathrm{t}($ minor $)=5.69 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 7.98(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{dd}, J=9.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.9,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 190.4,169.3,152.7$, 143.6, 141.4, 137.2, 137.1, 133.4, 131.0, 130.2, 129.3, 128.8, 128.7, 128.4, 128.1, 127.8, 127.0, 126.97, 126.93, 119.4, 94.1, 69.1, 53.1, 47.0, 21.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$531.1713; Found 531.1723.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 11a (45.6 $\mathrm{mg}, 0.0998 \mathrm{mmol}, 1.0$ equiv), di-tert-butyl (2-methylenepropane-1,3-diyl) bis(carbonate) (43.2 mg , $0.150 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed 2-MeTHF (1.0 mL) was added via syringe. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . After completion, the mixture was concentrated and then purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1)$ to give product 19: 42.7 mg , as a yellow oil, 84% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+241.1(c=$ 0.75 , in CHCl_{3}); 98% ee, determined by HPLC analysis [Chiralpak column IF, $i \mathrm{PrOH} / n \mathrm{Hexane}=$ $40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}($ major $)=15.08 \mathrm{~min}, \mathrm{t}($ minor $)=21.54 \mathrm{~min}] ;{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ 7.44 (m, 4H), 7.36-7.25 (m, 4H), 7.19-7.14 (m, 2H), 7.11 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (d, $J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 189.4,143.4,138.5,137.5,137.4,136.6,135.0,132.6,131.5,130.7$, $129.3,128.62,128.56,128.2,127.9,127.5,127.3,119.0,117.4,113.0,111.2,58.4,50.0,49.0,21.4 ;$ HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}^{+}$531.1713; Found 531.1705.

To a solution of $\mathbf{1 4}\left(108.3 \mathrm{mg}, 0.1999 \mathrm{mmol}, 1.0\right.$ equiv) in acetone $(1.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($110.4 \mathrm{mg}, 0.7988 \mathrm{mmol}, 4.0$ equiv) and 3-bromopropylene ($69 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 4.0$ equiv). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After completion (determined by TLC analysis), the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) to give product ($101.4 \mathrm{mg}, 0.1743 \mathrm{mmol}, 87 \%$ yield). Diisobutylaluminium hydride ($348 \mu \mathrm{~L}$ of a 1.0 M solution in cyclohexane, $0.348 \mathrm{mmol}, 2.0$ equiv) was added dropwise to a solution of the above product ($101.4 \mathrm{mg}, 0.1743 \mathrm{mmol}, 1.0$ equiv) in anhydrous DCM (2.0 mL) under Ar at $-78^{\circ} \mathrm{C}$ over 10 min and the mixture was stirred for 2 h . After completion, the mixture was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was allowed to warm to rt and stirred for 1 h . The layers were separated and the aqueous layer was extracted with DCM (3×5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the crude allylic alcohol. To a solution of the allylic alcohol and DMAP ($2.1 \mathrm{mg}, 0.017 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in DCM (1.0 mL), acetic anhydride ($33 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($45 \mu \mathrm{~L}, 0.35 \mathrm{mmol}, 2.0$ equiv) was added and the reaction mixture was stirred at rt . After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/ $\mathrm{EtOAc}=10 / 1$) to give allyl acetates product 20: 81.2 mg , as a yellow oil, 70% yield, over 3 steps; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})(\mathrm{d}, J=8.0 \mathrm{~Hz}$, 2H), 7.40-7.18 (m, 6H), 7.11-6.99 (m, 3H), 6.97-6.79 (m, 1H), 6.73-6.37 (m, 1H), 6.30 (d, J = 14.6 $\mathrm{Hz}, 1 \mathrm{H}), 6.18-5.91(\mathrm{~m}, 3 \mathrm{H}), 5.83-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.89-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 170.8, 155.9, 153.6, 153.5, 151.3, 143.8, 137.7, 136.4, 132.6, 129.6, 128.9, 128.5, 128.3, 127.7, 127.2, $124.6,124.2,122.7,122.0,121.2,119.3,116.8,112.0,109.9,109.7,64.6,53.5,41.7,21.5,20.9$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SNa}^{+}$604.1765; Found 604.1756.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 20 (58.1
$\mathrm{mg}, 0.0998 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed toluene (1.0 mL) was added via syringe. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h . After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1-6 / 1$) to give product 21: 34.0 mg , as a yellow solid, 71% yield; $\mathrm{mp} 155-157^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=-44.0\left(c=0.25\right.$, in $\left.\mathrm{CHCl}_{3}\right) ; 97 \%$ ee, determined by HPLC analysis [Chiralpak column ID, $i \operatorname{PrOH} / n$ Hexane $=40 / 60$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=28.51 \mathrm{~min}, \mathrm{t}($ minor $)=35.14 \mathrm{~min}] ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.70(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11$ (ddd, $J=15.4,10.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 5.68-5.57$ $(\mathrm{m}, 4 \mathrm{H}), 4.79(\mathrm{dd}, J=14.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=14.2,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 156.8,153.9,153.7,150.3,143.9,138.3,137.2,129.8,128.8,128.4$, $127.8,127.1,124.4,124.2,123.0,122.8,121.0,119.0,116.3,112.1,110.0,109.0,53.0,41.6,21.6 ;$ HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}^{+} 985.2588$; Found 985.2590.

15. More investigation on substrates scope

1) Other aromatic compounds

Benzofuran derivative $\mathbf{2 2}$ was applied to the reaction with 5a under the standard conditions, but it did not work. When the reaction was carried out under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathbf{2 4}$ was obtained instead of desired 23. The control experiment indicated that the reaction was catalyzed by PPh_{3} via a Rauhut-Currier pathway, followed by annulation to give the formal [4+2] adduct. Similar phenomenon was observed for substrates 25-28.

Since the electron-deficient alkynes mentioned above were activated by PPh_{3} rather than Pd , some electron-neutral alkyne derivatives were tested. However, compounds 29-32 were inert in the reaction.

2) Other electrophiles

Imine 8a was investigated with 2-alkyne indole $\mathbf{1 a}$ or $\mathbf{1 \mathbf { a } ^ { \prime \prime }}$ under the catalysis of palladium. Unfortunately, those substrates did not undergo the desired FC addition reaction.

Some other electrophiles, including carbonyls, ketimines and Michael acceptors, were investigated with 2-alkenyl indole 7a under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. It was found that most carbonyls and imines listed as below were not reactive. In addition, some compounds, such as 33, Micheal acceptor 2a and 13, could undergo the reaction with 7a in the absence of Pd^{0} (background reaction).

Aldehyde and ketone

3) Other styrene-type substrates

Considering that the aromatic rings are activated by Pd^{0} which coordinates to the conjugated unsaturated bond as a π-Lewis base, we applied more styrene-type substrates to the reaction. However, most of the aromatic compounds were inert, probably due to some steric and electronic effects.

16. X-ray crystallographic data and structural refinement

(1) Crystal data and structural refinement for 3i

Procedure for the recrystallisation of 3i: To a 10 mL tube containing $\mathbf{3 i}(20.0 \mathrm{mg})$ were added $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure 3i. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Cu radiation source $(\mathrm{K} \alpha=1.54178 \AA$) at 273.15 K . CCDC 2251805 ($\mathbf{3 i}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code	$3 i$
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	572.63
Temperature/K	273.15
Crystal system	monoclinic
Space group	P2 1_{1}
a/Å	11.1245(4)
b/Å	10.5529(3)
c/Å	13.5415(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.914(2)
$\gamma{ }^{\circ}$	90
Volume/A A 3	1512.64(9)
Z	2
$\rho \mathrm{calcg} / \mathrm{cm}^{3}$	1.257
μ / mm^{-1}	0.632
F(000)	600.0
Crystal size/mm ${ }^{3}$	$0.27 \times 0.19 \times 0.04$

Radiation

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{CuK} \alpha(\lambda=1.54178)$
6.86 to 126.98
$-12 \leq h \leq 12,-11 \leq \mathrm{k} \leq 12,-14 \leq 1 \leq 15$
15015
$4840\left[\mathrm{R}_{\text {int }}=0.0439, \mathrm{R}_{\text {sigma }}=0.0359\right]$
4840/1/398
1.040
$\mathrm{R} 1=0.0318, \mathrm{wR} 2=0.0838$
$\mathrm{R} 1=0.0355, \mathrm{wR} 2=0.0866$
0.10/-0.14
0.08(12)

(2) Crystal data and structural refinement for rac-4d

Procedure for the recrystallisation of rac-4d: To a 10 mL tube containing rac-4d (10.0 mg) were added $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine structural refinement for rac-4d. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at 150.0 K. CCDC $2251806(\mathrm{rac}-\mathbf{4 d})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

rac-4d
$\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$
564.54
150.0
triclinic
P-1

a / \AA	$10.0380(5)$
b / \AA	$12.1514(6)$
c / \AA	$12.3554(7)$
$\alpha /{ }^{\circ}$	$77.395(2)$
$\beta /{ }^{\circ}$	$67.131(2)$
$\gamma /{ }^{\circ}$	$85.909(2)$
$\mathrm{Volume} / \AA^{3}$	$1354.98(12)$
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.384
μ / mm^{-1}	0.103
$\mathrm{~F}(000)$	584.0
Crystal size $/ \mathrm{mm}^{3}$	$0.28 \times 0.21 \times 0.08$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/	4.404 to 54.988
Index ranges	$-13 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 15,-15 \leq 1 \leq 16$
Reflections collected	19422
Independent reflections	$6096\left[\mathrm{R}_{\text {int }}=0.0795, \mathrm{R}_{\text {sigma }}=0.0713\right]$
Data/restraints/parameters	$6096 / 0 / 380$
Goodness-of-fit on F^{2}	1.030
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0525, \mathrm{wR}_{2}=0.1142$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0971, \mathrm{wR}_{2}=0.1319$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.48 /-0.34$

(3) Crystal data and structural refinement for 6c

Procedure for the recrystallisation of $\mathbf{6 c}$: To a 10 mL tube containing $\mathbf{6 c}(20.0 \mathrm{mg})$ were added $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure 6c. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at $273.15 \mathrm{~K} . \mathrm{CCDC} 2251807\left(\mathbf{6 c} \cdot \mathrm{CHCl}_{3}\right)$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume $/$ A 3
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter

$6 \mathrm{c} \cdot \mathrm{CHCl}_{3}$

$\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$
667.94
273.15
monoclinic
P2 1
13.2537(4)
8.0062(2)
15.7406(5)

90
94.6260(10)

90
1664.82(8)

2
1.332
0.318
688.0
$0.43 \times 0.15 \times 0.13$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.188 to 55.064
$-17 \leq \mathrm{h} \leq 17,-10 \leq \mathrm{k} \leq 10,-19 \leq 1 \leq 20$
35129
$7649\left[\mathrm{R}_{\text {int }}=0.0619, \mathrm{R}_{\text {sigma }}=0.0484\right]$
7649/13/398
1.036
$\mathrm{R}_{1}=0.0667, \mathrm{wR}_{2}=0.1763$
$\mathrm{R}_{1}=0.1003, \mathrm{wR}_{2}=0.2034$
0.40/-0.48
0.05(3)

(4) Crystal data and structural refinement for $9 f$

Procedure for the recrystallisation of $\mathbf{9 f}$: To a 10 mL tube containing $\mathbf{9 f}(10.0 \mathrm{mg})$ were added $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ and n-hexane (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure 9 . The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at 302.0 K . CCDC 2251808 ($\mathbf{9 f}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume $/$ A 3
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$

$9 f$
$\mathrm{C}_{32} \mathrm{H}_{2} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}$
538.61
302.0
triclinic
P1
9.2530(5)
9.3566(5)
9.9037(6)
106.668(2)
101.698(2)
117.979(2)
665.24(7)

1
1.344
0.166
282.0
$0.41 \times 0.25 \times 0.17$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.682 to 55.258

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3} Flack parameter
$-12 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 12,-12 \leq 1 \leq 12$
19634
$6078\left[\mathrm{R}_{\text {int }}=0.0484, \mathrm{R}_{\text {sigma }}=0.0451\right]$
6078/4/358
1.038
$\mathrm{R}_{1}=0.0386, \mathrm{wR}_{2}=0.0881$
$\mathrm{R}_{1}=0.0504, \mathrm{wR}_{2}=0.0941$
0.15/-0.19
0.01(3)

(5) Crystal data and structural refinement for 11g

Procedure for the recrystallisation of $\mathbf{1 1 g}$: To a 10 mL tube containing $\mathbf{1 1 g}(15.0 \mathrm{mg})$ were added $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ and n-hexane $(1.0 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure 11g. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at 184.0 K . CCDC $2251809(\mathbf{1 1 g})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code	$\mathbf{1 1 g}$
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
Formula weight	461.08
Temperature/K	184.0
Crystal system	monoclinic
Space group	P_{1}
a/A	$10.1003(4)$
b/ \AA	$15.1715(5)$
c/ \AA	$13.9176(5)$
	$\mathbf{S 8 4}$

$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.792(2)
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	2087.68(13)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.322
μ / mm^{-1}	0.283
F(000)	868.0
Crystal size/mm ${ }^{3}$	$0.38 \times 0.24 \times 0.11$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.018 to 55.086
Index ranges	$-13 \leq \mathrm{h} \leq 13,-19 \leq \mathrm{k} \leq 19,-18 \leq 1 \leq 18$
Reflections collected	37794
Independent reflections	$9567\left[\mathrm{R}_{\text {int }}=0.0821, \mathrm{R}_{\text {sigma }}=0.0654\right]$
Data/restraints/parameters	9567/38/562
Goodness-of-fit on F^{2}	1.030
Final R indexes [I>=2 σ (I)]	$\mathrm{R}_{1}=0.0537, \mathrm{wR}_{2}=0.1156$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0789, \mathrm{wR}_{2}=0.1273$
Largest diff. peak/hole / e \AA^{-3}	0.53/-0.53
Flack parameter	-0.01(4)

(6) Crystal data and structural refinement for 21

Procedure for the recrystallisation of 21: To a 10 mL tube containing $21(20.0 \mathrm{mg})$ were added EtOAc (1.0 mL) and n-hexane $(1.0 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure 21. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA)$ at 302.0 K. CCDC $2251810(\mathbf{2 1})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code	21
Empirical formula	$\mathrm{C}_{58} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$
Formula weight	961.07
Temperature/K	302.0
Crystal system	monoclinic
Space group	C2
a/Å	32.1431(8)
b/Å	7.1890(2)
c/Å	11.8007(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.963(2)
γ°	90
Volume/A ${ }^{3}$	2693.57(12)
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.185
μ / mm^{-1}	0.153
$\mathrm{F}(000)$	1004.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.81 to 49.998
Index ranges	$-38 \leq \mathrm{h} \leq 38,-8 \leq \mathrm{k} \leq 8,-14 \leq 1 \leq 14$
Reflections collected	22880
Independent reflections	$4626\left[\mathrm{R}_{\text {int }}=0.0453, \mathrm{R}_{\text {sigma }}=0.0315\right]$
Data/restraints/parameters	4626/1/317
Goodness-of-fit on F^{2}	1.066
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0425, \mathrm{wR}_{2}=0.1046$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0554, \mathrm{wR}_{2}=0.1151$
Largest diff. peak/hole / e \AA^{-3}	0.29/-0.17
Flack parameter	0.07(3)

17. Mechanism studies

(1) Control experiment

To get more insight into the mechanism, some control experiments were carried out. Substrate $\mathbf{1 a}^{\prime \prime}$ without an electron-withdrawing group showed high reactivity, and it could undergo Friedel-Crafts reaction with 2a in the absence of Pd catalyst. In contrast, 1a was inert without catalysts, while the reaction proceed smoothly under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, indicating that there is no background reaction. No reaction occurred with $\mathrm{Pd}(\mathrm{OAc})_{2}$, demonstrating the importance of Pd^{0}. Besides, indole derivative 1a' was applied to the reaction with 2a under the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, but no Friedel-Crafts product was observed, demonstrating the importance of the conjugated alkyne group. Similar phenomenon was observed for the reaction of 2-alkenyl indole 7a with imine 2a, implying the importance of Pd^{0} and the conjugated alkene group.

1) Control experiment of indole derivetives and enone 2a.

2) Importance of the conjugated alkene group

$\mathbf{1 a}^{\prime \prime}(8.5 \mathrm{mg}, 0.050 \mathrm{mmol})$ and 2a ($11.6 \mathrm{mg}, 0.0500 \mathrm{mmol}$) were dissolved in toluene $(0.5 \mathrm{~mL})$, and the mixture was stirred at rt for 48 h . After completion, it was purified by flash chromatography on silica gel (EtOAc/petroleum ether $=$ $1 / 10$) to give product $3 \mathbf{a}^{\prime \prime}: 15.4 \mathrm{mg}, 61 \%$ yield, colorless oil; $2: 1 \mathrm{dr}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.09$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.6, 140.0, 136.6, 134.8, 133.9, 128.71, 128.66, 128.6, 128.3, 127.5, 125.8, 123.2, 120.1, 119.7, 119.1, 117.3, 117.0, 109.3, 96.5, 71.6, 43.1, 43.0, 30.4, 4.9; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}^{+} 425.1625$, found 425.1632.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2) HRMS study

(3) NMR experiments

$\mathbf{1 a}+\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

The ${ }^{1} \mathrm{H}$ NMR analysis showed that $3-\mathrm{H}\left(\mathrm{H}^{1}\right)$ of $\mathbf{1 a}$ experienced apparent high-field shifts when $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was added (6.06 vs 6.83 ppm). The possible nucleophilic attack of PPh_{3} to electrondeficient 1a was not observed by mixing 1a and $\mathrm{PPh}_{3}(\mathbf{a})$. The ${ }^{13} \mathrm{C}$ NMR experiments showed that the signals of the triple bond of 1a disappeared (around 70-80 ppm) after adding $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, while new peaks were observed at the sp^{2}-carbon region (C^{2} and C^{3}, around 136 ppm); in contrast, C^{1} of 1a experienced significant high-field shifts (105.1 vs 112.4 ppm) (b). Similarly, the signals of $\mathrm{H}^{1}, \mathrm{H}^{2}, \mathrm{H}^{3}$, $\mathrm{C}^{1}, \mathrm{C}^{2}$ and C^{3} of $\mathbf{7 a}$ were all high-field shifted in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, according to the NMR
experiments. These results well supported that the proposed complexes I-1a and I-7a would be formed, and verified the π-Lewis base activation of Pd^{0} through the coordination to the unsaturated group (\mathbf{c} and \mathbf{d}).

In contrast, no chemical shifts were observed for substrate $\mathbf{1 a}^{\prime}$ when mixed with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\mathrm{Pd}($ allyl $) \mathrm{Cp}$, demonstrating the importance of the conjugated triple or double bond.

Procedure of NMR experiments

An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with $\mathbf{1 b}(2.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ or $\mathbf{7 a}(2.6 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.0100 \mathrm{mmol})$. The tube was then evacuated and filled with argon. This cycle was repeated five times, and deuterated toluene (0.5 mL) was added via syringe. The resulting solution was stirred at rt for 20 min . The mixture was analyzed by NMR.

An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with $\mathbf{1 a}^{\prime}(3.8 \mathrm{mg}, 0.020 \mathrm{mmol}), \mathrm{PPh}_{3}(10.5 \mathrm{mg}, 0.0400 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cp}(4.3 \mathrm{mg}, 0.020 \mathrm{mmol})$. The tube was then evacuated and filled with argon. This cycle was repeated five times, and deuterated toluene (0.5 mL) was added via syringe. The resulting solution was stirred at rt for 1 h . The mixture was analyzed by NMR.
(4) Transformation of $\boldsymbol{\eta}^{2}-\mathrm{Pd}^{0}$-unsaturated indole complexes with electrophiles

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with unsaturated indoles 1a ($21.3 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) or $7 \mathbf{7 a}(26.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PPh}_{3}(52.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\operatorname{Pd}($ allyl $) \mathrm{Cp}(21.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv). The tube was then evacuated and back-filled three times with argon, and degassed THF (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 3 h . After completion, the mixture was concentrated and dried in vacuum to give crude product $\mathbf{I - 1 a}$ or $\mathbf{I - 7 a}$. Then I-1a and 2a were added to an oven-dried 10 mL Schlenk tube. After the tube was evacuated and back-filled three times with argon, degassed toluene $(0.5 \mathrm{~mL})$ was added via syringe. The resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 5 h . After completion, the crude product was directly purified by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 10)$ to give $\boldsymbol{r a c} \mathbf{- 3 a}(29.4 \mathrm{mg}, 66 \%$ yield, $>19: 1 \mathrm{dr},>19: 1 \mathrm{E} / \mathrm{Z})$. Similarly, I-7a and 8a were added to an oven-dried 10 mL Schlenk tube. After the tube was evacuated and back-filled three times with argon, degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After completion, $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred 30 min at $0^{\circ} \mathrm{C}$. The precipitates were filtered, and washed with cold $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM $(5 \times 5 \mathrm{~mL})$. The filtrate was concentrated to give $\boldsymbol{r a c}-\mathbf{9 a}(21.8 \mathrm{mg}, 42 \%$ yield, >19:1 $\mathrm{E} / \mathrm{Z})$.

(5) DFT calculations

1) Computational details

In this work, all geometry optimizations and single-point energy calculations were carried out using Gaussian $09 .{ }^{11}$ Geometries of minima and transition states were optimized using the B3LYP functional ${ }^{12}$ with basis set $6-31 \mathrm{G}(\mathrm{d})$ (SDD for Pd atom) in gas phase. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a
local minimum or a transition state structure, as well as deriving the thermochemical corrections for the enthalpies and free energies. Solvation energy corrections were calculated in 1,4-Dioxane with the continuum solvation model (SMD) $)^{13}$ based on the gas-phase optimized geometries. To gain more accurate results, the M06 functional ${ }^{14}$ with basis set $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ (SDD for Pd atom) was used for solvation single-point energy calculations. The integration grids defined by the 'Int=Ultrafine' keyword were used for all calculations.
2) DFT calculations on the unsaturated indoles and related $\boldsymbol{\eta}^{\mathbf{2}} \mathbf{- P d}{ }^{\mathbf{0}}$-complexes (The calculations were performed at the B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)
(a)

номо -5.69 eV

(b)

To get more insight into the catalytic mechanism, we conducted frontier molecular orbital (FMO) analysis on the Pd^{0} complexes of unsaturated indoles. In comparison with the parent substrate alkyne 1a $(-5.69 \mathrm{eV})$ or alkene $7 \mathbf{a}(-5.46 \mathrm{eV})$, the HOMO energy of corresponding $\eta^{2}-\mathrm{Pd}^{0}$-complex I-1a $(-4.71 \mathrm{eV})$ or $\mathbf{I - 7 a}(-4.62 \mathrm{eV})$ is apparently raised, respectively, supporting the π-Lewis back donation of Pd^{0} as a Lewis base.
3) Computed energy profiles for the $F C$ step and deprotonation step (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

The electrophilic aromatic substitution contains two steps: 1) FC addition step, and 2) deprotonation/aromatisation. Unon the $\mathrm{Pd}^{0}-\pi$-Lewis base activation, the FC addition step proceeds via (R, S)-TS to generate intermediate (R, S)-II. The energy barrier for (R, S)-TS is $17.4 \mathrm{kcal} / \mathrm{mol}$, which is the highest in the whole process. Thus this is the rate-determining step. The subsequent deprotonation/aromatisation proceeds via an intramolecular 1,5-proton transfer [via (R, S)-TS2] to give aromatic substituted intermediate (S)-III. The relative free energy of (R, S)-TS2 is $2.7 \mathrm{kcal} / \mathrm{mol}$ lower than that of $(R, S)-\mathbf{T S}$, indicating that the FC addition step is irreversible. The subsequent Michael addition is not catalysed by Pd. Therefore, the FC addition step is the stereochemistrydetermining step for this electrophilic aromatic substitution.
4) Enantioselectivity of the formation of chiral 3a (The calculations were performed at the M06/6$311++G(\mathrm{~d}, \mathrm{p})(\mathrm{SDD}$ for Pd$) / \mathrm{SMD} / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}(\mathrm{d})($ SDD for Pd$)(298.15 \mathrm{~K})$ level of theory)

We also investigated the origins of enantioselectivity in the reaction of alkyne 1a and enone 2a. The enantiocontrol of this transformation was determined in the FC addition step, in which the first $\mathrm{C}-\mathrm{C}$ bond was constructed, four transition states were considered. Transition states (R, S) - $\mathbf{T S}$ and (S, S)-TS would lead to product (S, R)-3a via (R, S)-II and (S, S)-II, respectively, and the stereogenic centre at 3-C of indole would disappear through deprotonation/aromatisation. On the other hand, (R, R)-TS and (S, R)-TS would lead to enantiomer (R, S)-3a via similar transformations. Notably, $\mathrm{H}-$ bonding interaction between the NH group of $\mathbf{L 1}$ and the carbonyl group of $\mathbf{1 a}$ is observed in (R, S) TS and (R, R)-TS, while the other two transition states without H -bonding interaction exhibit higher energies [$5.2 \mathrm{kcal} / \mathrm{mol}$ for (S, S)-TS; $2.9 \mathrm{kcal} / \mathrm{mol}$ for $(S, R)-\mathbf{T S}]$. The results indicate that the $\mathrm{H}-$
bonding is beneficial for the reaction, which is consistent with the experimental results (Table 1, entry 5 vs entry 8). Geometric structure analyses show that the forming $\mathrm{C}-\mathrm{C}$ bond in $(R, R)-\mathbf{T S}$ presents a pseudogauche conformation to avoid the steric repulsion between the ester group of 1a and the carbonyl of 2a. As a result, the dihedral angle $\mathrm{D}_{\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H}}$ is 45.4° with apparent torsional strain. In contrast, (R, S)-TS possesses smaller torsional strain (referring to the corresponding $\mathrm{D}_{\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H}}=$ 57.4°), thus leading to lower energy [$0 \mathrm{kcal} / \mathrm{mol}$ for $(R, S)-\mathbf{T S}$ vs $1.0 \mathrm{kcal} / \mathrm{mol}$ for $\left.(R, R)-\mathbf{T S}\right]$. Therefore, the most favourable transition state (R, S)-TS would afford (S, R)-3a as the major product after annulation, which is consistent with the experimental observation.
5) Hydrogen bonding mode (The calculations were performed at the $\mathrm{M} 06 / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})(\mathrm{SDD}$ for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

(R, S)-TS $\Delta \Delta G^{\ddagger}=0$

$(R, S)-$ TS-II
$\Delta \Delta \mathrm{G}^{\ddagger}=9.2 \mathrm{kcal} / \mathrm{mol}$

Since the NH group of L1 plays an important role for the enantioselectivity, two H-bonding interaction modes were considered. In the first mode, the NH group in $\mathbf{L} 1$ interacts with the ester group of 1a, forming a chiral binding pocket to achieve stereocontrol $[(R, S)-\mathbf{T S}]$. In the second mode, the NH group in $\mathbf{L 1}$ interacts with the carbonyl of $\mathbf{2 a}[(R, S)-\mathbf{T S}-\mathbf{I I}]$. According to computational results, the energy of (R, S)-TS-II is $9.2 \mathrm{kcal} / \mathrm{mol}$ higher than that of (R, S)-TS, indicating that the first mode is favoured.
6) Thermodynamic stability of several possible stereoselective products (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

(S,R)-3b-(E) $\Delta \Delta \mathrm{G}=0 \mathrm{kcal} / \mathrm{mol}$

Since the Pd complex would not be involved in the final annulation process, thermodynamic stability of several possible stereoselective products, including $(S, R)-\mathbf{3 b}-(E),(S, R)-\mathbf{3 b}-(Z),(S, S)$-3b(E), (S)-4a-(E) and (S)-4a-(Z), were calculated via DFT studies. Among the three possible formal [3 +2 products, $(S, R)-\mathbf{3 b}-(E)$ has the lowest energy; on the other hand, $(S)-\mathbf{4 a}-(E)$ possesses lower energy compared with $(S)-\mathbf{4 a}-(Z)$. The results indicates that the two products would be thermodynamicaly more stable, thus they are obtained as the major products in cascade reactions.

7) IRC calculations for all transition states

(7) Proposed mechanism

(a) The reaction of indoles with a 2-alkynyl group

On the basis of the above results and the absolute configuration of enantiopure $\mathbf{3 i}$, a possible reaction pathway was proposed. Firstly, alkyne 1b coordinates with $\mathrm{Pd}(0)$ to generate HOMO raised η^{2}-complex \mathbf{I}, in which the NH group of $\mathbf{L} \mathbf{1}$ interact with the carbonyl group of $\mathbf{1 a}$ via H -bonding. Then the 3-position of the indole attacks enone $\mathbf{2 h}$ from $R e$-face. The resultant η^{3}-complex II would undergoes an intramolecular 1,5-proton transfer to giv intermediate III, and the hydroxyl group of the enol moiety might interact with the carbonyl of the propiolate group of III, thus facilitating the intramolecular Michael reaction to give thermodynamically more stable product $\mathbf{3 i}$ with an exo-Edouble bond.

Proposed mechanism

(b) The reaction of indoles with a 2 -alkenyl group

Similarly, the mechanism for the FC reaction of 7a was proposed as well. Firstly, alkene 7a coordinates with $\operatorname{Pd}(0)$ to generate HOMO raised η^{2}-complex \mathbf{I}^{\prime}. Then the 3-position of the indole attacks imine 8a which is activated by the acid additive from Si -face, followed by a β-H elimination or deprotonation process to give final product $9 \mathbf{9}$.

(8) Influence of ammonium salts

For additive TBAB, we conducted more control experiments to elucidate its role. As shown in the following table, the addition of TBAB significantly imporved the yield (entry 1 vs 2). Under the
optimised conditions, TBAC, TBAI and even TBAHS (tetrabutylammonium hydrogen sulfate) all provided comparable results (entries 4-6 vs entry 3), while KBr showed much lower reactivity (entry 7). The results indicated the ammonium cation was important to the reactivity, while the counter anion had little effect.

Entry ${ }^{\text {a }}$	A	Yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	/	3b, 49	92
2	TBAB	3b, 70	91
$3^{\text {d,e }}$	TBAB	3b, 86	92
$5^{\text {d,e }}$	TBAC	3b, 76	92
$4^{\text {d,e }}$	TBAI	3b, 81	91
$6^{\text {d,e }}$	TBAHS	3b, 79	90
$7{ }^{\text {d,e }}$	KBr	3b, 52	92
${ }^{a}$ Unless noted otherwise, reactions were carried out with 1b (0.025 $\mathrm{mmol}), 2 \mathbf{2 a}(0.03 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L} 1(10 \mathrm{~mol} \%)$ and additive $\mathbf{A}(20 \mathrm{~mol} \%)$ in solvent $(0.25 \mathrm{~mL})$ at $60{ }^{\circ} \mathrm{C}$ under Ar. ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d} C=0.2 \mathrm{M} .{ }^{e}$ The ratio of $\mathbf{1 b} / \mathbf{2 a}$ was $1 / 1.3$.			

Therefore, we speculated that the ammonium salt might facilitate the reaction by stablilising intermeidate II as a counterion for the enolate motif after FC addition to acceptor 2, as outlined in the following scheme.

18. NMR, HRMS spectra and HPLC chromatograms

170	${ }_{160}$	150	140	${ }_{130}$	120	110	100	90	$\stackrel{1}{80}$	${ }_{70}$	${ }_{60}$	50	$\stackrel{1}{40}$	10	${ }_{20}^{1}$	10	0
170	160	1.0	140	130		110			80	70	60	50	40	30	20	10	

Name
Inj. Vol. (ul)
Data File

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N Nิ	 	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CoCls)

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { d }}{\sim}$	$\stackrel{0}{\sim}$	
$\stackrel{\infty}{\infty}$	$\stackrel{\leftrightarrow}{6}$	
T		-

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

（HNRR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

			$\begin{aligned} & \text { T } \\ & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$					$\stackrel{T}{\stackrel{T}{N}}$	$\begin{aligned} & \text { r} \\ & \text { § } \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \text { Ti } \\ & \stackrel{\leftrightarrow}{\circ} \\ & \hline \end{aligned}$								
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	－0．5

$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{y}{2} \\ & \text { on } \end{aligned}$	 		．	
\rceil	ふテ「－20	N		$1 \% 1$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.517	2.997	646287	38198004	52.2167
2	16.820	3.413	477300	34954859	47.7833

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.190	2.170	25194964	657783056	95.6538
2	16.970	1.920	764296	29887205	4.3462

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10	0	-10	- 20	-30	$0^{1} \quad-40$	0 -50	$0^{-1} \quad-60$	-70	-80	-90	0100 $\mathrm{fl}(\mathrm{ppm})$	-110	-120	$\frac{1}{-130}$	-140	-150	-160	-170	-180	-190	$\begin{array}{cc} \hline 1 \\ \hline-200 & -210 \end{array}$	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	14.127	2.573	7877961	224533728	50.2902
2	22.550	2.807	5407970	221942612	49.7098

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.470	2.643	4663761	127889900	82.3282
2	21.420	2.707	620541	27451695	17.6718

[^1]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.553	2.473	3107348	77648017	50.4894
2	16.670	2.637	1965246	76142563	49.5106

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.400	3.093	6316741	179639463	97.6855
2	16.890	1.547	109246	4256232	2.3145

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.447	1.913	2541914	93115451	51.6469
2	21.867	3.307	1431065	87176867	48.3531

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.087	3.040	13724743	496471446	96.0521
2	22.107	2.400	352219	20405799	3.9479

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

¢\％oio	m	
Nべ゚	$\stackrel{\circ}{\circ}$	ら家年
V	I	\／

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	26.877	6.743	1720277	216448465	50.5905
2	38.040	9.660	1260471	211395288	49.4095

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	24.500	8.080	10668682	1066770812	95.6273
2	37.803	6.267	349035	48779251	4.3727

[^4]

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.917	1.857	8370363	268723777	50.4536
2	16.767	2.200	7463371	263891976	49.5464

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.850	1.563	24038377	599013966	95.3890
2	16.790	1.080	1114030	28955369	4.6110

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	29.130	2.943	2151178	162161312	48.1460
2	31.820	3.990	2982721	174650024	51.8540

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	27.803	3.337	3173152	225559844	95.1760
2	30.850	1.703	216535	11432497	4.8240

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.100	2.987	7255656	292906758	51.6780
2	22.573	4.160	3934370	273885073	48.3220

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	12.540	4.093	35980476	1490787818	94.0316
2	23.053	3.147	1498793	94623682	5.9684

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	-10	-20	- ${ }^{-1}$	-40	-50	-60	-70	-80	${ }_{-9}$	$\begin{array}{r} 100 \\ { }^{-100} \\ \text { f1 } \end{array}$	$\begin{gathered} -1110 \\ (\mathrm{ppm}) \end{gathered}$	${ }_{-120}$	-130	-140	-150	-160	-170	${ }^{1} 80$	-190	-200	-210

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^6]

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\stackrel{\text { ¢ }}{ }$
	¢

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.580	1.600	5492989	153173798	50.8394
2	14.037	2.040	4120141	148115976	49.1606

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.807	2.020	15395999	452310860	93.1072
2	14.740	1.387	985064	33484779	6.8928

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^7]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	17.800	3.153	17351435	670966566	49.9116
2	25.570	4.170	14252623	673342811	50.0884

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	17.843	2.867	9932096	362098755	95.6293
2	25.717	2.590	357222	16549756	4.3707

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		$\begin{aligned} & T \\ & \\ & 0 \\ & 0 \end{aligned}$										$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\circ} \\ & \hline \end{aligned}$								
. 0	8.5		8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{array}{r} 4.0 \\ (\mathrm{ppm}) \end{array}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

న			Nofor	士్ల్ర
\％			べら第守	¢ ¢ ¢ ¢ ¢
I	$1 \underbrace{\text { a }}_{\text {－}}$－ 11	｜	11	｜\1

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^8]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	10.247	2.240	4154975	120554112	51.1625
2	14.110	2.560	3335470	115075891	48.8375

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	9.747	1.720	26375701	593443940	92.6760
2	13.650	1.280	1810361	46898570	7.3240

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4a
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.523	0.670	15600429	147327827	49.8698
2	6.490	0.713	13990158	148097265	50.1302

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.523	0.520	3349990	26433556	6.3092
2	6.467	0.747	38872533	392533493	93.6908

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^9]

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| |
| :--- | :--- |

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		 			$\begin{aligned} & \text { TH } \\ & \stackrel{T}{9} \\ & \stackrel{\circ}{\sim} \end{aligned}$														
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5. 5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0. 5

[^10]

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^11]

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		HH-Hy 					$\begin{aligned} & \underset{\sim}{\top} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \stackrel{0}{\circ} \\ & \stackrel{-}{2} \end{aligned}$			$\begin{aligned} & \underset{T}{\prime} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$								
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	${ }^{\top} .0$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		 			$\begin{gathered} \text { M } \\ \stackrel{N}{6} \end{gathered}$		$\begin{aligned} & \text { Ti} \\ & \hline \mathbf{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{+}{+} \end{aligned}$			$\begin{aligned} & \text { H } \\ & \text { ס } \\ & \text { M } \end{aligned}$							
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4. f1 f1	4.0	3. 5	3.0	2. 5	2.0	1. 5	1.0	0.5	${ }^{1} .0$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.710	2.967	7082341	280591765	51.4656
2	16.823	2.740	5383467	264610468	48.5344

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.433	3.397	10462208	382501506	94.8707
2	17.000	2.383	413924	20680376	5.1293

, - /Il/I..

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^12]

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	21.617	4.837	5933354	316584930	96.5171
2	26.967	3.653	187267	11424122	3.4829

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.653	3.690	3247868	219235294	49.0299
2	18.767	5.547	2735948	227910397	50.9701

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.320	5.437	7686765	533953003	96.1849
2	18.420	3.873	198602	21178873	3.8151

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	10.797	2.137	863508	21285389	50.5921
2	13.060	1.613	686538	20787199	49.4079

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	10.877	1.350	746160	18234744	4.8699
2	13.153	2.543	11176580	356199763	95.1301

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^13]

[^14]

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8.5	8.0	7.5	7.0	6.5	6. 0	5.5	5. 0	4.5	4.0	3. ${ }^{1}$	3.0	2.5	2. 0	1.5	1.0	0.5	0.0	${ }_{-0}^{1} .5$
									f1									

9a
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200	190	${ }_{180}$	170	$\stackrel{1}{160}$	150	140	130	120	110	${ }_{10} 1$	${ }_{90}$	80	70	60	50	${ }_{40}$	${ }_{30}$	20	10	0
				10	150	140	150			f1 (p		8	\%	6	5	0	,	2	10	

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	11.390	1.557	5639066	152337813	50.0221
2	14.603	2.160	3856711	152202933	49.9779

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	12.277	1.973	17699235	530018258	99.1872
2	15.557	1.147	185379	4343132	0.8128

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	19.253	3.350	2139544	110998462	49.9433
2	30.300	5.563	1276119	111250474	50.0567

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	19.330	3.383	5209470	268629475	95.3700
2	30.613	5.180	146489	13041364	4.6300

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	10.517	1.703	3617658	95289523	51.5117
2	16.120	2.160	2134571	89696755	48.4883

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	10.420	1.703	241044	6302803	2.9518
2	15.823	2.437	5028017	207223010	97.0482

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.187	1.883	6217001	205089247	49.5989
2	15.430	2.403	5206164	208405889	50.4011

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.197	1.780	57651	1878293	1.6145
2	15.370	2.383	2904245	114463831	98.3855

(

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^15]

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^16]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	7.397	1.160	4936632	92519742	49.4281
2	18.740	2.763	1977249	94660544	50.5719

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	7.390	0.890	4420301	80351244	12.0741
2	18.627	2.987	11874025	585132245	87.9259

9I, $E / Z=9: 1$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Name Inj. Vol. (ul)	$\begin{aligned} & \text { CYC-20211129-51 } \\ & 8 \end{aligned}$	Rack Pos. Plate Pos.		Instrument IRM Status	Instrument 1 Success		Operator	
Data File	CYC-20211129-51.d	Method (Acq)	ZYJ-20201106.m	Comment			Acq. Time (Local)	$\begin{aligned} & \text { 12/1/2021 6:09:59 PM } \\ & \text { (UTC+08:00) } \end{aligned}$
$\times 10^{6}+$ ESI Scan (rt: 0.216 min) Frag=175.0V CYC-20211129-51.d	+ESI Scan (rt: 0.216 min) Frag=175.0V CYC-20211129-51.d							
$1.9-\quad \text { Ts }$								
1.8- ${ }^{\text {- }}$								
$1.7-$								
1.6	/			483.1358				
1.4- $\ 91$								
1.3- HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$								
1.2- Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+} 483.1349$								
$1.1-$								
$1-$								
0.9 -								
$0.8-$								
$0.7-$								
$0.6-$								
0.5-								484.1389
$0.4-$								
$0.3-$								
$0.2-$								
0.1. ${ }_{0}$								
$0=$	$\begin{array}{lllll}182 & 482.1 & 482.2 & 482\end{array}$	482.4482 .5	$\begin{array}{llll}12.7 & 482.8 & 482.9\end{array}$	483.1483 .2	483.4483 .5483 .6	483.7	$\begin{array}{ccc}483.8 & 483.9 & 484\end{array}$	$\begin{array}{llll} \\ 484.1 & 484.2 & 484.3 & 184.4\end{array}$
			Count	Mass-to-Charge				

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \text { T } \\ & \text { O } \\ & \stackrel{1}{N} \end{aligned}$			$\begin{aligned} & \text { † } \\ & \hline \text { - } \end{aligned}$				$\begin{aligned} & \text { T } \\ & \text { o } \\ & \stackrel{1}{*} \end{aligned}$			$\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$						
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4. 5	$\begin{aligned} & \text { 4. } 0 \\ & \text { (pp } \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9 m
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^17]

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.297	2.453	922603	27319036	50.0964
2	25.233	3.543	434887	27213883	49.9036

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	12.400	2.217	83826	3716754	0.9574
2	24.473	4.693	5129430	384479094	99.0426

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9p, $E / Z=8: 1$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^18]

9q
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{T}{2}$	$\stackrel{1}{190}$	$\stackrel{1}{180}$	$\stackrel{1}{170}$	160	$\stackrel{1}{150}$	140	$\stackrel{1}{130}$	$\stackrel{1}{120}$	110	100	90

F NMR (376 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 l \qquad \cdots \qquad

ㄷobo	N	\%
-	¢	-

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	16.487	3.333	6979236	312816302	50.5441
2	34.407	5.113	3108400	306080935	49.4559

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	16.210	1.440	20984	850281	0.1545
2	33.570	7.627	5557583	549577262	99.8455

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\nabla}{\square}$	-
$\stackrel{\infty}{\infty}$	

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	15.960	2.837	6290548	274844169	48.5817
2	26.610	4.320	3902253	290892002	51.4183

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	16.367	2.507	230225	10180317	6.8558
2	27.173	3.767	1779123	138311245	93.1442

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	20.447	3.280	5582775	340881714	51.4650
2	32.257	7.227	3177083	321474059	48.5350

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	19.963	2.517	366335	20766529	4.8474
2	31.553	4.933	4280988	407636260	95.1526

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^19]

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{ल}{ल}$

太ু	$\stackrel{\sim}{\sim}$
¢	$\stackrel{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^20]

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	9.410	1.560	996789	32491910	48.1116
2	10.913	2.280	877866	35042593	51.8884

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	9.150	1.463	5224330	125892065	93.8284
2	10.657	0.960	337253	8280647	6.1716

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	14.877	1.680	1699988	59201541	51.9062
2	16.850	1.947	1383275	54853235	48.0938

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	14.907	1.550	62750	2128894	1.7129
2	16.873	1.947	3058157	122154159	98.2871

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\sim}{\sim}$	¢
$\stackrel{\infty}{\infty}$	
\rceil	

๓
∞
©
i

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	15.433	2.210	436644	12770825	13.8708
2	21.027	2.723	326034	12600103	13.6854
3	29.890	5.573	394524	33193753	36.0527
4	37.353	7.190	329626	33505312	36.3911

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	29.333	5.333	1352577	114406982	99.4295
2	38.197	2.163	10474	656434	0.5705

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{1}{-70}$	${ }_{-75}^{1}$	$\stackrel{1}{-80}$	$\stackrel{1}{-85}$	1 -90	$\stackrel{1}{-95}$	${ }_{-100}$	${ }_{-105}^{1}$	${ }_{-1}{ }^{1} 10$	${ }_{-115}$	-120	${ }_{-125}$	${ }_{-130}$	${ }_{-135}^{1}$	${ }_{-140}$	${ }_{-145}^{1}$	-150	-155	$\stackrel{1}{160}$	${ }_{-165}$	-170
										f1 (

の象

11c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\#	[min]	[min]	[mAU*s]	[mAU]	\%
1	15.851 BB	0.4177	562.23639	20.67464	15.5810
2	17.174 BBA	0.5294	1213.41089	35.53400	33.6268
3	19.682 BB	0.6158	1199.03784	29.75334	33.2285
4	23.546 BB	0.6689	633.77832	14.32913	17.5637

11d, $E / Z=17: 1$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	12.163	1.213	2600395	63666453	47.8414
2	18.353	2.347	1732438	69411745	52.1586

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	12.137	1.110	698028	16745391	4.4855
2	17.873	2.740	7293626	356577069	95.5145

11g
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

180						1		10	1							,		
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \text { f1 } \end{gathered}$	80	70	60	50	40	30	20	10	0

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	17.703	1.510	937768	30939886	48.6280
2	19.340	2.810	870344	32685829	51.3720

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	17.403	2.058	3525321	136808681	92.8331
2	19.343	2.733	223303	10561952	7.1669

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\infty}$
\circ
$\stackrel{7}{7}$
0
i
$\underset{\substack{\dot{\omega} \\ \dot{\top} \\ \hline}}{ }$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

180	170	160	150	140	130	120	110	100	90	80	70	60	50	10	30	1	10	0	-1

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.667	0.680	13816775	124349448	50.1392
2	6.377	0.707	12141863	123659064	49.8608

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.660	0.633	511382	5037454	2.9866
2	6.333	0.750	15979081	163631377	97.0134

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

16, NOEDS, 6.17 ppm NOEDS NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$)
irradiation of H^{1} at 6.17 ppm
no signal of H^{2} at 5.90 ppm

8.5	8. 0	7. 5	7. 0	6.5	6. 0	5.5	5. 0	4. 5	4. 0	3.5	3. 0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Phı

Ts $\mathbf{1 8}, \mathrm{dr}=3: 1$
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^21]
AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.390	0.360	3705253	30571708	50.0149
2	5.733	0.410	3435941	30553461	49.9851

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	5.353	0.453	21355708	181135446	99.9939
2	5.687	0.083	0	11068	0.0061

 ตin

Phı

DEPT ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\underset{4}{4}}{\underset{1}{7}}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 Counts vs. Mass-to-Charge (m/z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

					$\underset{\sim}{\top}$						$\stackrel{\top}{\top}$		$\begin{aligned} & \text { H} \\ & \stackrel{8}{6} \end{aligned}$						
${ }^{1} \cdot 5$	8. 0		5	7.1	${ }_{6.5}^{1}$	6.0	5.5	5.0			3. 5	3.0	2.5	2.0	1.5	1.0	${ }^{1} .5$	0.0	-0.

21
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19. Computational details

1) Absolute Calculation Energies, Enthalpies, and Free Energies

Geometry	$E_{\text {(elec-B3) }}{ }^{1}$	$G_{(\text {corr-B3) }}{ }^{2}$	$H_{\text {(corr-B3) }}{ }^{3}$	$E_{\text {(solv, M06) }}{ }^{4}$	IF^{5}
(R, S)-TS	-4224.837456	1.057278	1.253668	-4223.320381	$326.35 i$
($\boldsymbol{R}, \boldsymbol{R}$)-TS	-4224.833453	1.056277	1.253795	-4223.317726	$313.95 i$
(S,R)-TS	-4224.819943	1.055002	1.253119	-4223.313514	$227.69 i$
(S, S)-TS	-4224.815116	1.055172	1.253309	-4223.310020	$269.03 i$
(R, S)-TS-II	-4224.822610	1.054981	1.253520	-4223.303477	341.04i
(R,S)-TS2	-4224.836034	1.055585	1.251349	-4223.323011	$218.11 i$
I	-3478.600656	0.850089	1.012213	-3477.407463	-
($\boldsymbol{R}, \mathrm{S}$) -III	-4224.839988	1.059184	1.255204	-4223.328724	-
(S)-III	-4224.867259	1.058267	1.255826	-4223.356108	-
2a	-746.260011	0.180539	0.240081	-745.918135	-
(S,R)-3b-(E)	-1684.500785	0.452774	0.556429	-1683.772500	-
$(S, R)-3 \mathrm{~b}-(\mathrm{Z})$	-1684.492408	0.451968	0.556531	-1683.761263	-
$(S, S)-3 \mathrm{~b}-(E)$	-1684.495472	0.453354	0.556316	-1683.769379	-
(S)-4a-(E)	-1790.450200	0.379823	0.479381	-1789.827674	-
(S)-4a-(Z)	-1790.448115	0.379014	0.479535	-1789.826573	-

${ }^{1}$ The electronic energy calculated by B3LYP in gas phase. ${ }^{2}$ The thermal correction to Gibbs free energy calculated by B3LYP in gas phase. ${ }^{3}$ The thermal correction to enthalpy calculated by B3LYP in gas phase. ${ }^{4}$ The electronic energy calculated by M06 in 1,4-Dioxane solvent. ${ }^{5}$ The B3LYP calculated imaginary frequencies for the transition states.
2) Geometries for All Optimized Structures

				C	$\begin{aligned} & -3.74720300 \\ & -0.98851000 \end{aligned}$	$\begin{aligned} & -1.51224600 \\ & 0.79083400 \end{aligned}$	$\begin{gathered} -0.00002500 \\ 0.00004500 \end{gathered}$	
C	-4.85066500		-0.67407700	-0.00001300	C	-0.25916800	-0.40538100	0.00000000
C	-4.69908000	0.73179300	0.00002500	C	-1.13888700	-1.47707800	0.00001400	
C	-3.44450300	1.32628400	0.00005200	C	-0.43724700	2.13231600	-0.0000970	
C	-2.32717400	0.47816900	0.00003700	C	1.14628300	-0.42362000	-0.00002200	
C	-2.45800500	-0.94290800	-0.00000400	C	2.36322500	-0.42533200	-0.00002700	

C	3.79930500	-0.51669000	-0.00001200	H	-8.78865100	2.16020100	-0.17499500
O	4.42542000	-1.55813000	-0.00001000	H	-6.73446200	3.49986900	-0.51525000
O	4.36430900	0.71345500	0.00001700	H	-6.47083000	-1.30964500	0.90402500
C	5.80138700	0.71563400	0.00003700	H	-3.51163500	-0.77013700	0.81519500
H	-5.85048100	-1.09887800	-0.00003400	H	-4.58317700	4.06288900	-1.20434800
H	-5.58490300	1.36095200	0.00003300	H	-3.79328200	4.35699200	0.36437800
H	-3.33649100	2.40682500	0.00009000	H	-2.85710600	3.71894000	-1.00777600
H	-3.86917700	-2.59204700	-0.00003400	H	-0.01466100	6.14557100	-1.80706400
H	-0.84575100	-2.51738300	0.00001300	H	-0.64120700	6.37745000	-0.14035600
H	-0.75767300	2.68330500	-0.89181500	H	1.04536000	5.85867200	-0.38816900
H	-0.75810700	2.68363800	0.89125900	Pd	0.02868900	0.52794000	0.14339500
H	0.65165200	2.06496300	0.00019400	P	-0.40991000	-1.82034300	-0.02219200
H	6.08858700	1.76748400	0.00002100	P	2.40934600	0.73196500	0.05543200
H	6.18722200	0.21077700	0.88983000	C	0.88722400	-3.03707400	-0.55992100
H	6.18724600	0.21074200	-0.88972600	C	0.93878500	-3.51776100	-1.87718800
	$\mathrm{Ph}_{3} \mathrm{P}_{\mathrm{Pd}}$	PPh					

C	-0.99650700	-2.55996800	1.57357400	C	2.77564800	3.31653200	1.05761900
C	-1.46563200	-1.69061700	2.57198500	C	4.66009400	4.13473100	-0.82780000
C	-0.99741100	-3.94226900	1.83048200	H	4.41858300	2.18719700	-1.70276200
C	-1.94173800	-2.18979800	3.78674100	C	3.33408300	4.59258400	1.13689600
H	-1.45472500	-0.61897400	2.39204500	H	2.02499900	3.01921100	1.78331100
C	-1.47115900	-4.43932500	3.04533100	C	4.27908400	5.00566200	0.19398000
H	-0.61156500	-4.63307000	1.08705800	H	5.39292300	4.44776400	-1.56730700
C	-1.94713400	-3.56460100	4.02527100	H	3.01777700	5.26417700	1.93007400
H	-2.30377000	-1.50083400	4.54508600	H	4.71255700	6.00069200	0.25368900
H	-1.46485500	-5.51095600	3.22716300				
H	-2.31409400	-3.95367200	4.97138700		N10		
C	3.08753200	-0.01803500	-1.49184500				
C	2.50659200	0.40362800	-2.70236600	C	5.51990800	-1.72125200	-0.09706700
C	4.09861300	-0.98647600	-1.53279800	C	5.91519800	-0.36622800	-0.01510800
C	2.94807300	-0.10917200	-3.92110800	C	4.98270900	0.66061900	0.04374300
H	1.70504500	1.13849800	-2.68576200	C	3.62397100	0.31081500	0.02119400
C	4.52998500	-1.50979000	-2.75513900	C	3.20616600	-1.05224300	-0.06421200
H	4.54637900	-1.34637600	-0.61312800	C	4.18009200	-2.07036700	-0.12228800
C	3.96366200	-1.06901000	-3.95066800	N	2.49437600	1.09957700	0.06991200
H	2.49425700	0.23555700	-4.84668600	C	1.36428300	0.27456100	0.00854100
H	5.31080000	-2.26560700	-2.76736500	C	1.78631600	-1.04579900	-0.07067400
H	4.30441100	-1.47455300	-4.89969100	C	2.47568500	2.54997500	0.14389900
C	3.36311600	-0.01363400	1.45727000	C	0.03532300	0.82678100	0.02769000
C	4.75887900	0.10682900	1.56967900	C	-1.12807800	0.13590200	-0.01420700
C	2.65755000	-0.65396700	2.48589700	C	-2.41393900	0.86567300	-0.00435000
C	5.43163400	-0.43133600	2.66647600	C	-6.18397900	-1.22365200	0.00673700
H	5.32036000	0.63611900	0.80497800	C	-5.01156800	-1.94346400	0.24304100
C	3.33017600	-1.18506500	3.58998800	C	-3.77713700	-1.29288700	0.23823700
H	1.57489200	-0.72162300	2.42406300	C	-3.70049200	0.08904900	0.00278500
C	4.71852100	-1.08092900	3.67823500	C	-4.88900800	0.80360600	-0.22218900
H	6.51177300	-0.33325300	2.73769100	C	-6.11939900	0.15387900	-0.22566300
H	2.76615300	-1.67225500	4.38102600	O	-2.44461800	2.09776900	-0.01508900
H	5.24360400	-1.49175800	4.53658400	H	6.28164700	-2.49451200	-0.14165000
C	3.15979400	2.42982700	0.03901300	H	6.97373100	-0.12170000	0.00053900
C	4.10736600	2.85361100	-0.90497200	H	5.30734900	1.69517700	0.10176800

H	3.87771300	-3.11229500	-0.18679500	C	-3.44396500	-2.49018000	-3.55631600	
H	1.13645100	-1.90829300	-0.12791700		C	-4.71395500	-3.03438500	-3.72192100
H	3.49290200	2.91024000	0.30040600		O	-0.93946300	-1.40841400	-3.24261500
H	2.08804000	2.99451600	-0.77998000					
H	1.86251700	2.89027400	0.98426600	H	5.00196100	-4.77592400	3.90421900	
H	-0.06580700	1.90898800	0.07654200	H	6.63483900	-4.40802200	2.07851900	
H	-1.12660600	-0.94673900	-0.07573200	H	5.92407700	-3.45305500	-0.09385100	
H	-7.14426200	-1.73267900	0.00629200	H	2.60621800	-4.20729800	3.59811200	
H	-5.05689300	-3.01241200	0.43308800	H	0.68388000	-3.06604800	1.57143100	
H	-2.88096700	-1.87063000	0.43902800		H	4.84889200	-2.14587200	-1.67793100
H	-4.81578100	1.87265500	-0.39165800		H			
H	-7.03003200	0.71841100	-0.40752400	H	3.83901300	-3.39772900	-2.44329600	
Ph								

H	1.18390900	2.14952200	4.57960800	H	3.18308100	3.79038200	0.30324600
H	-0.58107700	2.46815000	6.30973400	C	4.84040800	1.87410400	2.57446800
C	-3.17644800	-0.80825900	1.53304100	H	4.50385300	-0.23701800	2.89145800
C	-4.53836000	-0.70781000	1.22061300	H	4.93847900	3.96094400	2.03316200
C	-2.72772500	-1.94063400	2.23612100	H	5.61286900	1.95196200	3.33520100
C	-5.43196000	-1.71076400	1.61024500	C	0.91481100	3.18755200	-0.94076600
H	-4.90845500	0.15411700	0.67491700	C	1.14317600	3.90814300	-2.12277700
C	-3.62001000	-2.93577600	2.63140700	C	0.16785700	3.79782400	0.08158100
H	-1.67259400	-2.03618200	2.48271800	C	0.63924200	5.20269800	-2.27655000
C	-4.97893500	-2.82278800	2.31918500	H	1.71658100	3.46355000	-2.92875900
H	-6.48516300	-1.61614400	1.35884500	C	-0.32460500	5.09302200	-0.06873500
H	-3.25613100	-3.79916200	3.18265900	H	-0.02957500	3.26079400	1.00412000
H	-5.67629300	-3.59751800	2.62698300	C	-0.09301300	5.80007800	-1.25122000
C	-2.92655800	1.78757100	0.25766200	H	0.82541000	5.74270300	-3.20142300
C	-3.04839500	1.71248000	-1.14091000	H	-0.89971800	5.54468800	0.73496300
C	-3.55934100	2.84100200	0.93435200	H	-0.48370300	6.80704600	-1.37195600
C	-3.80260500	2.65500300	-1.84049900	C	2.50286700	1.16207600	-2.23123600
H	-2.53974700	0.91920900	-1.68309600	C	3.86615600	1.47349900	-2.35271100
C	-4.30336100	3.79061300	0.23042300	C	1.83153700	0.60932000	-3.33660100
H	-3.46702100	2.93119900	2.01173500	C	4.54368900	1.23852100	-3.55165100
C	-4.43078000	3.69785200	-1.15653700	H	4.40413100	1.89774700	-1.51083400
H	-3.88726300	2.57965100	-2.92122000	C	2.51007700	0.38693400	-4.53723000
H	-4.78357300	4.60362800	0.76921300	H	0.78578200	0.32266800	-3.25562100
H	-5.01021900	4.43801700	-1.70211800	C	3.86759000	0.69829800	-4.64756500
C	2.84067500	1.67753000	0.60742700	H	5.60075400	1.48086400	-3.62765600
C	3.22177800	0.55116600	1.35627400	H	1.97551200	-0.04381800	-5.37962300
C	3.47017600	2.90633700	0.86453100	H	4.39640500	0.51624600	-5.57961100
C	4.21977900	0.64751500	2.32800500	(R,S)-TS		
H	2.72887400	-0.40191500	1.18612000	C	-3.50881400	-5.76381000	-2.78380100
C	4.46174700	3.00258100	1.84326500	C	-3.16783100	-6.03820200	-1.31323300

C	-3.71192800	-4.92188400	-0.41325200	H	-3.08101800	-6.53782100	-3.43254
C	-3.19639800	-3.53199300	-0.83770300	H	-2.07613200	-6.10554200	-1.19786100
C	-3.51315400	-3.24877800	-2.32030700	H	-3.57541100	-7.00679000	-0.99906000
C	-2.99599900	-4.38511000	-3.22134000	H	-3.43277000	-5.08790700	0.63268000
N	-3.78386400	-2.48849100	0.00234300	H	-4.81066700	-4.91420600	-0.45546100
N	-2.95018200	-1.98645700	-2.80214000	H	-2.10801300	-3.50261500	-0.70284000
C	-3.22847700	-2.15492100	1.19468900	H	-4.60365400	-3.16947700	-2.42660300
O	-2.23020400	-2.71949500	1.65628100	H	-3.28556100	-4.17321900	-4.25755900
C	-3.54397300	-0.78025100	-2.64889000	H	-1.89634400	-4.38039200	-3.19425200
O	-4.56059400	-0.59002600	-1.96604800	C	-6.23150600	3.67842100	0.27208500
H	-4.38533400	-1.80656900	-0.46332300	C	-6.15536100	3.08036700	-0.98564200
H	-2.00484600	-1.99584100	-3.18909800	C	-4.95680200	2.51789700	-1.42991600
C	-5.46039000	0.68099200	3.54279600	C	-3.81521700	2.54186200	-0.61616300
C	-4.07724100	0.83355700	3.42119500	C	-3.90545900	3.13443800	0.65478300
C	-3.30442400	-0.05102300	2.65683600	C	-5.10089900	3.70412000	1.09136900
C	-3.97030300	-1.10243400	1.98007800	H	-7.16422200	4.12044100	0.61263500
C	-5.35895200	-1.23999200	2.10146900	H	-7.02983100	3.05023000	-1.63028200
C	-6.10655900	-0.35892900	2.88218400	H	-4.92128300	2.04878000	-2.40495800
H	-6.02547200	1.38221100	4.15088700	H	-3.03584100	3.16924700	1.30344500
H	-3.59994400	1.66483900	3.92602400	H	-5.14687500	4.16683400	2.07370000
P	-1.48335400	0.23641100	2.39663500	C	0.69563500	5.50208300	-1.13948000
H	-5.84993600	-2.06120400	1.58839800	C	1.19629800	4.19845800	-1.12305200
H	-7.18188500	-0.48696500	2.96862700	C	0.31444200	3.11552100	-1.12798800
C	-2.12986800	2.32399000	-5.27363800	C	-1.07742600	3.31567000	-1.14724000
C	-2.02547000	2.51456300	-3.89491300	C	-1.56719500	4.63278700	-1.16771000
C	-2.43762000	1.53310700	-2.97782100	C	-0.68519400	5.71593800	-1.16407400
C	-2.95516000	0.32437100	-3.49514400	H	1.37727800	6.34885300	-1.13086100
C	-3.03702600	0.13388900	-4.88219300	H	2.26265700	3.99506600	-1.08672800
C	-2.63658900	1.12663900	-5.77402700	H	0.72742300	2.11271200	-1.10189300
H	-1.81107900	3.11338100	-5.94907800	H	-2.63654000	4.81662700	-1.18372200
H	-1.61167300	3.44657400	-3.52948700	H	-1.08125300	6.72831600	-1.17858100
P	-2.19080900	1.82676900	-1.14639200	C	0.72098200	-2.43886700	5.51095100
H	-3.43112600	-0.80570700	-5.25787500	C	1.42487800	-1.56121700	4.68310200
H	-2.71945000	0.96296900	-6.84493500	C	0.74162900	-0.79403700	3.73888000
H	-4.59921600	-5.80867700	-2.91923700	C	-0.65208100	-0.89224000	3.60929100

C	-1.34978600	-1.77641000	4.44191100	H	6.44323300	-2.28951600	3.77210600
C	-0.66547900	-2.54344000	5.38727300	H	5.15000100	-4.38296500	4.04185100
H	1.25100100	-3.03683600	6.24770000	H	3.01216800	-4.72226300	2.82060600
H	2.50444400	-1.47610800	4.76483100	H	5.65505600	-0.49722700	2.24585200
H	1.29928100	-0.10957100	3.10468600	H	3.08889900	0.30554100	0.74126300
H	-2.42506800	-1.87600800	4.34934400	H	1.14510300	-4.45334000	0.29975900
H	-1.22085600	-3.22469200	6.02698800	H	0.87218100	-4.20064700	2.04748100
C	-0.44008500	4.27185600	4.50573600	H	-0.04653300	-3.24312500	0.88320000
C	-0.90226100	3.19378100	5.26738100	H	2.06440500	1.10942100	-4.97557300
C	-1.22943200	1.98773000	4.64969900	H	1.77111300	-0.64923200	-5.17590600
C	-1.11951300	1.84358500	3.25391200	H	0.39829300	0.49161300	-5.24168100
C	-0.63643400	2.92536400	2.50572600	C	4.12381200	-0.68726800	-0.97292700
C	-0.30109300	4.13325400	3.12573000	C	5.21250900	0.25605000	-0.78814800
H	-0.17713300	5.20811100	4.99093700	C	4.83648700	1.64545500	-0.65709900
H	-0.99575500	3.28852600	6.34608900	O	3.62693600	1.96452800	-0.55214400
H	-1.55688300	1.14903400	5.25726300	C	4.36015500	-2.07762900	-1.47908700
H	-0.50066600	2.82011100	1.43537400	C	5.29715700	-2.96683800	-0.92483900
H	0.07622200	4.95467900	2.52314200	C	5.45695500	-4.24977100	-1.44981700
Pd	-0.91750100	0.15207500	0.05165100	C	4.68964300	-4.67534000	-2.53579500
C	5.51218300	-2.41709700	3.22756100	C	3.75691300	-3.80286600	-3.09909800
C	4.77883800	-3.60469300	3.38099300	C	3.59548200	-2.52180900	-2.57177600
C	3.57757700	-3.80409800	2.69886300	C	6.54593100	-0.17594200	-0.58953900
C	3.14040400	-2.77490600	1.86702300	N	7.64486800	-0.54106000	-0.42013100
C	3.87403200	-1.58451400	1.67732700	C	5.86161300	2.74542900	-0.60742000
C	5.07044600	-1.40200300	2.37594700	C	5.55561200	3.88815400	0.14936700
N	1.95769300	-2.68741600	1.11529800	C	6.44060400	4.96210600	0.20826900
C	1.92850000	-1.50454100	0.45375300	C	7.63945600	4.92012000	-0.50933700
C	3.16541300	-0.77908300	0.67410300	C	7.94409700	3.79766000	-1.28122600
C	0.92161700	-3.70984500	1.07343600	C	7.06444000	2.71492900	-1.32839700
C	0.83840600	-1.03633800	-0.31541600	H	3.30682600	-0.19914800	-1.50053400
C	0.31433300	-0.65073700	-1.41789600	H	5.90956400	-2.65907600	-0.08711400
C	0.41839300	-0.71345000	-2.86834300	H	6.19091200	-4.91760800	-1.00663900
O	-0.18186000	-1.50309800	-3.58773500	H	4.82113700	-5.67497700	-2.94205500
O	1.24680000	0.22893900	-3.35230300	H	3.15649600	-4.11477200	-3.94998300
C	1.37081600	0.29051700	-4.78711900	H	2.88045100	-1.84226700	-3.02464100

H	4.61399400	3.91285200	0.68872100	C	-2.04212700	4.11530600	3.13969200
H	6.19626700	5.83355900	0.81085600	C	-2.08915900	3.94638700	4.52176100
H	8.33029800	5.75858000	-0.46868300	H	-2.44572400	2.53777400	6.11731200
H	8.86954500	3.76187600	-1.85000100	H	-2.88588700	0.65670700	4.61110500
H	7.31352600	1.85124500	-1.93442300	P	-2.87911200	0.28961200	1.68350700
				H	-1.79534600	5.08561600	2.71950600
C	0.38940800	6.24071600	-2.24605900	H	-1.88192300	4.78515500	5.18044700
C	0.58595900	5.24081700	-3.39302000	H	-0.46791400	6.89115900	-2.47307300
C	-0.60697600	4.28134200	-3.48693700	H	1.26300100	6.89672300	-2.14930600
C	-0.85731700	3.53893500	-2.15897800	H	1.50801000	4.66623300	-3.22242700
C	-1.03973400	4.53082400	-0.99236700	H	0.71883300	5.76933800	-4.34492500
C	0.14265500	5.51427900	-0.91695500	H	-0.45172100	3.53645300	-4.27452000
N	-2.03507700	2.67531900	-2.26722100	H	-1.51514400	4.84321800	-3.74919400
N	-1.17687500	3.87586900	0.30896100	H	0.00954900	2.90386700	-1.93963100
C	-1.93911800	1.43176800	-2.79705000	H	-1.96868100	5.09174300	-1.16372600
O	-0.88513200	0.96530600	-3.24506400	H	-0.04769900	6.23258900	-0.11061200
C	-2.34122700	3.39343300	0.79630100	H	1.04632500	4.95520200	-0.63355300
O	-3.39407800	3.32217000	0.14429500	C	-7.42598800	0.40199500	0.64736000
H	-2.82368100	2.89126000	-1.65394400	C	-6.85020400	1.47678700	1.32512700
H	-0.33052900	3.66513400	0.84456100	C	-5.48947800	1.46776200	1.63752300
C	-5.61445700	-0.71797400	-3.41131300	C	-4.68248700	0.38136200	1.27036300
C	-4.52494900	-1.37628800	-2.83542200	C	-5.26866700	-0.68993000	0.57690600
C	-3.31683500	-0.71314100	-2.58117900	C	-6.63018100	-0.68302300	0.27475300
C	-3.22994700	0.66134000	-2.91196900	H	-8.48631900	0.41013400	0.40878900
C	-4.33347500	1.31569300	-3.47284400	H	-7.45872000	2.32935600	1.61480800
C	-5.52329400	0.63387700	-3.72751300	H	-5.05875000	2.31516100	2.15600500
H	-6.53222700	-1.26732800	-3.60353200	H	-4.66655000	-1.54363400	0.28288100
H	-4.62913400	-2.42277100	-2.57384200	H	-7.06582700	-1.52485600	-0.25655100
P	-1.91839900	-1.55791200	-1.68391000	C	-2.65722400	-3.19560300	4.79665100
H	-4.24309400	2.36665100	-3.73017900	C	-1.50009300	-2.67389000	4.21286200
H	-6.36590300	1.15707400	-4.17078100	C	-1.58928100	-1.63592500	3.28473900
C	-2.40115400	2.69306800	5.04266500	C	-2.83767600	-1.09515100	2.92793400
C	-2.65723600	1.62459400	4.18183700	C	-3.99252400	-1.62060600	3.52834900
C	-2.62222900	1.77582800	2.78567700	C	-3.90164600	-2.66519500	4.45246000
C	-2.31281300	3.05240600	2.26730800	H	-2.58894100	-4.00871900	5.51447600

H	-0.52550400	-3.07912900	4.47175700	C	2.94537000	-1.83863800	0.14166300
H	-0.68517700	-1.24452200	2.82787900	C	2.32450300	0.65126600	-2.51584500
H	-4.96747800	-1.21796700	3.27571600	C	1.07139300	-0.10336700	0.11546700
H	-4.80764400	-3.06072300	4.90431800	C	0.59064500	0.60999100	1.06578400
C	0.94384700	-3.19661700	-4.97374500	C	1.00883600	1.56621100	2.08573300
C	1.19247500	-3.42764200	-3.61894800	O	0.87546800	2.77841100	2.01804700
C	0.33608000	-2.89795200	-2.65321500	O	1.53437600	0.95323600	3.16625200
C	-0.77876400	-2.13253800	-3.02650800	C	2.04392500	1.83616100	4.18485400
C	-1.01819400	-1.90230000	-4.38718700	H	5.87845400	-4.57938600	-2.42311900
C	-0.16123100	-2.43335900	-5.35363800	H	5.76551900	-2.89766600	-4.23387900
H	1.61064300	-3.60659000	-5.72768800	H	4.32692100	-0.88818500	00
H	2.05662400	-4.00894500	-3.31104100	H	4.61087100	-4.24973900	-0.30860200
H	0.53717300	-3.08607300	-1.60158700	H	2.39239400	-2.50133800	0.79935000
H	-1.86549900	-1.30052100	-4.69531200	H	2.61221200	0.45509700	-3.54913700
H	-0.35926800	-2.24537900	-6.4058530	H	1.24337900	0.80251100	-2.48209000
C	-3.57751600	-5.73690800	-0.40165600	H	2.84318900	1.54080400	-2.14307500
C	-3.39537900	-5.45188600	-1.75843400	H	2.43295100	1.18092100	4.96442600
C	-2.90897500	-4.20689600	-2.15501400	H	2.84047000	2.45859100	3.77074100
C	-2.61048200	-3.21549700	-1.20171600	H	1.24375900	2.47051500	4.57393600
C	-2.78063200	-3.52185400	0.15508400	C	4.07773200	-1.02172700	1.40960700
C	-3.26398800	-4.77182600	0.55418800	C	5.12064400	-0.19422700	0.81903700
H	-3.94993600	-6.71074000	-0.09482400	C	4.75593600	1.16670100	0.50791600
H	-3.62240400	-6.20452000	-2.50898800	O	3.55889800	1.53551300	0.59308200
H	-2.74727700	-4.00913600	-3.21056300	C	4.38384000	-2.14134800	2.36861900
H	-2.51755900	-2.78654200	0.90680800	C	5.43257300	-3.06491200	2.22284400
H	-3.38455100	-4.98443900	1.61286700	C	5.62419500	-4.07656400	3.16680000
Pd	-1.06900900	-0.22020400	0.14372400	C	4.77799400	-4.19256700	4.27047900
C	5.25192200	-3.70090100	-2.29989300	C	3.73151800	-3.28133600	4.42792600
C	5.18551300	-2.74973400	-3.32749900	C	3.53760300	-2.27224200	3.48566900
C	4.38104600	-1.61413200	-3.21208500	C	6.37367800	-0.73404200	0.44547100
C	3.65340700	-1.46786500	-2.03387800	N	7.40256800	-1.19948900	0.13702800
C	3.74302000	-2.38653900	-0.97019100	C	5.76739800	2.19572600	0.06677300
C	4.53983500	-3.52213600	-1.11087100	C	5.29081400	3.28831900	-0.67678900
N	2.68942900	-0.49483900	-1.69551100	C	6.14945200	4.30186200	-1.09468800
C	2.19142800	-0.74655400	-0.46909800	C	7.50413600	4.25460300	-0.75428500

C	7.98488500	3.19009600	0.00938
C	7.12607500	2.16783400	0.41740600
H	3.32400800	-0.36730900	1.83914900
H	6.11460800	-2.98765200	1.38593900
H	6.44756600	-4.77435600	3.03725200
H	4.93490200	-4.98078200	5.00225900
H	3.06936000	-3.35210400	5.28759700
H	2.72471700	-1.56082200	3.61467900
H	4.23025500	3.33021300	-0.90237800
H	5.76307300	5.13329900	-1.67946200
H	8.17737200	5.04565200	-1.07524500
H	9.03338300	3.15245300	0.29327600
H	7.52049800	1.35528800	1.01507500
$(S, R)-T S$			
C	1.01226800	-5.04832600	4.65364200
C	2.02789300	-5.41186900	3.56346100
C	2.87163800	-4.18915400	3.18597800
C	2.00916200	-2.99478200	2.72575000
C	0.93795700	-2.64009100	3.78122700
C	0.12687700	-3.87678700	4.20936200
N	2.86090100	-1.83210700	2.47685400
N	-0.00203500	-1.61174400	3.32441600
C	3.54823000	-1.68978800	1.31140700
O	3.48444700	-2.49760200	0.38253400
C	0.23191900	-0.27153400	3.37705600
O	1.32564400	0.20252500	3.70239000
H	2.69570400	-1.00493300	3.05101700
H	-0.89013500	-1.91803600	2.94860100
C	6.59476800	1.35406400	1.27499200
C	5.71173500	1.26696500	0.19637900
C	4.66831400	0.32912500	0.16977800
C	4.52421400	-0.53587900	1.28072800
C	5.40520000	-0.42606500	2.36583800
C	6.43856500	0.50950500	2.36999100
H	7.39765100	2.08626700	1.25280800

H	5.83640400	1.95477700	-0.63135200
P	3.42402600	0.33921700	-1.22251900
H	5.28421500	-1.10366400	3.20524900
H	7.11385800	0.57096100	3.21879100
C	-3.24878000	2.16595700	2.71827300
C	-2.09280700	2.41672900	1.97335800
C	-0.92882500	1.65388500	2.14095700
C	-0.96357100	0.59067100	3.07688400
C	-2.12819300	0.34567200	3.81626300
C	-3.26785400	1.13330800	3.64974600
H	-4.13123900	2.77502200	2.54634600
H	-2.12343800	3.20047500	1.22821500
P	0.56219100	1.98673900	1.06548700
H	-2.13155900	-0.46114500	4.54407200
H	-4.15934200	0.93001300	4.23598200
H	1.54741400	-4.77328100	5.57370200
H	0.38119200	-5.90954500	4.90456500
H	1.49692400	-5.78545800	2.67544900
H	2.67834800	-6.22709000	3.90243200
H	3.57626700	-4.42835500	2.38305300
H	3.46713200	-3.87176100	4.05404500
H	1.50792000	-3.26217600	1.78676100
H	1.45194300	-2.22814500	4.66005100
H	-0.56429900	-3.58501500	5.00936600
H	-0.49534500	-4.20201200	3.36119500
C	3.45960500	4.36274700	3.83886600
C	2.13861200	4.15509500	4.24126700
C	1.26398700	3.42565900	3.43569100
C	1.69887700	2.89061600	2.21382600
C	3.02543800	3.10544100	1.81902600
C	3.90016200	3.83720000	2.62391900
H	4.14001900	4.92938500	4.46918000
H	1.78594800	4.55919700	5.18663000
H	0.24194900	3.27081700	3.76411100
H	3.38311400	2.70268700	0.87879700

H	4.92676600	3.98570400	2.30107800	C	-5.64964400	-2.60638700	2.18079900
C	-0.90275500	5.37543100	-1.79360300	C	-4.99323500	-3.84324800	2.25581200
C	-1.21519300	4.03788400	-2.04394600	C	-3.74668300	-4.03493200	1.65442600
C	-0.77309200	3.04034900	-1.17480800	C	-3.19053800	-2.94446900	0.98803500
C	-0.02741800	3.36619800	-0.02992300	C	-3.83769600	-1.69892200	0.88817800
C	0.27115100	4.71594000	0.22038500	C	-5.08203500	-1.52802000	1.49565000
C	-0.16000300	5.71135400	-0.65938500	N	-1.94890600	-2.85022400	0.33274500
H	-1.24157000	6.15221400	-2.47420100	C	-1.77631000	-1.58412100	-0.15106500
H	-1.80998700	3.76314300	-2.90970000	C	-3.00356900	-0.82123900	0.04314300
H	-1.03445800	2.00787300	-1.37659800	C	-1.09247500	-3.99865200	0.07836200
H	0.84241700	4.99483300	1.09889900	C	-0.56436900	-1.16479600	-0.73989200
H	0.08162700	6.75071800	-0.45199900	C	0.38227600	-1.38806700	-1.58255700
C	5.10238000	-2.62620600	-4.40299600	C	0.65688600	-2.16500000	-2.79557300
C	4.05816100	-1.75018300	-4.70988700	O	0.51447800	-1.75094700	-3.92956900
C	3.55142500	-0.89376000	-3.73149100	O	1.07461600	-3.41201000	-2.49231300
C	4.08552100	-0.89849200	-2.43268700	C	1.36585900	-4.26048400	-3.61778500
C	5.12565500	-1.78728000	-2.12989100	H	-6.61952300	-2.48737600	2.65490800
C	5.62924400	-2.64453500	-3.11061000	H	-5.46046000	-4.66863800	2.78538400
H	5.50224300	-3.28915100	-5.16607300	H	-3.24627400	-4.99711500	1.70127000
H	3.63432700	-1.72798300	-5.71024000	H	-5.60161300	-0.57865300	1.42892400
H	2.73945400	-0.22000600	-3.98671800	H	-2.89551100	0.23491400	0.28893000
H	5.53644400	-1.82161800	-1.12874600	H	-0.96789000	-4.57587400	0.99936600
H	6.43847800	-3.32568900	-2.86045100	H	-1.54674000	-4.63950600	-0.68570400
C	4.35321100	4.26976900	-3.57279600	H	-0.11977800	-3.66038200	-0.27581700
C	5.23549500	3.18843600	-3.65875100	H	1.69876400	-5.20469200	-3.18613000
C	4.97061200	2.00960100	-2.96317200	H	0.46797800	-4.40853700	-4.22395700
C	3.82163600	1.89482000	-2.15752200	H	2.15516500	-3.81931800	-4.22934600
C	2.94053000	2.98149000	-2.09126900	C	-3.76764700	-0.55240200	-1.59185500
C	3.20423900	4.16266100	-2.79094000	C	-4.99690200	0.22293800	-1.39223800
H	4.55828300	5.18491200	-4.12203900	C	-4.80653500	1.58810100	-0.97692700
H	6.12773400	3.25970800	-4.27535100	O	-3.63886000	2.02145000	-0.80152300
H	5.65543900	1.17209100	-3.05423500	C	-3.78404800	-1.83705200	-2.37220200
H	2.03236400	2.90270000	-1.50671200	C	-4.64421700	-2.91207800	-2.08996900
H	2.50062900	4.98762800	-2.72565800	C	-4.58369700	-4.08719500	-2.84133300
Pd	1.14164900	0.14520300	-0.45956500	C	-3.66716000	-4.21488700	-3.88736900

C	-2.80766300	-3.15399500	-4.17951800	H	1.30330500	-1.2393960	3.03949900
C	-2.86595400	-1.98082600	-3.42629000	C	-6.65671300	0.45859000	1.45142100
C	-6.26377100	-0.36739600	-1.59502900	C	-5.76467800	0.83827400	0.44621600
N	-7.30633600	-0.87207900	-1.76739400	C	-4.42031000	1.12859600	0.72186800
C	-5.93735700	2.55775000	-0.73092900	C	-3.97803800	1.01389600	2.06224300
C	-5.62488600	3.92448800	-0.84625300	C	-4.88003700	0.61934000	3.06048700
C	-6.58492200	4.90370600	-0.60628100	C	-6.21423900	0.34375500	2.76555700
C	-7.87819700	4.53756300	-0.22229700	H	-7.69342000	0.25231900	1.19853900
C	-8.19601900	3.18634500	-0.08352000	H	-6.12844900	0.89784000	-0.57248600
C	-7.23791600	2.20217300	-0.33784800	P	-3.22504300	1.50845600	-0.66224300
H	-2.98723300	0.11095400	-1.96368700	H	-4.52662200	0.55131800	4.08457200
H	-5.37317900	-2.83112500	-1.29296600	H	-6.89668200	0.04681900	3.55700100
H	-5.26502000	-4.90222200	-2.61097600	C	1.46873200	-4.95137700	0.14185600
H	-3.62950900	-5.12979100	-4.47355000	C	0.43966100	-4.15751700	-0.37156800
H	-2.08978700	-3.22921700	-4.99189000	C	-0.24048800	-3.22002900	0.42155400
H	-2.18653300	-1.16674100	-3.66215000	C	0.17208200	-3.07996000	1.76836900
H	-4.61155900	4.19478900	-1.12343000	C	1.20336200	-3.88087500	2.27621700
H	-6.32519700	5.95402000	-0.71505100	C	1.84661900	-4.82374000	1.47484400
H	-8.62980300	5.29952300	-0.03106600	H	1.97554300	-5.65569400	-0.51104700
H	-9.19603100	2.89011100	0.22292400	H	0.17106400	-4.27323100	-1.41404400
H	-7.51481000	1.16148900	-0.22765100	P	-1.57471700	-2.14295400	-0.33064100
)-TS			H	1.49542500	-3.76687400	3.31626600
C	0.98547800	0.83928700	6.47817500	H	2.63900800	-5.44063000	1.88881100
C	0.34597000	2.14461800	5.98875800	H	0.31918200	0.35888300	7.20903600
C	-0.94759100	1.85355000	5.21992300	H	1.93023700	1.03709100	6.99885700
C	-0.72525800	0.89697500	4.02960300	H	1.05313300	2.67913000	5.33728400
C	-0.02960800	-0.40589900	4.48325000	H	0.13842300	2.81095800	6.83467100
C	1.23862100	-0.11995600	5.30809100	H	-1.39458800	2.77563200	4.83484400
N	-2.00696500	0.57684000	3.40137900	H	-1.68311000	1.39702100	5.89782700
N	0.34422600	-1.27806400	3.36333500	H	-0.09136900	1.39733400	3.28607500
C	-2.59276000	1.42086400	2.50893100	H	-0.74013800	-0.97192100	5.10090200
O	-2.09278300	2.49261300	2.16123800	H	1.64656800	-1.07251500	5.66762900
C	-0.49781200	-2.13785700	2.73293200	H	2.00204700	0.31479400	4.64571300
O	-1.71006300	-2.19499400	2.96684400	C	-5.54802700	-4.27625400	0.86508700
H	-2.28536900	-0.40449200	3.39244800	C	-4.32952900	-4.84799000	1.23422000

C	-3.12745500	-4.22069100	0.90282100	C	-3.85666600	0.06748900	-3.00639600
C	-3.12706300	-3.00867500	0.19724900	C	-4.55712100	-0.21197900	-4.18356100
C	-4.35688200	-2.44042200	-0.16484500	H	-6.15794800	0.39469400	-5.49505100
C	-5.55784700	-3.07014100	0.16288800	H	-6.77760200	2.36221000	-4.10311600
H	-6.48280600	-4.76603000	1.12498800	H	-5.52896400	2.86565900	-2.03830500
H	-4.31037700	-5.78493900	1.78477400	H	-3.02018400	-0.55948400	-2.72214300
H	-2.19114100	-4.67723900	1.20268700	H	-4.26247800	-1.06337700	-4.79080500
H	-4.38244100	-1.50387200	-0.71070600	Pd	-1.15535800	0.27518300	-0.40438400
H	-6.49940600	-2.61105600	-0.12533200	C	5.34856200	-2.00601700	2.84238300
C	-1.28861000	-3.30604700	-4.8541050	C	5.42037600	-0.73970800	3.43650700
C	-0.58506000	-2.21008000	-4.34899000	C	4.64185600	0.32270100	2.96863300
C	-0.68044000	-1.87938600	-2.99561400	C	3.79940100	0.06380400	1.88888700
C	-1.47892200	-2.64047900	-2.12356400	C	3.73792800	-1.19066800	1.25333600
C	-2.18311700	-3.73826600	-2.64416400	C	4.51744800	-2.23806500	1.74160500
C	-2.08763500	-4.06747500	-3.99848500	N	2.85432000	0.91530200	1.28627900
H	-1.21938900	-3.56097900	-5.90829400	C	2.17727300	0.24799200	0.31146400
H	0.02896900	-1.60135900	-5.00718900	C	2.83938700	-1.03897700	0.08545200
H	-0.15216900	-1.00839400	-2.61714800	C	2.67822700	2.30639500	1.66988500
H	-2.81008600	-4.33862900	-1.99295800	C	0.97611000	0.72225800	-0.25614900
H	-2.64124300	-4.92001300	-4.38336600	C	0.29186700	1.67518200	-0.77231900
C	-3.23146700	6.15598200	-1.05505500	C	0.46587900	2.90516400	-1.55303500
C	-2.69059100	5.34531600	-2.05563000	O	0.21635700	3.00545300	-2.73666900
C	-2.67844700	3.95793200	-1.90597200	O	0.93249600	3.91659100	-0.79002100
C	-3.21044600	3.36087800	-0.75111900	C	1.19211100	5.14239300	-1.49743500
C	-3.74852400	4.18089900	0.24941100	H	5.96018500	-2.81461800	3.23177800
C	-3.75794300	5.56899600	0.09608500	H	6.09097000	-0.57668100	4.27522700
H	-3.24411100	7.23649100	-1.17306300	H	4.70209800	1.30522500	3.42567300
H	-2.28117000	5.78802400	-2.96004000	H	4.48176200	-3.21487900	1.27175300
H	-2.24992000	3.34464600	-2.69151200	H	2.19387900	-1.86242300	-0.20014900
H	-4.14949600	3.74238400	1.15430400	H	2.48094900	2.37420000	2.74535500
H	-4.18024200	6.19017900	0.88176100	H	3.58918900	2.86584100	1.43381800
C	-5.61446300	0.60617500	-4.57792200	H	1.84801400	2.73648000	1.11392400
C	-5.96332600	1.71128700	-3.79549400	H	1.53854700	5.84507700	-0.73869400
C	-5.26142500	1.99140500	-2.62394600	H	1.96184100	4.97987100	-2.25597300
C	-4.20433100	1.16175400	-2.20424500	H	0.27784700	5.50920300	-1.96898000

C	3.84592600	-0.83117200	-1.44245400	C	0.77771400	5.41869500	-1.07409700
C	4.92156800	0.15092600	-1.30022000	N	-2.40191500	3.32838300	-0.71638500
C	4.54561900	1.52892400	-1.49332100	N	0.43948800	3.40343200	0.24812500
O	3.33786900	1.83417000	-1.63658800	C	-3.31470800	2.55510400	-1.34675300
C	4.11332700	-2.24046200	-1.91127300	0	-3.33266700	2.34876300	-2.56260600
C	5.19518000	-3.03596900	-1.49685400	C	-0.02032800	2.74983000	1.33718700
C	5.34831000	-4.33746500	-1.98109500	0	-1.18005800	2.86890000	1.76915100
C	4.43085300	-4.87615300	-2.88491700	H	-2.29692700	3.24419700	0.29760000
C	3.35168000	-4.09669300	-3.30730800	H	1.36215500	3.16750600	-0.13070800
C	3.19838200	-2.79862200	-2.82187400	C	-6.74294400	1.36233600	0.98217100
C	6.20560900	-0.20983700	-0.83291600	C	-5.90216600	0.37206400	0.47069800
N	7.26253100	-0.52343200	-0.43785400	C	-4.74523000	0.69423100	-0.25718900
C	5.55336000	2.65036800	-1.49581400	C	-4.44191200	2.05938900	-0.46060900
C	5.09746700	3.92319200	-1.11376700	C	-5.28230100	3.04395100	0.07545600
C	5.95421700	5.02150000	-1.11540300	C	-6.42977100	2.70558800	0.79146100
C	7.28176500	4.87089900	-1.52564100	H	-7.63615900	1.07677800	1.53170400
C	7.73859700	3.61694000	-1.93436600	H	-6.15253000	-0.66683700	0.65081900
C	6.88382900	2.51316100	-1.91871800	P	-3.55538600	-0.63306200	-0.78745100
H	3.06746300	-0.38184500	-2.05793700	H	-5.03009600	4.08788400	-0.08611300
H	5.93437300	-2.63801100	-0.81387700	H	-7.06976100	3.48583700	1.19414800
H	6.20033000	-4.92815100	-1.65397000	C	2.87119500	0.55999800	3.66084900
H	4.56135200	-5.88658000	-3.26408200	C	1.59901500	0.01596700	3.46267700
H	2.63203700	-4.49263300	-4.01960600	C	0.63118100	0.66547600	2.68152000
H	2.35566500	-2.20080600	-3.16000300	C	0.97907100	1.90587400	2.08599700
H	4.05519100	4.02751400	-0.83038300	C	2.26074100	2.43537300	2.28827300
H	5.58688700	5.99709300	-0.80567600	C	3.20877300	1.77222800	3.06756000
H	7.95247600	5.72647400	-1.53395400	H	3.59200800	0.02617000	4.27409000
H	8.76499100	3.49388800	-2.27006700	H	1.36577100	-0.93600000	3.92431700
H	7.25640100	1.54975900	-2.24549500	P	-0.99713900	-0.18545000	2.34097500
)-TS-II			H	2.51527900	3.38616100	1.83308100
C	0.15236700	6.58576200	-1.84730900	H	4.19775900	2.20116800	3.19814400
C	-0.84500500	6.07253500	-2.89232500	H	-0.36670900	7.26065700	-1.15061400
C	-1.92385300	5.21551400	-2.22185700	H	0.94636900	7.17544300	-2.32192600
C	-1.33237600	4.02626000	-1.43489000	H	-0.31090500	5.47622500	-3.64629000
C	-0.27321900	4.50374100	-0.41562700	H	-1.31115600	6.90964500	-3.42692600

H	-2.63084300	4.81914300	-2.95690900	H	-3.03054200	-3.12457300	-5.02544900
H	-2.50002000	5.83769700	-1.52127000	H	-2.54610700	-2.57955400	-2.67225100
H	-0.86243900	3.32608300	-2.13785500	H	-5.36007300	0.67475400	-2.84105700
H	-0.80079700	5.06408700	0.36928600	H	-5.87008200	0.10675700	-5.18412400
H	1.45390100	5.78843700	-0.29380800	C	-5.40504700	-4.56116300	0.95726600
H	1.39469800	4.81654200	-1.75212900	C	-6.00684700	-3.93441800	-0.13779400
C	-4.08181400	1.72444000	5.25836200	C	-5.46179200	-2.76376800	-0.66455900
C	-2.72042300	1.98284000	5.43394400	C	-4.30811200	-2.19059500	-0.09849900
C	-1.78254800	1.43827300	4.55654700	C	-3.71141100	-2.83445400	0.99415700
C	-2.19482600	0.62522200	3.49082500	C	-4.25459500	-4.01001600	1.52017900
C	-3.56208500	0.37286900	3.32106800	H	-5.82852700	-5.47656700	1.36215300
C	-4.50015200	0.91805500	4.19946800	H	-6.89960500	-4.36091100	-0.58771800
H	-4.81117100	2.15358000	5.94039400	H	-5.93293500	-2.29617200	-1.52361300
H	-2.38610300	2.61536700	6.25220300	H	-2.80708600	-2.42533000	1.42855300
H	-0.72877000	1.65606200	4.69617300	H	-3.76875600	-4.49137500	2.36462200
H	-3.90236800	-0.24668900	2.49801600	Pd	-1.2509360	-0.49836200	-0.08100900
H	-5.55708300	0.71939300	4.04539900	C	5.27212100	-4.26376700	1.35100700
C	-0.39039600	-4.36735300	4.35616600	C	4.59440600	-5.30554400	0.70101800
C	-0.00306100	-4.14309000	3.03318200	C	3.46679700	-5.05128400	-0.08153300
C	-0.19944200	-2.89074900	2.44997300	C	3.04897100	-3.72536600	-0.17740600
C	-0.76896700	-1.83367100	3.18010900	C	3.72256900	-2.66198700	0.45574200
C	-1.15331100	-2.07266400	4.50962200	C	4.85379000	-2.93695800	1.22559700
C	-0.96807400	-3.32985200	5.08991400	N	1.92811100	-3.20094800	-0.84459700
H	-0.24375900	-5.34338300	4.81104700	C	1.82138600	-1.86648200	-0.58391600
H	0.45178900	-4.94145100	2.45284300	C	3.02345800	-1.41573400	0.09255000
H	0.08702500	-2.72747800	1.41593700	C	1.02032400	-3.98074400	-1.67621600
H	-1.59845100	-1.27682300	5.09709800	C	0.66444500	-1.15236900	-0.95438000
H	-1.27451300	-3.49483500	6.11961600	C	-0.21162700	-0.78759400	-1.81532000
C	-4.49140200	-1.55011700	-5.26121500	C	-0.34062500	-0.63152800	-3.27190200
C	-3.55193800	-2.29949200	-4.54824400	O	-0.00531700	-1.48783700	-4.07589700
C	-3.27366500	-1.98483200	-3.21808400	O	-0.86461200	0.55431500	-3.58964800
C	-3.92614400	-0.91726400	-2.58102000	C	-1.09832100	0.80983400	-4.98511400
C	-4.86240300	-0.16756500	-3.30459600	H	6.14620500	-4.49183700	1.95455000
C	-5.14205000	-0.48548900	-4.63597100	H	4.94838300	-6.32731100	0.80649800
H	-4.71221900	-1.79396200	-6.29714600	H	2.93848600	-5.85831000	-0.57940700

H	5.40766400	-2.12596500	1.68146300
H	2.94153300	-0.60052600	0.79950400
H	1.57933300	-4.80519100	-2.12304500
H	0.19311100	-4.38539100	-1.08054100
H	0.62317800	-3.35167700	-2.47432700
H	-1.62880400	1.76048200	-5.00661400
H	-0.14864100	0.87335000	-5.52435100
H	-1.71273400	0.01511200	-5.41348500
C	3.94495300	-0.43364200	-1.34025100
C	4.56758300	0.76289300	-0.77186500
C	5.70638600	0.78021600	0.11627800
O	6.17003600	-0.26116100	0.62162200
C	4.66084000	-1.45157100	-2.17237600
C	5.97032100	-1.90350500	-1.93188400
C	6.56713500	-2.82321700	-2.79323700
C	5.87531200	-3.31931500	-3.90101600
C	4.57263100	-2.88415300	-4.14750500
C	3.97365000	-1.96019800	-3.29105100
C	3.77461500	1.91940100	-0.91713900
N	3.05411200	2.83400000	-1.06079600
C	6.35925400	2.08795700	0.49237000
C	6.99153400	2.15922800	1.74439900
C	7.64388200	3.32189200	2.14845800
C	7.69736100	4.42650100	1.29289500
C	7.09756600	4.35638200	0.03436800
C	6.43064700	3.19632200	-0.36392100
H	3.04821300	-0.12691300	-1.87498000
H	6.50553900	-1.53564200	-1.06588000
H	7.58210100	-3.15739300	-2.59345000
H	6.34842100	-4.03710900	-4.56640700
H	4.02318200	-3.25306800	-5.00981300
H	2.96216100	-1.61967500	-3.50383100
H	6.96883600	1.28011600	2.38060100
H	8.11972900	3.36569200	3.12500100
H	8.21178600	5.33270900	1.60255300

H	7.15203900	5.20433900	-0.64335100
H	5.98070200	3.15060600	-1.34975000
C	0.98009800	-1.34559800	-0.37631100
C	1.10109300	0.25009600	-0.07000600
C	-2.46900200	-4.58068200	-1.61851800
C	-3.68397900	-3.90072600	-1.84893600
C	-3.78875500	-2.52267400	-1.69559000
C	-2.64005000	-1.82041800	-1.30906600
C	-1.40165100	-2.49574200	-1.06667200
C	-1.33072700	-3.89221600	-1.22677500
N	-2.46390700	-0.45619100	-1.09437700
C	-1.14326500	-0.27358000	-0.70980900
C	-0.47848000	-1.47796200	-0.69046900
C	-0.30824700	0.84651500	-0.37205800
C	-0.64907000	2.15368200	-0.28555000
C	1.51024900	-2.30151600	0.67974900
C	2.72786000	-2.96317600	0.47059800
C	3.22376100	-3.86539200	1.41398100
C	2.50329900	-4.11989300	2.58146000
C	1.28621100	-3.46908000	2.79812300
C	0.79281600	-2.56959500	1.85438100
C	-4.15831500	1.10559600	-0.08468600
C	-4.31606900	0.32102500	1.06292300
C	-4.99374600	0.82486300	2.17455100
C	-5.52371800	2.11623000	2.15084100
C	-5.36976400	2.90470000	1.00895700
C	-4.68850200	2.40189100	-0.10024600
C	-3.46834600	0.57083200	-1.33164300
C	0.29536800	3.22976900	0.02721400
O	1.50259800	3.11812900	0.17649400
O	-0.34782800	4.41859500	0.12500200
C	0.48997000	5.54164100	0.43127200

C	1.38735000	0.50598300	1.34463900	H	6.09348200	-0.03124800	1.32241400
N	1.54916800	0.67773600	2.48174800				
C	2.14097500	0.82077400	-1.09640700		,		
C	6.37507100	1.16342000	-0.45089400		$\mathrm{Bn} \quad \mathrm{CO}_{2} \mathrm{Me}$		
C	5.75174900	1.76419200	-1.54964500				
C	4.37829400	1.63831300	-1.72321800	C	-1.08009700	1.03	-0.96937000
C	3.60060600	0.92472800	-0.79322800	C	-1.32178600	-0.33977000	-0.16288800
C	4.23360800	0.32469000	0.30577500	C	2.78115500	3.80749100	-2.09534900
C	5.61515500	0.44108800	0.46908200	C	3.96046400	3.04573300	-1.93577200
	171452700	1.07263800	22093900	C	3.92094500	1.71673300	-1.53458600
	1.7452	1.07263800	,	C	2.66329600	1.14328300	-1.30222100
H	1.56091700	-1.52317900	-1.29048100				
H	-2.43071800	-5.65868900	-1.74589900	C	1.46312100	1.90622600	-1.43933600
H	-4.56177700	-4.46684500	-2.14784800	C	1.53591500	3.25301100	-1.84833200
H	-4.73640300	-2.01985700	-1.86312	N	2.35155800	-0.15435000	-0.91583300
				C	0.96810500	-0.21945300	-0.79651000
H	-0.39820600	-4.41606900	-1.03924300				
H	-1.67525400	2.46195800	-0.44173800	C	0.41433800	1.01911600	-1.07734400
H	3.29170500	-2.77089400	-0.43940100	C	-0.05378300	-1.20320900	-0.49291900
				C	-0.14307700	-2.55547700	-0.44667600
H	4.16895800						
H	2.88521300	-4.82260500	3.31713400	C	-1.72736400	2.27430100	-0.38790500
H	0.71892000			C	-2.94355100	2.72960700	-0.91757700
H	0.71892000	-3.66185100	3.70455700				
H	-0.15601600	-2.07103200	2.02867100	c	-3.56836200	3.8659890	-0.40175600
H	-3.90267500	-0.68300700	1.09007700	C	-2.98090800	4.56676200	0.65308400
H				C	-1.76756500	4.12513800	1.18559900
				C	-1.14428100	2.98851900	0.66940000
H	-6.04753900	2.50787300	3.01842400				
H	-5.77084000	3.91428400	0.98362200	C	3.92090800	-0.65020100	0.97484400
H	-4.56562500		-0.984	C	5.30454900	-0.66818800	1.18517600
				C	5.84435100	-0.33607300	2.42986900
H	-4.20831400	0.13646500	-2.01300300				
H	-2.99994100	1.39231700	-1.88390700	C	5.00168500	0.02540200	3.48123900
H				C	3.61890700	0.04821000	3.28078500
				C	3.08200000	-0.29005700	2.03873900
H	0.99422300	5.39535200	1.39040700				
H	1.24556300	5.68282700	-0.34673600	C	3.35558300	-1.0723930	.37233000
H	7.44909900	1.25915000	-0.31413500	C	0.81469900	-3.54945100	-0.94051200
H	6.33913600	2.32781800	-2.26943700	\bigcirc	1.86112700	-3.35095200	-1.53783600
				O	0.34926300	-4.79876200	-0.68528500
	3.87856100	2.08773100	-2.57427200	C	1.16898000	-5.86935100	-1.17085000
H	3.66877500	-0.23957100	1.03645400				
				C	-1.25235400	-0.12927200	1.28894600

N	-1.11878400	0.00453000	2.43577500				
C	-2.64289900	-0.99157100	-0.69102600				
C	-6.35926900	-1.28378600	1.43791300				
C	-5.46908200	-0.26580100	1.78215200	C	-1.80764400	0.96379500	-1.09106200
C	-4.24032000	-0.15390100	1.13088200				
C	-3.89965700	-1.05864300	0.11183400	C	-1.25487100	-0.55611700	-1.34466000
C	-4.81718000	-2.06429200	-0.24766100	C	0.01795300	5.45079300	-0.43765300
C	-6.03062700	-2.18503100	0.41993600	C	1.42783300	5.38668300	-0.44636400
O	-2.60840200	-1.43797900	-1.82481700	C	2.10208400	4.18102500	-0.60341800
H	-1.52525500	0.85014700	-1.95554400		1.33385500	3.01982800	
H	2.85706500	4.84373400	-2.41235900	C			-0.76141800
H	4.92287200	3.51122100	-2.12969300	C	-0.09601300	3.0671380	-0.74842300
H	4.83543700	1.14818300	-1.40515500	C	-0.74767100	4.30417100	-0.58422900
H	0.63035900	3.84106000	-1.96149500	N	1.74323300	1.70209900	-0.94597100
H	-1.08156000	-2.99022300	-0.12234300	C	0.59350100	0.92786200	-1.03595600
H	-3.40148600	2.19119800	-1.74448100	C	-0.52775000	1.72031100	-0.92577700
H	-4.50908500	4.20460600	-0.82745000				
H	-3.46272300	5.45414100	1.05474100	C	0.29566200	-0.46716200	-1.24881400
H	-1.30188400	4.66684400	2.00430400	C	1.17304300	-1.48948700	-1.39446400
H	-0.19889900	2.65573400	1.08597300	C	-2.85039600	1.15041800	0.00557700
H	5.96694000	-0.94770900	0.36811800	C	-4.20195300	0.91795100	-0.29055900
H	6.92157900	-0.35436500	2.57361400	C	-5.18642300	1.10122000	0.67886200
H	5.41778700	0.28861700	4.45003600				
H	2.95374900	0.32602900	4.09397000	C	-4.83616300	1.52872300	1.96189300
H	2.00394300	-0.26990600	1.90184800	C	-3.49601500	1.76835900	2.26612400
H	4.16302300	-1.15981300	-1.10729600	C	-2.51063500	1.57972300	1.29470300
H	2.89534000	-2.05603100	-0.32162700	C	3.67389600	0.62233800	0.24164400
H	0.65216200	-6.78606700	-0.88469200	C	3.26893100	1.06131200	1.50820200
H	1.27577100	-5.81176400	-2.25773900		1735200	54600	2.66045300
H	2.16324300	-5.83198600	-0.71650300		3.8173520	0.49544	2.66
H	-7.30913900	-1.37389800	1.95814000	C	4.77778700	-0.51388100	2.56092400
H	-5.72680600	0.44469800	2.56210300	C	5.18663800	-0.95555100	1.30167700
H	-3.57104600	0.65063100	1.40773900	C	4.63543400	-0.39105100	0.14995900
H	-4.55447500	-2.74191300	-1.05313000	C	3.12703600	1.25575000	-1.03004800
H	-6.72326000	-2.97588900	0.14597700				

O	-0.34649000	-3.32939600	-1.65583700	H	3.22030400	0.55927200	-1.86943600
O	1.88715900	-3.65622300	-1.82154000	H	2.59570300	-5.51007500	-2.20728600
C	1.61940700	-5.04432400	-2.06804100	H	1.09715200	-5.49228300	-1.21806500
C	-1.59157500	-0.89737700	-2.73667800	H	1.00380000	-5.16393400	-2.96366800
N	-1.82633900	-1.06640200	-3.86068800	H	-0.34055700	-3.24343200	4.42677500
C	-2.00255900	-1.58433800	-0.42158400	H	-2.10258200	-4.47514700	3.17188700
C	-0.66050500	-2.89221800	3.44915100	H	-2.82703500	-3.65383400	0.93282600
C	-1.65008600	-3.58462500	2.74411600	H	-0.03312000	-0.40482500	1.23053300
C	-2.05783400	-3.13389200	1.49307600	H	0.68235600	-1.20283700	3.43622300
C	-1.47544800	-1.99036500	0.91905800				
C	-0.48749500	-1.30016800	1.63563900				
C	-0.08596800	-1.74791100	2.89488700		$\mathrm{MeO}_{2} \mathrm{C}$		
O	-3.07286100	-1.99959700	-0.82029100	C	-2.13010100	0.29452100	0.39860200
H	-2.29277600	1.25846000	-2.02849400	C	-0.85198800	-4.31122300	-0.48584400
H	-0.46972500	6.41286700	-0.31040100	C	0.55266400	-4.45617000	-0.44945000
H	2.00243300	6.30044900	-0.32335500	C	1.37519000	-3.38556800	-0.14005300
H	3.18743100	4.15256600	-0.59603400	C	0.76496600	-2.15193800	0.13547000
H	-1.83234300	4.35129600	-0.56781300	C	-0.65116300	-1.97168600	0.07577400
H	2.23746900	-1.30772800	-1.31959900	C	-1.45675400	-3.09313400	-0.22789900
H	-4.47956900	0.57652200	-1.28407300	N	1.35511200	-0.96370900	0.49982900
H	-6.22724200	0.91194700	0.43091800	C	0.34595400	-0.02816400	0.68415200
H	-5.60334300	1.67640700	2.71727700	C	-0.89328700	-0.59596700	0.39602900
H	-3.21318800	2.10495800	3.26003400	C	-1.90514900	1.31442900	-0.74781700
H	-1.47207000	1.78114200	1.53874200	C	-0.91215000	2.21813700	-0.60106100
H	2.52385000	1.84742300	1.59351000	O	-0.16929100	2.34589300	0.53316400
H	3.49616900	0.84715400	3.63741600	C	0.53460300	1.32563000	1.17783100
H	5.20215700	-0.95473400	3.45869300	C	1.25432400	1.78520400	2.23216800
H	5.92785200	-1.74507500	1.21341200	C	-3.49719000	-0.37490200	0.44003100
H	4.95453700	-0.74459500	-0.82851200	C	-4.04477200	-1.09538200	-0.63183400
H	3.72508400	2.13233600	-1.30171500	C	-5.30733700	-1.68071900	-0.52431900

C	-6.04347900	-1.56227900	0.65588700	H	-3.84384400	0.29611900	2.45898700	
C	-5.50925900	-0.85035700	1.72996900	H	4.91308800	-2.25214900	-0.26611400	
C	-4.24981100	-0.26042300	1.61727500	H	6.03426500	-2.31892500	-2.47351100	
C	3.44734500	-0.78900300	-0.85895200	H	5.20737100	-0.88745300	-4.33362000	
C	4.54724800	-1.62546200	-1.07708800	H	3.25969600	0.61443300	-3.95943900	
C	5.18230400	-1.66173400	-2.32093000	H	2.15033000	0.68882600	-1.75795700	
C	4.71872600	-0.85959000	-3.36350300	H	3.25992000	-1.44412500	1.19723300	
C	3.62292500	-0.01763800	-3.15361200	H	2.95198700	0.26235500	0.95027800	
C	2.99379600	0.02018100	-1.90992800	H	3.36734900	1.86472300	6.00551000	
C	2.79789000	-0.72487100	0.51439000	H	2.27587900	0.44774200	5.85329200	
C	-2.68484200	1.26117500	-1.94179000	H	3.83363500	0.45534000	4.99620000	
N	-3.35213600	1.17002200	-2.89081200		Ph	CN		-0

C	-4.09433700	0.16292300	0.70306700	H	-7.32690800	-0.31373700	-0.26151500
C	-5.48578900	0.26941400	0.70095000	H	-6.17809700	-1.70170900	-1.98159200
C	-6.24364500	-0.39773100	-0.26356500	H	-3.71704700	-1.89967500	-1.96865800
C	-5.60057400	-1.17589900	-1.22630600	H	3.42709600	4.28907200	-0.77424900
C	-4.20936100	-1.28595000	-1.21766400	H	4.22102600	5.27492000	1.35260300
C	2.74226200	2.45542400	0.12749800	H	3.99464600	3.99973800	3.47740000
C	3.32190100	3.72836800	0.15235800	H	2.98003500	1.72852300	3.44885000
C	3.77402300	4.28446400	1.35129900	H	2.19987000	0.74089100	1.32990800
C	3.64708100	3.56961000	2.54211900	H	2.49717100	2.53282400	-2.01520200
C	3.07441700	2.29476900	2.52631300	H	2.84090600	0.92902700	-1.38604200
C	2.62869000	1.73948000	1.32759100	H	3.18288900	-5.23962200	-0.78568300
C	2.28559300	1.84625700	-1.18863200	H	3.11544100	-5.06594300	-2.57227600
C	-1.95995200	-1.30518300	2.23793500	H	4.44977500	-4.31888900	-1.66466300
N	-2.55038000	-1.21771500	3.23676600	(R	-TS2		
C	0.80740200	-2.52568800	1.95581800	C	-4.43250400	-5.63234000	1.97463800
F	0.22004300	-2.53768000	3.15806000	C	-3.86499900	-4.95313400	3.22777200
F	1.94991800	-1.80362700	2.05611600	C	-4.11806200	-3.44103500	3.18663700
F	1.15233500	-3.78502200	1.64114600	C	-3.54144000	-2.79098300	1.91254600
C	2.69615200	-2.45297500	-2.34797700	C	-4.08969400	-3.47504900	0.64368000
O	3.42187800	-2.55259500	-3.32264000	C	-3.86460500	-4.99732600	0.69824300
O	2.58351300	-3.41595700	-1.40691800	N	-3.84843500	-1.35980400	1.88437900
C	3.38875100	-4.58168100	-1.63057800	N	-3.49469100	-2.96673600	-0.59339700
H	-1.73399700	-1.55547000	-1.06788200	C	-3.07351300	-0.46975200	2.55217400
H	-3.35451300	4.58455500	-0.98455400	O	-2.09346000	-0.80526800	3.22718100
H	-1.17201500	5.66590800	-1.44375900	C	-3.92711800	-1.85903600	-1.23917000
H	0.90422300	4.32152500	-1.56798200	O	-4.77939000	-1.08277600	-0.78401200
H	-3.51527900	2.16049500	-0.61249900	H	-4.44242800	-1.02755000	1.12253300
H	2.05514600	-0.47353600	-2.83511800	H	-2.63909300	-3.40847800	-0.93488300
H	-3.52604100	0.69560700	1.45756800	C	-4.51936100	3.57519400	2.77527800
H	-5.97612500	0.87444600	1.45842300	C	-3.18153500	3.34884700	2.44298400

C	-2.66011100	2.05299800	2.32120200	C	-5.86105200	3.68579000	-1.68852800
C	-3.54178800	0.96318100	2.52902900	C	-5.97984500	2.47169900	-2.36527900
C	-4.88556600	1.20162100	2.84446200	C	-4.89559300	1.59488000	-2.43821800
C	-5.37895300	2.49955200	2.97270100	C	-3.67552800	1.92174500	-1.82997100
H	-4.88236700	4.59508800	2.87035700	C	-3.56793800	3.14204100	-1.14361200
H	-2.54087400	4.20395800	2.26473600	C	-4.65017800	4.01895600	-1.07815500
P	-0.91840500	1.77914800	1.70852400	H	-6.70589900	4.36748700	-1.63569700
H	-5.54142000	0.35252500	3.01101500	H	-6.91892800	2.20050700	-2.84036800
H	-6.42285600	2.66261800	3.22541900	H	-5.00933700	0.65251900	-2.95956800
C	-2.67713600	-1.48320300	-5.33902400	H	-2.63216200	3.42017200	-0.66935900
C	-2.36052100	-0.46009800	-4.44347500	H	-4.54559700	4.96090200	-0.54669500
C	-2.71096400	-0.53101600	-3.08529000	C	0.75225600	3.30847400	-4.57927600
C	-3.38817700	-1.68865300	-2.63901000	C	1.22540000	2.29429700	-3.74402400
C	-3.68418700	-2.71965700	-3.54172400	C	0.33369300	1.56179500	-2.95829500
C	-3.34162900	-2.62153400	-4.88912400	C	-1.04493500	1.83308000	-2.99475200
H	-2.39888000	-1.38428600	-6.38481800	C	-1.50947700	2.85511300	-3.83926800
H	-1.82869400	0.40756400	-4.81435500	C	-0.61610500	3.58562100	-4.62567100
P	-2.18166700	0.83163200	-1.91914300	H	1.44654400	3.88371500	-5.18596700
H	-4.20058900	-3.60206700	-3.17593700	H	2.28870700	2.08070200	-3.68498400
H	-3.59161300	-3.42623900	-5.57497900	H	0.71605200	0.79217300	-2.29455800
H	-5.52815000	-5.53829900	1.97412900	H	-2.56929200	3.08457200	-3.88233700
H	-4.21073200	-6.70644400	1.98073000	H	-0.99183000	4.37467800	-5.27195500
H	-2.78359400	-5.14427000	3.28890600	C	1.82024000	1.17133900	5.42666300
H	-4.30992500	-5.38409900	4.13292100	C	2.35516600	1.30568400	4.14231800
H	-3.67610600	-2.94423000	4.05661900	C	1.51023300	1.47163800	3.04431200
H	-5.19962700	-3.24545900	3.21866300	C	0.11569400	1.50087100	3.21975800
H	-2.45016000	-2.90337800	1.92209400	C	-0.41398100	1.37042500	4.50913800
H	-5.16686700	-3.26903900	0.58324300	C	0.43631000	1.20757200	5.60618300
H	-4.31165000	-5.45153400	-0.19410400	H	2.47957200	1.04452100	6.28140200
H	-2.78365200	-5.19349100	0.64349100	H	3.43059900	1.28112000	3.99108300

H	1.94425700	1.59468700	2.05434300	C	0.59944100	-3.36727800	-3.86700400
H	-1.48691600	1.37965300	4.65916700	H	6.95515900	-1.95594200	3.54189200
H	0.01187300	1.10975400	6.60226400	H	5.40971600	-2.67582200	5.33602000
C	0.72352400	6.00722700	0.60039300	H	2.95034000	-2.72020700	4.94671900
C	0.41975200	5.70864900	1.93258000	H	6.09598400	-1.24196600	1.32782400
C	-0.07874800	4.45260600	2.27314900	H	3.11628900	0.01839700	0.64794300
C	-0.30263800	3.47730800	1.28277300	H	0.66102000	-3.37553500	3.43410700
C	0.02402900	3.78344400	-0.04371500	H	0.77778700	-1.77339400	4.21845300
C	0.53202800	5.04061500	-0.38480800	H	-0.22105000	-1.96005400	2.77618000
H	1.12302500	6.98343700	0.33870600	H	1.24058000	-2.95394600	-4.64471200
H	0.58427400	6.45089500	2.70932600	H	0.99246000	-4.32607100	-3.52213300
H	-0.28135300	4.22403900	3.31549100	H	-0.42398600	-3.48790300	-4.22822300
H	-0.09019400	3.02968100	-0.81271100	C	3.62340600	-1.33644300	-0.76076300
H	0.78950800	5.24861500	-1.41936900	C	4.76248900	-0.34416600	-1.02819800
Pd	-0.83402300	0.11417000	-0.04346800	C	4.50151600	0.98869900	-0.68869800
C	5.88493900	-1.95757400	3.35591400	O	3.38447900	1.28717200	-0.09695000
C	5.00960000	-2.36961300	4.37362300	C	3.85636500	-2.75840500	-1.25796700
C	3.63102300	-2.39844600	4.16518200	C	3.77478200	-3.88876000	-0.43782900
C	3.17281600	-1.99997700	2.90980800	C	3.93650900	-5.17459600	-0.96406700
C	4.03019600	-1.57254200	1.87819900	C	4.18961200	-5.35258000	-2.32275200
C	5.40934100	-1.55232600	2.10762600	C	4.27855000	-4.23163600	-3.15367900
N	1.84903800	-1.95987900	2.43680100	C	4.11036200	-2.95334500	-2.62623900
C	1.82894500	-1.55508800	1.15123500	C	6.03185300	-0.81434300	-1.43006900
C	3.18086600	-1.18702000	0.72525700	N	7.07612800	-1.23295100	-1.75404300
C	0.69454500	-2.29384000	3.26126000	C	5.44769900	2.12483400	-0.92034600
C	0.65583100	-1.36485200	0.37524300	C	5.36207800	3.23914100	-0.06838600
C	0.00492700	-1.66294200	-0.69037600	C	6.19816300	4.33912800	-0.24547600
C	-0.11983400	-2.68140000	-1.72711100	C	7.12522100	4.35463300	-1.29102500
O	-0.84535600	-3.66612900	-1.65425000	C	7.20452900	3.26203100	-2.15663400
O	0.63940400	-2.40267100	-2.79618200	C	6.37278600	2.15637000	-1.97628900

H	2.75654600	-0.95572700	-1.31924100	C	1.07184100	-0.86565400	4.43430400
H	3.59482500	-3.77633100	0.62610800	C	1.59960500	-2.07847900	4.87756300
H	3.87105300	-6.03525600	-0.30315400	H	1.74664900	-4.19223900	4.47960900
H	4.32413300	-6.35097900	-2.73082000	H	0.42834100	-4.08636200	2.41329400
H	4.48632100	-4.35323100	-4.21390700	P	-0.83511900	-1.86487600	0.87379100
H	4.18368800	-2.08793000	-3.27912900	H	1.24433200	0.04327700	5.00298200
H	4.62638300	3.22347600	0.72834600	H	2.19661600	-2.11319100	5.78462300
H	6.12501600	5.18739100	0.43094400	C	4.69376600	2.47201200	-2.91921300
H	7.77707900	5.21319900	-1.43259100	C	4.07091600	1.30257900	-2.47923700
H	7.91485100	3.26860100	-2.97945400	C	3.32346800	1.26535800	-1.29056500
H	6.44465600	1.31928800	-2.66080500	C	3.21327300	2.45918600	-0.54441700
I				C	3.82541000	3.63355400	-1.00301200
C	-0.22425400	5.87159200	3.25051400	C	4.56926600	3.64708100	-2.18126100
C	-1.32052100	4.93448900	3.77377900	H	5.27279800	2.45734700	-3.83887300
C	-0.76687800	3.52147700	3.99478600	H	4.17075200	0.40476900	-3.07732200
C	-0.12914400	2.94342700	2.71522100	P	2.42032200	-0.29603900	-0.79538900
C	0.96683600	3.88212600	2.17089600	H	3.71844100	4.54173600	-0.41740100
C	0.42096100	5.30879200	1.97684800	H	5.04473500	4.56523300	-2.51526100
N	0.42863200	1.61457400	2.97404800	H	0.54616100	5.99885300	4.02500200
N	1.54525700	3.43523200	0.90247800	H	-0.63078000	6.86982800	3.04660300
C	-0.37014400	0.51864400	2.95155000	H	-2.14594300	4.89650800	3.04806500
O	-1.59052800	0.57854600	2.76947600	H	-1.74375700	5.32324900	4.70813800
C	2.55222100	2.53771300	0.81017700	H	-1.55568900	2.83744400	4.32375500
O	2.99424200	1.88921600	1.77010900	H	-0.00419900	3.54130100	4.78681300
H	1.43602200	1.50102800	2.84747800	H	-0.90885700	2.83874600	1.95047000
H	1.10478300	3.73396600	0.02883200	H	1.78840000	3.90416500	2.89973400
C	1.34828100	-3.23665300	4.14875400	H	1.23864900	5.95553300	1.63658500
C	0.58711400	-3.17526000	2.97842100	H	-0.32429100	5.29138000	1.16802000
C	0.04079800	-1.96909400	2.51888000	C	5.40271100	-2.49259200	2.04232400
C	0.29112200	-0.79723700	3.27434000	C	5.70405500	-1.20487500	1.59809700

C	4.82505700	-0.52603600	0.75200100	H	-4.84174700	-2.37936500	3.85640800
C	3.62617500	-1.12599500	0.34119300	C	-0.31395200	-6.09805800	-1.04491200
C	3.32572600	-2.41716700	0.80456300	C	-1.12974800	-5.94565200	0.08032900
C	4.20984400	-3.09759000	1.64155400	C	-1.29051200	-4.69050800	0.66625000
H	6.09010800	-3.02003800	2.69860800	C	-0.62575400	-3.56471100	0.14606500
H	6.62667500	-0.72169600	1.90899300	C	0.17430900	-3.72953000	-0.99240900
H	5.07144900	0.47653600	0.42438900	C	0.33351100	-4.98677900	-1.58302300
H	2.40323600	-2.90274900	0.50192300	H	-0.19586700	-7.07625100	-1.50384400
H	3.96092100	-4.09806500	1.98481100	H	-1.65015700	-6.80425100	0.49690400
C	2.76723100	-2.79166300	-4.73938200	H	-1.94614400	-4.58282300	1.52527300
C	1.75220600	-1.84710300	-4.56700300	H	0.66041700	-2.86634700	-1.43215300
C	1.66686000	-1.11561000	-3.38196300	H	0.95746400	-5.08620900	-2.46704300
C	2.60157000	-1.30950900	-2.34863200	Pd	0.00076800	-0.06618900	-0.48608500
C	3.62260600	-2.25397500	-2.53693600	C	-7.40267700	0.62526200	-3.00870300
C	3.70125100	-2.99156200	-3.72170600	C	-7.60730000	0.98686500	-1.65950100
H	2.82935100	-3.36657800	-5.65966900	C	-6.53578200	1.20466900	-0.79995000
H	1.01863200	-1.68300300	-5.35195300	C	-5.24345500	1.04781100	-1.31824800
H	0.86721600	-0.39216000	-3.25355600	C	-5.01511600	0.69138800	-2.68054300
H	4.35974800	-2.41945300	-1.75861600	C	-6.12191100	0.47698900	-3.52393400
H	4.49765600	-3.72079300	-3.84676200	N	-4.02100600	1.19008600	-0.69713400
C	-5.38779200	-2.26543100	1.77183400	C	-3.01883000	0.96090800	-1.63750900
C	-4.91808700	-2.11526900	0.46492900	C	-3.60057800	0.64595200	-2.85649700
C	-3.55076400	-1.96928700	0.22622200	C	-3.83625300	1.60542200	0.68110000
C	-2.63624800	-1.97343500	1.29044400	C	-1.61274300	1.02998000	-1.35380000
C	-3.11555800	-2.12135500	2.59849700	C	-0.49707400	1.57234400	-1.67520500
C	-4.48381400	-2.26766100	2.83596300	C	0.10033000	2.71032800	-2.34246700
H	-6.45272800	-2.37665000	1.95909400	O	0.46363200	3.74800700	-1.79726000
H	-5.61348400	-2.09725600	-0.36907300	O	0.24213300	2.50700600	-3.67007700
H	-3.19796200	-1.84332400	-0.79385500	C	0.85916600	3.58134600	-4.40026200
H	-2.42495400	-2.10963000	3.43423500	H	-8.26385800	0.46395000	-3.65189200

H	-8.62148200	1.09928300	-1.28534200	P	-1.39711700	0.56345200	2.35021500
H	-6.69887300	1.48591600	0.23615200	H	-5.85470800	-1.67333200	1.96485200
H	-5.9			H	-7.09922700	0.12484100	3.13709900
				C	-2.23744000	1.62213100	-5.49966300
H	-3.05356200	0.40751600	-3.75809700	C	-2.05658900	1.98149000	-4.16329500
H	-4.02375700	2.68145800	0.79730500	C	-2.46145600	1.14560700	-3.10870400
H	-4.52503300	1.05165200	1.32523400	C	-3.04696000	-0.09687800	-3.44201100
H	-2.82398600	1.37399300	1.00951500	C	-3.20423200	-0.45845300	-4.78820400
H	0.88236700	3.24726000	-5.43804800	C	-2.81370000	0.39455200	-5.81811300
				H	-1.92220700	2.30422200	-6.28467700
H	0.27078100	4.49791800	-4.30636600	H	-1.58808000	2.93237200	-3.94119700
H	1.87196800	3.76174400	-4.03092500	P	-2.12202800	1.67580000	-1.34568200
)-II			H	-3.65069000	-1.42052800	-5.02150100
C	-3.73453100	-6.02115500	-1.91108000	H	-2.95665700	0.09961400	-6.85395900
C	-3.36048900	-6.10522700	-0.42541900	H	-4.82893800	-6.05381600	-2.01352100
C	-3.85300300	-4.86383400	0.32865900	H	-3.34312100	-6.88659300	-2.45932200
C	-3.31549400	-3.55867300	-0.29168500	H	-2.26802000	-6.18654500	-0.32791600
C	-3.66509500	-3.46792900	-1.79104400	H	-3.78269000	-7.01128800	0.02588200
C	-3.20033400	-4.72851200	-2.54287700	H	-3.55003400	-4.89579800	1.38073300
N	-3.85373300	-2.39504400	0.41311000	H	-4.95193900	-4.83151300	0.31179600
N	-3.08263200	-2.29712500	-2.44972700	H	-2.22346300	-3.54120000	-0.18817800
C	-3.24881800	-1.90868500	1.52548300	H	-4.75575100	-3.37254800	-1.88188300
O	-2.24410500	-2.42547000	2.02841400	H	-3.51303900	-4.64986900	-3.59095600
C	-3.63777000	-1.06353100	-2.44140500	H	-2.10061800	-4.75073000	-2.54295400
O	-4.62885000	-0.75523900	-1.76386000	C	-6.03617200	3.84608800	-0.02667100
H	-4.45470000	-1.76901400	-0.12610200	C	-6.05014300	3.03718200	-1.16265700
H	-2.15579400	-2.39162400	-2.86799000	C	-4.89198900	2.37315000	-1.57308700
C	-5.32741600	1.30213000	3.50027300	C	-3.70073000	2.50680100	-0.84581900
C	-3.94386100	1.38752700	3.32872700	C	-3.69949300	3.31407600	0.30463900
C	-3.21918200	0.37662400	2.68300500	C	-4.85525700	3.98249500	0.70620000
C	-3.93614200	-0.73491200	2.17507700	H	-6.93752500	4.36678900	0.28593300
C	-5.32472500	-0.80556300	2.34523900	H	-6.96384500	2.92042500	-1.73938300
C	-6.02319800	0.20206600	3.00942000	H	-4.92774000	1.74042400	-2.45036100
H	-5.85385900	2.10232600	4.01327800	H	-2.78910500	3.44112400	0.88160800
H	-3.42855500	2.26581600	3.69790300	H	-4.83005400	4.61111500	. 59244700

C	0.83861900	5.24369100	-1.90475200	C	4.76429400	-3.25073100	3.74524400
C	1.31496100	3.95444000	-1.66028700	C	3.52078600	-3.48441900	3.15219000
C	0.41339100	2.89863800	-1.50280700	C	3.12699900	-2.60709500	2.14607400
C	-0.97328700	3.11565100	-1.57847100	C	3.92716700	-1.54284500	1.70103300
C	-1.43914400	4.41931200	-1.82641000	C	5.15826400	-1.31576500	2.31334100
C	-0.53786800	5.47269600	-1.99075400	N	1.91143600	-2.58914400	1.42523700
H	1.53576000	6.06922900	-2.02374500	C	1.91245400	-1.58114100	0.53829700
H	2.37482500	3.73987900	-1.56028600	C	3.22084300	-0.86141600	0.57195800
H	0.81297300	1.91040300	-1.30053300	C	0.81665400	-3.52414400	1.65275600
H	-2.50478500	4.61520200	-1.88839000	C	0.82225700	-1.19685200	-0.25760700
H	-0.91474400	6.47452600	-2.18117400	C	0.25599000	-0.89844500	-1.36735100
C	0.81941500	-1.72674400	5.75005600	C	0.29181400	-1.14245100	-2.80638400
C	1.52120100	-0.97056500	4.80805100	O	-0.33239500	-2.02197800	-3.38574000
C	0.83316500	-0.32180400	3.78208100	O	1.07545700	-0.25757700	-3.44186900
C	-0.56363400	-0.41719300	3.68461300	C	1.14220800	-0.38074600	-4.87736000
C	-1.25931600	-1.17867400	4.63205200	H	6.52990900	-2.01690000	3.81485700
C	-0.56994000	-1.82818900	5.65843200	H	5.10896900	-3.91182900	4.53528400
H	1.35296700	-2.23108600	6.55140800	H	2.89493800	-4.31112000	3.47144900
H	2.60239100	-0.88760100	4.86639700	H	5.79766100	-0.50343000	1.98581600
H	1.38867400	0.27328200	3.06121800	H	3.05878400	0.22181400	0.68701300
H	-2.33686200	-1.27413800	4.56718000	H	1.00357100	-4.46135900	1.11673300
H	-1.12373300	-2.41386200	6.38780200	H	0.73982300	-3.72258600	2.72369600
C	-0.13291000	4.79087200	3.87782100	H	-0.12262400	-3.07804800	1.32401200
C	-0.65200600	3.85687900	4.78033800	H	1.81269000	0.41601500	-5.19745900
C	-1.04784500	2.59674300	4.33539700	H	1.54522300	-1.35755600	-5.15593500
C	-0.95264600	2.25465400	2.97319200	H	0.14921600	-0.25356500	-5.31313600
C	-0.41196000	3.19250600	2.08383100	C	3.98090100	-0.86397400	-0.88363100
C	-0.00625700	4.45386300	2.53137700	C	5.11889900	0.11958100	-0.85076700
H	0.18446200	5.76904000	4.22920200	C	4.73894200	1.48734800	-0.75375800
H	-0.73542900	4.10570900	5.83502500	O	3.51940300	1.80595800	-0.60937800
H	-1.41693900	1.86988800	5.05324800	C	4.26756500	-2.26287200	-1.40249900
H	-0.28482700	2.93344800	1.03912400	C	5.16973200	-3.15190300	-0.79499700
H	0.41658700	5.15950600	1.82196300	C	5.37221500	-4.43161100	-1.31461900
Pd	-0.87836700	0.12795000	0.02477200	C	4.68368000	-4.85432800	-2.45289500
C	5.56796400	-2.17774600	3.33709300	C	3.79420700	-3.97886500	-3.07635100

C	3.59394400	-2.70011100	-2.55380800	H	-4.33708800	-1.41463900	0.97557100
C	6.45356500	-0.32300600	-0.75148600	H	-2.22808000	-3.56698000	-1.02255400
N	7.55344600	-0.71685200	-0.65291900				
C	5.74599500	2.60769900	-0.77521100	C	-4.82280600	3.19611000	2.66168100
C	5.43670200	3.77555700	-0.05874600	C	-3.45762200	3.05507200	2.39909500
C	6.30329700	4.86655600	-0.05930700	C	-2.85735000	1.79382700	2.28176900
C	7.48983600	4.81722300	-0.79637200	C	-3.68188300	0.65135300	2.42887100
C	7.79828800	3.66933400	-1.52851800	C	-5.05283100	0.80336000	2.66824600
C	6.93562300	2.57170400	-1.51803300	C	-5.62786500	2.06849100	2.78794000
H	3.20973300	-0.41415400	-1.51456400				
H	5.73530900	-2.84304700	0.07479000	H	-5.24986100	4.19087400	2.75798900
H	6.08143600	-5.09689100	-0.82885500	H	-2.85830100	3.94924200	2.27431100
H	4.84664700	-5.85116100	-2.85481200	P	-1.06984200	1.62138000	1.76813400
H	3.25754200	-4.28646100	-3.97058500	H	-5.66480600	-0.08589700	2.78615900
H	2.91601900	-2.01620000	-3.05505200	H	-6.69215200	2.16636800	2.98281000
H	4.50337900	3.80541500	0.49457900	C		-1.62169800	
H	6.05377500	5.75737000	0.51270400				
H	8.16660900	5.66825500	-0.80244700	C	-2.15508700	-0.58515600	-4.48651000
H	8.71356700	3.62573400	-2.11348600	C	-2.54272600	-0.71138500	-3.14241600
H	7.18837900	1.68941900	-2.09484600	C	-3.11799900	-1.93590700	-2.73561700
				C	-3.28103000	-2.97679800	-3.65955000
C	-3.87441100	-6.00832600	1.81594800	C	-2.90145200	-2.82611200	-4.99181600
C	-3.45179500	-5.28021600	3.09864100	H	-2.03341700	-1.48024000	-6.43827300
C	-3.87032600	-3.80551200	3.04953700	H	-1.70196800	0.33707800	-4.82906900
C	-3.30503200	-3.08586800	1.80844200	P	-2.18989800	0.66982500	-1.93190200
C	-3.71640800	-3.81437700	0.51284400	H	-3.71825600	-3.91167900	-3.32190300
C	-3.32076400	-5.30111500	0.57141800	H	-3.04518300	-3.64167900	-5.69514300
N	-3.75750500	-1.69333100	1.76967400	H	-4.97228400	-6.03993000	1.76002800
N	-3.13681800	-3.22912800	-0.69749800	H	-3.53172000	-7.05019600	1.82972900
C	-3.11243100	-0.74255600	2.48856500	H	-2.36041600	-5.34868600	3.21520700
O	-2.16134900	-0.99376000	3.23635100	H	-3.89095600	-5.76669700	3.97818900
C	-3.67719000	-2.17856000	-1.35498700	H	-3.52908300	-3.27058200	3.94162600
O	-4.62898400	-1.50955900	-0.92582600	H	-4.96727300	-3.73121900	3.02709000

H	-2.20976900	-3.08197900	1.87326500	C	-0.74334700	1.35608800	4.60975700
H	-4.80691200	-3.73332700	0.40879400	C	0.03194600	1.26166100	5.76781600
H	-3.66908200	-5.79505000	-0.34361700	H	2.02592700	1.14392600	6.58517800
H	-2.22309200	-5.37229900	0.56985300	H	3.12613000	1.23108400	4.35263600
C	-6.15651300	3.11730300	-1.75576900	H	1.76259200	1.41417200	2.30656900
C	-6.12149400	1.92696800	-2.48267700	H	-1.82420200	1.37083800	4.68809200
C	-4.95068500	1.16837200	-2.53924200	H	-0.45728800	1.21742100	6.73753900
C	-3.79687600	1.59010200	-1.86370900	C	0.31315700	5.96954100	0.74567400
C	-3.84483500	2.78415400	-1.12705300	C	0.03868000	5.62477500	2.07294300
C	-5.01297700	3.54444200	-1.07806900	C	-0.38001900	4.33321300	2.39009600
H	-7.06851800	3.70722800	-1.71566700	C	-0.54779900	3.36478300	1.38242100
H	-7.00727500	1.58256400	-3.00997100	C	-0.25437700	3.72011300	0.05972000
H	-4.94436000	0.24287700	-3.10172400	C	0.17154500	5.01328500	-0.25905100
H	-2.96330800	3.13301100	-0.59849900	H	0.64553900	6.97520500	0.50143400
H	-5.02850000	4.46750500	-0.50518000	H	0.16002500	6.36017900	2.86410200
C	0.47270200	3.50504900	-4.52896900	H	-0.56634900	4.07319100	3.42785600
C	1.04257900	2.49203200	-3.75502300	H	-0.33419700	2.97768600	-0.72484300
C	0.23024900	1.65522500	-2.98817800	H	0.40146900	5.25942600	-1.29185400
C	-1.16543900	1.81665900	-2.98074800	Pd	-0.76619800	0.02878600	-0.02641400
C	-1.72761800	2.83628400	-3.76650500	C	5.99593000	-2.11358300	3.42839000
C	-0.91368400	3.67308400	-4.53341800	C	5.09165000	-2.34721700	4.48606400
H	1.10466300	4.16121600	-5.12165500	C	3.71817100	-2.28432700	4.28476100
H	2.12055100	2.35993400	-3.73149400	C	3.26520800	-1.97191800	2.99575200
H	0.68392900	0.88286700	-2.37593200	C	4.15905600	-1.74059200	1.91227500
H	-2.80261900	2.98120500	-3.78076800	C	5.54722700	-1.81472400	2.14897000
H	-1.36658600	4.45814200	-5.13351800	N	1.97393500	-1.84323400	2.53448500
C	1.42491500	1.21957500	5.68277000	C	2.01598100	-1.56659800	1.17250600
C	2.04368200	1.27396700	4.43123900	C	3.34874500	-1.49425800	0.75075300
C	1.26999800	1.36947700	3.27425100	C	0.78949400	-2.13512000	3.32172200
C	-0.13083000	1.41206500	3.35155100	C	0.84493300	-1.32852600	0.37139500

C	0.27491500	-1.61225600	-0.74625400	C	4.69944200	5.03925300	-0.23151300
C	0.26272700	-2.61369400	-1.79969500	C	5.83156500	5.23069000	-1.02652700
O	-0.46237300	-3.60155800	-1.82900700	C	6.38517400	4.14687200	-1.71121800
O	1.15511000	-2.33680900	-2.76922100	C	5.81945500	2.87836100	-1.59832700
C	1.24544500	-3.30039900	-3.83632800	H	2.88046300	-0.95354900	-1.22821800
H	7.06407700	-2.17191400	3.61860500	H	4.32095300	-3.78893600	0.15036900
H	5.47539300	-2.58278900	5.47522300	H	5.26603600	-5.63350000	-1.19114900
H	3.02238400	-2.46789200	5.09763300	H	5.92992400	-5.25133700	-3.55944900
H	6.25794900	-1.64487600	1.34702900	H	5.63123000	-2.99051700	-4.56539900
H	2.31583400	0.63815200	-0.10826700	H	4.68107300	-1.15145600	-3.21834300
H	0.70451900	-3.21392200	3.50914500	H	3.24549900	3.63080400	0.49574400
H	0.84270400	-1.60913300	4.27855800	H	4.25624400	5.87650200	0.30083200
H	-0.10108600	-1.78775100	2.80246700	H	6.27651200	6.21818900	-1.11635100
H	2.06298900	-2.95135300	-4.46600000	H	7.25814000	4.28761400	-2.34247700
H	1.47212200	-4.29077400	-3.43519300	H	6.25428400	2.05229800	-2.14801300
H	0.30607200	-3.33403800	-4.39382200	2 a			
C	3.79415400	-1.17451800	-0.66052500	C	-1.25879500	-0.77239200	0.04486000
C	4.64293700	0.11547900	-0.71601400	C	-0.07234400	-0.13198500	-0.16494300
C	4.04821600	1.34564300	-0.64721800	C	1.17776700	-0.99020300	-0.11966700
O	2.70982200	1.46727700	-0.43573100	O	1.06210300	-2.20694200	-0.20326000
C	4.43671000	-2.33596800	-1.43265100	C	-2.64004600	-0.31664600	0.05783100
C	4.60530800	-3.60916000	-0.88057600	C	-3.06584100	1.00832600	-0.18425500
C	5.13907900	-4.65299700	-1.64295700	C	-4.41881500	1.32985800	-0.14561400
C	5.51058400	-4.44053200	-2.96951200	C	-5.37629600	0.34907500	0.13244400
C	5.34235600	-3.17245300	-3.53318800	C	-4.97398700	-0.96657500	0.37404000
C	4.80868900	-2.13465900	-2.77155300	C	-3.62248000	-1.29284400	0.33700800
C	6.05854000	-0.01053000	-0.77067500	C	0.01984800	1.25392200	-0.49232900
N	7.21406200	-0.17022300	-0.80220200	N	0.09131300	2.38141800	-0.77911000
C	4.69095400	2.67143300	-0.78614000	C	2.53220400	-0.37412600	0.02027100
C	4.12892300	3.77386300	-0.11567500	C	3.62344600	-1.10609700	-0.47958400

| C | 4.91963000 | -0.61905200 | -0.34766600 | H | -5.71133000 | -1.73435700 | 0.59007000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 5.14606000 | 0.59456600 | 0.30959900 | H | -3.30849400 | -2.31653000 | 0.52436900 |
| C | 4.07147900 | 1.31587400 | 0.83206700 | H | 3.43016400 | -2.05498600 | -0.96880900 |
| C | 2.76851700 | 0.83974700 | 0.68433900 | H | 5.75478600 | -1.18492000 | -0.75104700 |
| H | -1.13022500 | -1.83620700 | 0.23692600 | H | 6.15863900 | 0.97428500 | 0.41693300 |
| H | -2.34379700 | 1.78452700 | -0.40332900 | H | 4.24472300 | 2.25208200 | 1.35489900 |
| H | -4.72934700 | 2.35348200 | -0.33468700 | H | 1.94743600 | 1.40928200 | 1.10407500 |
| H | -6.43064900 | 0.61027300 | 0.16003400 | | | | |

Reference

11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
12. (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648;
(c) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
13. A. V. Marenich, C. J. Cramer and D. G.Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
14. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.

[^0]:

[^1]:

[^2]:

[^3]:

[^4]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & f 1(\mathrm{ppm})\end{array}$

[^5]:

[^6]:

[^7]:

[^8]:

[^9]: $\begin{array}{lllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1} & (\mathrm{ppm})\end{array}$

[^10]:

[^11]:

[^12]:

[^13]: $\begin{array}{llllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^14]:

[^15]: $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & \text { f1 }\end{array}$

[^16]:

[^17]:

[^18]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \text { flpm) }\end{array}$

[^19]: $\begin{array}{llllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \text { f1 (ppm) }\end{array}$

[^20]: $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & f 1 & (\mathrm{ppm})\end{array}$

[^21]:

