Asymmetric Friedel–Crafts reaction of unsaturated carbonyl-tethered

heteroarenes via vinylogous activation of Pd^{0} - π -Lewis base catalysis

Bo Jiang,^a Wu-Tao Gui,^a Hao-Tian Wang,^a Ke Xie,^a Zhi-Chao Chen,^a Lei Zhu,^b Qin Ouyang,^{*b} Wei Du,^{*a} and Ying-Chun Chen^{*a,b}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China. Email: ouyangq@tmmu.edu.cn; duweiyb@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

Table of contents

1. General methods
2. Procedure for the preparation of 2-indolyl propiolates
3. Optimisations for the asymmetric $[3 + 2]$ annulation of 2- indolyl propiolates 1 with enone $2a$
4. Optimisations for the asymmetric $[3 + 2]$ annulation of 2-indolyl propiolate 1b with enone 5a
5. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7 with imine 8a
6. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrrole 10 with imine 8a
7. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl furan 12 with 1-azadiene 13
8. General procedure for the asymmetric $[3 + 2]$ or $[3 + 4]$ annulations of 2-indolyl propiolates 1 with enones 2
9. General procedure for the asymmetric $[3 + 2]$ annulations of 2-indolyl propiolate 1b with enones 5
10. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7 with imines 8
11. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrroles 10 with imines 8
12. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl furan 12 with 1-azadiene 13 S68
13. Asymmetric reaction on a 1.0 mmol scale
14. Transformations of products
15. More investigation on substrates scope
16. X-ray crystallographic data and structural refinement
17. Mechanism studies
18. NMR, HRMS spectra and HPLC chromatograms
19. Computational details

1. General methods

¹H NMR (400 or 600 MHz) and ¹³C NMR (100 or 150 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, dt = double triplet; td = triple doublet; m = double tripletmultiplet, br = broad, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker APEX-II CCD diffractometer, and the data obtained were deposited at the Cambridge Crystallographic Data Centre (CCDC 2251805–2251810). In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak IA Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6 mm), Chiralpak IC Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak IE Column (250 × 4.6 mm), Chiralcel IF Column (250 × 4.6 mm). UV detection was monitored at 254 nm. The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether or dichloromethane (DCM)/methanol (MeOH). TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60–90 $^{\circ}$ C) was redistilled. 2-Indolyl propiolate **1**,¹ enones **2**,² enones **5**,³ 2-indolyl acrylates **7**,⁴ imines **8**,⁵ 2-pyrrolyl acrylates 10,⁶ 2-furyl acrylate 12,⁷ 1-azadiene 13,⁸ L2, L3,⁹ bifuncational chiral ligands L6 and L7,¹⁰ were synthesized following the literature procedures.

References

- 1. H. K. Grover, T. P. Lebold and M. A. Kerr, Org. Lett., 2011, 13, 220.
- 2. (a) S. J. Deshpande, P. R. Leger and S. R. Sieck, Tetrahedron Lett., 2012, 53, 1772; (b) R. Maity

and S. C. Pan, Eur. J. Org. Chem., 2017, 871.

- 3. E. Li, Y. Huang, L. Liang and P. Xie, Org. Lett., 2013, 15, 3138.
- 4. (a) F. Sha, Y. Tao, C.-Y. Tang, F. Zhang and X.-Y. Wu, J. Org. Chem., 2015, 80, 8122; (b) K. Zhang,
 X. Xu, J. Zheng, H. Yao, Y. Huang and A. Lin, Org. Lett., 2017, 19, 2596.
- (a)S. Morales, F. G. Guijarro, J. L. Garc á Ruano and M. B. Cid, J. Am. Chem. Soc., 2014, 136, 1082; (b) H. Cai, Y. Zhou, D. Zhang, J. Xu and H. Liu, Chem. Commun., 2014, 50, 14771.
- 6. (a) D. G. Stark, P. Williamson, E. R. Gayner, S. F. Musolino, R. W. F. Kerr, J. E. Taylor, A. M. Z. Slawin, T. J. C. O'Riordan, S. A. Macgregor and A. D. Smith, *Org. Biomol. Chem.*, 2016, 14, 8957; (b) D. Bensinger, D. Stubba, A. Cremer, V. Kohl, T. Waßmer, J. Stuckert, V. Engemann, K. Stegmaier, K. Schmitz and B. Schmidt, *J. Med. Chem.*, 2019, 62, 2428.
- 7. A. E. Bober, J. T. Proto and K. M. Brummond, Org. Lett., 2017, 19, 1500.
- 8. Z. Q. Rong, M. Wang, C. H. E. Chow and Y. Zhao, Chem. Eur. J., 2016, 22, 9483.
- 9. B. M. Trost, D. J. Michaelis, J. Charpentier and J. Xu, Angew. Chem., Int. Ed., 2012, 51, 204.
- 10. (a) X.-X. Yang, R.-J. Yan, G.-Y. Ran, C. Chen, J.-F. Yue, X. Yan, Q. Ouyang, W. Du and Y.-C. Chen, *Angew. Chem., Int. Ed.*, 2021, **60**, 26762; (b) C. Chen, X.-X. Yang, Z. Zhao, B. Han, W. Du and Y.-C Chen, *Chem. Commun.*, 2022, **58**, 5502.

2. Procedure for the preparation of 2-indolyl propiolates

$$\underbrace{\bigcap_{H}}_{H} \overset{O}{\longrightarrow} \underbrace{\bigcap_{KOH}}_{DMF, rt} \overset{O}{\longrightarrow} \underbrace{\bigcap_{N}}_{Bn} \overset{O}{\longrightarrow} \underbrace{\bigcap_{N}}_{N} \overset{O}{\longrightarrow} \underbrace{\bigcap_{N}}_{N} \overset{O}{\longrightarrow} \underbrace{\bigcap_{N}}_{MeOH/THF, rt} \underset{Bn}{\overset{O}{\longrightarrow}} \underbrace{\bigcap_{N}}_{Bn} \overset{CiCO_2Me}{\underset{HBuLi}{\longrightarrow}} \underbrace{\bigcap_{N}}_{THF, -78 \ \circ C} \underbrace{\bigcap_{N}}_{Ib} \overset{O}{\longrightarrow} \underbrace{O_{CO_2Me}}_{Ib} \underbrace{O_{CO_2Me}}_{Ib$$

To a stirred solution of 1*H*-indole-2-carbaldehyde (1.45 g, 10.0 mmol, 1.0 equiv) in DMF (10 mL) was added KOH (1.12 g, 20.0 mmol, 2.0 equiv) at 0 °C. The mixture was stirred for 20 min, and benzyl bromide (1.42 mL, 12.0 mmol, 1.2 equiv) was added dropwise. The resulting mixture was stirred at rt for 2 h before the reaction was quenched by pouring it into ice water. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with water (20 mL) and brine (30 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, petroleum ether/EtOAc = 20/1) to give 1-benzyl-1*H*-indole-2-carbaldehyde as a colorless oil (2.12 g, 90% yield).

1-Benzyl-1*H*-indole-2-carbaldehyde (2.12 g, 9.00 mmol, 1.0 equiv) was dissolved in MeOH/THF (20/10 mL), and K₂CO₃ (3.73 g, 27.0 mmol, 3.0 equiv) was added at 0 °C. Then dimethyl (1-diazo-2-oxopropyl)phosphonate (1.62 mL, 10.8 mmol, 1.2 equiv) was added by dropwise before the mixture was allowed to warm to room temperature. The mixture was stirred until completion (monitored by TLC). The reaction was quenched with water and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with water (20 mL) and brine (30 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, petroleum ether/EtOAc = 30/1) to give 1-benzyl-2-ethynyl-1*H*-indole as a yellow solid (1.30 g, 62% yield).

To a solution of 1-benzyl-2-ethynyl-1*H*-indole (1.30 g, 5.60 mmol, 1.0 equiv) in THF was added *n*-BuLi (2.4 M, 2.80 mL, 6.72 mmol, 1.2 equiv) dropwise at -78 °C under argon atmosphere. The mixture was stirred for 30 min. Methyl chloroformate (0.63 mL, 6.7 mmol, 1.2 equiv) was added and the mixture was stirred at the same temperature for 3 h. Then the solution was warmed to room temperature, quenched with water and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with water (20 mL) and brine (30 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, petroleum ether/EtOAc = 15/1) to give **1b**.

4H), 5.48 (s, 2H), 3.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 154.2, 137.6, 137.0, 128.7, 127.7, 127.0, 126.9, 125.0, 121.9, 120.9, 118.2, 113.3, 110.5, 87.4, 79.1, 52.8, 48.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₁₆NO₂⁺ 290.1176; Found 290.1186.

To a stirred solution of **1b** (2.89 g, 10.0 mmol, 1.0 equiv) in MeOH (20 mL) was added aqueous NaOH (1 M, 30 mL, 30 mmol, 3.0 equiv) at rt. The mixture was heated at 70 $^{\circ}$ C for 5 h. After completion, the solvent was removed in vacuo, diluted with water and acidified with aqueous HCl (1 M, 30 mL). The mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated to give crude carboxylic acid (2.56 g, 93% yield).

To a solution of carboxylic acid (275 mg, 1.00 mmol, 1.0 equiv) in DCM (10 mL) and Et₃N (0.26 mL, 2.0 mmol, 2.0 equiv) was added oxalyl chloride (102 μ L, 1.30 mmol, 1.3 equiv) dropwise at 0 °C under argon atmosphere. The mixture was stirred for 5 min. Estrone or prochlorperazine (1.10 mmol, 1.1 equiv) was added and the mixture was stirred at rt for 1 h. After completion, the solvent was removed in vacuo, and the residue was purified by column chromatography (SiO₂, petroleum ether/EtOAc = 5/1) to give pure product.

Compound 11: yellow solid, 426 mg, 64% yield; mp 48–49 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, *J* = 8.0 Hz, 1H), 7.22–7.12 (m, 5H), 7.10–6.99 (m, 6H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.86–6.74 (m, 4H), 5.36 (s, 2H),

4.25 (t, J = 5.9 Hz, 2H), 3.80 (t, J = 6.8 Hz, 2H), 2.60 (t, J = 5.9 Hz, 2H), 2.47–2.31 (m, 10H), 1.88– 1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 153.6, 146.4, 144.4, 137.6, 136.9, 133.1, 128.7, 127.8, 127.6, 127.43, 127.35, 127.0, 126.8, 125.0, 124.7, 123.4, 122.8, 122.2, 121.9, 120.9, 118.2, 115.8, 115.7, 113.2, 110.4, 87.5, 79.1, 63.3, 56.3, 55.4, 53.3, 53.1, 48.2, 45.3, 24.2; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₃₈ClN₄O₂S⁺ 661.2399; Found 661.2402.

Compound 1m: yellow solid, 386 mg, 73% yield; mp 130–132 °C; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 8.0 Hz, 1H), 7.34–7.21 (m, 6H), 7.20–7.10 (m, 4H), 6.95 (dd, J = 8.5, 2.5 Hz, 1H), 6.91 (d, J = 2.5 Hz, 1H), 5.43 (s, 2H), 2.90 (dd, J = 9.3, 4.3 Hz, 2H), 2.50 (dd, J = 18.9, 8.7 Hz, 1H), 2.44–2.34 (m, 1H), 2.31–

2.20 (m, 1H), 2.19–1.92 (m, 4H), 1.69–1.36 (m, 6H), 0.90 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 220.7, 152.5, 148.1, 138.3, 138.1, 137.8, 137.0, 128.8, 127.8, 127.1, 127.0, 126.6, 125.4, 122.1, 121.5, 121.1, 118.7, 118.0, 114.1, 110.6, 87.5, 81.6, 50.5, 48.4, 48.0, 44.2, 38.0, 35.9, 31.6, 29.4, 26.3, 25.8, 21.6, 13.9; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₃NO₃Na⁺ 550.2353; Found 550.2359.

3. Optimisations for the asymmetric [3 + 2] annulations of 2- indolyl propiolates 1 with enone

2a

Table S1. Ligand screenings for the asymmetric [3 + 2] annulation of 2-indolyl propiolate 1a with enone $2a^a$

^{*a*} Reactions were carried out with **1a** (0.025 mmol), **2a** (0.03 mmol), $Pd_2(dba)_3$ (5 mol%) and **L** (10 mol%) in toluene (0.25 mL) at 60 °C under Ar.

Table S2. Other	condition screenings for the	asymmetric [3 + 2] a	Innulations of 2-indolyl	propiolates 1
with enone $2a^a$				

.

	- <u>-</u> CO ₂ R ² +	Bz CN 2a	Pd ₂ (dba) ₃ (5 mol%) L1 (10 mol%) A (20 mol%) Solvent, 60 °C, 48 h	Ph	CN BZ -CO ₂ Me	
	O ₂ H	CO ₂ H OH	CO ₂ H	HO ₂ C		, ₂ 0 `ОН
Entry	R^{1}, R^{2}	Α	Solvent	<i>Temp</i> (°C)	Yield $(\%)^b$ (conv.)	ee (%) ^c
1	Me, Me	/	Toluene	60	3a , 68	89
2	Me, Me	A3	Toluene	60	3a , (80)	89
3	Me, Me	A2	Toluene	60	3a , (60)	88
4	Me, Me	A4	Toluene	60	3a , 52	89
5	Me, Me	A1	Toluene	60	3a , 49 (90)	90
6	Me, Me	A5	Toluene	60	3a , nr	/

7	Me, Me	Na ₂ CO ₃	Toluene	60	3a , 61	86
8	Me, Me	DIPEA	Toluene	60	3a , 42	89
9	Me, Me	TBAB	Toluene	60	3a , 86	86
10	Me, Me	/	EtOAc	60	3a , 46	81
11	Me, Me	/	MeCN	60	3a , 93	30
12	Me, Me	/	<i>i</i> -PrOH	60	3a , 91	65
13	Me, Me	/	1,4-Dioxane	60	3a , 81	89
14	Me, Me	TBAB	1,4-Dioxane	60	3a , 89	84
15	Me, <i>i</i> -Pr	TBAB	1,4-Dioxane	60	3ah , 51	79
16	Me, Bn	TBAB	1,4-Dioxane	60	3ai , 48	89
17	Bn, Me	TBAB	1,4-Dioxane	60	3b , 70	91
18	Bn, Me	/	1,4-Dioxane	60	3b , 49	92
19	Bn, Me	TBAB	1,4-Dioxane	70	3b , 70	91
20	Bn, Me	TBAB	1,4-Dioxane	80	3b , 69	89
21^d	Bn, Me	TBAB	1,4-Dioxane	60	3b , 81	92
$22^{d,e}$	Bn, Me	TBAB	1,4-Dioxane	60	3b , 86	92
$23^{d,e}$	Bn, Me	TBAI	1,4-Dioxane	60	3b , 81	91
$24^{d,e}$	Bn, Me	TBAC	1,4-Dioxane	60	3b , 76	92
$25^{d,e}$	Bn, Me	TBAHS	1,4-Dioxane	60	3b , 79	90
$26^{d,e}$	Bn, Me	KBr	1,4-Dioxane	60	3b , 52	92
^a Unloss n	oted otherwise	reactions	uara astriad	out with 1	(0.025 mmol) $20.(0)$	02 m

^{*a*} Unless noted otherwise, reactions were carried out with **1** (0.025 mmol), **2a** (0.03 mmol), Pd₂(dba)₃ (5 mol%), **L1** (10 mol%) and additive **A** (20 mol%) in solvent (0.25 mL) at 60 °C under Ar. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} C = 0.2 M. ^{*e*} The ratio of **1b/2a** was 1/1.3.

4. Optimisations for the asymmetric [3 + 2] annulation of 2-indolyl propiolate 1b with enone 5a

Table S3. Screenings for the asymmetric [3 + 2] annulation of 2-indolyl propiolate 1b with enone $5a^{a}$

\bigcirc	N Bn 1b	D ₂ Me +	Pd ₂ (dba) ₃ (5 mo L1 (10 mol%) A (20 mol%) Solvent, 70 °C, 7	$ \begin{array}{c} $	CO ₂ Me
Entry	Α	Solvent	<i>Temp</i> (°C)	Yield $(\%)^b$	ee $(\%)^c$
1^d	/	MeCN	70	62	/
2	/	MeCN	70	60	42
3	/	Toluene	70	84	90
4	/	1,4-Dioxane	70	80	89
5	/	MeOH	70	99	3

6	/	DCE	70	65	69	
7^e	/	Toluene	70	81	90	
8 ^e	TBAB	Toluene	70	76	89	
^a Unless noted otherwise, reactions were carried out with 1b (0.025 mmol), 5a (0.03 mmol),						
Pd ₂ (dba) ₃ (5 mol%), L1 (10 mol%) and additive A (20 mol%) in solvent (0.125 mL) at 70 °C						
under Ar. ^b Yield of the isolated product. ^c Determined by HPLC analysis on a chiral						
stationary phase. ^d With Pd(PPh ₃) ₄ (10 mol%). ^e On a 0.1 mmol scale.						

5. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl indoles 7 with imine 8a

Table S4. Ligand screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7k with imine 8a^{*a*}

^{*a*} Reactions were carried out with **7k** (0.025 mmol), **8a** (0.05 mmol), $Pd_2(dba)_3$ (5 mol%) and **L** (10 mol%) in toluene (0.25 mL) at 80 °C for 24 h under Ar.

Table S5. Ligand screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7a with imine 8a^{*a*}

^{*a*} Reactions were carried out with **7a** (0.025 mmol), **8a** (0.05 mmol), $Pd_2(dba)_3$ (5 mol%), **L** (10 mol%) and 4 Å MS (10.0 mg) in toluene (0.25 mL) at 60 °C for 60 h under Ar.

Table S6. Other condition screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7a with imine 8a^{*a*}

Ta	-Bz + NTs 8a	Pd ₂ (dba) ₃ (5 mol% L5 (10 mol%) A , 4 Å MS Solvent, 60 °C			PPh ₂ PPh ₂ PPh ₂
CO ₂ H	CO ₂ H	0 Р ¹ Ви ОН Р Аб	о h Ph A7	CO ₂ H OH	CO ₂ Et
Entry	A (mol%)	Solvent	<i>Temp</i> (°C)	Yield $(\%)^b$	ee (%) ^c
1	A3 (30)	Toluene	60	92	70
2	A1 (30)	Toluene	60	95	86
3	A6 (30)	Toluene	60	57	87
4	A7 (30)	Toluene	60	60	45
5	A2 (30)	Toluene	60	93	0
6	A4 (30)	Toluene	60	71	93
7	A1 (10)	Toluene	60	90	85
8	A1 (10)	Toluene	50	94	90
9	A1 (10)	Toluene	40	62	92

10	A1 (5)	Toluene	50	90	92
11	A1 (5)	THF	50	32	92
12	A1 (5)	CHCl ₃	50	65	87
13	A1 (5)	Xylene	50	93	92
14	A1 (5)	PhCF ₃	50	97	67

^{*a*} Unless noted otherwise, reactions were carried out with **7a** (0.025 mmol), **8a** (0.05 mmol), $Pd_2(dba)_3$ (5 mol%), **L5** (10 mol%), additive **A** (mol%) and 4 Å MS (10.0 mg) in solvent (0.25 mL) at 60 °C for 60 h under Ar. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

6. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrrole 10 with imine 8a

At first, substrate **10d** with an *N*-methyl group was employed for the Friedel–Crafts reaction with **8a** under palladium catalysis. After extensive screenings, only low conversions and poor enantioselectivity were attained. Therefore, some other substrates were tested as well (see Table S7).

^{*a*} Reactions were carried out with **10d** (0.05 mmol), **8a** (0.05 mmol), $Pd_2(dba)_3$ (5 mol%), **L** (10 mol%) and 4 Å MS (20.0 mg) in toluene (0.5 mL) at 80 °C for 60 h under Ar.

It was found that substrate **10a** with a free NH group underwent the desired reaction smoothly in combination with ligands derived from *trans*-1,2-diphenylaminoethanol. It was assumed that the NH of **10a** might interact with the ligands via H-bonding, and the NH of the ligands might also activate imine via H-bonding interaction.

Table S8. Ligand screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrrole 10a with imine 8a^{*a*}

^{*a*} Reactions were carried out with **10a** (0.03 mmol), **8a** (0.025 mmol), $Pd_2(dba)_3$ (5 mol%), **L** (20 mol%), **A3** (10 mol%) and 4 Å MS (10.0 mg) in toluene (0.25 mL) at 50 °C for 48 h under Ar.

Table S9. Other condition screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrrole 10a with imine 8a^a

N H 10a	z + 8a	Pd₂(dba)₃ (5 mol%) NTs <u>L6 (10 mol%)</u> A (10 mol%) Toluene, 50 °C	$\xrightarrow{\text{D}} \stackrel{\text{H}}{\longrightarrow} \stackrel{\text{Ts}}{\xrightarrow{\text{N}}} \stackrel{\text{N}}{\xrightarrow{\text{Ph}}} \stackrel{\text{N}}{\xrightarrow{\text{H}}} \stackrel{\text{N}}{\xrightarrow{\text{H}}}$	Bz Ar-NI a Ar = 3,5	Ph $PhNH O PPh_2-(CF_3)_2C_6H_3 L6$
A3	CO₂H		CO ₂ H OH A2		₂H DH
Entry	Α	Pd/ L6	Solvent	Yield $(\%)^b$	$ee (\%)^c$
1	A3	1/2	Toluene	71	89
2	A1	1/2	Toluene	89	88
3	A2	1/2	Toluene	82	91
4	A4	1/2	Toluene	80	89
5	A2	1/2	Xylene	80	81
6	A2	1/2	THF	69	85
7	A2	1/2	CHCl ₃	53	78

8 A2 1/1Toluene 82 98 $\mathbf{9}^d$ A2 1/1 Toluene 74 97 ^a Unless noted otherwise, reactions were carried out with 10a (0.03mmol), 8a (0.025 mmol), Pd₂(dba)₃ (5 mol%), L6 (10 mol%), additive A (10 mol%) and 4 Å MS (10.0 mg) in solvent (0.25 mL) at 50 °C for 48 h under Ar. ^b Yield of the isolated product. ^c Determined by HPLC analysis on a chiral stationary phase. ^d Performed on a 0.1 mmol scale for 60 h.

7. Optimisations for the asymmetric Friedel–Crafts reaction of 2-alkenyl furan 12 with 1azadiene 13

Table S10. Ligand screenings for the asymmetric Friedel–Crafts reaction of 2-alkenyl furan 12 with 1azadiene 13^{*a*}

^{*a*} Reactions were carried out with **12** (0.1 mmol), **13** (0.05 mmol), $Pd_2(dba)_3$ (5 mol%), and **L** (10 mol%) in toluene (0.5 mL) at 50 °C for 36 h under Ar.

8. General procedure for the asymmetric [3 + 2] or [3 + 4] annulations of 2-indolyl propiolates 1 with enones 2

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1** (0.10 mmol, 1.0 equiv), enone **2** (0.13 mmol, 1.3 equiv) or enone **2h** (0.15 mmol, 1.5 equiv), TBAB (6.4 mg, 0.020 mmol, 20 mol%), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and back-filled three times with argon, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then heated to 60 °C or 80 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give product **3** or **4**. Racemic **3** or **4** was obtained under the catalysis of Pd(PPh₃)₄ (10 mol%) in MeCN (0.5 mL).

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-2-cyano-4-methyl-1-phenyl-1,4dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate 1a (22.7 mg, 0.106 mmol, 1.0 equiv), enone 2a (30.3

mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 30/10/1) to give product **3a**: 39.7 mg, as a yellow solid, 89% yield; >19:1 dr; >19:1 *E/Z*; mp 81–83 °C; $[\alpha]^{25}_{D} = -26.4$ (*c* = 0.25, in CHCl₃); 84% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.39 min, t (minor) = 22.12 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95 (dd, *J* = 7.2 Hz, 1.3 Hz, 2H), 7.57 (dd, *J* = 7.0, 1.3 Hz, 1H), 7.45–7.33 (m, 7H), 7.22–7.17 (m, 2H), 7.08–6.98 (m, 2H), 6.43 (s, 1H), 5.00 (s, 1H), 4.01 (s, 3H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.9, 165.8, 147.3, 145.6, 140.2, 136.4, 134.4, 133.3, 130.9, 129.7, 129.2, 128.8, 128.6, 128.4, 126.0,

122.2, 121.0, 120.8, 117.0, 110.3, 108.4, 68.5, 53.7, 51.6, 31.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₂N₂O₃Na⁺ 469.1523; Found 469.1519.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3b): An oven-dried
10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2a (30.3)

mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–8/1) to give product **3b**: 44.8 mg, as a yellow solid, 86% yield; >19:1 dr; >19:1 *E/Z*; mp 93–94 °C; $[\alpha]^{25}_{D} = -10.2$ (*c* = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 15.21 min, t (minor) = 24.49 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (d, *J* = 7.4 Hz, 2H), 7.55 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.42–7.35 (m, 8H), 7.35–7.30 (m, 2H), 7.26–7.22 (m, 2H), 7.17 (d, *J* = 6.8 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.05 (ddd, *J* = 7.9, 6.7, 1.2 Hz, 1H), 6.16 (s, 1H), 5.59 (s, 2H), 5.06 (s, 1H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 165.7, 146.6, 145.5, 140.1, 136.3, 136.2, 134.3, 133.3, 131.4, 129.6, 129.2, 129.0, 128.9, 128.7, 128.4, 128.0, 126.3, 125.9, 122.5, 121.3, 121.1, 116.8, 110.7, 109.0, 68.7, 53.5, 51.5, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₆N₂O₃Na⁺ 545.1836; Found 545.1841.

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(3-methoxy phenyl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3c): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv), enone **2b** (34.2 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050

mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room

temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3c**: 49.1 mg, as a yellow solid, 89% yield; >19:1 dr; >19:1 *E*/*Z*; mp 100–102 °C; $[\alpha]^{25}_{D} = -6.4$ (*c* = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 15.08 min, t (minor) = 26.63 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.94 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.60–7.52 (m, 1H), 7.43–7.35 (m, 5H), 7.34–7.25 (m, 3H), 7.20–7.13 (m, 3H), 7.06 (ddd, *J* = 8.0, 6.7, 1.3 Hz, 1H), 6.94 (ddd, *J* = 8.3, 2.6, 1.0 Hz, 1H), 6.87–6.79 (m, 1H), 6.78–6.73 (m, 1H), 6.15 (s, 1H), 5.59 (s, 2H), 5.02 (s, 1H), 3.72 (s, 3H), 3.55 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 189.8, 165.7, 159.6, 146.6, 145.5, 140.1, 137.9, 136.3, 134.4, 133.3, 131.4, 129.7, 129.2, 129.1, 128.4, 128.0, 126.3, 125.9, 122.5, 121.9, 121.3, 121.2, 116.9, 115.2, 114.5, 110.7, 109.0, 68.5, 55.2, 53.5, 51.6, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₈N₂O₄Na⁺ 575.1942; Found 575.1940.

Methyl(E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-methoxyphenyl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate(3d):An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was

An oven-dried 10 InL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv),
enone 2c (39.4 mg, 0.149 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB

(6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 96 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3d**: 34.9 mg, as a yellow solid, 63% yield; >19:1 dr; >19:1 *E/Z*; mp 108–109 °C; $[\alpha]^{25}_{D} = +34.6$ (*c* = 0.1, in CHCl₃); 89% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 20.11 min, t (minor) = 37.53 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.91 (d, *J* = 7.2 Hz, 2H), 7.58–7.52 (m, 1H), 7.38 (dd, *J* = 8.2, 6.8 Hz, 7H), 7.19–7.12 (m, 5H), 7.06 (ddd, *J* = 8.0, 6.6, 1.2 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.14 (s, 1H), 5.59 (s, 2H), 5.02 (s, 1H), 3.83 (s, 3H), 3.55 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 189.8, 165.7, 159.9, 146.7, 145.5, 139.9, 136.3, 134.3, 133.3, 131.8, 130.8, 129.2, 129.1, 128.4, 128.2, 128.0, 126.3, 125.9, 122.5, 121.2, 121.1, 117.0, 114.1, 110.7, 109.0, 68.9, 55.2, 53.1, 51.5,

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(4-fluoro phenyl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3e): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv), enone **2d** (32.6 mg, 0130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB

(6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3e**: 45.6 mg, as a yellow solid, 84% yield; >19:1 dr; >19:1 *E/Z*; mp 112–114 °C; $[\alpha]^{25}_{D}$ = +36.6 (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 11.19 min, t (minor) = 16.97 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.58–7.52 (m, 1H), 7.43–7.27 (m, 7H), 7.24–7.19 (m, 2H), 7.19–7.15 (m, 2H), 7.14–7.04 (m, 4H), 6.15 (s, 1H), 5.59 (s, 2H), 5.06 (s, 1H), 3.55 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.5, 165.7, 163.1 (d, *J* = 246.6 Hz), 146.3, 145.5, 140.0, 136.2, 134.2, 133.4, 132.1, 131.3 (d, *J* = 8.6 Hz), 130.9, 129.2, 128.9, 128.4, 128.1, 126.4, 125.9, 122.3, 121.4, 121.0, 116.8, 115.8 (d, *J* = 21.5 Hz), 110.8, 109.3, 68.8, 52.7, 51.6, 47.9; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –112.64; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅FN₂O₃Na⁺ 563.1742; Found 563.1742.

Methyl (*E*)-2-((1S,2*R*)-2-benzoyl-4-benzyl-1-(2-chlorophenyl)-2cyano-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3*f*): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2e (40.2 mg, 0.150 mmol, 1.5 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050

mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room

temperature for 30 min, then at 80 °C for 96 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3f**: 33.2 mg, as a yellow solid, 60% yield; >19:1 dr; >19:1 *E/Z*; mp 102–104 °C; $[\alpha]^{25}_{D} = -22.2$ (*c* = 0.25, in CHCl₃); 65% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.47 min, t (minor) = 21.42 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.93–7.87 (m, 2H), 7.53 (d, *J* = 7.4 Hz, 1H), 7.51–7.47 (m, 1H), 7.42–7.31 (m, 9H), 7.28 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.19–7.14 (m, 2H), 7.05 (dd, *J* = 3.1, 1.0 Hz, 2H), 6.18 (s, 1H), 5.80 (s, 1H), 5.60 (s, 2H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.3, 165.6, 146.5, 145.5, 140.0, 136.2, 134.6, 134.3, 134.2, 133.3, 131.9, 131.8, 130.0, 129.7, 129.3, 129.1, 128.3, 128.1, 127.2, 126.4, 125.9, 122.1, 121.4, 120.8, 117.0, 110.7, 109.4, 68.2, 51.6, 48.9, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅ClN₂O₃Na⁺ 579.1446 (³⁵Cl), 580.1480 (³⁷Cl); Found 579.1447 (³⁵Cl), 580.1471 (³⁷Cl).

Methyl (*E*)-2-((1S,2*R*)-2-benzoyl-4-benzyl-1-(3-chlorophenyl)-2cyano-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3g): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2f (34.8 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050

mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3g**: 46.3 mg, as a yellow solid, 83% yield; >19:1 dr; >19:1 *E*/*Z*; mp 106–108 °C; $[\alpha]^{25}_{D}$ = +26.0 (*c* = 0.1, in CHCl₃); 95% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 11.40 min, t (minor) = 16.89 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.61–7.53 (m, 1H), 7.42–7.36 (m, 6H), 7.36–7.30 (m, 3H), 7.21–7.15 (m, 2H), 7.17–7.09 (m, 3H), 7.08 (ddd, *J* = 8.0, 6.4, 1.2 Hz, 1H), 6.16 (s, 1H), 5.60 (s, 2H), 5.01 (s, 1H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.4, 165.7, 146.1, 145.5, 140.2, 138.5, 136.1, 134.5, 134.1, 133.5, 130.4, 130.0, 129.7, 129.3, 129.2, 129.0, 128.5, 128.1, 127.8, 126.4, 125.9, 122.3, 121.5, 120.9, 116.7, 110.8, 109.3, 68.4, 52.9, 51.6, 47.9; HRMS

(ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{25}ClN_2O_3Na^+$ 579.1446 (³⁵Cl), 580.1480 (³⁷Cl); Found 579.1449 (³⁵Cl), 580.1475 (³⁷Cl).

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(4-nitrophenyl) -1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3h): An ovendried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2g (36.2 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg,

0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1-4/1) to give product **3h**: 40.2 mg, as a yellow solid, 71% yield; 10:1 dr; >19:1 *E/Z*; mp 136–138 °C; [α]²⁵_D = +16.1 (*c* = 0.1, in CHCl₃); 89% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 21.73 min, t (minor) = 35.46 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.25 (d, *J* = 8.8 Hz, 2H), 7.89–7.83 (m, 2H), 7.60–7.55 (m, 1H), 7.43–7.35 (m, 9H), 7.17 (d, *J* = 6.9 Hz, 2H), 7.12–7.07 (m, 2H), 6.18 (s, 1H), 5.64 (d, *J* = 17.6 Hz, 1H), 5.59 (d, *J* = 17.6 Hz, 1H), 5.17 (s, 1H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.1, 165.7, 148.2, 145.6, 145.5, 143.7, 140.3, 136.0, 133.9, 133.6, 130.5, 129.3, 129.2, 128.8, 128.5, 128.2, 126.7, 125.8, 124.0, 122.1, 121.8, 120.7, 116.4, 111.0, 109.8, 68.5, 52.6, 51.7, 48.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅N₃O₅Na⁺ 590.1687; Found 590.1688.

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(naphthalen-2yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3i): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv), enone **2h** (36.8 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB

(6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting

solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1-4/1) to give product **3i**: 56.1 mg, as a white solid, 98% yield; >19:1 dr; >19:1 *E/Z*; mp 119–121 °C; [α]²⁵_D = +62.0 (*c* = 0.1, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.09 min, t (minor) = 22.11 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 (d, *J* = 7.0 Hz, 2H), 7.85 (dd, *J* = 9.0, 3.6 Hz, 2H), 7.79–7.73 (m, 2H), 7.59–7.54 (m, 1H), 7.52–7.47 (m, 2H), 7.43–7.35 (m, 5H), 7.37–7.27 (m, 3H), 7.20 (dd, *J* = 7.0, 1.8 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 1H), 6.99 (ddd, *J* = 8.0, 6.7, 1.0 Hz, 1H), 6.20 (s, 1H), 5.61 (s, 2H), 5.22 (s, 1H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 165.7, 146.6, 145.5, 140.1, 136.3, 134.3, 133.9, 133.5, 133.3, 133.2, 131.5, 129.24, 129.15, 128.6, 128.4, 128.1, 128.0, 127.8, 126.8, 126.5, 126.30, 126.28, 125.9, 122.5, 121.3, 121.1, 117.0, 110.7, 109.1, 68.4, 53.7, 51.6, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₉H₂₈N₂O₃Na⁺ 595.1993; Found 595.2001.

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(thiophen-2yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3j): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2i (31.1 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050

mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3j**: 46.7 mg, as a yellow solid, 88% yield; >19:1 dr; >19:1 *E/Z*; mp 87–89 °C; $[\alpha]^{25}_{D} = -4.8$ (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 15.46 min, t (minor) = 25.33 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95–7.89 (m, 2H), 7.58–7.51 (m, 1H), 7.42–7.35 (m, 8H), 7.34–7.31 (m, 1H), 7.25 (d, *J* = 1.8 Hz, 1H), 7.19–7.15 (m, 2H), 7.12 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.05 (ddd, *J* = 7.9, 6.6, 1.2 Hz, 1H), 6.16 (s, 1H), 5.59 (s, 2H), 5.06 (s, 1H), 3.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 165.7, 146.6, 145.5, 140.1, 136.33, 136.25, 134.2, 133.3, 131.4, 129.6, 129.2, 129.0, 128.9,

128.7, 128.4, 128.0, 126.3, 125.9, 122.5, 121.3, 121.1, 116.8, 110.7, 109.0, 68.7, 53.5, 51.5, 47.9; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₅N₂O₃S⁺ 529.1581; Found 529.1590.

Methyl (*E*)-2-((1*R*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(pyridin-3-yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3k): An ovendried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2j (30.4 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5

mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 72 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1-3/1) to give product **3k**: 34.2 mg, as a yellow solid, 65% yield; >19:1 dr; >19:1 *E/Z*; mp 105–107 °C; [α]²⁵_D = +2.4 (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 24.50 min, t (minor) = 37.80 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.67 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.50 (d, *J* = 2.3 Hz, 1H), 7.90 (dd, *J* = 7.2, 1.3 Hz, 2H), 7.60–7.52 (m, 2H), 7.44–7.30 (m, 8H), 7.20–7.14 (m, 2H), 7.10–7.06 (m, 2H), 6.18 (s, 1H), 5.61 (s, 2H), 5.07 (s, 1H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.2, 165.7, 150.5, 150.3, 146.0, 145.5, 140.2, 137.0, 136.1, 134.1, 133.5, 132.5, 129.9, 129.3, 128.9, 128.5, 128.1, 126.5, 125.8, 123.7, 122.1, 121.6, 120.7, 116.8, 110.9, 109.5, 68.4, 51.7, 50.8, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅N₃O₃Na⁺ 546.1789; Found 546.1780.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(2-methylbenzoyl)-1phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3l): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0

equiv), enone **2k** (32.1 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then

at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3**I: 43.8 mg, as a yellow solid, 82% yield; >19:1 dr; >19:1 *E*/*Z*; mp 107–109 °C; $[\alpha]^{25}_{D} = +12.6$ (*c* = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 11.42 min, t (minor) = 14.81 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69–7.63 (m, 1H), 7.42–7.28 (m, 10H), 7.26 (d, *J* = 2.1 Hz, 2H), 7.19–7.15 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.10–7.02 (m, 2H), 6.13 (s, 1H), 5.57 (s, 2H), 5.11 (s, 1H), 3.57 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 191.6, 166.0, 147.1, 145.5, 140.6, 140.3, 136.8, 136.2, 133.5, 132.4, 131.9, 131.8, 129.7, 129.2, 128.8, 128.7, 128.2, 128.0, 126.2, 125.9, 124.6, 122.5, 121.2, 121.1, 116.9, 110.7, 108.5, 69.3, 53.9, 51.7, 47.9, 21.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₈N₂O₃Na⁺ 559.1993; Found 559.1992.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(3-methoxybenzoyl)1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(3m): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999)

mmol, 1.0 equiv), enone **2l** (34.2 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3m**: 47.5 mg, as a yellow solid, 86% yield; >19:1 dr; >19:1 *E/Z*; mp 93–95 °C; [α]²⁵_D = +8.0 (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.85 min, t (minor) = 16.79 min]; **¹H NMR** (400 MHz, CDCl₃): δ (ppm) 7.45–7.37 (m, 2H), 7.35–7.27 (m, 6H), 7.25 (dt, *J* = 7.1, 1.9 Hz, 2H), 7.20–7.16 (m, 3H), 7.13–7.08 (m, 2H), 7.03 (dd, *J* = 8.3, 2.0 Hz, 2H), 6.96 (ddd, *J* = 8.0, 6.6, 1.2 Hz, 1H), 6.09 (s, 1H), 5.51 (s, 2H), 4.97 (s, 1H), 3.65 (s, 3H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.4, 165.8, 159.5, 146.7, 145.5, 140.0, 136.4, 136.2, 135.4, 131.5, 129.7, 129.3, 129.2, 128.9, 128.7, 128.0, 126.3, 125.9, 122.4, 121.4, 121.3, 121.1, 120.3, 116.9, 113.5, 110.7, 108.9, 68.6, 55.3, 53.6, 51.6, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₈N₂O₄Na⁺ 575.1942; Found 575.1941.

Methyl(E)-2-((1S,2R)-4-benzyl-2-cyano-2-(4-methoxy
benzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate(3n): An oven-dried 10 mL Schlenk tube
equipped with a magnetic stir bar was charged with 2-indolyl

propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2m (34.2 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3n**: 48.8 mg, as a yellow solid, 88% yield; >19:1 dr; >19:1 E/Z; mp 162-163 °C; $[\alpha]^{25}_{D} = +6.7$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 27.80 min, t (minor) = 30.85 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) δ 7.93 (d, J = 8.9 Hz, 2H), 7.42–7.35 (m, 6H), 7.35–7.29 (m, 2H), 7.25–7.23 (m, 2H), 7.21–7.16 (m, 2H), 7.11 (d, J = 7.9 Hz, 1H), 7.04 (ddd, J = 7.9, 6.7, 1.1 Hz, 1H), 6.85 (d, *J* = 9.0 Hz, 2H), 6.17 (s, 1H), 5.59 (s, 2H), 5.02 (s, 1H), 3.85 (s, 3H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.2, 165.6, 163.6, 146.7, 145.5, 140.1, 136.5, 136.3, 131.6, 131.5, 129.7, 129.2, 128.8, 128.7, 128.0, 126.8, 126.2, 125.9, 122.5, 121.2, 121.1, 117.2, 113.7, 110.7, 109.1, 68.4, 55.5, 53.6, 51.5, 47.9; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{36}H_{28}N_2O_4Na^+$ 575.1942; Found 575.1944.

Methyl (E)-2-((1S,2R)-4-benzyl-2-cyano-2-(4-fluorobenzoyl)-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(30): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999)

mmol, 1.0 equiv), enone **2n** (32.6 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **30**: 50.3 mg, as a

yellow solid, 93% yield; >19:1 dr; >19:1 *E/Z*; mp 107–109 °C; $[\alpha]^{25}_{D} = -26.0$ (c = 0.1, in CHCl₃); 88% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 12.54 min, t (minor) = 23.05 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99–7.93 (m, 2H), 7.43–7.36 (m, 6H), 7.36–7.30 (m, 2H), 7.23 (dd, J = 7.5, 2.1 Hz, 2H), 7.19– 7.15 (m, 2H), 7.11 (d, J = 7.9 Hz, 1H), 7.08–7.02 (m, 3H), 6.17 (s, 1H), 5.59 (s, 2H), 5.00 (s, 1H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.3, 165.8, 165.7 (d, J = 254.5 Hz), 146.6, 145.6, 140.0, 136.2, 131.9 (d, J = 9.2 Hz), 131.5, 130.7 (d, J = 3.0 Hz), 129.6, 129.3, 129.0, 128.7, 128.1, 126.4, 125.9, 122.4, 121.3, 121.1, 116.8, 115.7, 115.5, 110.7, 108.9, 68.3, 53.6, 51.6, 47.9; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –104.17; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅FN₂O₃Na⁺ 563.1742; Found 563.1752.

Methyl (*E*)-2-((1*S*,2*R*)-4-benzyl-2-(2-chlorobenzoyl)-2-cyano-1phenyl-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3p): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv),

enone 20 (34.8 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 $^{\circ}$ C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3p**: 49.7 mg, as a yellow solid, 89% yield; >19:1 dr; >19:1 E/Z; mp 99–101 °C; $[\alpha]^{25}_{D} = +140.8$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IB, iPrOH/nHexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 9.82 min, t (minor) = 15.11 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 8.33 (dd, J = 7.9, 1.6 Hz, 1H), 7.58 (dd, J = 8.1, 1.2 Hz, 1H), 7.45 (td, J = 7.7, 1.6 Hz, 1H), 7.38 (dd, J = 7.7, 1H), 7.38 (dd, J = 7.7, 1.6 Hz, 1H), 7.38 (*J* = 8.2, 6.5 Hz, 2H), 7.35–7.25 (m, 7H), 7.22–7.16 (m, 2H), 7.12 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.07–7.01 (m, 3H), 6.23 (s, 1H), 5.57 (s, 2H), 5.27 (s, 1H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.7, 166.2, 145.9, 145.5, 140.3, 137.0, 136.2, 135.3, 132.3, 131.3, 131.0, 130.8, 129.2, 129.1, 128.7, 128.6, 128.0, 126.6, 126.32, 126.25, 125.9, 122.5, 121.2, 121.1, 116.4, 110.7, 108.4, 69.5, 52.0, 51.8, 47.9; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{35}H_{25}ClN_2O_3Na^+$ 579.1446 (³⁵Cl), 580.1480 (³⁷Cl); Found 579.1447 (³⁵Cl), 580.1478 (³⁷Cl).

Methyl (*E*)-2-((1*S*,2*R*)-4-benzyl-2-(3-chlorobenzoyl)-2-cyano-1phenyl-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3q): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0

equiv), enone 2p (34.8 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 36 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3q**: 46.3 mg, as a yellow solid, 83% yield; >19:1 dr; >19:1 E/Z; mp 98–99 °C; $[\alpha]^{25}_{D} = -6.4$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IB, iPrOH/nHexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.81 min, t (minor) = 32.35 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (d, J = 1.9 Hz, 1H), 7.77 (dd, J = 7.9, 1.8 Hz, 1H), 7.55–7.50 (m, 1H), 7.43–7.27 (m, 10H), 7.22 (s, 1H), 7.20–7.15 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 1H), 7.05 (ddd, *J* = 8.0, 6.4, 1.3 Hz, 1H), 6.15 (s, 1H), 5.59 (s, 2H), 5.02 (s, 1H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.5, 165.9, 146.4, 145.6, 139.9, 136.2, 136.1, 135.9, 134.7, 133.2, 131.4, 129.63, 129.58, 129.3, 129.2, 129.0, 128.8, 128.0, 126.9, 126.4, 125.8, 122.4, 121.3, 121.1, 116.6, 110.7, 108.8, 68.5, 53.6, 51.7, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅ClN₂O₃Na⁺ 579.1446 (³⁵Cl), 580.1480 (³⁷Cl); Found 579.1452 (³⁵Cl), 580.1483 (³⁷Cl).

Methyl (E)-2-((1S,2R)-2-(2-naphthoyl)-4-benzyl-2-cyano-1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate (3r): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999)

mmol, 1.0 equiv), enone 2q (36.8 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash

chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3r**: 53.8 mg, as a yellow solid, 94% yield; >19:1 dr; >19:1 *E/Z*; mp 85–87 °C; $[\alpha]^{25}_{D}$ = +64.0 (*c* = 0.1, in CHCl₃); 86% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 11.81 min, t (minor) = 14.74 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.48 (dd, *J* = 8.6, 1.3 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 2H), 7.88 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.60 (ddd, *J* = 8.5, 6.8, 1.6 Hz, 1H), 7.54 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 1H), 7.42–7.29 (m, 9H), 7.22–7.17 (m, 2H), 7.16–7.10 (m, 3H), 7.06 (ddd, *J* = 7.9, 6.5, 1.3 Hz, 1H), 6.17 (s, 1H), 5.60 (s, 2H), 5.22 (s, 1H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 191.6, 166.0, 147.0, 145.5, 140.3, 136.8, 136.3, 134.2, 133.2, 131.70, 131.66, 130.8, 129.6, 129.3, 128.8, 128.6, 128.5, 128.0, 127.9, 127.6, 126.5, 126.3, 126.2, 125.9, 123.4, 122.5, 121.3, 121.2, 116.9, 110.7, 108.6, 69.8, 54.0, 51.7, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₉H₂₈N₂O₃Na⁺ 595.1993; Found 595.1998.

Methyl (*E*)-2-((1*S*,2*R*)-4-benzyl-2-cyano-2-(furan-2-carbonyl)-1phenyl-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3*s*): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv),

enone **2r** (29.0 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-4/1) to give product **3s**: 46.1 mg, as a yellow solid, 90% yield; >19:1 dr; >19:1 *E/Z*; mp 82–84 °C; $[\alpha]^{25}_{D} = -60.6$ (*c* = 0.1, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 17.84 min, t (minor) = 25.72 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, *J* = 1.8 Hz, 1H), 7.42–7.34 (m, 7H), 7.34–7.29 (m, 2H), 7.24–7.15 (m, 4H), 7.09 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.03 (ddd, *J* = 8.0, 6.6, 1.2 Hz, 1H), 6.55 (dd, *J* = 3.7, 1.7 Hz, 1H), 6.20 (s, 1H), 5.60 (s, 2H), 4.94 (s, 1H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.0, 165.8, 149.2, 147.5, 145.50, 145.47, 140.2, 136.4, 136.3, 131.3, 129.6, 129.2, 128.9, 128.6, 128.5, 128.0, 126.2, 126.0, 122.4, 121.2, 121.1, 120.8, 116.5, 112.5, 110.7, 109.0, 67.3, 54.0, 51.7, 47.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₄N₂O₄Na⁺ 535.1629; Found 535.1627.

Methyl (*E*)-2-((1*S*,2*R*)-1-(benzofuran-2-yl)-2-benzoyl-4-benzyl-2cyano-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3*t*): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2s (35.5 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB

(6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3t**: 43.9 mg, as a yellow solid, 78% yield; >19:1 dr; >19:1 *E/Z*; mp 109–110 °C; $[\alpha]^{25}_{D} = +18.4$ (*c* = 0.25, in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.48 min, t (minor) = 24.29 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.11–8.06 (m, 2H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.50–7.45 (m, 1H), 7.44–7.36 (m, 3H), 7.35–7.20 (m, 7H), 7.17–7.09 (m, 3H), 7.04 (ddd, *J* = 8.1, 6.7, 1.4 Hz, 1H), 6.65 (s, 1H), 6.12 (s, 1H), 5.52 (s, 2H), 5.22 (s, 1H), 3.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.6, 165.7, 155.5, 152.8, 145.9, 145.4, 140.2, 136.1, 134.4, 133.4, 129.3, 128.5, 128.1, 127.93, 127.87, 126.3, 125.9, 124.8, 123.0, 122.4, 121.5, 121.4, 120.9, 116.6, 111.5, 110.8, 109.2, 107.5, 66.6, 51.7, 48.0, 47.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₂₆N₂O₄Na⁺ 585.1785; Found 585.1792.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-1-(4-oxo-4H-chromen-3-yl)-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(3u): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2t (39.1 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%)

and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 \degree for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum

ether/EtOAc = 10/1-4/1) to give product **3u**: 51.5 mg, as a yellow solid, 87% yield; >19:1 dr; >19:1 *E*/Z; mp 99–100 °C; $[\alpha]^{25}_{D} = -96.0$ (*c* = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (minor) = 21.50 min, t (major) = 44.83 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.31–8.20 (m, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.81 (s, 1H), 7.70 (ddd, *J* = 8.7, 7.1, 1.7 Hz, 1H), 7.56–7.48 (m, 1H), 7.49–7.43 (m, 2H), 7.43–7.29 (m, 8H), 7.21–7.07 (m, 3H), 6.16 (s, 1H), 5.79 (s, 1H), 5.60 (d, *J* = 2.4 Hz, 2H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.7, 176.0, 165.4, 156.8, 156.4, 145.9, 145.5, 140.3, 136.1, 134.0, 134.0, 133.2, 129.3, 129.2, 129.0, 128.2, 128.1, 126.5, 126.4, 125.8, 125.6, 123.7, 121.8, 121.6, 121.3, 120.7, 118.3, 117.4, 111.0, 110.0, 69.2, 51.4, 47.9, 42.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₂₆N₂O₅Na⁺ 613.1734; Found 613.1739.

Methyl (*E*)-2-((1*S*,2*R*)-4-benzyl-2-cyano-2-(cyclopropanecarbonyl)-1phenyl-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3v): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv),

enone **2u** (29.6 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min. then at 80 °C for 72 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-4/1) to give product **3v**: 39.4 mg, as a yellow solid, 81% yield; >19:1 dr; >19:1 *E/Z*; mp 86–87 °C; $[\alpha]^{25}_{D} = -8.0$ (*c* = 0.25, in CHCl₃); 85% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 9.74 min, t (minor) = 13.65 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.44–7.37 (m, 3H), 7.37–7.33 (m, 2H), 7.33–7.27 (m, 5H), 7.17–7.10 (m, 3H), 7.04 (ddd, *J* = 8.0, 6.2, 1.7 Hz, 1H), 6.15 (s, 1H), 5.54 (s, 2H), 4.88 (s, 1H), 3.67 (s, 3H), 2.46 (tt, *J* = 7.7, 4.5 Hz, 1H), 1.35 (ddt, *J* = 9.1, 4.4, 2.3 Hz, 1H), 1.30–1.23 (m, 1H), 1.21–1.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 199.8, 165.8, 145.4, 145.1, 140.4, 137.0, 136.2, 131.4, 129.2, 129.1, 128.80, 128.77, 127.9, 126.1, 125.9, 122.4, 121.2, 121.0, 116.7, 110.7, 108.7, 69.9, 53.9, 51.6, 47.9, 18.4, 13.9, 12.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₆N₂O₃Na⁺ 509.1836; Found 509.1830.

Methyl (S,E)-2-(10-benzyl-4-cyano-5-phenyl-3-(trifluoromethyl)-5,10dihydro-1*H*-oxepino[3,4-*b*]indol-1-ylidene)acetate (4a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2v (33.8 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and

ligand L1 (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 24 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give product **4a**: 28.6 mg, as a yellow oil, 56% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = -$ 48.0 (*c* = 0.25, in CHCl₃); 87% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (minor) = 5.52 min, t (major) = 6.47 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.71 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.41–7.36 (m, 1H), 7.33 (ddd, *J* = 8.4, 6.9, 1.2 Hz, 1H), 7.26–7.19 (m, 9H), 6.90–6.85 (m, 2H), 5.85 (s, 1H), 5.39–5.33 (m, 2H), 5.17 (d, *J* = 16.5 Hz, 1H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.2, 154.6, 149.3 (q, *J* = 35.0 Hz), 138.0, 137.5, 136.7, 128.8, 128.7, 127.8, 127.7, 126.8, 126.3, 125.2, 125.0, 124.4, 121.3, 120.5, 118.9, 118.3 (q, *J* = 275.8 Hz), 115.6, 111.4, 109.2, 103.0, 51.8, 48.0, 41.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –67.79; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₁F₃N₂O₃Na⁺ 537.1397; Found 537.1395.

Methyl (*S*,*E*)-2-(10-benzyl-4-cyano-5-(*p*-tolyl)-3-(trifluoromethyl)-5,10dihydro-1*H*-oxepino[3,4-*b*]indol-1-ylidene)acetate (4b): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2w (35.8 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand L1 (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated

and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 24 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give product **4b**: 30.4 mg, as a yellow oil, 57% yield; >19:1 E/Z; $[\alpha]^{25}_{D} = -10.9$ (c = 1.52, in CHCl₃); 92% ee, determined by HPLC analysis

[Chiralpak column ID, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (minor) = 5.89 min, t (major) = 8.07 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69 (d, *J* = 8.1 Hz, 1H), 7.41–7.29 (m, 2H), 7.24–7.18 (m, 4H), 7.13 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.91–6.82 (m, 2H), 5.87 (s, 1H), 5.36 (d, *J* = 16.5 Hz, 1H), 5.31 (s, 1H), 5.17 (d, *J* = 16.5 Hz, 1H), 3.64 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.3, 154.7, 149.2 (q, *J* = 35.4 Hz), 137.6, 137.5, 136.8, 135.0, 129.4, 128.8, 127.8, 126.8, 126.3, 125.3, 125.0, 124.5, 121.3, 120.6, 119.0, 118.3 (q, *J* = 275.7 Hz), 115.7, 111.4, 109.1, 103.4, 51.9, 48.1, 41.4, 21.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –67.81; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₃F₃N₂O₃Na⁺ 551.1553; Found 551.1559.

CICNCN CF_3 Bn MeO_2C

Methyl

methyl)-5,10-dihydro-1*H*-oxepino[3,4-*b*]indol-1-ylidene)acetate (4c): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv),

(S,E)-2-(10-benzyl-5-(4-chlorophenyl)-4-cyano-3-(trifluoro

enone **2x** (38.8 mg, 0.150 mmol, 1.5 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube

was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 24 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give product **4c**: 23.3 mg, as a yellow oil, 43% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = -14.9$ (*c* = 1.16, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (minor) = 5.43 min, t (major) = 7.18 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.70 (d, *J* = 8.1 Hz, 1H), 7.39 (dt, *J* = 8.5, 1.0 Hz, 1H), 7.34 (ddd, *J* = 8.4, 6.7, 1.1 Hz, 1H), 7.25–7.15 (m, 8H), 6.90–6.83 (m, 2H), 5.89 (s, 1H), 5.36 (d, *J* = 16.4 Hz, 1H), 5.30 (s, 1H), 5.15 (d, *J* = 16.4 Hz, 1H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.2, 154.3, 149.6 (q, *J* = 35.6 Hz), 137.6, 136.59, 136.55, 133.7, 128.9, 128.8, 128.3, 127.8, 126.3, 125.4, 124.8, 124.4, 121.4, 119.8, 118.8, 118.2 (q, *J* = 275.9 Hz), 115.5, 111.5, 109.5, 102.5, 51.9, 48.1, 41.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –67.83; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₀ClF₃N₂O₃Na⁺ 571.1007 (³⁵Cl), 572.1041 (³⁷Cl); Found 571.1016 (³⁵Cl), 572.1046 (³⁷Cl)

Methyl (S,E)-2-(10-benzyl-4-cyano-5-(naphthalen-2-yl)-3-(trifluoro methyl)-5,10-dihydro-1*H*-oxepino[3,4-*b*]indol-1-ylidene)acetate (4d): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2y (41.2 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand L1 (6.9 mg, 0.010 mmol, 10 mol%). The tube

was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then stirred at 60 °C for 24 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give product **4d**: 31.0 mg, as a yellow oil, 55% yield; >19:1 E/Z; $[\alpha]^{25}_{D} = +91.3$ (c = 1.38, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (minor) = 6.83 min, t (major) = 10.43 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83–7.71 (m, 3H), 7.63 (d, J = 6.7 Hz, 2H), 7.52–7.40 (m, 4H), 7.36 (dd, J = 8.2, 7.0 Hz, 1H), 7.28–7.18 (m, 4H), 6.94– 6.83 (m, 2H), 5.78 (s, 1H), 5.51 (s, 1H), 5.40 (d, J = 16.5 Hz, 1H), 5.20 (d, J = 16.5 Hz, 1H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.3, 154.8, 149.4 (q, J = 35.3 Hz), 137.7, 136.7, 135.2, 133.1, 132.6, 128.84, 128.77, 128.0, 127.8, 127.5, 126.4, 126.33, 126.32, 125.7, 125.3, 125.0, 124.9, 124.6, 121.4, 120.0, 119.0, 118.3 (q, J = 275.7 Hz), 115.8, 111.5, 109.0, 103.2, 51.8, 48.0, 41.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –67.81; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₃F₃N₂O₃Na⁺ 587.1553; Found 587.1562.

Methyl (S,E)-2-(10-benzyl-4-cyano-5-(thiophen-2-yl)-3-(trifluoro methyl)-5,10-dihydro-1*H*-oxepino[3,4-*b*]indol-1-ylidene)acetate (4e): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 2z (34.6 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050

mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 30 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give product **4e**: 25.5 mg, as a yellow oil, 49% yield; >19:1 *E/Z*;

[α]²⁵_D = 42.6 (c = 1.27, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (minor) = 6.88 min, t (major) = 8.63 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (dt, J = 8.1, 1.0 Hz, 1H), 7.30 (dt, J = 8.5, 1.0 Hz, 1H), 7.27–7.21 (m, 1H), 7.17–7.10 (m, 5H), 6.86–6.70 (m, 4H), 5.92 (s, 1H), 5.40 (d, J = 1.5 Hz, 1H), 5.29 (d, J = 16.5 Hz, 1H), 5.11 (d, J = 16.4 Hz, 1H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.2, 154.3, 149.8 (q, J = 35.4 Hz), 141.7, 137.4, 136.7, 128.9, 127.8, 126.9, 126.4, 126.0, 125.7, 125.3, 124.7, 124.4, 121.4, 119.8, 118.9, 118.3 (q, J = 276.0 Hz), 115.2, 111.5, 110.2, 101.9, 52.0, 48.2, 38.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –67.86; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₁₉F₃N₂O₃SNa⁺ 543.0961; Found 543.0966.

OMe N H Bn CNO Ph CO₂Me

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-8-methoxy-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)

acetate (3w): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1c (31.9 mg, 0.0999 mmol, 1.0 equiv), enone 2h (42.4 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol,

10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3w**: 48.3 mg, as a yellow solid, 80% yield; >19:1 dr; >19:1 *E/Z*; mp 140–141 °C; $[\alpha]^{25}_{D} = +112.0$ (*c* = 0.25, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 17.86 min, t (minor) = 34.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, *J* = 7.9 Hz, 2H), 7.85–7.79 (m, 3H), 7.57 (d, *J* = 7.4 Hz, 1H), 7.50–7.44 (m, 2H), 7.44–7.36 (m, 5H), 7.32 (d, *J* = 7.3 Hz, 2H), 7.22–7.16 (m, 3H), 6.91 (d, *J* = 8.5 Hz, 1H), 6.32 (d, *J* = 7.8 Hz, 1H), 6.16 (s, 1H), 5.57 (s, 2H), 5.25 (s, 1H), 3.55 (s, 3H), 3.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.8, 165.9, 154.6, 146.9, 146.5, 138.9, 136.3, 134.2, 133.30, 133.26, 133.2, 132.2, 129.3, 129.2, 128.9, 128.6, 128.42, 128.36, 128.0, 127.8, 127.7, 127.5, 127.2, 126.4, 126.0, 125.9, 117.5, 114.2, 107.9, 103.3, 101.1, 68.0, 55.0, 54.4, 51.5, 48.2; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₀H₃₀N₂O₄Na⁺ 625.2098; Found 625.2088.

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-7-methoxy-1phenyl-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3x): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1d (31.9 mg, 0.0999 mmol, 1.0

equiv), enone **2a** (30.3 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3x**: 50.8 mg, as a yellow solid, 92% yield; >19:1 dr; >19:1 *E/Z*; mp 102–104 °C; $[\alpha]^{25}_{D} = -8.0$ (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 22.03 min, t (minor) = 35.29 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.91 (d, *J* = 7.1 Hz, 2H), 7.59–7.52 (m, 1H), 7.44–7.33 (m, 7H), 7.34–7.30 (m, 1H), 7.29–7.22 (m, 3H), 7.16 (dd, *J* = 7.4, 2.2 Hz, 2H), 6.99 (dd, *J* = 9.1, 2.5 Hz, 1H), 6.47 (d, *J* = 2.5 Hz, 1H), 6.12 (s, 1H), 5.56 (s, 2H), 5.04 (s, 1H), 3.64 (s, 3H), 3.54 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 189.7, 165.7, 154.9, 146.5, 140.8, 140.3, 136.4, 136.2, 134.3, 133.3, 130.5, 129.6, 129.2, 129.0, 128.9, 128.7, 128.4, 128.0, 125.8, 122.8, 117.1, 116.8, 111.6, 108.7, 101.8, 68.8, 55.7, 53.4, 51.5, 48.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₈N₂O₄Na⁺ 575.1942; Found 575.1948.

Methyl (E)-2-((1S,2R)-2-benzoyl-4-benzyl-2-cyano-6-methoxy1-phenyl-1,4-dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate
(3y): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1e (31.9 mg, 0.0999)

mmol, 1.0 equiv), enone **2a** (30.3 mg, 0.130 mmol, 1.3 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **3y**: 52.8 mg, as a

yellow solid, 95% yield; >19:1 dr; >19:1 *E*/*Z*; mp 105–107 °C; $[\alpha]^{25}_{D} = -26.4$ (*c* = 0.25, in CHCl₃); 86% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 40.89 min, t (minor) = 52.68 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (d, *J* = 7.0 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42–7.35 (m, 7H), 7.35–7.29 (m, 2H), 7.24– 7.21 (m, 1H), 7.19 (dd, *J* = 7.5, 2.1 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.77 (d, *J* = 2.1 Hz, 1H), 6.70 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.05 (s, 1H), 5.53 (s, 2H), 5.02 (s, 1H), 3.80 (s, 3H), 3.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 165.9, 159.7, 146.9, 146.4, 139.2, 136.4, 136.2, 134.3, 133.2, 132.0, 129.6, 129.2, 129.0, 128.8, 128.6, 128.3, 128.0, 125.9, 122.0, 116.9, 116.8, 111.8, 107.1, 93.6, 68.8, 55.6, 53.4, 51.4, 47.9; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₈N₂O₄Na⁺ 575.1942; Found 575.1945.

Methyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-7-chloro-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)

acetate (3z): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1f (32.3 mg, 0.0997 mmol, 1.0 equiv), enone 2h (42.4 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010

mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 30 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3**z: 39.0 mg, as a yellow solid, 64% yield; >19:1 dr; >19:1 *E/Z*; mp 131–132 °C; $[\alpha]^{25}_{D} = +16.0$ (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 18.01 min, t (minor) = 39.70 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.99 (d, *J* = 7.8 Hz, 2H), 7.92–7.86 (m, 2H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.74 (s, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.58–7.50 (m, 2H), 7.45–7.39 (m, 4H), 7.36 (dd, *J* = 8.5, 6.0 Hz, 1H), 7.34–7.27 (m, 3H), 7.19 (d, *J* = 7.3 Hz, 2H), 7.04 (s, 1H), 6.24 (s, 1H), 5.61 (s, 2H), 5.18 (s, 1H), 3.58 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 189.7, 165.6, 146.4, 143.7, 141.2, 135.8, 134.3, 133.61, 133.58, 133.5, 133.2, 130.5, 129.4, 129.3, 129.2, 128.8, 128.5, 128.24, 128.15, 127.9, 127.2, 126.8, 126.64, 126.60, 126.5, 125.8, 123.3, 120.2, 116.9, 111.9, 110.0, 68.1, 53.7, 51.7, 48.1; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for

C₃₉H₂₇ClN₂O₃Na⁺ 629.1603 (³⁵Cl), 630.1636 (³⁷Cl); Found 629.1603 (³⁵Cl), 630.1636 (³⁷Cl).

Methyl (*E*)-2-((1S,2R)-2-benzoyl-4-benzyl-6-chloro-2-cyano-1-(naphthalen-2-yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene) acetate (3aa): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1g (32.3 mg, 0.0997 mmol, 1.0 equiv), enone 2h (42.4 mg, 0.150 mmol, 1.5 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010

mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 30 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3aa**: 34.5 mg, as a yellow solid, 57% yield; >19:1 dr; >19:1 *E/Z*; mp 138–140 °C; $[\alpha]^{25}_{D} = +27.2$ (*c* = 0.25, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 14.77 min, t (minor) = 33.84 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.97 (d, *J* = 7.0 Hz, 2H), 7.86 (dd, *J* = 8.8, 4.7 Hz, 2H), 7.79–7.75 (m, 1H), 7.73–7.69 (m, 1H), 7.60–7.55 (m, 1H), 7.53–7.48 (m, 2H), 7.45–7.35 (m, 6H), 7.27 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.19 (d, *J* = 6.9 Hz, 2H), 6.96 (d, *J* = 1.1 Hz, 2H), 6.19 (s, 1H), 5.57 (s, 2H), 5.18 (s, 1H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 165.6, 146.3, 145.7, 140.8, 135.7, 134.3, 133.7, 133.5, 133.4, 133.2, 132.4, 131.3, 129.4, 129.22, 129.17, 128.7, 128.5, 128.2, 128.1, 127.9, 126.7, 126.6, 126.4, 125.8, 122.3, 121.8, 121.0, 116.9, 110.8, 109.5, 68.2, 53.6, 51.7, 48.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₉H₂₇ClN₂O₃Na⁺ 629.1603 (³⁵Cl), 630.1636 (³⁷Cl); Found 629.1601 (³⁵Cl), 630.1628 (³⁷Cl).

Phenyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-(naphthalen-2yl)-1,4-dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3ab): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1h (35.1 mg, 0.0999 mmol, 1.0 equiv), enone 2h (42.4 mg, 0.150 mmol, 1.5 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB

(6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was

repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 48 h. After completion, the mixture was concentrated and then purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **3ab**: 39.4 mg, as a yellow solid, 62% yield; >19:1 dr; >19:1 E/Z; mp 100–101 °C; $[\alpha]^{25}_{D} = +72.4$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.43 min, t (minor) = 17.00 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.93 (d, J = 7.4 Hz, 2H), 7.85 (d, J = 8.7 Hz, 2H), 7.80–7.72 (m, 2H), 7.57–7.47 (m, 3H), 7.46–7.30 (m, 8H), 7.29–7.24 (m, 4H), 7.10 (dd, J = 14.6, 7.5 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.97–6.92 (m, 2H), 6.40 (s, 1H), 5.68 (s, 2H), 5.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.4, 163.8, 150.2, 148.1, 145.8, 140.1, 136.2, 134.2, 133.9, 133.5, 133.4, 133.2, 132.4, 129.3, 129.3, 129.23, 129.19, 128.6, 128.4, 128.1, 127.9, 126.8, 126.6, 126.5, 126.3, 126.0, 125.7, 122.5, 121.5, 121.44, 121.42, 121.2, 116.8, 110.8, 108.5, 68.4, 53.8, 48.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₄H₃₀N₂O₃Na⁺ 657.2149; Found 657.2152.

Benzyl (*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)acetate (3ac): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate **1i** (36.5 mg, 0.0999 mmol, 1.0 equiv), enone **2a** (30.3

mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ EtOAc = 10/1–6/1) to give product **3ac**: 48.6 mg, as a yellow solid, 81% yield; >19:1 dr; >19:1 *E/Z*; mp 88–89 °C; $[\alpha]^{25}_{D} = +2.4$ (*c* = 0.25, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 21.62 min, t (minor) = 26.97 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91–7.85 (m, 2H), 7.57–7.51 (m, 1H), 7.43–7.36 (m, 6H), 7.37–7.33 (m, 4H), 7.32–7.24 (m, 5H), 7.19 (dd, *J* = 6.7, 2.9 Hz, 2H), 7.18–7.14 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 1H), 7.04 (ddd, *J* = 8.0, 6.4, 1.4 Hz, 1H), 6.21 (s, 1H), 5.57 (s, 2H), 5.06 (s, 1H), 5.01 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.6, 165.4, sa
147.0, 145.5, 140.1, 136.4, 136.2, 135.5, 134.3, 133.2, 131.7, 129.7, 129.2, 129.1, 128.9, 128.7, 128.45, 128.39, 128.3, 128.2, 128.0, 126.3, 126.0, 122.5, 121.3, 121.1, 116.9, 110.8, 108.9, 68.7, 66.4, 53.5, 47.9; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₁H₃₀N₂O₃Na⁺ 621.2149; Found 621.2148.

Ph O Ph O Ph CN CN CONMe₂ C

(*E*)-2-((1*S*,2*R*)-2-benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-dihydro cyclopenta[*b*]indol-3(2*H*)-ylidene)-N,N-dimethylacetamide (3ad): An

e₂ oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolamide **1j** (30.2 mg, 0.0999 mmol, 1.0

equiv), enone **2a** (30.3 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ EtOAc = 3/1-1/1) to give product **3ad**: 41.9 mg, as a yellow solid, 78% yield; >19:1 dr; >19:1 E/Z; mp 132–134 °C; $[\alpha]^{25}_{D} = -22.4$ (c = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 11.66 min, t (major) = 16.46 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dd, J = 8.2, 1.4 Hz, 2H), 7.53–7.46 (m, 1H), 7.44–7.28 (m, 10H), 7.29–7.25 (m, 2H), 7.20–7.12 (m, 3H), 7.06 (t, J = 7.5 Hz, 1H), 6.30 (s, 1H), 5.64 (d, J = 17.7 Hz, 1H), 5.58 (d, J = 17.8 Hz, 1H), 5.06 (s, 1H), 2.74 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.5, 164.9, 145.1, 143.0, 141.1, 136.8, 136.8, 135.0, 132.6, 129.6, 129.3, 129.2, 129.0, 128.6, 128.5, 128.0, 127.9, 125.52, 125.46, 122.6, 121.0, 120.9, 117.4, 110.1, 109.7, 68.3, 53.5, 47.7, 36.8, 35.5; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₉N₃O₂Na⁺ 558.2152; Found 558.2147.

(1*S*,2*R*,*E*)-2-benzoyl-4-benzyl-3-(2-morpholino-2-oxoethylidene)-1-(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[*b*]indole-2-

carbonitrile (**3ae**): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolamide **1k** (34.4 mg, 0.0999 mmol, 1.0 equiv), enone **2h** (42.4 mg, 0.150 mmol, 1.5 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then

evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 24 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/ EtOAc = 3/1-1/1) to give product **3ae**: 45.1 mg, as a yellow solid, 72% yield; >19:1 dr; >19:1 E/Z; mp 145–147 °C; $[\alpha]^{25}_{D} = +2.4$ (c = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 14.49 min, t (major) = 17.03 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.82–7.75 (m, 2H), 7.55–7.45 (m, 3H), 7.43 (d, J = 8.6 Hz, 1H), 7.42–7.39 (m, 1H), 7.38–7.27 (m, 6H), 7.19–7.15 (m, 2H), 7.12 (d, J = 8.0 Hz, 1H), 7.03 (ddd, J = 8.0, 6.9, 0.9 Hz, 1H), 6.17 (s, 1H), 5.66 (d, J = 17.8 Hz, 1H), 5.59 (d, J = 1 Hz, 1H), 5.27 (s, 1H), 3.49–3.40 (m, 1H), 3.37 (m, 2H), 3.33–3.21 (m, 2H), 3.07–2.94 (m, 1H), 2.71 (ddd, J = 13.6, 6.5, 3.0 Hz, 1H), 2.59–2.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.3, 163.9, 145.2, 143.6, 141.0, 137.1, 134.7, 134.2, 133.5, 133.2, 132.8, 129.30, 129.27, 129.0, 128.9, 128.5, 128.2, 128.1, 127.84, 127.79, 126.9, 126.3, 126.2, 125.7, 125.5, 122.7, 121.2, 121.0, 117.3, 110.1, 109.6, 68.3, 66.7, 66.4, 53.6, 47.6, 45.8, 42.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₂H₃₃N₃O₃Na⁺ 650.2415; Found 650.2421.

2-(4-(3-(2-chloro-10*H*-phenothiazin-10-yl) propyl)piperazin-1-yl)ethyl (*E*)-2-((1S,2*R*)-2benzoyl-4-benzyl-2-cyano-1-phenyl-1,4dihydrocyclopenta[*b*]indol-3(2*H*)-ylidene)

acetate (3af): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 11 (66.1 mg, 0.0999 mmol, 1.0 equiv), enone 2a (30.3 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 48 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 3/1-1/1) to give product 3af: 50.1 mg, as a yellow solid, 56% yield; 9:1 dr; >19:1 *E/Z*; mp 73–75 °C; [α]²⁵_D = -10.2 (*c* = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 13.32 min, t (minor)

= 18.42 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.82 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.34–7.26 (m, 8H), 7.28–7.18 (m, 2H), 7.11–7.01 (m, 6H), 6.98 (ddd, J = 7.9, 6.3, 1.3 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.87–6.75 (m, 5H), 6.09 (s, 1H), 5.52 (s, 2H), 4.98 (s, 1H), 4.05–3.97 (m, 2H), 3.81 (t, J = 6.9 Hz, 2H), 2.42–2.23 (m, 12H), 1.89–1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.6, 165.4, 146.7, 146.5, 145.5, 144.5, 140.1, 136.34, 136.28, 134.4, 133.22, 133.18, 131.5, 129.6, 129.2, 129.1, 128.9, 128.7, 128.3, 128.0, 127.8, 127.5, 127.4, 126.3, 125.9, 124.7, 123.5, 122.9, 122.5, 122.2, 121.3, 121.1, 116.8, 115.81, 115.79, 110.8, 109.2, 68.7, 62.1, 56.3, 55.4, 53.5, 53.2, 53.1, 47.9, 45.3, 29.7, 24.2, 1.0; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₅₅H₄₉ClN₅O₃S⁺ 894.3240; Found 894.3237.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-3-yl (*E*)-2-((1*S*,2*R*)-2benzoyl-4-benzyl-2-cyano-1-phenyl-1,4-

dihydrocyclopenta[b]indol-3(2H)-ylidene)acetate

(3ag): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2indolyl propiolate **1m** (52.7 mg, 0.0999 mmol, 1.0 equiv), enone **2a** (30.3 mg, 0.130 mmol, 1.3 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L1 (6.9 mg, 0.010 mmol, 10 mol%) and TBAB (6.4 mg, 0.020 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed 1,4-dioxane (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 72 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-4/1) to give product **3ag**: 39.1 mg, as a yellow solid, 51% yield; 16:1 dr; >19:1 *E/Z*; mp 148-150 °C; $[\alpha]^{25}_{D} = +2.6$ (c = 0.25, in CHCl₃); determined by H-NMR analysis; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.45–7.31 (m, 11H), 7.24–7.20 (m, 3H), 7.20–7.11 (m, 2H), 7.07 (ddd, J = 8.0, 6.6, 1.2 Hz, 1H), 6.69 (dd, J = 8.5, 2.6 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 6.35 (s, 1H), 5.65 (s, 2H), 5.07 (s, 1H), 2.81 (dd, J = 9.1, 4.3 Hz, 2H), 2.48 (dd, J = 18.9, 8.6 Hz, 1H), 2.39–2.29 (m, 1H), 2.24–1.84 (m, 6H), 1.64–1.54 (m, 3H), 1.44–1.34 (m, 2H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 220.9, 189.2, 164.0, 148.0, 147.8, 145.7, 140.1, 137.7, 137.2, 136.3, 136.2, 134.1, 133.3, 132.2, 129.6, 129.3, 129.2, 128.9, 128.7, 128.3, 128.1, 126.6, 126.1, 126.0, 122.5, 121.5, 121.4, 121.2, 118.6, 116.6, 110.8, 108.6, 68.7, 53.5, 50.4, 48.0, 47.9, 44.1, 37.9, 35.8, 31.5, 29.3, 26.3, 25.6, 21.5, 13.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₅₂H₄₄N₂O₄Na⁺ 783.3194; Found 783.3189.

9. General procedure for the asymmetric [3+2] annulations of 2-indolyl propiolate 1b with enones 5

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1** (0.10 mmol, 1.0 equiv), enone **5** (0.12 mmol, 1.2 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand **L1** (6.8 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and back-filled three times with argon, then degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 70 C–90 C for 72 h. After completion, the crude product was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give product **6**. Racemic **6** was obtained under the catalysis of Pd(PPh₃)₄ (10 mol%) and MeCN (0.5 mL) as solvent.

Methyl (*S*,*E*)-2-(4-benzyl-1',3'-dioxo-1-phenyl-1,1',3',4-tetrahydro-*3H*-spiro[cyclopenta[*b*]indole-2,2'-inden]-3-ylidene)acetate (6a): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol, 1.0 equiv),

enone **5a** (28.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 70 °C for 72 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–4/1) to give product **6a**: 42.3 mg, as a yellow solid, 81% yield; >19:1 *E/Z*; mp 213–215 °C; $[\alpha]^{25}_{D} = +40.0$ (*c* = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 10.88 min, t (major) = 13.15 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.07 (d, *J* = 7.7 Hz, 1H), 7.78 (td, *J* = 7.5, 1.1 Hz, 1H), 7.62 (td, *J* = 7.5, 5.5)

1.1 Hz, 1H), 7.42–7.34 (m, 3H), 7.34–7.29 (m, 2H), 7.29–7.25 (m, 2H), 7.27–7.22 (m, 3H), 7.16–7.07 (m, 1H), 7.09–7.02 (m, 2H), 7.03–6.94 (m, 2H), 6.18 (s, 1H), 5.60 (s, 2H), 4.90 (s, 1H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.3, 196.3, 166.6, 145.7, 145.0, 142.8, 142.5, 141.9, 136.6, 135.9, 134.9, 134.6, 132.5, 129.6, 129.1, 128.0, 127.8, 127.7, 126.1, 125.5, 123.1, 122.7, 122.6, 121.0, 120.7, 110.7, 107.5, 77.2, 54.7, 51.2, 48.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₅NO₄Na⁺ 546.1676; Found 546.1676.

Methyl (S,E)-2-(4-benzyl-1-(4-methoxyphenyl)-1',3'-dioxo-1,1',3',4tetrahydro-3*H*-spiro[cyclopenta[*b*]indole-2,2'-inden]-3-ylidene) acetate (6b): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 5b (31.7 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), Pd₃(dba)₃ (4.6 mg, 1.0 equiv), Pd₃(dba)₃

0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 80 °C for 72 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-4/1) to give product **6b**: 38.6 mg, as a yellow solid, 70% yield; >19:1 *E/Z*; mp 218–220 °C; $[\alpha]^{25}_{D} = +90.4$ (*c* = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 19.31 min, t (major) = 27.07 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.06 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.78 (td, *J* = 7.5, 1.1 Hz, 1H), 7.64 (td, *J* = 7.5, 1.1 Hz, 1H), 7.44–7.35 (m, 4H), 7.34–7.29 (m, 3H), 7.28–7.22 (m, 5H), 7.07 (dt, *J* = 8.0, 1.0 Hz, 1H), 6.98 (ddd, *J* = 8.0, 6.7, 1.1 Hz, 1H), 6.17 (s, 1H), 5.59 (s, 2H), 4.86 (s, 1H), 3.70 (s, 3H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.4, 196.5, 166.7, 158.9, 145.8, 145.1, 142.6, 142.6, 141.9, 136.6, 134.9, 134.6, 132.9, 130.7, 129.1, 127.83, 127.75, 126.1, 125.5, 123.1, 122.8, 122.6, 121.0, 120.7, 113.1, 110.6, 107.5, 77.3, 55.1, 54.1, 51.2, 48.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₇NO₅Na⁺ 576.1782; Found 576.1791.

Methyl (S,E)-2-(4-benzyl-1-(4-cyanophenyl)-1',3'-dioxo-1,1',3',4tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene) acetate (6c): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5c (31.1 mg, 0.120 mmol, 1.2 equiv), enone 5c (31.1 mg, 0.120 mmol, 1

0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min. then at 70 °C for 72 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–4/1) to give product **6c**: 51.1 mg, as a yellow solid, 93% yield; >19:1 E/Z; mp 151–152 °C; [α]²⁵_D = +139.2 (c = 0.25, in CHCl₃); 87% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 23.66 min, t (major) = 29.42 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.08 (dt, J = 7.6, 1.0 Hz, 1H), 7.83 (td, J = 7.5, 1.1 Hz, 1H), 7.69 (td, J = 7.5, 1.1 Hz, 1H), 7.44–7.38 (m, 3H), 7.38–7.32 (m, 4H), 7.32–7.26 (m, 2H), 7.25–7.20 (m, 2H), 7.06–6.93 (m, 3H), 6.20 (s, 1H), 5.60 (s, 2H), 4.91 (s, 1H), 3.35 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ (ppm) 196.6, 195.9, 166.6, 145.0, 144.9, 143.0, 142.2, 142.0, 141.7, 136.3, 135.3, 135.1, 130.7, 130.3, 129.1, 127.9, 126.1, 125.8, 123.3, 122.8, 122.2, 121.1, 120.5, 118.5, 111.6, 110.9, 108.0, 76.8, 54.0, 51.4, 48.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₂₄N₂O₄Na⁺ 571.1629; Found 571.1639.

Methyl (*S,E*)-2-(4-benzyl-1',3'-dioxo-1-(pyridin-4-yl)-1,1',3',4tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)
acetate (6d): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 1.0 equiv), enone 5d (28.2 mg, 0.120 mmol, 1.2 equi

0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 70 °C for 72 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 5/1-2/1) to give product **6d**: 45.8 mg, as a yellow solid, 87% yield; >19:1 E/Z; mp 95–96 °C; $[\alpha]^{25}_{D} = +29.6$ (c = 0.25, in CHCl₃); 80% ee, determined by HPLC analysis

[Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 27.86 min, t (major) = 36.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.35–8.24 (m, 2H), 8.09 (d, J = 7.6 Hz, 1H), 7.83 (td, J = 7.5, 1.1 Hz, 1H), 7.68 (td, J = 7.5, 1.1 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.42–7.38 (m, 1H), 7.36 (d, J = 4.8 Hz, 1H), 7.33 (d, J = 3.9 Hz, 1H), 7.32–7.26 (m, 2H), 7.25–7.21 (m, 2H), 7.05–6.99 (m, 2H), 6.79–6.56 (m, 2H), 6.20 (s, 1H), 5.60 (s, 2H), 4.83 (s, 1H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.6, 195.8, 166.6, 149.4, 145.5, 145.0, 143.1, 142.3, 141.6, 136.4, 135.3, 135.1, 130.5, 129.1, 128.5, 127.9, 126.1, 125.8, 124.5, 123.3, 122.9, 122.2, 121.1, 120.5, 110.8, 107.9, 76.7, 53.3, 51.3, 48.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₄N₂O₄Na⁺ 547.1629; Found 547.1627.

N Bn

Methyl (*S,E*)-2-(4-benzyl-1-(furan-2-yl)-1',3'-dioxo-1,1',3',4tetrahydro-3*H*-spiro[cyclopenta[*b*]indole-2,2'-inden]-3-ylidene)

acetate (**6e**): An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (28.9 mg, 0.0999 mmol,

1.0 equiv), enone **5e** (26.9 mg, 0.120 mmol, 1.2 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand L1 (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 70 °C for 96 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-5/1) to give product **6e**: 29.2 mg, as a yellow solid, 57% yield; >19:1 *E/Z*; mp 108–109 °C; $[\alpha]^{25}_{D} = -26.4$ (c = 0.25, in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (minor) = 31.31 min, t (major) = 47.23 min]; ¹**H** NMR (600 MHz, CDCl₃): δ (ppm) 8.08 (d, J = 7.5 Hz, 1H), 7.83 (td, J = 7.5, 1.1 Hz, 1H), 7.75 (td, J = 7.5, 1.1 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.42–7.33 (m, 2H), 7.33–7.27 (m, 4H), 7.25– 7.20 (m, 2H), 7.10–7.04 (m, 1H), 7.00 (d, J = 1.8 Hz, 1H), 6.17 (dd, J = 3.3, 1.9 Hz, 1H), 6.15 (s, 1H), 5.93 (d, J = 3.3 Hz, 1H), 5.57 (s, 2H), 5.01 (s, 1H), 3.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 197.1, 195.8, 166.6, 149.9, 145.97, 145.96, 142.5, 142.3, 142.2, 141.8, 136.5, 134.9, 134.7, 129.6, 129.1, 127.8, 126.1, 125.6, 123.4, 122.7, 122.6, 120.9, 120.8, 110.7, 110.6, 110.1, 107.8, 75.9, 51.3, 48.1, 47.5; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₃NO₅Na⁺ 536.1469; Found 536.1469.

Methyl(S,E)-2-(4-benzyl-1-cyclohexyl-1',3'-dioxo-1,1',3',4-tetrahydro-3H-spiro[cyclopenta[b]indole-2,2'-inden]-3-ylidene)acetate (6f): An oven-dried 10 mL Schlenk tube equipped with a magneticstir bar was charged with 2-indolyl propiolate 1b (28.9 mg, 0.0999 mmol,1.0 equiv), enone 5f (28.8 mg, 0.120 mmol, 1.2 equiv), Pd2(dba)3 (4.6 mg,

0.0050 mmol, 5 mol%) and ligand **L1** (6.9 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 90 °C for 96 h. After completion, the crude product was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–3/1) to give product **6f**: 16.3 mg, as a yellow solid, 31% yield; >19:1 E/Z; mp 110–112 °C; $[\alpha]^{25}_{D} = +94.4$ (c = 0.25, in CHCl₃); 81% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 10.89 min, t (major) = 13.21 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.08 (d, J = 7.2 Hz, 1H), 8.02 (d, J = 7.2 Hz, 1H), 7.93–7.81 (m, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.38–7.30 (m, 2H), 7.30–7.22 (m, 3H), 7.18–7.09 (m, 3H), 6.07 (s, 1H), 5.55 (s, 2H), 3.42 (s, 1H), 3.33 (s, 3H), 1.73 (dd, J = 26.8, 13.1 Hz, 2H), 1.67–1.58 (m, 2H), 1.54–1.33 (m, 3H), 1.21–1.05 (m, 2H), 0.96 (ddd, J = 17.0, 8.5, 3.8 Hz, 1H), 0.44–0.30 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 197.8, 195.4, 166.7, 145.7, 144.7, 142.91, 142.89, 140.6, 136.7, 135.4, 134.9, 132.3, 129.0, 127.7, 126.0, 125.1, 123.8, 123.7, 123.2, 122.2, 120.6, 110.6, 106.3, 75.1, 55.1, 51.1, 47.8, 41.1, 34.2, 28.7, 27.1, 26.1, 26.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₁NO₄Na⁺ 552.2146; Found 552.2155.

10. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl indole 7 with imines 8

An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7** (0.10 mmol, 1.0 equiv), *N*-sulfonylimine **8** (0.20 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at

room temperature for 30 min, then at 50 $^{\circ}$ C (monitored by TLC analysis). After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 $^{\circ}$ C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product 9 (*The E-products 9 would be converted to the corresponding Z-isomers upon flash chromatography on silica gel, and a mixture of products was generally obtained*). Racemic 9 was obtained under the catalysis of Pd(PPh₃)₄ (10 mol%) and using A3 (30 mol%) as an acidic additive.

(R,E)-4-methyl-N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-

indol-3-yl)(**phenyl**)**methyl**)**benzenesulfonamide** (**9a**): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7a** (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine **8a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 4 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et_2O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product 9a: 44.6 mg, as a yellow solid, 86% yield; >19:1 E/Z; mp 203-205 °C; $[\alpha]^{25}_{D} = -16.0$ (c = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column AD, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 16.31 min, t (major) = 28.02 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 15.6 Hz, 1H), 7.58 (t, J = 6.4 Hz, 1H), 7.49–7.38 (m, 4H), 7.35–7.26 (m, 6H), 7.24–7.18 (m, 2H), 7.23 (d, J = 15.6 Hz, 1H), 7.00 (t, *J* = 6.4 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 2H), 6.19 (d, *J* = 8.0 Hz, 1H), 5.39 (dd, *J* = 8.0, 2.5 Hz, 1H), 3.72 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.7, 142.7, 140.0, 138.5, 137.6, 136.7, 133.1, 133.0, 131.2, 128.73, 128.72, 128.6, 128.5, 127.7, 127.2, 126.9, 125.8, 124.9, 124.2, 120.6, 120.3, 116.6, 109.7, 54.1, 30.6, 21.3.; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₈N₂O₃SNa⁺ 543.1713; Found 543.1722.

(*R*,*E*)-*N*-((5-chloro-1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9b): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7b (29.5 mg, 0.0997 mmol, 1.0 equiv), *N*sulfonylimine **8a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg,

0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product **9b**: 34.8 mg, as a yellow solid, 63% yield; >19:1 *E*/*Z*; mp 168–169 °C; $[\alpha]^{25}_{D} = -12.8$ (*c* = 0.25, in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak column IC, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 12.28 min, t (minor) = 15.56 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.84–7.79 (m, 2H), 7.75 (d, J = 15.6 Hz, 1H), 7.61–7.53 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.41–7.34 (m, 2H), 7.37– 7.27 (m, 5H), 7.28–7.26 (m, 2H), 7.25 (d, J = 15.6 Hz, 1H), 7.16 (dd, J = 8.8, 1.9 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.15 (d, J = 7.0 Hz, 1H), 5.40 (d, J = 7.0 Hz, 1H), 3.71 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.6, 142.9, 139.6, 137.4, 136.6, 136.5, 134.3, 133.2, 130.8, 128.9, 128.7, 128.6, 128.5, 128.0, 127.2, 126.9, 126.8, 126.1, 126.0, 124.3, 119.6, 115.5, 110.6, 54.1, 30.8, 21.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇ClN₂O₃SNa⁺ 577.1324 (³⁵Cl); 578.1357 (³⁷Cl); Found 577.1327 (³⁵Cl); 578.1363 (³⁷Cl).

(*R*,*E*)-*N*-((5-methoxy-1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9c): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7c (29.1 mg, 0.0999 mmol, 1.0 equiv), *N*sulfonylimine 8a (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg,

0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room

temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9c**: 51.7 mg, as a yellow solid, 94% yield; >19:1 *E/Z*; mp 96–98 °C; $[\alpha]^{25}_{D} = -12.8$ (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 19.33 min, t (minor) = 30.61 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 15.6 Hz, 1H), 7.60–7.53 (m, 1H), 7.49–7.41 (m, 4H), 7.35–7.26 (m, 5H), 7.19 (d, J = 15.6 Hz, 1H), 7.08 (d, J = 9.0 Hz, 1H), 6.88 (dd, J = 9.0, 2.4 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 2.4 Hz, 1H), 6.19 (d, J = 7.8 Hz, 1H), 5.74 (d, J = 7.8 Hz, 1H), 3.69 (s, 3H), 3.68 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.8, 154.5, 142.8, 140.0, 137.7, 136.7, 134.1, 133.2, 133.1, 131.4, 128.8, 128.7, 128.6, 128.5, 127.7, 127.3, 126.9, 126.2, 124.2, 116.2, 115.3, 110.5, 101.0, 55.7, 54.0, 30.8, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₃₀N₂O₄SNa⁺ 573.1819; Found 573.1823.

(*R*,*E*)-*N*-((1,6-dimethyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9d): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7d (27.5 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8

mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9d**: 48.2 mg, as a yellow solid, 90% yield; >19:1 *E/Z*; mp 174–176 °C; $[\alpha]^{25}_{D} = -11.2$ (*c* = 0.25, in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 10.42 min, t (major) = 15.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 15.6 Hz, 1H), 7.62–7.53 (m, 1H), 7.50–7.38 (m, 4H), 7.33–7.27 (m, 5H), 7.22–7.14 (m, 2H), 6.99 (s, 1H), 6.86–6.81 (m,

3H), 6.15 (d, J = 7.8 Hz, 1H), 5.51 (d, J = 7.8 Hz, 1H), 3.68 (s, 3H), 2.46 (s, 3H), 2.22 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ (ppm) 188.7, 142.7, 140.0, 139.1, 137.7, 136.6, 134.6, 133.0, 132.4, 131.4, 128.7, 128.6, 128.5, 127.6, 127.2, 126.9, 123.9, 123.7, 122.5, 120.0, 117.0, 109.5, 54.0, 30.6, 22.0, 21.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₃₀N₂O₃SNa⁺ 557.1870; Found 557.1878.

(R,E)-N-((1,7-dimethyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-

yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9e): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7e (27.5 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8

mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 $\,^{\circ}$ C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et_2O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product **9e**: 41.6 mg, as a vellow solid, 78% yield; >19:1 *E/Z*; mp 179–180 °C; $[\alpha]^{25}_{D} = -$ 6.4 (c = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 13.19 min, t (major) = 15.37 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 7.7 Hz, 2H), 7.68 (d, J = 15.6 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.36–7.51 (m, 4H), 7.34–7.24 (m, 5H), 7.20–7.09 (m, 2H), 6.92 (d, J = 7.1 Hz, 1H), 6.89–6.80 (m, 3H), 6.14 (d, J = 8.0 Hz, 1H), 5.53 (d, J = 8.0 Hz, 1H), 3.91 (s, 3H), 2.72 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.7, 142.7, 140.1, 137.9, 137.6, 136.7, 134.4, 133.2, 131.6, 128.8, 128.7, 128.59, 128.58, 127.7, 127.23, 127.18, 126.9, 126.5, 125.6, 121.5, 120.7, 118.4, 116.5, 54.0, 33.9, 21.4, 20.6; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₃₀N₂O₃SNa⁺ 557.1870; Found 557.1875.

(*R*,*E*)-*N*-((2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1*H*-indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9f): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7f (27.9 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg,

0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and wished with DCM (5×5 mL). The filtrate was concentrated to give pure product 9f: 46.8 mg, as a yellow solid, 87% yield; >19:1 *E*/*Z*; mp 149–150 °C; $[\alpha]^{25}_{D} = -36.0$ (*c* = 0.25, in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak column AD, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 14.13 min, t (major) = 25.79 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (dd, J = 8.8, 5.6 Hz, 2H), 7.75 (d, J = 15.6 Hz, 1H), 7.41 (d, J = 6.4 Hz, 2H), 7.35–7.27 (m, 6H), 7.24–7.18 (m, 3H), 7.12 (t, J = 8.6 Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H), 6.21 (d, J = 8.0 Hz, 1H), 5.50 (d, J = 8.0 Hz, 1H), 3.71 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 187.1, 165.7 (d, J = 253.7 Hz), 142.7, 139.9, 138.4, 136.6, 133.9 (d, J = 3.0 Hz), 132.9, 131.3 (d, J = 21.6 Hz), 131.1, 128.7, 128.6, 127.7, 127.2, 126.8, 125.8, 124.5, 124.2, 120.6, 120.3, 116.5, 115.8 (d, J = 21.7 Hz), 109.7, 54.1, 30.5, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) –104.83; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{32}H_{27}FN_2O_3SNa^+$ 561.1619; Found 561.1626.

(*R*,*E*)-*N*-((2-(3-(3,4-dimethoxyphenyl)-3-oxoprop-1-en-1-yl)-1methyl-1*H*-indol-3-yl)(phenyl)methyl)-4-methylbenzene

sulfonamide (**9g**): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7g** (32.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine **8a** (51.8 mg, 0.200

mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe.

The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9g**: 54.2 mg, as a yellow solid, 93% yield; >19:1 *E/Z*; mp 201–202 °C; $[\alpha]^{25}_{D} = -25.6$ (*c* = 0.25, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 19.41 min, t (major) = 28.93 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.72 (d, *J* = 15.6 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.49–7.39 (m, 3H), 7.34 (d, *J* = 15.6 Hz, 1H), 7.32–7.25 (m, 6H), 7.23–7.15 (m, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.24 (d, *J* = 8.0 Hz, 1H), 5.63 – 5.55 (m, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.69 (s, 3H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 186.9, 153.5, 149.2, 142.6, 140.0, 138.3, 136.7, 133.4, 130.7, 130.5, 128.6, 128.5, 127.6, 127.2, 126.7, 125.6, 125.1, 123.9, 123.2, 120.4, 120.1, 115.7, 110.7, 110.2, 109.6, 56.1, 56.0, 54.1, 30.4, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₃₂N₂O₅SNa⁺ 603.1925; Found 603.1931.

(*R*,*E*)-4-methyl-*N*-((1-methyl-2-(3-(naphthalen-1-yl)-3-oxoprop-1en-1-yl)-1*H*-indol-3-yl)(phenyl)methyl)benzenesulfonamide (9h): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7h (31.1 mg, 0.0999 mmol,

1.0 equiv), *N*-sulfonylimine **8a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9h**: 38.4 mg, as a yellow solid, 67% yield; >19:1 *E/Z*; mp 86–87 °C; $[\alpha]^{25}_{D} = +16.0$ (*c* = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 23.38 min, t (major) = 32.11 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.45 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 7.4 Hz, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 7.64–7.47 (m, 4H), 7.35–

7.22 (m, 7H), 7.22–7.17 (m, 3H), 7.02–6.91 (m, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.11 (d, J = 7.6 Hz, 1H), 5.38 (d, J = 7.6 Hz, 1H), 3.69 (s, 3H), 2.21 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃): δ (ppm) 193.6, 142.7, 139.7, 138.8, 136.7, 136.3, 133.9, 132.7, 132.3, 132.0, 130.5, 129.0, 128.6, 128.5, 127.8, 127.7, 127.6, 127.1, 126.8, 126.6, 125.6, 125.5, 124.6, 124.4, 120.6, 120.3, 117.4, 109.7, 53.9, 30.9, 21.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₀N₂O₃SNa⁺ 593.1870; Found 593.1874.

(R,E)-N-((2-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-

indol-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (9i): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7i** (25.1 mg, 0.0999 mmol, 1.0 equiv), *N*-

sulfonylimine 8a (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et_2O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product 9i: 45.5 mg, as a yellow solid, 89% yield; >19:1 E/Z; mp 189-191 °C; $[\alpha]^{25}_{D} = -41.6$ (c = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column AD, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 13.63 min, t (major) = 25.66 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.73 (d, J = 15.8 Hz, 1H), 7.62 (s, 1H), 7.42 (d, J= 7.3 Hz, 2H), 7.35–7.21 (m, 6H), 7.23–7.15 (m, 3H), 7.13 (d, J = 15.8 Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 6.60–6.54 (m, 1H), 6.18 (d, J = 8.0 Hz, 1H), 5.54 (d, J = 8.0 Hz, 1H), 3.70 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.5, 153.3, 147.0, 142.7, 139.9, 138.6, 136.6, 132.8, 130.3, 128.6, 127.6, 127.1, 126.8, 125.5, 124.3, 124.2, 120.5, 120.3, 118.3, 116.9, 112.6, 109.6, 54.0, 30.6, 21.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₆N₂O₄SNa⁺ 533.1506; Found 533.1512.

(*R*,*E*)-4-methyl-*N*-((1-methyl-2-(3-oxobut-1-en-1-yl)-1*H*-indol-3-yl) (phenyl)methyl)benzenesulfonamide (9j): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7j (19.9 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8 mg,

0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product **9**]: 38.9 mg, as a yellow solid, 85% yield; E/Z = 16:1; mp 117-118 °C; $[\alpha]^{25}_{D} = -20.8$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 10.39 min, t (major) = 16.48 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (d, J = 16.4 Hz, 1H), 7.39 (d, J = 7.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.30–7.22 (m, 4H), 7.20 (t, J = 7.4 Hz, 2H), 6.96 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.36 (d, J = 16.4 Hz, 1H), 6.07 (d, J = 7.7 Hz, 1H), 5.44 (d, J = 7.7 Hz, 1H), 3.67 (s, 3H), 2.30 (s, 3H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 197.3, 142.8, 139.7, 139.0, 136.8, 132.4, 130.1, 129.2, 128.7, 128.6, 127.7, 127.1, 126.8, 125.2, 124.3, 120.6, 120.3, 117.3, 109.7, 53.7, 31.1, 28.0, 21.4; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₆N₂O₃SNa⁺ 481.1557; Found 481.1565.

(*R*,*E*)-ethyl-3-((1-methyl-3-(((4-methylphenyl)sulfonamido)(phenyl)

OEt methyl)-1*H*-indol-2-yl)acrylate (9k): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7k (22.9 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8 mg,

0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **9k**: 32.7 mg, as a yellow solid, 67% yield; E/Z = 10:1; mp 141–142 °C; $[\alpha]^{25}_{D} = +24.8$ (c = 0.25, in CHCl₃); 76% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 7.39 min, t (major) = 18.63 min]; ¹H NMR (400

MHz, CDCl₃): δ (ppm) 7.51 (d, J = 16.2 Hz, 1H), 7.44–7.38 (m, 2H), 7.32–7.18 (m, 8H), 6.96 (ddd, J = 7.9, 6.7, 1.3 Hz, 1H), 6.89 (d, J = 7.9 Hz, 2H), 6.06–5.99 (m, 2H), 5.41 (d, J = 7.8 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.65 (s, 3H), 2.29 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 142.7, 139.8, 138.6, 136.6, 132.4, 131.5, 128.6, 128.5, 127.6, 127.1, 126.9, 125.0, 124.0, 121.4, 120.4, 120.2, 116.4, 109.7, 60.8, 53.7, 30.9, 21.4, 14.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₈N₂O₄SNa⁺ 511.1662; Found 511.1660.

(*R*,*E*)-3-(1-methyl-3-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-

OH 1*H*-indol-2-yl)acrylic acid (9l): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7l (20.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8a (51.8 mg, 0.200

mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 20/5/1) to give product **9**I: 31.3 mg, as a faint yellow solid, 68% yield; E/Z = 9:1; mp 180–182 °C; $[\alpha]^{25}_{D} = +20.0$ (c = 0.1, in CHCl₃); 62% ee, determined by HPLC analysis [Chiralpak column IC, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 10.39 min, t (major) = 14.62 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 16.1 Hz, 1H), 7.40 (d, J = 7.3 Hz, 2H), 7.37–7.33 (m, 2H), 7.31–7.25 (m, 4H), 7.22 (d, J = 7.9 Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 7.9 Hz, 2H), 6.09–5.99 (m, 2H), 5.53 (d, J = 7.6 Hz, 1H), 3.69 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 170.9, 142.9, 139.7, 139.1, 136.6, 133.6, 131.9, 128.8, 128.6, 127.7, 127.1, 127.0, 125.0, 124.5, 120.6, 120.5, 119.6, 117.8, 109.8, 53.7, 31.2, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₄N₂O₄SNa⁺ 483,1349; Found 483,1358.

(*R*,*E*)-*N*-((2-fluorophenyl)(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)methyl)-4-methylbenzenesulfonamide (9m): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8b (55.5 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 \times 5 mL). The filtrate was concentrated to give pure product **9m**: 49.5 mg, as a yellow solid, 92% yield; >19:1 *E*/*Z*; mp 85–87 °C; $[\alpha]^{25}_{D}$ = +151.2 (*c* = 0.25, in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 21.47 min, t (major) = 25.57 min; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.00 (d, J = 7.6 Hz, 2H), 7.76–7.71 (m, 1H), 7.75 (d, J = 15.6 Hz, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.55–7.51 (m, 3H), 7.46 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 15.6 Hz, 1H), 7.25–7.20 (m, 3H), 7.10 (t, J = 7.6 Hz, 1H), 7.04–6.99 (m, 2H), 6.93 (d, J = 8.0 Hz, 2H), 6.30 (dd, J = 5.2, 2.5 Hz, 1H), 5.20 (d, J = 5.2 Hz, 1H), 3.75 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.8, 160.1 (d, J = 245.0 Hz), 143.4, 138.6, 137.7, 136.1, 133.1, 132.6, 131.2, 129.5, 129.4, 129.1, 128.9 (d, *J* = 3.1 Hz), 128.8 , 128.6, 127.3, 127.2, 125.3 (d, J = 5.1 Hz), 124.12, 124.10, 120.6, 120.4, 115.8, 115.6, 109.8, 49.5, 31.0, 21.3; ¹⁹F **NMR** (376 MHz, CDCl₃): δ (ppm) -115.51; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇FN₂O₃SNa⁺ 561.1619; Found 561.1624.

(*R*,*E*)-*N*-((4-chlorophenyl)(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)methyl)-4-methylbenzenesulfonamide (9n): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8c (58.7 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5

mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 4 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product **9n**: 42.1 mg, as a yellow solid, 76%

yield; >19:1 *E*/*Z*; mp 112–114 °C; $[\alpha]^{25}_{D}$ = +24.0 (*c* = 0.25, in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 12.40 min, t (major) = 24.47 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 15.6 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.29–7.19 (m, 6H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 2H), 6.12 (d, *J* = 8.0 Hz, 1H), 5.36 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.6, 143.0, 138.7, 138.6, 137.5, 136.5, 133.6, 133.3, 133.0, 131.0, 128.81, 128.78, 128.76, 128.6, 128.5, 126.9, 125.3, 124.9, 124.4, 120.8, 120.0, 116.1, 109.8, 53.4, 30.7, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇ClN₂O₃SNa⁺ 577.1324 (³⁵Cl), 578.1357 (³⁷Cl); Found 577.1314 (³⁵Cl), 578.1331 (³⁷Cl).

(*R*,*E*)-4-methyl-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)(m-tolyl)methyl)benzenesulfonamide (9o): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8d (54.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L5 (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **90**: 35.8 mg, as a yellow solid, 67% yield; >19:1 *E/Z*; mp 84–85 °C; $[\alpha]^{25}_{D} = -10.4$ (*c* = 0.25, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 12.74 min, t (major) = 16.14 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 15.6 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.27–7.13 (m, 6H), 7.08 (t, *J* = 4.1 Hz, 1H), 7.03–6.97 (m, 1H), 6.82 (d, *J* = 7.6 Hz, 2H), 6.16 (d, *J* = 8.0 Hz, 1H), 5.46 (d, *J* = 8.0 Hz, 1H), 3.71 (s, 3H), 2.28 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.7, 142.6, 139.9, 138.5, 138.4, 137.6, 136.6, 133.1, 132.9, 131.3, 128.7, 128.6, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7, 109.6, 54.1, 30.5, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7, 109.6, 54.1, 30.5, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7, 109.6, 54.1, 30.5, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7, 109.6, 54.1, 30.5, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7, 109.6, 54.1, 30.5, 128.57, 128.52, 128.4, 127.8, 126.8, 125.9, 124.8, 124.3, 124.1, 120.6, 120.3, 116.7

Bpin Ts NH Bz

(R,E)-4-methyl-N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methyl)

benzenesulfonamide (9p): An oven-dried 10 mL test-tube equipped with a
septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8e (77.0 mg, 0.200 mmol, 2.0 equiv),

Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 $\,$ °C. The precipitates were filtered, and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product **9p**: 50.3 mg, as a yellow solid, 85% yield; E/Z = 8:1; mp 70–71 °C; $[\alpha]^{25}_{D} = +12.8$ (c = 0.25, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 9.90 min, t (minor) = 11.18 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (s, 1H), 7.85 (d, J = 7.9 Hz, 2H), 7.78–7.70 (m, 2H), 7.59–7.54 (m, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.40– 7.30 (m, 3H), 7.29 (d, J = 2.8 Hz, 1H), 7.24–7.15 (m, 4H), 6.98 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.9Hz, 2H), 6.23 (d, J = 7.8 Hz, 1H), 5.44 (dd, J = 7.8, 2.4 Hz, 1H), 3.69 (s, 3H), 2.22 (s, 3H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.8, 142.5, 139.1, 138.5, 137.6, 136.6, 134.2, 133.09, 133.07, 133.0, 131.3, 130.1, 128.7, 128.6, 128.5, 128.0, 126.9, 126.8, 125.8, 125.0, 124.1, 120.5, 120.3, 116.5, 109.6, 83.9, 54.1, 30.5, 24.8, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₉BN₂O₅SNa⁺ 669.2565; Found 669.2569.

OCF3 Ts NH Bz (R,E)-4-methyl-N-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)(3-(trifluoromethoxy)phenyl)methyl)benzenesulfonamide (9q): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), Nsulfonylimine 8f (68.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050

mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and

4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 5 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 \times 5 mL). The filtrate was concentrated to give pure product 9q: 52.6 mg, as a yellow solid, 87% yield; >19:1 *E*/Z; mp 68–69 °C; $[\alpha]^{25}_{D} = +5.6$ (*c* = 0.25, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column AD, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 9.58 min, t (minor) = 10.84 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (d, J = 7.2) Hz, 2H), 7.70 (d, J = 15.6 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.39–7.27 (m, 6H), 7.26–7.19 (m, 3H), 7.13 (d, J = 8.0 Hz, 1H), 7.05–6.98 (m, 1H), 6.90 (d, J = 7.9 Hz, 2H), 6.15 (d, J = 7.9 Hz, 1H), 5.44–5.29 (m, 1H), 3.74 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.5, 149.5, 143.1, 142.7, 138.6, 137.5, 136.4, 133.3, 133.1, 131.0, 130.0, 128.9, 128.8, 128.5, 126.9, 125.7, 125.2, 125.0, 124.4, 120.9, 120.4 (q, *J* = 256.0 Hz), 119.9, 119.8, 115.7, 109.9, 53.5, 30.8, 21.4; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –72.83; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₇F₃N₂O₄SNa⁺ 627.1536; Found 627.1532.

(*R*,*E*)-4-methyl-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)(naphthalen-2-yl)methyl)benzenesulfonamide (9r): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8g (61.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%)

and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 8 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3×3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product **9r**: 48.9 mg, as a yellow solid, 86% yield; >19:1 *E/Z*; mp 157–159 °C; [α]²⁵_D = +96.0 (*c* = 0.25, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t

(minor) = 16.21 min, t (major) = 33.57 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (s, 1H), 7.82–7.67 (m, 6H), 7.54–7.41 (m, 4H), 7.39–7.29 (m, 5H), 7.26–7.18 (m, 3H), 6.97 (t, *J* = 7.3 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 2H), 6.35 (d, *J* = 8.0 Hz, 1H), 5.67 (d, *J* = 8.0 Hz, 1H), 3.71 (s, 3H), 2.21 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃): δ (ppm) 188.6, 142.7, 138.4, 137.5, 137.4, 136.7, 135.0, 133.2, 133.0, 132.7, 131.2, 128.6, 128.59, 128.57, 128.4, 128.2, 128.0, 127.5, 126.8, 126.3, 126.2, 125.8, 125.3, 124.9, 124.2, 120.6, 120.3, 116.4, 109.7, 54.2, 30.6, 21.3; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₀N₂O₃SNa⁺ 593.1870; Found 593.1876.

(*R*,*E*)-*N*-(furan-2-yl(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-

indol-3-yl)methyl)-4-methylbenzenesulfonamide (**9s**): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7a** (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine **8h** (49.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L5 (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **9**s: 49.1 mg, as a yellow solid, 96% yield; >19:1 *E/Z*; mp 56–58 °C; $[\alpha]^{25}_{D} = -20.0$ (*c* = 0.25, in CHCl₃); 85% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 16.37 min, t (major) = 27.17 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.03 (d, *J* = 7.6 Hz, 2H), 7.78 (d, *J* = 15.8 Hz, 1H), 7.65–7.57 (m, 1H), 7.57–7.49 (m, 3H), 7.46 (d, *J* = 15.8 Hz, 1H), 7.37 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 18.5 Hz, 1H), 7.23–7.15 (m, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.87 (d, *J* = 7.9 Hz, 2H), 6.24 (d, *J* = 19.0 Hz, 2H), 6.15 (d, *J* = 6.4 Hz, 1H), 5.56 (s, 1H), 3.71 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.9, 152.2, 142.9, 142.5, 138.4, 137.6, 136.5, 133.3, 133.1, 131.2, 128.8, 128.7, 128.6, 126.9, 125.8, 125.4, 124.1, 120.5, 120.5, 114.1, 110.5, 109.6, 108.2, 49.2, 30.7, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₆N₂O₄SNa⁺ 533.1506; Found 533.1508.

(*S*,*E*)-4-methyl-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)(pyridin-3-yl)methyl)benzenesulfonamide (9t): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8i (52.0 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 8 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et_2O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5×5 mL). The filtrate was concentrated to give pure product 9t: 38.1 mg, as a yellow solid, 73% yield; >19:1 E/Z; mp 88-89 °C; $[\alpha]^{25}_{D} = -5.6$ (c = 0.25, in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak column AD, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 19.96 min, t (major) = 31.55 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.55 (d, J = 2.4 Hz, 1H), 8.49 (d, J = 4.8 Hz, 1H), 7.93 (d, *J* = 7.4 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 15.8 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 15.8 Hz, 1H), 7.27–7.18 (m, 4H), 6.98 (ddd, J = 8.0, 5.4, 2.5 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 6.17 (d, J = 7.5 Hz, 1H), 5.64 (d, J 1H), 3.74 (s, 3H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 188.6, 148.9, 148.7, 143.2, 138.7, 137.5, 136.4, 135.8, 134.9, 133.3, 133.1, 131.0, 128.9, 128.8, 128.5, 126.9, 125.0, 124.9, 124.4, 123.3, 120.9, 119.9, 115.4, 109.9, 52.1, 30.9, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₇N₃O₃SNa⁺ 544.1666; Found 544.1670.

(*S*,*E*)-4-methyl-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl)(4-oxo-4H-chromen-3-yl)methyl)benzenesulfonamide (9u): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*sulfonylimine 8j (65.4 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005

mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was

stirred at room temperature for 30 min, then at 50 °C for 3 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9u**: 52.9 mg, as a yellow solid, 90% yield; >19:1 *E/Z*; mp 178–180 °C; $[\alpha]^{25}_{D}$ = +297.6 (*c* = 0.25, in CHCl₃); 88% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 12.26 min, t (major) = 15.84 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.49 (s, 1H), 8.19–8.09 (m, 3H), 8.03 (d, *J* = 15.6 Hz, 1H), 7.69 (d, *J* = 9.4 Hz, 2H), 7.66–7.59 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.52–7.43 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.28–7.20 (m, 2H), 7.09–7.03 (m, 1H), 6.90 (d, *J* = 7.9 Hz, 2H), 6.01 (d, *J* = 3.5 Hz, 1H), 5.49 (d, *J* = 3.5 Hz, 1H), 3.73 (s, 3H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.6, 177.2, 156.2, 155.4, 143.9, 138.4, 137.6, 135.0, 133.8, 133.5, 133.1, 130.7, 129.5, 128.8, 128.7, 127.4, 126.7, 125.7, 125.2, 125.1, 123.9, 123.8, 122.8, 120.6, 120.2, 118.1, 113.1, 109.9, 48.7, 30.9, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₂₈N₂O₅SNa⁺ 611.1612; Found 611.1612.

(*R*,*E*)-*N*-(cyclopropyl(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*indol-3-yl)methyl)-4-methylbenzenesulfonamide (9v): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine 8k

(44.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L5** (6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–4/1) to give product **9v**: 42.8 mg, as a yellow oil, 88% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = -12.8$ (*c* = 0.25, in CHCl₃); 88% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 9.15min, t (minor) = 10.66 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.10 (d, *J* = 8.0 Hz, 2H), 7.82 (d, *J* = 15.6 Hz, 1H), 7.63 (dd, *J* = 13.0, 7.6 Hz, 2H), 7.60–7.52 (m, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.33 (d, *J* = 4.7 Hz, 1H), 4.30 (dd, *J* = 8.5, 4.7 Hz, 1H), 3.72 (s, 3H), 2.19 (s, 3H), 1.61–1.48 (m, 1H), 0.66–0.56 (m, 1H), 0.49–0.34 (m, 2H), 0.31–0.22 (m, 1H);

¹³C NMR (150 MHz, CDCl₃): δ (ppm) 189.1, 142.6, 138.7, 137.9, 136.7, 133.1, 132.5, 131.7, 128.8, 128.6, 128.4, 126.9, 125.5, 124.2, 124.0, 120.7, 120.2, 117.5, 109.6, 56.2, 30.9, 21.3, 17.3, 5.1, 4.1; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{29}H_{28}N_2O_3SNa^+$ 507.1713; Found 507.1719.

Ethyl (S,E)-2-(1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-3-yl)-2-((4-methylphenyl)sulfonamido)acetate (9w): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), N-sulfonylimine 8l (51.0

mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 60 °C for 4 d. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-4/1) to give product **9w**: 31.6 mg, as a yellow oil, 61% yield; E/Z = 17:1; $[\alpha]^{25}_{D} = +69.6$ (c = 0.25, in CHCl₃); 96% ee, determined by HPLC analysis [Chiralpak column AD, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 14.91 min, t (major) = 16.87 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.16 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 5.6 Hz, 2H), 7.65–7.53 (m, 4H), 7.36 (d, J = 8.3 Hz, 2H), 7.25–7.21 (m, 1H), 7.17 (dt, J = 8.4, 1.0 Hz, 1H), 7.07 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 5.91 (d, J = 6.4 Hz, 1H), 5.58 (d, J = 6.5 Hz, 1H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 5.58 (d, J = 6.5 Hz, 1H), 4.20 (dq, J = 10.8, 7.2 Hz, 1H), 5.58 (d, J = 6.5 Hz, 1H), 5.1H), 4.03 (dq, J = 10.8, 7.2 Hz, 1H), 3.70 (s, 3H), 2.23 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 188.9, 169.8, 142.9, 138.0, 137.6, 136.3, 134.5, 133.3, 130.9, 128.8, 128.8, 128.6, 126.9, 126.6, 125.2, 124.0, 120.8, 120.1, 110.6, 109.5, 62.5, 52.9, 30.6, 21.3, 14.0; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{29}H_{28}N_2O_5SNa^+$ 539.1612; Found 539.1620.

(*R*,*E*)-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl) (phenyl)methyl)thiophene-2-sulfonamide (9x): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl indole 7a (26.1 mg, 0.0999 mmol, 1.0 equiv), N-sulfonylimine 8m (50.2 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5 (6.8 mg, 0.010 mmol, 10 mol%), A1 (0.9 mg, 0.005 mmol, 5 mol%)

and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated

three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 3 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9x**: 48.2 mg, as a yellow solid, 94% yield; >19:1 *E/Z*; mp 185–187 °C; $[\alpha]^{25}_{D} = -1.6$ (*c* = 0.25, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 7.66 min, t (minor) = 8.47 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.85 (d, *J* = 7.7 Hz, 2H), 7.81 (d, *J* = 15.6 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 1H), 6.27 (d, *J* = 7.6 Hz, 1H), 5.64 (d, *J* = 7.6 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 188.8, 140.7, 139.9, 138.6, 137.6, 133.1, 133.0, 132.4, 131.6, 131.3, 128.7, 128.5, 127.7, 127.1, 126.6, 125.7, 125.0, 124.3, 120.7, 120.2, 116.7, 109.9, 54.4, 30.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₄N₂O₃S₂Na⁺ 535.1121; Found 535.1119.

(*R*,*E*)-*N*-((1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-indol-3-yl) (phenyl)methyl)methanesulfonamide (9y): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7a** (26.1 mg, 0.0999 mmol, 1.0 equiv), *N*-sulfonylimine **8n** (36.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L5

(6.8 mg, 0.010 mmol, 10 mol%), **A1** (0.9 mg, 0.005 mmol, 5 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 7 d. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again and washed with DCM (5 × 5 mL). The filtrate was concentrated to give pure product **9**y: 41.1 mg, as a yellow solid, 92% yield; >19:1 *E/Z*; mp 171–173 °C; $[\alpha]^{25}_{D} = +34.4$ (*c* = 0.25, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 8.86 min, t (major) = 12.03 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03 (d, *J* = 15.6 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.50–7.41 (m, 5H), 7.42–7.26 (m, 5H), 7.12

(t, J = 7.6 Hz, 1H), 6.41 (d, J = 7.0 Hz, 1H), 5.36 (d, J = 7.1 Hz, 1H), 3.89 (s, 3H), 2.60 (s, 3H); ¹³C **NMR** (150 MHz, CDCl₃): δ (ppm) 188.9, 140.2, 138.7, 137.5, 133.1, 133.0, 131.2, 128.9, 128.7, 128.6, 127.9, 127.2, 125.8, 125.6, 124.4, 120.9, 120.5, 116.7, 110.2, 54.4, 41.7, 31.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₄N₂O₃SNa⁺ 467.1400; Found 467.1408.

11. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl pyrroles 10 with imines 8

An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole **10** (0.12 mmol, 1.2 equiv), *N*-sulfonylimine **8** (0.10 mmol, 1.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L6** (7.6 mg, 0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min. then stirred at 50 °C (monitored by TLC analysis). After completion, product **11** was obtained by flash chromatography on silica gel (petroleum ether/DCM/EtOAc). Racemic **11** was obtained under the catalysis of Pd(PPh₃)₄ (10 mol%) and using **A2** (10 mol%) as an acidic additive.

(*R*,*E*)-4-methyl-*N*-((5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl)

(**phenyl**)**methyl**)**benzenesulfonamide** (**11a**): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole **10a** (23.6 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine **8a** (25.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L6 (7.6 mg, 0.010 mmol, 10 mol%), A2 (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/5/1) to give product **11a**: 33.6 mg, as a yellow oil, 74% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = +4.6$ (*c* = 0.65, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 15.07 min, t (minor) = 17.69

min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 9.66 (s, 1H), 7.89–7.83 (m, 2H), 7.59–7.47 (m, 4H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.21–7.13 (m, 3H), 7.13–7.04 (m, 4H), 7.00 (d, *J* = 15.6 Hz, 1H), 6.43 (d, *J* = 3.0 Hz, 1H), 6.14 (d, *J* = 8.4 Hz, 1H), 5.80 (d, *J* = 3.0 Hz, 1H), 5.67 (d, *J* = 8.4 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 191.0, 143.5, 138.4, 138.3, 136.8, 136.4, 134.8, 132.4, 129.8, 129.4, 128.6, 128.5, 128.3, 128.1, 127.2, 127.0, 116.3, 115.7, 111.1, 55.8, 21.4; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₄N₂O₃SNa⁺ 479.1400; Found 479.1402.

(*R*,*E*)-*N*-((4-fluorophenyl)(5-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-pyrrol-2-yl)methyl)-4-methylbenzenesulfonamide (11b): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2alkenyl pyrrole 10a (23.6 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine 8o (27.7 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5

mol%), ligand **L6** (7.6 mg, 0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/5/1) to give product **11b**: 31.9 mg, as a yellow oil, 67% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = +106.3$ (*c* = 0.16, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (major) = 29.33 min, t (minor) = 38.20 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.71 (s, 1H), 7.85 (d, *J* = 7.0 Hz, 2H), 7.57–7.48 (m, 4H), 7.41 (dd, *J* = 8.3, 7.0 Hz, 2H), 7.11–7.04 (m, 4H), 7.01 (d, *J* = 15.6 Hz, 1H), 6.82 (t, *J* = 8.6 Hz, 2H), 6.43 (dd, *J* = 3.7, 2.5 Hz, 1H), 6.24 (d, *J* = 8.6 Hz, 1H), 5.77 (dd, *J* = 3.7, 2.4 Hz, 1H), 5.66 (d, *J* = 8.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 191.3, 162.3 (d, *J* = 245.9 Hz), 143.7, 138.3, 136.8, 136.1, 134.9, 134.1 (d, *J* = 3.4 Hz), 132.5, 129.9, 129.4, 129.1 (d, *J* = 8.3 Hz), 128.5, 128.3, 127.0, 116.1, 115.9, 115.4 (d, *J* = 21.5 Hz), 111.2, 55.2, 21.4; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –113.71; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₃FN₂O₃SNa⁺ 497.1306; Found 497.1305.

(*R*,*E*)-4-methyl-*N*-((5-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-pyrrol-2-yl)(p-tolyl)methyl)benzenesulfonamide (11c): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10a (23.6 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine **8p** (27.3 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand

L6 (7.6 mg, 0.010 mmol, 10 mol%), A2 (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min. then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/5/1) to give product 11c: 27.6 mg, as a yellow oil, 59% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = +43.6$ (*c* = 0.2, in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 16.84 min, t (minor) = 19.47 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.62 (s, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.58–7.46 (m, 4H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 15.6 Hz, 1H), 6.98–6.93 (m, 4H), 6.43 (d, *J* = 3.7 Hz, 1H), 6.03 (d, *J* = 8.1 Hz, 1H), 5.80 (dd, *J* = 3.7, 2.1 Hz, 1H), 5.60 (d, *J* = 8.1 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.8, 143.6, 138.4, 138.1, 136.7, 136.6, 135.2, 134.6, 132.4, 129.7, 129.44, 129.35, 128.5, 128.3, 127.2, 127.0, 116.2, 115.6, 111.0, 55.6, 21.4, 21.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₆N₂O₃SNa⁺ 493.1557; Found 493.1556.

(*R*,*E*)-*N*-(cyclohexyl(5-(3-oxo-3-phenylprop-1-en-1-yl)-1*H*-pyrrol-2-yl) methyl)-4-methylbenzenesulfonamide (11d): An oven-dried 10 mL testtube equipped with a septum and a magnetic stir bar was charged with 2alkenyl pyrrole 10a (23.6 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine 8q (26.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5

mol%), ligand **L6** (7.6 mg, 0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min. then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/5/1) to give product **11d**: 35.4 mg, as a yellow oil, 77% yield; E/Z = 17:1; $[\alpha]^{25}_{D} = +175.0$ (c = 0.84, in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak

column IB, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 8.98 min, t (minor) = 12.28 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.74 (s, 1H), 7.91 (d, *J* = 7.1 Hz, 2H), 7.61–7.51 (m, 3H), 7.50–7.41 (m, 3H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 15.5 Hz, 1H), 6.39 (dd, *J* = 3.7, 2.5 Hz, 1H), 6.19 (d, *J* = 9.4 Hz, 1H), 5.89 (dd, *J* = 3.7, 2.2 Hz, 1H), 4.25 (dd, *J* = 9.4, 7.8 Hz, 1H), 2.24 (s, 3H), 1.87 (d, *J* = 12.7 Hz, 1H), 1.67–1.45 (m, 4H), 1.34 (dd, *J* = 12.7, 4.0 Hz, 1H), 1.13–0.95 (m, 3H), 0.97–0.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 192.7, 143.1, 138.5, 137.4, 137.2, 135.9, 132.4, 129.2, 128.9, 128.6, 128.4, 126.7, 116.6, 115.4, 110.7, 57.4, 42.9, 29.59, 29.56, 26.0, 25.7, 21.4, 21.39; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₀N₂O₃SNa⁺ 485.1870; Found 485.1869.

(*R*,*E*)-4-methyl-*N*-((5-(3-oxobut-1-en-1-yl)-1*H*-pyrrol-2-yl)(phenyl) methyl)benzenesulfonamide (11e): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10b (16.2 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine 8a (25.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L6 (7.6 mg,

0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/1/1) to give product **11e**: 18.8 mg, as a yellow oil, 48% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = +121.4$ (*c* = 0.28, in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (minor) = 32.41 min, t (major) = 34.33 min]; **¹H NMR** (400 MHz, CDCl₃): δ (ppm) 9.96 (s, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 3.5 Hz, 1H), 7.26–7.14 (m, 5H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 9.4 Hz, 1H), 6.36 (t, *J* = 3.0 Hz, 1H), 6.23 (d, *J* = 16.2 Hz, 1H), 5.92 (t, *J* = 3.0 Hz, 1H), 5.73 (d, *J* = 9.4 Hz, 1H), 2.29 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 200.4, 143.0, 139.1, 137.2, 137.1, 135.0, 129.1, 128.7, 128.6, 127.8, 127.0, 126.8, 120.4, 117.2, 111.1, 55.7, 25.8, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂N₂O₃SNa⁺ 417.1244; Found 417.1237.

Ethyl (*R*,*E*)-3-(5-(((4-methylphenyl)sulfonamido)(phenyl)methyl)-1*H*pyrrol-2-yl)acrylate (11f): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10c (19.8 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine 8a (25.9 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand L6

(7.6 mg, 0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/1/1) to give product **11f**: 25.2 mg, as a faint red oil, 59% yield; >19:1 *E/Z*; $[\alpha]^{25}_{D} = +88.7 (c = 0.55, in CHCl_3); 91% ee, determined by HPLC analysis [Chiralpak column AD,$ *i*PrOH/*n* $Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (minor) = 12.14 min, t (major) = 17.87 min]; ¹H NMR (400 MHz, CDCl_3): <math>\delta$ (ppm) 9.25 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 15.9 Hz, 1H), 7.23–7.19 (m, 3H), 7.13 (dd, *J* = 6.6, 2.7 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.29 (t, *J* = 3.1 Hz, 1H), 6.03–5.91 (m, 1H), 5.85 (d, *J* = 15.9 Hz, 1H), 5.77 (t, *J* = 3.0 Hz, 1H), 5.64 (d, *J* = 8.4 Hz, 1H), 4.30–4.01 (m, 2H), 2.33 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl_3): δ (ppm) 168.1, 143.5, 138.5, 136.9, 135.4, 134.2, 129.4, 128.9, 128.6, 128.0, 127.2, 126.9, 114.9, 111.1, 110.5, 60.5, 55.7, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄N₂O₄SNa⁺ 447.1349; Found 447.1352.

Ethyl (*R*,*E*)-3-(5-(phenyl(thiophene-2-sulfonamido)methyl)-1*H*pyrrol-2-yl)acrylate (11g): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl pyrrole 10c (19.8 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine 8m (25.1 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol,

5 mol%), ligand **L6** (7.6 mg, 0.010 mmol, 10 mol%), **A2** (1.4 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 60 h. After completion, purification by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 5/1/1) to give product **11g**: 35.7 mg, as a faint red oil, 86% yield; >19:1 E/Z; $[\alpha]^{25}_{D} = +47.2$ (c = 0.55, in CHCl₃); 86% ee, determined by S67

HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 10/90, flow rate: 1.0 mL/min, 254 nm, t (major) = 17.40 min, t (minor) = 19.34 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.11 (s, 1H), 7.50 (dd, J = 5.0, 1.5 Hz, 1H), 7.45–7.37 (m, 2H), 7.32–7.23 (m, 4H), 7.19–7.11 (m, 2H), 6.93 (dd, J = 5.0, 3.7 Hz, 1H), 6.34 (t, J = 3.1 Hz, 1H), 5.92 (d, J = 15.8 Hz, 1H), 5.82–5.76 (m, 2H), 5.68 (dd, J = 8.3, 3.7 Hz, 1H), 4.24–4.03 (m, 2H), 1.33–1.21 (m, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 168.0, 140.7, 138.1, 135.1, 134.1, 132.7, 132.3, 129.0, 128.8, 128.4, 127.3, 127.2, 114.9, 111.4, 110.7, 60.6, 56.0, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₀N₂O₄S₂Na⁺ 439.0757; Found 439.0760.

ĊO₂Me

Bz Methyl (E)-3-(5-(3-oxo-3-phenylprop-1-en-1-yl)-1H-pyrrol-2-yl)-2,3dihydrobenzo[d]isothiazole-3-carboxylate 1,1-dioxide (11h): An ovendried 10 mL test-tube equipped with a septum and a magnetic stir bar was

charged with 2-alkenyl pyrrole **10a** (23.6 mg, 0.120 mmol, 1.2 equiv), *N*-sulfonylimine **8r** (22.5 mg, 0.0999 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), ligand **L6** (7.6 mg, 0.010 mmol, 10 mol%), **A1** (1.8 mg, 0.010 mmol, 10 mol%) and 4 Å MS (40.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (1.0 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 48 h. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–4/1) to give product **11h**: 35.8 mg, as a yellow oil, 85% yield; E/Z = 12:1; $[\alpha]^{25}_{D} = +151.1$ (c = 0.4, in CHCl₃); 83% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane =40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 17.05 min, t (minor) = 29.71 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.49 (s, 1H), 7.95–7.89 (m, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.81–7.75 (m, 1H), 7.73–7.64 (m, 1H), 7.64–7.56 (m, 2H), 7.54–7.48 (m, 1H), 7.44–7.37 (m, 2H), 7.12 (d, J = 15.6 Hz, 1H), 6.55 (dd, J = 3.8, 2.7 Hz, 1H), 6.42 (dd, J = 3.8, 2.4 Hz, 2H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.9, 168.0, 138.3, 136.5, 134.0, 133.9, 133.6, 132.5, 132.1, 130.9, 130.2, 128.5, 128.3, 126.4, 121.3, 116.9, 116.1, 110.1, 66.6, 54.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₈N₂O₅SNa⁺ 445.0829; Found 445.0820.

12. General procedure for the asymmetric Friedel–Crafts reaction of 2-alkenyl furan 12 with 1-azadiene 13

Ethyl (S,E)-3-(5-((3-((4-methylphenyl)sulfonamido)benzofuran-2-yl)(phenyl)methyl)furan-2vl)acrylate (14): An oven-dried 10 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl furan 12 (33.2 mg, 0.200 mmol, 2.0 equiv), aza-diene 13 (37.5 mg, 0.0998 mmol, 1.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%) and ligand L7 (6.4 mg, 0.010 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times and toluene (0.5 mL) was added via syringe. Then the resulting mixture was stirred at 50 $\,^{\circ}$ C for 36 h. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product 14: 53.4 mg, as a yellow semisolid, 98% yield; >19:1 E/Z; $[\alpha]^{25}D = +29.1$ (c = 0.35, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column ID, iPrOH/nHexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 9.95 min, t (major) = 16.76 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 15.8 Hz, 1H), 7.28-7.25 (m, 2H), 7.25-7.20 (m, 4H), 7.20-7.15 (m, 1H), 7.11-7.07 (m, 3H), 6.75 (s, 1H), 6.48 (d, J = 3.4 Hz, 1H), 6.17 (d, J = 15.8 Hz, 1H), 6.12 (d, J = 3.4 Hz, 1H), 5.62 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.30 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.1, 155.6, 153.4, 152.5, 150.4, 144.0, 137.3, 136.1, 130.8, 129.6, 128.6, 128.4, 127.5, 127.4, 125.5, 124.7, 123.2, 119.3, 115.6, 115.4, 113.9, 111.6, 110.9, 60.4, 41.9, 21.5, 14.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₇NO₆SNa⁺ 564.1452; Found 564.1444.

13. Asymmetric reaction on a 1.0 mmol scale

An oven-dried 50 mL Schlenk tube equipped with a magnetic stir bar was charged with 2-indolyl propiolate **1b** (289 mg, 1.00 mmol, 1.0 equiv), enone **2a** (303 mg, 1.30 mmol, 1.3 equiv), $Pd_2(dba)_3$ (22.9 mg, 0.0250 mmol, 2.5 mol%), ligand **L1** (34.5 mg, 0.0499 mmol, 5 mol%) and TBAB (64.0 mg, 0.200 mmol, 20 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed 1,4-dioxane (5.0 mL) was added via syringe. The resulting solution

was stirred at room temperature for 30 min, then at 60 °C for 96 h. After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-8/1) to give product **3b**: 454.1 mg, as a yellow solid, 87% yield; 92% ee; >19:1 dr; >19:1 *E*/*Z*.

An oven-dried 50 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-alkenyl indole **7f** (279 mg, 0.999 mmol, 1.0 equiv), *N*-sulfonylimine **8a** (518 mg, 2.00 mmol, 2.0 equiv), Pd₂(dba)₃ (45.8 mg, 0.0500 mmol, 5 mol%), ligand **L5** (68.2 mg, 0.100 mmol, 10 mol%), **A1** (9.0 mg, 0.050 mmol, 5 mol%) and 4 Å MS (400 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times and xylene (10 mL) was added via syringe. The resulting solution was stirred at room temperature for 30 min, then at 50 °C for 10 d. After completion, Et₂O (10 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered and washed with cold Et₂O (3 × 5 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 × 5 mL). The filtrate was concentrated to give product **9f**: 516.0 mg, as a yellow solid, 96% yield; 96% ee; >19:1 *E/Z*.

14. Transformations of products

To a solution of compound **3b** (52.2 mg, 0.0998 mmol, 1.0 equiv) in dry DCM, 1.0 M DIBAL-H (0.5 mL, 0.5 mmol, 5.0 equiv) was added drop wise at -78 °C under argon atmosphere, and the mixture was stirred for 12 h. Then the solution was warmed to room temperature, quenched with aqueous HCl (1M, 2 mL) and stirred at rt for 30 min. The mixture was extracted with DCM (3 × 2 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. After concentration, the residue was purified by column chromatography (petroleum ether/EtOAc = 10/1) to give product **15**: 19.4 mg, as a red semisolid, 52% yield; >19:1 *E/Z*; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.94–7.88 (m, 2H), 7.61 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.51 (dd, *J* = 8.3, 6.5 Hz, 2H), 7.47–7.42 (m, 1H), 7.29–7.21 (m, 4H), 7.17–7.12 (m, 1H), 7.09 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.05–7.00 (m, 2H), 6.64 (q, *J* = 7.7 Hz, 1H), 5.43 (s, 2H), 2.39 (d, J = 7.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.2, 142.9, 141.7, 136.6, 135.4, 133.3, 131.5, 130.0, 129.1, 128.8, 128.7, 127.9, 125.9, 122.9, 121.6, 121.5, 120.1, 119.9, 119.8, 110.4, 92.6, 48.1, 15.5; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₀N₂Na⁺ 395.1519; Found 395.1526.

To a solution of 9f (53.8 mg, 0.0999 mmol, 1.0 equiv) in MeOH (1.0 mL) was added CeCl₃ 7H₂O (149.1 mg, 0.4002 mmol, 4.0 equiv), and NaBH₄ (15.1 mg, 0.399 mmol, 4.0 equiv) was added slowly in two batches. The mixture was stirred at rt for 10 h. After completion (monitored by TLC analysis), it was quenched with water (3 mL). Then MeOH was evaporated under reduced pressure and the resulting aqueous phase was extracted with DCM (3 \times 5 mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 6/1-3/1) to give allyl alcohol product (48.9 mg, 94% yield). Then an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with the allyl alcohol product (40.5 mg, 0.0750 mmol, 1.0 equiv), Pd(PPh₃)₄ (8.7 mg, 0.0075 mmol, 10 mol%), A5 (3.7 mg, 0.015 mmol, 20 mol%) and 4 Å MS (60.0 mg). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed toluene (1.0 mL) was added via syringe. The resulting mixture was stirred at 60 °C for 12 h. After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1-6/1) to give product 16: 21.9 mg, as a yellow solid, 42% overall yield; >19:1 dr; >19:1 E/Z; mp 101–102 °C; $[\alpha]^{25}_{D} = +11.6$ (c = 0.25, in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (minor) = 5.66 min, t (major) = 6.33 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.41 (d, J = 8.3 Hz, 2H), 7.34–7.29 (m, 2H), 7.29–7.26 (m, 2H), 7.25–7.20 (m, 4H), 7.14 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.09–7.04 (m, 1H), 7.04–6.93 (m, 5H), 6.77 (d, J = 14.8 Hz, 1H), 6.18 (d, J = 3.4 Hz, 1H), 5.96–5.88 (m, 2H), 3.62 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 162.7 (d, J = 246.7 Hz), 142.5, 141.4, 141.2, 138.8, 137.8, 132.2, 131.9 (d, J = 3.4 Hz), 129.0, 128.4 (d, J = 8.1 Hz), 128.2, 127.6, 127.5, 127.45 (d, J = 3.2 Hz), 127.41, 121.8, 121.6, 120.1, 118.6, 116.8, 115.6 (d, J = 21.6 Hz), 109.7, 66.1, 63.6, 30.5, 21.4; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm)

To a solution of 9f (107.7 mg, 0.1999 mmol, 1.0 equiv) in acetone (1.0 mL) was added K₂CO₃ (110.4 mg, 0.7988 mmol, 4.0 equiv) and 3-bromopropylene (69 µL, 0.80 mmol, 4.0 equiv). The mixture was stirred at 60 °C for 12 h. After completion (determined by TLC analysis), solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 6/1) to give product (104.2 mg, 0.1800 mmol, 90% yield). Then an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with the N-allyl product (57.8 mg, 0.100 mmol, 1.0 equiv) and Hoveyda-Grubbs catalyst (3.2 mg, 0.0050 mmol, 5 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times, and degassed dried DCM (1.0 mL) was added via syringe. The resulting mixture was stirred at 80 °C for 12 h. After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 30/30/1) to give product 17: 23.3 mg, as a yellow solid, 49% overall yield; mp 59–61 °C; $[\alpha]^{25}_{D}$ = +114.9 (c = 0.35, in CHCl₃); 86% ee, determined by HPLC analysis [Chiralpak column IA, *i*PrOH/*n*Hexane = 20/80, flow rate: 1.0 mL/min, 254 nm, t (major) = 7.83 min, t (minor) = 9.86 min]; ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.35 (d, J = 7.9 Hz, 1H), 7.31–7.18 (m, 9H), 7.09–7.01 (m, 1H), 6.82 (s, 1H), 6.72 (d, J = 8.1 Hz, 2H), 6.12 (dd, J = 12.0, 2.8 Hz, 1H), 5.59 (ddd, *J* = 12.0, 5.8, 2.7 Hz, 1H), 4.50 (ddd, *J* = 19.9, 5.9, 1.9 Hz, 1H), 3.70–3.60 (m, 1H), 3.41 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 142.2, 140.0, 137.0, 136.7, 133.5, 128.7, 128.6, 128.1, 127.8, 127.7, 127.5, 126.7, 122.6, 120.0, 118.4, 118.4, 113.2, 109.0, 57.6, 44.8, 29.1, 21.3; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{24}N_2O_2SNa^+$ 451.1451; Found 451.1454.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **11a** (45.6 mg, 0.0998 mmol, 1.0 equiv), (Z)-but-2-ene-1,4-diyldi-tert-butyl bis(carbonate) (43.2 mg, 0.150
mmol, 1.5 equiv) and Pd(PPh₃)₄ (11.5 mg, 0.0100 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed THF (1.0 mL) was added via syringe. The resulting mixture was stirred at rt for 3.5 h. After completion, the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether/DCM/EtOAc = 20/10/1) to give product **18**: 26.4 mg, as a yellow oil, 52% yield; 3:1 dr; $[\alpha]^{25}_{D} = +8.6$ (*c* = 0.73, in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak column IB, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 5.35 min, t (minor) = 5.69 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.98 (d, *J* = 7.1 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.58–7.50 (m, 3H), 7.37–7.33 (m, 2H), 7.33–7.28 (m, 6H), 7.20 (d, *J* = 16.2 Hz, 1H), 6.63 (d, *J* = 5.0 Hz, 1H), 6.42 (d, *J* = 5.0 Hz, 1H), 4.99 (dd, *J* = 9.7, 7.7 Hz, 1H), 4.94–4.84 (m, 2H), 4.70 (s, 1H), 4.11–4.03 (m, 1H), 3.67 (dd, *J* = 10.9, 8.7 Hz, 1H), 3.54–3.42 (m, 1H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 190.4, 169.3, 152.7, 143.6, 141.4, 137.2, 137.1, 133.4, 131.0, 130.2, 129.3, 128.8, 128.7, 128.4, 128.1, 127.8, 127.0, 126.97, 126.93, 119.4, 94.1, 69.1, 53.1, 47.0, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₈N₂O₃SNa⁺ 531.1713; Found 531.1723.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with **11a** (45.6 mg, 0.0998 mmol, 1.0 equiv), di-tert-butyl (2-methylenepropane-1,3-diyl) bis(carbonate) (43.2 mg, 0.150 mmol, 1.5 equiv) and Pd(PPh₃)₄ (11.5 mg, 0.0100 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed 2-MeTHF (1.0 mL) was added via syringe. The resulting mixture was stirred at 50 °C for 3 h. After completion, the mixture was concentrated and then purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1) to give product **19**: 42.7 mg, as a yellow oil, 84% yield; $[\alpha]^{25}_{D} = +241.1$ (*c* = 0.75, in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak column IF, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 15.08 min, t (minor) = 21.54 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.01 (d, *J* = 7.2 Hz, 2H), 7.71 (d, *J* = 15.0 Hz, 1H), 7.59–7.54 (m, 1H), 7.54–7.44 (m, 4H), 7.36–7.25 (m, 4H), 7.19–7.14 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 3.9 Hz, 1H), 6.55 (s, 1H), 6.05 (d, *J* = 3.7 Hz, 1H), 4.98 (s, 1H), 4.82 (s, 1H), 4.33 (d, *J* = 14.5 Hz, 1H), 4.29 (d, *J* = 16.5 Hz, 1H), 4.19 (d, *J* = 14.4 Hz, 1H), <u>3.80</u> (d, *J* = 15.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ (ppm) 189.4, 143.4, 138.5, 137.5, 137.4, 136.6, 135.0, 132.6, 131.5, 130.7, 129.3, 128.62, 128.56, 128.2, 127.9, 127.5, 127.3, 119.0, 117.4, 113.0, 111.2, 58.4, 50.0, 49.0, 21.4;
HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₈N₂O₃SNa⁺ 531.1713; Found 531.1705.

To a solution of 14 (108.3 mg, 0.1999 mmol, 1.0 equiv) in acetone (1.0 mL) was added K₂CO₃ (110.4 mg, 0.7988 mmol, 4.0 equiv) and 3-bromopropylene (69 µL, 0.80 mmol, 4.0 equiv). The mixture was stirred at 60 °C for 12 h. After completion (determined by TLC analysis), the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1) to give product (101.4 mg, 0.1743 mmol, 87% yield). Diisobutylaluminium hydride (348 µL of a 1.0 M solution in cyclohexane, 0.348 mmol, 2.0 equiv) was added dropwise to a solution of the above product (101.4 mg, 0.1743 mmol, 1.0 equiv) in anhydrous DCM (2.0 mL) under Ar at −78 °C over 10 min and the mixture was stirred for 2 h. After completion, the mixture was quenched with aqueous NH₄Cl. The mixture was allowed to warm to rt and stirred for 1 h. The layers were separated and the aqueous layer was extracted with DCM (3 \times 5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the crude allylic alcohol. To a solution of the allylic alcohol and DMAP (2.1 mg, 0.017 mmol, 10 mol%) in DCM (1.0 mL), acetic anhydride (33 µL, 0.35 mmol, 2.0 equiv) and Et₃N (45 µL, 0.35 mmol, 2.0 equiv) was added and the reaction mixture was stirred at rt. After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/ EtOAc = 10/1) to give allyl acetates product 20: 81.2 mg, as a yellow oil, 70% yield, over 3 steps; ¹H NMR (400 MHz, CDCl₃): δ (ppm) (d, J = 8.0 Hz, 2H), 7.40–7.18 (m, 6H), 7.11–6.99 (m, 3H), 6.97–6.79 (m, 1H), 6.73–6.37 (m, 1H), 6.30 (d, J = 14.6 Hz, 1H), 6.18–5.91 (m, 3H), 5.83–5.38 (m, 2H), 4.89–4.65 (m, 2H), 4.57 (d, J = 6.4 Hz, 2H), 4.48– 4.15 (m, 1H), 4.03–3.84 (m, 1H), 2.31 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.8, 155.9, 153.6, 153.5, 151.3, 143.8, 137.7, 136.4, 132.6, 129.6, 128.9, 128.5, 128.3, 127.7, 127.2, 124.6, 124.2, 122.7, 122.0, 121.2, 119.3, 116.8, 112.0, 109.9, 109.7, 64.6, 53.5, 41.7, 21.5, 20.9; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{34}H_{31}NO_6SNa^+$ 604.1765; Found 604.1756.

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with 20 (58.1

mg, 0.0998 mmol) and Pd(PPh₃)₄ (11.5 mg, 0.0100 mmol, 10 mol%). The tube was then evacuated and filled with argon. This cycle was repeated three times and degassed toluene (1.0 mL) was added via syringe. The mixture was stirred at 80 °C for 15 h. After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1–6/1) to give product **21**: 34.0 mg, as a yellow solid, 71% yield; mp 155–157 °C; $[\alpha]^{25}_{D} = -44.0$ (*c* = 0.25, in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak column ID, *i*PrOH/*n*Hexane = 40/60, flow rate: 1.0 mL/min, 254 nm, t (major) = 28.51 min, t (minor) = 35.14 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 (d, *J* = 8.0 Hz, 4H), 7.46–7.37 (m, 6H), 7.32–7.27 (m, 4H), 7.27–7.17 (m, 8H), 7.03–6.96 (m, 2H), 6.58 (d, *J* = 8.0 Hz, 2H), 6.11 (ddd, *J* = 15.4, 10.4, 4.9 Hz, 2H), 5.98 (d, *J* = 3.3 Hz, 2H), 5.79 (s, 2H), 5.68–5.57 (m, 4H), 4.79 (dd, *J* = 14.2, 4.9 Hz, 2H), 3.49 (dd, *J* = 14.2, 10.4 Hz, 2H), 2.43 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 156.8, 153.9, 153.7, 150.3, 143.9, 138.3, 137.2, 129.8, 128.8, 128.4, 127.8, 127.1, 124.4, 124.2, 123.0, 122.8, 121.0, 119.0, 116.3, 112.1, 110.0, 109.0, 53.0, 41.6, 21.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₅₈H₄₆N₂O₈S₂Na⁺ 985.2588; Found 985.2590.

15. More investigation on substrates scope

1) Other aromatic compounds

Benzofuran derivative 22 was applied to the reaction with 5a under the standard conditions, but it did not work. When the reaction was carried out under the catalysis of $Pd(PPh_3)_4$, 24 was obtained instead of desired 23. The control experiment indicated that the reaction was catalyzed by PPh₃ via a Rauhut–Currier pathway, followed by annulation to give the formal [4+2] adduct. Similar phenomenon was observed for substrates 25–28.

Since the electron-deficient alkynes mentioned above were activated by PPh_3 rather than Pd, some electron-neutral alkyne derivatives were tested. However, compounds **29–32** were inert in the reaction.

2) Other electrophiles

Imine **8a** was investigated with 2-alkyne indole **1a** or **1a**" under the catalysis of palladium. Unfortunately, those substrates did not undergo the desired FC addition reaction.

Some other electrophiles, including carbonyls, ketimines and Michael acceptors, were investigated with 2-alkenyl indole **7a** under the catalysis of $Pd(PPh_3)_4$. It was found that most carbonyls and imines listed as below were not reactive. In addition, some compounds, such as **33**, Micheal acceptor **2a** and **13**, could undergo the reaction with **7a** in the absence of Pd^0 (background reaction).

3) Other styrene-type substrates

Considering that the aromatic rings are activated by Pd^0 which coordinates to the conjugated unsaturated bond as a π -Lewis base, we applied more styrene-type substrates to the reaction. However, most of the aromatic compounds were inert, probably due to some steric and electronic effects.

16. X-ray crystallographic data and structural refinement

(1) Crystal data and structural refinement for 3i

Procedure for the recrystallisation of **3i**: To a 10 mL tube containing **3i** (20.0 mg) were added CHCl₃ (1.0 mL) and Et₂O (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **3i**. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Cu radiation source (K α = 1.54178 Å) at 273.15 K. CCDC 2251805 (**3i**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

3i
$C_{39}H_{28}N_2O_3$
572.63
273.15
monoclinic
P21
11.1245(4)
10.5529(3)
13.5415(5)
90
107.914(2)
90
1512.64(9)
2
1.257
0.632
600.0
$0.27 \times 0.19 \times 0.04$

Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	6.86 to 126.98
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}11 \leq k \leq 12, \text{-}14 \leq l \leq 15$
Reflections collected	15015
Independent reflections	4840 [$R_{int} = 0.0439$, $R_{sigma} = 0.0359$]
Data/restraints/parameters	4840/1/398
Goodness-of-fit on F ²	1.040
Final R indexes $[I > = 2\sigma(I)]$	R1 = 0.0318, $wR2 = 0.0838$
Final R indexes [all data]	R1 = 0.0355, wR2 = 0.0866
Largest diff. peak/hole / e Å ⁻³	0.10/-0.14
Flack parameter	0.08(12)

(2) Crystal data and structural refinement for rac-4d

Procedure for the recrystallisation of rac-4d: To a 10 mL tube containing rac-4d (10.0 mg) were added CHCl₃ (0.5 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine structural refinement for rac-4d. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source $(K\alpha = 0.71073 \text{ Å})$ at 150.0 K. CCDC 2251806 (*rac*-4d) contains the supplementary crystallographic for data this paper. These data obtained charge can be free of via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	<i>rac</i> - 4d
Empirical formula	$C_{34}H_{23}F_3N_2O_3$
Formula weight	564.54
Temperature/K	150.0
Crystal system	triclinic
Space group	P-1

a/Å	10.0380(5)
b/Å	12.1514(6)
c/Å	12.3554(7)
α/°	77.395(2)
β/°	67.131(2)
$\gamma/^{o}$	85.909(2)
Volume/Å ³	1354.98(12)
Z	2
$\rho_{calc}g/cm^3$	1.384
μ/mm^{-1}	0.103
F(000)	584.0
Crystal size/mm ³	0.28 imes 0.21 imes 0.08
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	4.404 to 54.988
Index ranges	$\text{-13} \le h \le 12, \text{-15} \le k \le 15, \text{-15} \le l \le 16$
Reflections collected	19422
Independent reflections	$6096 [R_{int} = 0.0795, R_{sigma} = 0.0713]$
Data/restraints/parameters	6096/0/380
Goodness-of-fit on F ²	1.030
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0525, wR_2 = 0.1142$
Final R indexes [all data]	$R_1 = 0.0971, wR_2 = 0.1319$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.34

(3) Crystal data and structural refinement for 6c

Procedure for the recrystallisation of **6c**: To a 10 mL tube containing **6c** (20.0 mg) were added CHCl₃ (1.0 mL) and Et₂O (2.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **6c**. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source (K α = 0.71073 Å) at 273.15 K. CCDC 2251807 (**6c** CHCl₃) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	6c CHCl3
Empirical formula	$C_{37}H_{25}Cl_3N_2O_4$
Formula weight	667.94
Temperature/K	273.15
Crystal system	monoclinic
Space group	P21
a/Å	13.2537(4)
b/Å	8.0062(2)
c/Å	15.7406(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	94.6260(10)
$\gamma^{/\circ}$	90
Volume/Å ³	1664.82(8)
Z	2
$\rho_{calc}g/cm^3$	1.332
μ/mm^{-1}	0.318
F(000)	688.0
Crystal size/mm ³	$0.43 \times 0.15 \times 0.13$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.188 to 55.064
Index ranges	$-17 \le h \le 17, -10 \le k \le 10, -19 \le l \le 20$
Reflections collected	35129
Independent reflections	7649 [$R_{int} = 0.0619, R_{sigma} = 0.0484$]
Data/restraints/parameters	7649/13/398
Goodness-of-fit on F ²	1.036
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0667, wR_2 = 0.1763$
Final R indexes [all data]	$R_1 = 0.1003, wR_2 = 0.2034$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.48
Flack parameter	0.05(3)

(4) Crystal data and structural refinement for 9f

Procedure for the recrystallisation of **9f**: To a 10 mL tube containing **9f** (10.0 mg) were added CHCl₃ (1.0 mL) and *n*-hexane (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **9f**. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source (K α = 0.71073 Å) at 302.0 K. CCDC 2251808 (**9f**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	9f
Empirical formula	$C_{32}H_{27}FN_2O_3S$
Formula weight	538.61
Temperature/K	302.0
Crystal system	triclinic
Space group	P1
a/Å	9.2530(5)
b/Å	9.3566(5)
c/Å	9.9037(6)
$\alpha/^{\circ}$	106.668(2)
β/°	101.698(2)
$\gamma/^{\circ}$	117.979(2)
Volume/Å ³	665.24(7)
Z	1
$\rho_{calc}g/cm^3$	1.344
μ/mm^{-1}	0.166
F(000)	282.0
Crystal size/mm ³	$0.41\times 0.25\times 0.17$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.682 to 55.258

Reflections collected 19634 Independent reflections $6078 \ [R_{int} = 0.0484, R_{sigma} = 0.0451]$ Data/restraints/parameters $6078/4/358$ Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] $R_1 = 0.0386, wR_2 = 0.0881$ Final R indexes [all data] $R_1 = 0.0504, wR_2 = 0.0941$ Largest diff. peak/hole / e Å ⁻³ $0.15/-0.19$ Flack parameter $0.01(3)$	Index ranges	$\textbf{-12} \leq h \leq 12, \textbf{-12} \leq k \leq 12, \textbf{-12} \leq l \leq 12$
Independent reflections $6078 \ [R_{int} = 0.0484, R_{sigma} = 0.0451]$ Data/restraints/parameters $6078/4/358$ Goodness-of-fit on F ² 1.038 Final R indexes [I>= 2σ (I)] $R_1 = 0.0386, wR_2 = 0.0881$ Final R indexes [all data] $R_1 = 0.0504, wR_2 = 0.0941$ Largest diff. peak/hole / e Å ⁻³ $0.15/-0.19$ Flack parameter $0.01(3)$	Reflections collected	19634
Data/restraints/parameters $6078/4/358$ Goodness-of-fit on F ² 1.038 Final R indexes [I>= 2σ (I)] $R_1 = 0.0386$, wR ₂ = 0.0881 Final R indexes [all data] $R_1 = 0.0504$, wR ₂ = 0.0941 Largest diff. peak/hole / e Å ⁻³ $0.15/-0.19$ Flack parameter $0.01(3)$	Independent reflections	$6078 [R_{int} = 0.0484, R_{sigma} = 0.0451]$
Goodness-of-fit on F^2 1.038 Final R indexes [I>=2 σ (I)] $R_1 = 0.0386$, $wR_2 = 0.0881$ Final R indexes [all data] $R_1 = 0.0504$, $wR_2 = 0.0941$ Largest diff. peak/hole / e Å ⁻³ 0.15/-0.19 Flack parameter 0.01(3)	Data/restraints/parameters	6078/4/358
Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0386, wR_2 = 0.0881$ Final R indexes [all data] $R_1 = 0.0504, wR_2 = 0.0941$ Largest diff. peak/hole / e Å ⁻³ $0.15/-0.19$ Flack parameter $0.01(3)$	Goodness-of-fit on F ²	1.038
Final R indexes [all data] $R_1 = 0.0504, wR_2 = 0.0941$ Largest diff. peak/hole / e Å ⁻³ $0.15/-0.19$ Flack parameter $0.01(3)$	Final R indexes [I>= 2σ (I)]	$R_1 = 0.0386, wR_2 = 0.0881$
Largest diff. peak/hole / e Å-3 $0.15/-0.19$ Flack parameter $0.01(3)$	Final R indexes [all data]	$R_1 = 0.0504, wR_2 = 0.0941$
Flack parameter0.01(3)	Largest diff. peak/hole / e Å ⁻³	0.15/-0.19
	Flack parameter	0.01(3)

(5) Crystal data and structural refinement for 11g

Procedure for the recrystallisation of **11g**: To a 10 mL tube containing **11g** (15.0 mg) were added CHCl₃ (1.0 mL) and *n*-hexane (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **11g**. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source (K α = 0.71073 Å) at 184.0 K. CCDC 2251809 (**11g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	11g
Empirical formula	$C_{20}H_{20}N_2O_4S_2$
Formula weight	461.08
Temperature/K	184.0
Crystal system	monoclinic
Space group	P21
a/Å	10.1003(4)
b/Å	15.1715(5)
c/Å	13.9176(5)
	S84

α/°	90
β/°	101.792(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2087.68(13)
Z	2
$\rho_{calc}g/cm^3$	1.322
μ/mm^{-1}	0.283
F(000)	868.0
Crystal size/mm ³	$0.38 \times 0.24 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.018 to 55.086
Index ranges	$\text{-}13 \leq h \leq 13, \text{-}19 \leq k \leq 19, \text{-}18 \leq l \leq 18$
Reflections collected	37794
Independent reflections	9567 [R_{int} = 0.0821, R_{sigma} = 0.0654]
Data/restraints/parameters	9567/38/562
Goodness-of-fit on F ²	1.030
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0537, wR_2 = 0.1156$
Final R indexes [all data]	$R_1 = 0.0789, wR_2 = 0.1273$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.53
Flack parameter	-0.01(4)

(6) Crystal data and structural refinement for 21

Procedure for the recrystallisation of **21**: To a 10 mL tube containing **21** (20.0 mg) were added EtOAc (1.0 mL) and *n*-hexane (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside and sealed by a piece of weighing paper with a tiny hole at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **21**. The data were collected by a Bruker APEX-II CCD diffractometer equipped with a Mo radiation source (K α = 0.71073 Å) at 302.0 K. CCDC 2251810 (**21**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	21
Empirical formula	$C_{58}H_{44}N_2O_8S_2$
Formula weight	961.07
Temperature/K	302.0
Crystal system	monoclinic
Space group	C2
a/Å	32.1431(8)
b/Å	7.1890(2)
c/Å	11.8007(3)
a/°	90
β/°	98.963(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2693.57(12)
Z	2
$\rho_{calc}g/cm^3$	1.185
μ/mm^{-1}	0.153
F(000)	1004.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.1$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.81 to 49.998
Index ranges	$-38 \le h \le 38, -8 \le k \le 8, -14 \le l \le 14$
Reflections collected	22880
Independent reflections	$4626 \ [R_{int} = 0.0453, R_{sigma} = 0.0315]$
Data/restraints/parameters	4626/1/317
Goodness-of-fit on F ²	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0425, wR_2 = 0.1046$
Final R indexes [all data]	$R_1 = 0.0554, wR_2 = 0.1151$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.17
Flack parameter	0.07(3)

17. Mechanism studies

(1) Control experiment

To get more insight into the mechanism, some control experiments were carried out. Substrate 1a'' without an electron-withdrawing group showed high reactivity, and it could undergo Friedel–Crafts reaction with 2a in the absence of Pd catalyst. In contrast, 1a was inert without catalysts, while the reaction proceed smoothly under the catalysis of Pd(PPh₃)₄, indicating that there is no background reaction. No reaction occurred with Pd(OAc)₂, demonstrating the importance of Pd⁰. Besides, indole derivative 1a' was applied to the reaction with 2a under the catalysis of Pd(PPh₃)₄, but no Friedel–Crafts product was observed, demonstrating the importance of the conjugated alkyne group. Similar phenomenon was observed for the reaction of 2-alkenyl indole 7a with imine 2a, implying the importance of Pd⁰ and the conjugated alkene group.

1) Control experiment of indole derivetives and enone 2a.

ÇΝ

Βz

Ph

1a'' (8.5 mg, 0.050 mmol) and 2a (11.6 mg, 0.0500 mmol) were dissolved in toluene (0.5 mL), and the mixture was stirred at rt for 48 h. After completion, it was purified by flash chromatography on silica gel (EtOAc/petroleum ether =

1/10) to give product **3a''**: 15.4 mg, 61% yield, colorless oil; 2:1 dr; ¹H NMR

(400 MHz, CDCl₃): δ (ppm) 7.89–7.84 (m, 2H), 7.61–7.51 (m, 5H), 7.36–7.30 (m, 3H), 7.23–7.21 (m, 1H), 7.10–7.01 (m, 3H), 5.89 (d, J = 10.9 Hz, 1H), 5.28 (d, J = 10.9 Hz, 1H), 3.57 (s, 3H), 2.09 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 189.6, 140.0, 136.6, 134.8, 133.9, 128.71, 128.66, 128.6, 128.3, 127.5, 125.8, 123.2, 120.1, 119.7, 119.1, 117.3, 117.0, 109.3, 96.5, 71.6, 43.1, 43.0, 30.4, 4.9; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂N₂ONa⁺ 425.1625, found 425.1632.

S89

(3) NMR experiments

The ¹H NMR analysis showed that 3-H (H¹) of **1a** experienced apparent high-field shifts when $Pd(PPh_3)_4$ was added (6.06 *vs* 6.83 ppm). The possible nucleophilic attack of PPh₃ to electrondeficient **1a** was not observed by mixing **1a** and PPh₃ (**a**). The ¹³C NMR experiments showed that the signals of the triple bond of **1a** disappeared (around 70–80 ppm) after adding Pd(PPh₃)₄, while new peaks were observed at the sp²-carbon region (C² and C³, around 136 ppm); in contrast, C¹ of **1a** experienced significant high-field shifts (105.1 *vs* 112.4 ppm) (**b**). Similarly, the signals of H¹, H², H³, C¹, C² and C³ of **7a** were all high-field shifted in the presence of Pd(PPh₃)₄, according to the NMR

experiments. These results well supported that the proposed complexes **I-1a** and **I-7a** would be formed, and verified the π -Lewis base activation of Pd⁰ through the coordination to the unsaturated group (**c** and **d**).

In contrast, no chemical shifts were observed for substrate 1a' when mixed with Pd(PPh₃)₄ or Pd(allyl)Cp, demonstrating the importance of the conjugated triple or double bond.

Procedure of NMR experiments

An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with **1b** (2.9 mg, 0.010 mmol) or **7a** (2.6 mg, 0.010 mmol) and Pd(PPh₃)₄ (11.5 mg, 0.0100 mmol). The tube was then evacuated and filled with argon. This cycle was repeated five times, and deuterated toluene (0.5 mL) was added via syringe. The resulting solution was stirred at rt for 20 min. The mixture was analyzed by NMR.

An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 1a' (3.8 mg, 0.020 mmol), PPh₃ (10.5 mg, 0.0400 mmol) and Pd(allyl)Cp (4.3 mg, 0.020 mmol). The tube was then evacuated and filled with argon. This cycle was repeated five times, and deuterated toluene (0.5 mL) was added via syringe. The resulting solution was stirred at rt for 1 h. The mixture was analyzed by NMR.

(4) Transformation of η^2 -Pd⁰-unsaturated indole complexes with electrophiles

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with unsaturated indoles **1a** (21.3 mg, 0.100 mmol, 1.0 equiv) or **7a** (26.1 mg, 0.100 mmol, 1.0 equiv), PPh₃ (52.4 mg, 0.200 mmol, 2.0 equiv), Pd(allyl)Cp (21.2 mg, 0.100 mmol, 1.0 equiv). The tube was then evacuated and back-filled three times with argon, and degassed THF (0.5 mL) was added via syringe. The resulting solution was stirred at room temperature for 3 h. After completion, the mixture was concentrated and dried in vacuum to give crude product I-1a or I-7a. Then I-1a and 2a were added to an oven-dried 10 mL Schlenk tube. After the tube was evacuated and back-filled three times with argon, degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at 60 $^{\circ}$ C for 5 h. After completion, the crude product was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give *rac-3a* (29.4 mg, 66% yield, >19:1 dr, >19:1 E/Z). Similarly, I-7a and 8a were added to an oven-dried 10 mL Schlenk tube. After the tube was evacuated and back-filled three times with argon, degassed toluene (0.5 mL) was added via syringe. The resulting solution was stirred at 80 $\,^{\circ}$ C for 12 h. After completion, Et₂O (3 mL) was added and the mixture was stirred 30 min at 0 °C. The precipitates were filtered, and washed with cold Et₂O (3 × 3 mL). The cake was collected and dissolved in DCM. The mixture was filtered again, and washed with DCM (5 \times 5 mL). The filtrate was concentrated to give *rac-9a* (21.8 mg, 42% yield, >19:1 *E/Z*).

(5) DFT calculations

1) Computational details

In this work, all geometry optimizations and single-point energy calculations were carried out using Gaussian 09.¹¹ Geometries of minima and transition states were optimized using the B3LYP functional¹² with basis set 6-31G(d) (SDD for Pd atom) in gas phase. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a

local minimum or a transition state structure, as well as deriving the thermochemical corrections for the enthalpies and free energies. Solvation energy corrections were calculated in 1,4-Dioxane with the continuum solvation model $(SMD)^{13}$ based on the gas-phase optimized geometries. To gain more accurate results, the M06 functional¹⁴ with basis set 6-311++G(d,p) (SDD for Pd atom) was used for solvation single-point energy calculations. The integration grids defined by the 'Int=Ultrafine' keyword were used for all calculations.

2) DFT calculations on the unsaturated indoles and related η^2 -Pd⁰-complexes (The calculations were performed at the B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

To get more insight into the catalytic mechanism, we conducted frontier molecular orbital (FMO) analysis on the Pd⁰ complexes of unsaturated indoles. In comparison with the parent substrate alkyne **1a** (-5.69 eV) or alkene **7a** (-5.46 eV), the HOMO energy of corresponding η^2 -Pd⁰-complex **I-1a** (-4.71 eV) or **I-7a** (-4.62 eV) is apparently raised, respectively, supporting the π -Lewis back donation of Pd⁰ as a Lewis base.

3) Computed energy profiles for the FC step and deprotonation step (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

The electrophilic aromatic substitution contains two steps: 1) FC addition step, and 2) deprotonation/aromatisation. Unon the $Pd^{0}-\pi$ -Lewis base activation, the FC addition step proceeds via (*R*,*S*)-**TS** to generate intermediate (*R*,*S*)-**II**. The energy barrier for (*R*,*S*)-**TS** is 17.4 kcal/mol, which is the highest in the whole process. Thus this is the rate-determining step. The subsequent deprotonation/aromatisation proceeds via an intramolecular 1,5-proton transfer [via (*R*,*S*)-**TS2**] to give aromatic substituted intermediate (*S*)-**III**. The relative free energy of (*R*,*S*)-**TS2** is 2.7 kcal/mol lower than that of (*R*,*S*)-**TS**, indicating that the FC addition step is irreversible. The subsequent Michael addition is not catalysed by Pd. Therefore, the FC addition step is the stereochemistry-determining step for this electrophilic aromatic substitution.

4) Enantioselectivity of the formation of chiral 3a (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

We also investigated the origins of enantioselectivity in the reaction of alkyne **1a** and enone **2a**. The enantiocontrol of this transformation was determined in the FC addition step, in which the first C–C bond was constructed, four transition states were considered. Transition states (R,S)-**TS** and (S,S)-**TS** would lead to product (S,R)-**3a** via (R,S)-**II** and (S,S)-**II**, respectively, and the stereogenic centre at 3-C of indole would disappear through deprotonation/aromatisation. On the other hand, (R,R)-**TS** and (S,R)-**TS** would lead to enantiomer (R,S)-**3a** via similar transformations. Notably, H-bonding interaction between the NH group of **L1** and the carbonyl group of **1a** is observed in (R,S)-**TS** and (R,R)-**TS**, while the other two transition states without H-bonding interaction exhibit higher energies [5.2 kcal/mol for (S,S)-**TS**; 2.9 kcal/mol for (S,R)-**TS**]. The results indicate that the H-

bonding is beneficial for the reaction, which is consistent with the experimental results (Table 1, entry 5 *vs* entry 8). Geometric structure analyses show that the forming C–C bond in (*R*,*R*)-**TS** presents a pseudogauche conformation to avoid the steric repulsion between the ester group of **1a** and the carbonyl of **2a**. As a result, the dihedral angle $D_{C1-C2-C3-H}$ is 45.4° with apparent torsional strain. In contrast, (*R*,*S*)-**TS** possesses smaller torsional strain (referring to the corresponding $D_{C1-C2-C3-H} = 57.4^{\circ}$), thus leading to lower energy [0 kcal/mol for (*R*,*S*)-**TS** *vs* 1.0 kcal/mol for (*R*,*R*)-**TS**]. Therefore, the most favourable transition state (*R*,*S*)-**TS** would afford (*S*,*R*)-**3a** as the major product after annulation, which is consistent with the experimental observation.

5) Hydrogen bonding mode (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

Since the NH group of L1 plays an important role for the enantioselectivity, two H-bonding interaction modes were considered. In the first mode, the NH group in L1 interacts with the ester group of 1a, forming a chiral binding pocket to achieve stereocontrol [(R,S)-TS]. In the second mode, the NH group in L1 interacts with the carbonyl of 2a [(R,S)-TS-II]. According to computational results, the energy of (R,S)-TS-II is 9.2 kcal/mol higher than that of (R,S)-TS, indicating that the first mode is favoured.

6) Thermodynamic stability of several possible stereoselective products (The calculations were performed at the M06/6-311++G(d,p)(SDD for Pd)/SMD//B3LYP/6-31G(d)(SDD for Pd) (298.15K) level of theory)

Since the Pd complex would not be involved in the final annulation process, thermodynamic stability of several possible stereoselective products, including (S,R)-**3b**-(E), (S,R)-**3b**-(Z), (S,S)-**3b**-(E), (S)-**4a**-(E) and (S)-**4a**-(Z), were calculated via DFT studies. Among the three possible formal [3 + 2] products, (S,R)-**3b**-(E) has the lowest energy; on the other hand, (S)-**4a**-(E) possesses lower energy compared with (S)-**4a**-(Z). The results indicates that the two products would be thermodynamically more stable, thus they are obtained as the major products in cascade reactions.

- 424.65 - 424.64 - 424

7) IRC calculations for all transition states

(R,R)-**TS**

(S,R)-**TS**

(R,S)-**TS2**

(7) Proposed mechanism

(a) The reaction of indoles with a 2-alkynyl group

On the basis of the above results and the absolute configuration of enantiopure **3i**, a possible reaction pathway was proposed. Firstly, alkyne **1b** coordinates with Pd(0) to generate HOMO raised η^2 -complex **I**, in which the NH group of **L1** interact with the carbonyl group of **1a** via H-bonding. Then the 3-position of the indole attacks enone **2h** from *Re*-face. The resultant η^3 -complex **II** would undergoes an intramolecular 1,5-proton transfer to giv intermediate **III**, and the hydroxyl group of the enol moiety might interact with the carbonyl of the propiolate group of **III**, thus facilitating the intramolecular Michael reaction to give thermodynamically more stable product **3i** with an *exo-E*-double bond.

Proposed mechanism

(b) The reaction of indoles with a 2-alkenyl group

Similarly, the mechanism for the FC reaction of **7a** was proposed as well. Firstly, alkene **7a** coordinates with Pd(0) to generate HOMO raised η^2 -complex **I'**. Then the 3-position of the indole attacks imine **8a** which is activated by the acid additive from *Si*-face, followed by a β -H elimination or deprotonation process to give final product **9a**.

(8) Influence of ammonium salts

For additive TBAB, we conducted more control experiments to elucidate its role. As shown in the following table, the addition of TBAB significantly imporved the yield (entry 1 *vs* 2). Under the

optimised conditions, TBAC, TBAI and even TBAHS (tetrabutylammonium hydrogen sulfate) all provided comparable results (entries 4–6 *vs* entry 3), while KBr showed much lower reactivity (entry 7). The results indicated the ammonium cation was important to the reactivity, while the counter anion had little effect.

N Bn 1b	CO ₂ Me + 2a	Bz Pd ₂ (dba) ₃ (5 mol%) CN L1 (10 mol%) A (20 mol%) 1,4-Dioxane, 60 °C, 48 h	Ph CN Bz CO ₂ Me
Entry ^a	Α	Yield $(\%)^b$	ee (%) ^c
1	/	3b , 49	92
2	TBAB	3b , 70	91
$3^{d,e}$	TBAB	3b , 86	92
$5^{d,e}$	TBAC	3b , 76	92
$4^{d,e}$	TBAI	3b , 81	91
6 ^{<i>d</i>,<i>e</i>}	TBAHS	3b , 79	90
$7^{d,e}$	KBr	3b , 52	92

^{*a*}Unless noted otherwise, reactions were carried out with **1b** (0.025 mmol), **2a** (0.03 mmol), $Pd_2(dba)_3$ (5 mol%), **L1** (10 mol%) and additive **A** (20 mol%) in solvent (0.25 mL) at 60 °C under Ar. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} *C* = 0.2 M. ^{*e*} The ratio of **1b/2a** was 1/1.3.

Therefore, we speculated that the ammonium salt might facilitate the reaction by stablilising intermeidate **II** as a counterion for the enolate motif after FC addition to acceptor **2**, as outlined in the following scheme.

18. NMR, HRMS spectra and HPLC chromatograms

CYC-220421-23 12 (0.232)

1: TOF MS ES+ 1.38e4

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.190	2.170	25194964	657783056	95.6538
2	16.970	1.920	764296	29887205	4.3462

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.470	2.643	4663761	127889900	82.3282
2	21.420	2.707	620541	27451695	17.6718

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.553	2.473	3107348	77648017	50.4894
2	16.670	2.637	1965246	76142563	49.5106

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.400	3.093	6316741	179639463	97.6855
2	16.890	1.547	109246	4256232	2.3145

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.447	1.913	2541914	93115451	51.6469
2	21.867	3.307	1431065	87176867	48.3531

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.087	3.040	13724743	496471446	96.0521
2	22.107	2.400	352219	20405799	3.9479

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	26.877	6.743	1720277	216448465	50.5905
2	38.040	9.660	1260471	211395288	49.4095

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	24.500	8.080	10668682	1066770812	95.6273
2	37.803	6.267	349035	48779251	4.3727

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.917	1.857	8370363	268723777	50.4536
2	16.767	2.200	7463371	263891976	49.5464

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.850	1.563	24038377	599013966	95.3890
2	16.790	1.080	1114030	28955369	4.6110

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	29.130	2.943	2151178	162161312	48.1460
2	31.820	3.990	2982721	174650024	51.8540

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	27.803	3.337	3173152	225559844	95.1760
2	30.850	1.703	216535	11432497	4.8240

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.100	2.987	7255656	292906758	51.6780
2	22.573	4.160	3934370	273885073	48.3220

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.540	4.093	35980476	1490787818	94.0316
2	23.053	3.147	1498793	94623682	5.9684

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.580	1.600	5492989	153173798	50.8394
2	14.037	2.040	4120141	148115976	49.1606

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.807	2.020	15395999	452310860	93.1072
2	14.740	1.387	985064	33484779	6.8928

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.800	3.153	17351435	670966566	49.9116
2	25.570	4.170	14252623	673342811	50.0884

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.843	2.867	9932096	362098755	95.6293
2	25.717	2.590	357222	16549756	4.3707

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	10.247	2.240	4154975	120554112	51.1625
2	14.110	2.560	3335470	115075891	48.8375

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.747	1.720	26375701	593443940	92.6760
2	13.650	1.280	1810361	46898570	7.3240

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.523	0.670	15600429	147327827	49.8698
2	6.490	0.713	13990158	148097265	50.1302

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.523	0.520	3349990	26433556	6.3092
2	6.467	0.747	38872533	392533493	93.6908

Counts vs. Mass-to-Charge (m/z)

S185

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.433	3.397	10462208	382501506	94.8707
2	17.000	2.383	413924	20680376	5.1293

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	21.617	4.837	5933354	316584930	96.5171
2	26.967	3.653	187267	11424122	3.4829

Page 1 of 1

Generated at 4:54 PM on 7/6/2022

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.653	3.690	3247868	219235294	49.0299
2	18.767	5.547	2735948	227910397	50.9701

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.320	5.437	7686765	533953003	96.1849
2	18.420	3.873	198602	21178873	3.8151

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	10.797	2.137	863508	21285389	50.5921
2	13.060	1.613	686538	20787199	49.4079

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	10.877	1.350	746160	18234744	4.8699
2	13.153	2.543	11176580	356199763	95.1301

S235

100 f1 (ppm)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.390	1.557	5639066	152337813	50.0221
2	14.603	2.160	3856711	152202933	49.9779

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.277	1.973	17699235	530018258	99.1872
2	15.557	1.147	185379	4343132	0.8128

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	19.330	3.383	5209470	268629475	95.3700
2	30.613	5.180	146489	13041364	4.6300

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	10.517	1.703	3617658	95289523	51.5117
2	16.120	2.160	2134571	89696755	48.4883

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	10.420	1.703	241044	6302803	2.9518
2	15.823	2.437	5028017	207223010	97.0482

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.187	1.883	6217001	205089247	49.5989
2	15.430	2.403	5206164	208405889	50.4011

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.197	1.780	57651	1878293	1.6145
2	15.370	2.383	2904245	114463831	98.3855

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	7.390	0.890	4420301	80351244	12.0741
2	18.627	2.987	11874025	585132245	87.9259

S277

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.297	2.453	922603	27319036	50.0964
2	25.233	3.543	434887	27213883	49.9036

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.400	2.217	83826	3716754	0.9574
2	24.473	4.693	5129430	384479094	99.0426

[min] [min] [mA0's] [mA0] %
----|----|-----|------|------|
1 9.450 BV 0.3342 7248.03320 329.00491 48.9734
2 10.633 VB 0.3731 7551.90332 305.28229 51.0266

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.487	3.333	6979236	312816302	50.5441
2	34.407	5.113	3108400	306080935	49.4559

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.210	1.440	20984	850281	0.1545
2	33.570	7.627	5557583	549577262	99.8455

S295

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.960	2.837	6290548	274844169	48.5817
2	26.610	4.320	3902253	290892002	51.4183

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.367	2.507	230225	10180317	6.8558
2	27.173	3.767	1779123	138311245	93.1442

Height Peak No. Ret Time Width Area [%] Area 20.447 3.280 5582775 340881714 51.4650 1 32.257 48.5350 2 7.227 3177083 321474059

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	19.963	2.517	366335	20766529	4.8474
2	31.553	4.933	4280988	407636260	95.1526

542.3 542.4 542.5 542.6 542.7 542.8 542.9 543 543.1 543.2 543.3 543.4 543.5 543.6 543.7 543.8 543.9 544 544.1 544.2 544.3 544.4 544.5 544.6 544.7 544.8 544.9 545 Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.150	1.463	5224330	125892065	93.8284
2	10.657	0.960	337253	8280647	6.1716

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.877	1.680	1699988	59201541	51.9062
2	16.850	1.947	1383275	54853235	48.0938

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.907	1.550	62750	2128894	1.7129
2	16.873	1.947	3058157	122154159	98.2871

S313

 Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.433	2.210	436644	12770825	13.8708
2	21.027	2.723	326034	12600103	13.6854
3	29.890	5.573	394524	33193753	36.0527
4	37.353	7.190	329626	33505312	36.3911

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	29.333	5.333	1352577	114406982	99.4295
2	38.197	2.163	10474	656434	0.5705

-					220101200	
2	12,281	BB	0.4181	98.35177	3.54715	3.2273

S328

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.163	1.213	2600395	63666453	47.8414
2	18.353	2.347	1732438	69411745	52.1586

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.137	1.110	698028	16745391	4.4855
2	17.873	2.740	7293626	356577069	95.5145

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.703	1.510	937768	30939886	48.6280
2	19.340	2.810	870344	32685829	51.3720

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.403	2.058	3525321	136808681	92.8331
2	19.343	2.733	223303	10561952	7.1669

S345

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.660	0.633	511382	5037454	2.9866
2	6.333	0.750	15979081	163631377	97.0134

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.390	0.360	3705253	30571708	50.0149
2	5.733	0.410	3435941	30553461	49.9851

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.353	0.453	21355708	181135446	99.9939
2	5.687	0.083	0	11068	0.0061

Generated at 7:49 PM on 11/18/2022

19. Computational details

Geometry	$E_{(\text{elec-B3})}^{1}$	$G_{(\text{corr-B3})}^2$	$H_{(\text{corr-B3})}^3$	$E_{(m solv, M06)}^4$	IF^5
(<i>R</i> , <i>S</i>)-TS	-4224.837456	1.057278	1.253668	-4223.320381	326.35i
(<i>R</i> , <i>R</i>)-TS	-4224.833453	1.056277	1.253795	-4223.317726	313.95i
(<i>S</i> , <i>R</i>)-TS	-4224.819943	1.055002	1.253119	-4223.313514	227.69i
(<i>S</i> , <i>S</i>)-TS	-4224.815116	1.055172	1.253309	-4223.310020	269.03i
(<i>R</i> , <i>S</i>)-TS-II	-4224.822610	1.054981	1.253520	-4223.303477	341.04i
(<i>R</i> , <i>S</i>)-TS2	-4224.836034	1.055585	1.251349	-4223.323011	218.11 <i>i</i>
Ι	-3478.600656	0.850089	1.012213	-3477.407463	-
(<i>R</i> , <i>S</i>)-II	-4224.839988	1.059184	1.255204	-4223.328724	-
(S)-III	-4224.867259	1.058267	1.255826	-4223.356108	-
2a	-746.260011	0.180539	0.240081	-745.918135	-
(S, R)-3b-(E)	-1684.500785	0.452774	0.556429	-1683.772500	-
(S,R)-3b-(Z)	-1684.492408	0.451968	0.556531	-1683.761263	-
(S,S)-3b-(E)	-1684.495472	0.453354	0.556316	-1683.769379	-
(S)-4a-(E)	-1790.450200	0.379823	0.479381	-1789.827674	-
(S)-4a-(Z)	-1790.448115	0.379014	0.479535	-1789.826573	-

1) Absolute Calculation Energies, Enthalpies, and Free Energies

¹The electronic energy calculated by B3LYP in gas phase. ²The thermal correction to Gibbs free energy calculated by B3LYP in gas phase. ³The thermal correction to enthalpy calculated by B3LYP in gas phase. ⁴The electronic energy calculated by M06 in 1,4-Dioxane solvent. ⁵The B3LYP calculated imaginary frequencies for the transition states.

2) Geometries for All Optimized Structures

\bigcap	CO_2M	Ле		С	-3.74720300	-1.51224600	-0.00002500
\checkmark	N. Me			Ν	-0.98851000	0.79083400	0.00004500
С	-4.85066500	-0.67407700	-0.00001300	С	-0.25916800	-0.40538100	0.00000000
С	-4.69908000	0.73179300	0.00002500	С	-1.13888700	-1.47707800	0.00001400
С	-3.44450300	1.32628400	0.00005200	С	-0.43724700	2.13231600	-0.00009700
С	-2.32717400	0.47816900	0.00003700	С	1.14628300	-0.42362000	-0.00002200
С	-2.45800500	-0.94290800	-0.00000400	С	2.36322500	-0.42533200	-0.00002700

С	3.79930500	-0.51669000	-0.00001200	Н	-8.7886
0	4.42542000	-1.55813000	-0.00001000	Н	-6.7344
0	4.36430900	0.71345500	0.00001700	Н	-6.4708
С	5.80138700	0.71563400	0.00003700	Н	-3.5116
Н	-5.85048100	-1.09887800	-0.00003400	Н	-4.5831
Н	-5.58490300	1.36095200	0.00003300	Н	-3.7932
Н	-3.33649100	2.40682500	0.00009000	Н	-2.8571
Н	-3.86917700	-2.59204700	-0.00003400	Н	-0.0146
Н	-0.84575100	-2.51738300	0.00001300	Н	-0.6412
Н	-0.75767300	2.68330500	-0.89181500	Н	1.0453
Н	-0.75810700	2.68363800	0.89125900	Pd	0.0286
Н	0.65165200	2.06496300	0.00019400	Р	-0.4099
Н	6.08858700	1.76748400	0.00002100	Р	2.40934
Н	6.18722200	0.21077700	0.88983000	С	0.88722
Н	6.18724600	0.21074200	-0.88972600	C	0.93878
	Ph ₃ P PPh ₃			C	1.88175
		Me		C	1.94781
	ме			Н	0.1843′
С	-7.74531400	0.34814600	0.37927500	С	2.88419
С	-7.81619300	1.69973100	-0.02150300	Н	1.87110
С	-6.66687500	2.45734800	-0.21808700	С	2.92009
С	-5 12987500	1 83191/00	-0.00828100		

С	-6.66687500	2.45734800	-0.21808700
С	-5.42987500	1.83191400	-0.00828100
С	-5.33805500	0.47024300	0.40385700
С	-6.52068000	-0.26909100	0.59303800
N	-4.15033600	2.32906400	-0.13510600
С	-3.23768700	1.31618000	0.20935100
С	-3.95009300	0.17347500	0.52869900
С	-3.82602000	3.69099600	-0.50824300
С	-1.82103600	1.53389200	0.21473300
С	-0.86701000	2.39695100	0.22406600
С	-0.46182400	3.78441000	0.37334400
0	-0.19525900	4.33832800	1.42438600
0	-0.39792400	4.41774800	-0.83033200
С	0.02622800	5.78943000	-0.77674400
н	-8.66514800	-0.21228800	0.52419200

Н	-8.78865100	2.16020100	-0.17499500
Н	-6.73446200	3.49986900	-0.51525000
Н	-6.47083000	-1.30964500	0.90402500
Н	-3.51163500	-0.77013700	0.81519500
Н	-4.58317700	4.06288900	-1.20434800
Н	-3.79328200	4.35699200	0.36437800
Н	-2.85710600	3.71894000	-1.00777600
Н	-0.01466100	6.14557100	-1.80706400
Н	-0.64120700	6.37745000	-0.14035600
Н	1.04536000	5.85867200	-0.38816900
Pd	0.02868900	0.52794000	0.14339500
Р	-0.40991000	-1.82034300	-0.02219200
Р	2.40934600	0.73196500	0.05543200
С	0.88722400	-3.03707400	-0.55992100
С	0.93878500	-3.51776100	-1.87718800
С	1.88175700	-3.45186300	0.34277700
С	1.94781200	-4.39676000	-2.27664500
Н	0.18437900	-3.21438600	-2.59553800
С	2.88419600	-4.33628200	-0.05571300
Н	1.87110300	-3.09447300	1.36727700
С	2.92009400	-4.81409800	-1.36755700
Н	1.96576400	-4.75999100	-3.30088000
Н	3.63610000	-4.65243200	0.66286300
Н	3.69910200	-5.50587200	-1.67728300
С	-1.77012100	-2.17378300	-1.23187600
С	-2.59629200	-3.30546500	-1.15660200
С	-1.95699400	-1.27017100	-2.28895300
С	-3.58415900	-3.52676700	-2.11713000
Н	-2.48135200	-4.01228900	-0.34121700
С	-2.93622500	-1.49953700	-3.25732400
Н	-1.34295400	-0.37483500	-2.33733600
С	-3.75374400	-2.62716100	-3.17191500
Н	-4.22333600	-4.40245900	-2.03928100
Н	-3.06966300	-0.78754100	-4.06741200
Н	-4.52559700	-2.80003200	-3.91713300

С	-0.99650700	-2.55996800	1.57357400
С	-1.46563200	-1.69061700	2.57198500
С	-0.99741100	-3.94226900	1.83048200
С	-1.94173800	-2.18979800	3.78674100
Н	-1.45472500	-0.61897400	2.39204500
С	-1.47115900	-4.43932500	3.04533100
Н	-0.61156500	-4.63307000	1.08705800
С	-1.94713400	-3.56460100	4.02527100
Н	-2.30377000	-1.50083400	4.54508600
Н	-1.46485500	-5.51095600	3.22716300
Н	-2.31409400	-3.95367200	4.97138700
С	3.08753200	-0.01803500	-1.49184500
С	2.50659200	0.40362800	-2.70236600
С	4.09861300	-0.98647600	-1.53279800
С	2.94807300	-0.10917200	-3.92110800
Н	1.70504500	1.13849800	-2.68576200
С	4.52998500	-1.50979000	-2.75513900
Н	4.54637900	-1.34637600	-0.61312800
С	3.96366200	-1.06901000	-3.95066800
Н	2.49425700	0.23555700	-4.84668600
Н	5.31080000	-2.26560700	-2.76736500
Н	4.30441100	-1.47455300	-4.89969100
С	3.36311600	-0.01363400	1.45727000
С	4.75887900	0.10682900	1.56967900
С	2.65755000	-0.65396700	2.48589700
С	5.43163400	-0.43133600	2.66647600
Н	5.32036000	0.63611900	0.80497800
С	3.33017600	-1.18506500	3.58998800
Н	1.57489200	-0.72162300	2.42406300
С	4.71852100	-1.08092900	3.67823500
Η	6.51177300	-0.33325300	2.73769100
Η	2.76615300	-1.67225500	4.38102600
Η	5.24360400	-1.49175800	4.53658400
С	3.15979400	2.42982700	0.03901300
С	4.10736600	2.85361100	-0.90497200

С	2.77564800	3.31653200	1.05761900
С	4.66009400	4.13473100	-0.82780000
Н	4.41858300	2.18719700	-1.70276200
С	3.33408300	4.59258400	1.13689600
Н	2.02499900	3.01921100	1.78331100
С	4.27908400	5.00566200	0.19398000
Н	5.39292300	4.44776400	-1.56730700
Н	3.01777700	5.26417700	1.93007400
Н	4.71255700	6.00069200	0.25368900

С	5.51990800	-1.72125200	-0.09706700
С	5.91519800	-0.36622800	-0.01510800
С	4.98270900	0.66061900	0.04374300
С	3.62397100	0.31081500	0.02119400
С	3.20616600	-1.05224300	-0.06421200
С	4.18009200	-2.07036700	-0.12228800
Ν	2.49437600	1.09957700	0.06991200
С	1.36428300	0.27456100	0.00854100
С	1.78631600	-1.04579900	-0.07067400
С	2.47568500	2.54997500	0.14389900
С	0.03532300	0.82678100	0.02769000
С	-1.12807800	0.13590200	-0.01420700
С	-2.41393900	0.86567300	-0.00435000
С	-6.18397900	-1.22365200	0.00673700
С	-5.01156800	-1.94346400	0.24304100
С	-3.77713700	-1.29288700	0.23823700
С	-3.70049200	0.08904900	0.00278500
С	-4.88900800	0.80360600	-0.22218900
С	-6.11939900	0.15387900	-0.22566300
0	-2.44461800	2.09776900	-0.01508900
Н	6.28164700	-2.49451200	-0.14165000
Н	6.97373100	-0.12170000	0.00053900
Н	5.30734900	1.69517700	0.10176800

9500	С	-3.44396500	-2.49018000	-3.55631600
1700	С	-4.71395500	-3.03438500	-3.72192100
500	0	-0.93946300	-1.40841400	-3.24261500
000	Н	5.00196100	-4.77592400	3.90421900
200	Н	6.63483900	-4.40802200	2.07851900
/3200	Н	5.92407700	-3.45305500	-0.09385100
9200	Н	2.60621800	-4.20729800	3.59811200
8800	Н	0.68388000	-3.06604800	1.57143100
2800	Н	4.84889200	-2.14587200	-1.67793100
5800 2400	Н	3.83901300	-3.39772900	-2.44329600
2400	Н	3.29700600	-1.70175200	-2.38113400
	Н	1.23159900	-1.75914600	-2.16271300
	Н	-0.88814100	-2.95801700	-0.31076800
900	Н	-6.30316900	-4.17287600	-2.80351700
000	Н	-5.09054800	-4.44444500	-0.64779900
400	Н	-2.85425300	-3.48563300	-0.35153400
400	Н	-2.95947300	-1.93967900	-4.35552700
800	Н	-5.23907600	-2.90789600	-4.66530200
600	Pd	-0.07767400	-0.26442900	-0.25158300
2600	Р	-1.91287900	0.47299500	1.07507300
9400	Р	1.52826100	1.45443700	-0.68073700
900	С	-1.52320600	1.12864300	2.76780000
3000	С	-2.50627400	1.28654200	3.76117600
3500	С	-0.19306000	1.43780800	3.08717800
9500	С	-2.16930000	1.77283200	5.02443900
9400	Н	-3.53647800	1.01288700	3.55229800
5600	С	0.14573300	1.92135000	4.35391800
8000	Н	0.58426700	1.28002600	2.34668500
2000	С	-0.84236000	2.09551300	5.32275400
7700	Н	-2.94209800	1.89082700	5.77970400

Η	3.87771300	-3.11229500	-0.18679500
Η	1.13645100	-1.90829300	-0.12791700
Н	3.49290200	2.91024000	0.30040600
Н	2.08804000	2.99451600	-0.77998000
Н	1.86251700	2.89027400	0.98426600
Н	-0.06580700	1.90898800	0.07654200
Н	-1.12660600	-0.94673900	-0.07573200
Η	-7.14426200	-1.73267900	0.00629200
Η	-5.05689300	-3.01241200	0.43308800
Η	-2.88096700	-1.87063000	0.43902800
Η	-4.81578100	1.87265500	-0.39165800
Η	-7.03003200	0.71841100	-0.40752400
Ph _e F	PPh _o		

С	4.66167800	-4.35282100	2.96269900
С	5.59248200	-4.14237700	1.92415000
С	5.20033600	-3.60411400	0.70167400
С	3.85021400	-3.27198700	0.53857400
С	2.89099300	-3.49176200	1.57007800
С	3.31972300	-4.03460400	2.79603600
N	3.19406600	-2.71395000	-0.54462600
С	1.83316600	-2.59988400	-0.23959400
С	1.63259200	-3.06470600	1.05287900
С	3.82141200	-2.48426100	-1.83403000
С	0.86867800	-2.03662900	-1.17963500
С	-0.52169900	-2.28643200	-1.07849500
С	-1.36027300	-2.05306300	-2.27109400
С	-5.31174000	-3.74525300	-2.67665600
С	-4.63030700	-3.90248600	-1.46908000
С	-3.35505600	-3.35953400	-1.30442000
С	-2.74430200	-2.64631100	-2.34727700

Н	1.18390900	2.14952200	4.57960800	Η	3.18308100	3.79038200	0.30324600	
Н	-0.58107700	2.46815000	6.30973400	С	4.84040800	1.87410400	2.57446800	
С	-3.17644800	-0.80825900	1.53304100	Н	4.50385300	-0.23701800	2.89145800	
С	-4.53836000	-0.70781000	1.22061300	Н	4.93847900	3.96094400	2.03316200	
С	-2.72772500	-1.94063400	2.23612100	Н	5.61286900	1.95196200	3.33520100	
С	-5.43196000	-1.71076400	1.61024500	С	0.91481100	3.18755200	-0.94076600	
Н	-4.90845500	0.15411700	0.67491700	С	1.14317600	3.90814300	-2.12277700	
С	-3.62001000	-2.93577600	2.63140700	С	0.16785700	3.79782400	0.08158100	
Н	-1.67259400	-2.03618200	2.48271800	C	0.63924200	5.20269800	-2.27655000	
С	-4.97893500	-2.82278800	2.31918500	Н	1.71658100	3.46355000	-2.92875900	
Н	-6.48516300	-1.61614400	1.35884500	С	-0.32460500	5.09302200	-0.06873500	
Н	-3.25613100	-3.79916200	3.18265900	Н	-0.02957500	3.26079400	1.00412000	
Н	-5.67629300	-3.59751800	2.62698300	С	-0.09301300	5.80007800	-1.25122000	
С	-2.92655800	1.78757100	0.25766200	Н	0.82541000	5.74270300	-3.20142300	
С	-3.04839500	1.71248000	-1.14091000	Н	-0.89971800	5.54468800	0.73496300	
С	-3.55934100	2.84100200	0.93435200	Н	-0.48370300	6.80704600	-1.37195600	
С	-3.80260500	2.65500300	-1.84049900	С	2.50286700	1.16207600	-2.23123600	
Н	-2.53974700	0.91920900	-1.68309600	С	3.86615600	1.47349900	-2.35271100	
С	-4.30336100	3.79061300	0.23042300	С	1.83153700	0.60932000	-3.33660100	
Н	-3.46702100	2.93119900	2.01173500	С	4.54368900	1.23852100	-3.55165100	
С	-4.43078000	3.69785200	-1.15653700	Н	4.40413100	1.89774700	-1.51083400	
Н	-3.88726300	2.57965100	-2.92122000	С	2.51007700	0.38693400	-4.53723000	
Н	-4.78357300	4.60362800	0.76921300	Н	0.78578200	0.32266800	-3.25562100	
Н	-5.01021900	4.43801700	-1.70211800	С	3.86759000	0.69829800	-4.64756500	
С	2.84067500	1.67753000	0.60742700	Н	5.60075400	1.48086400	-3.62765600	
С	3.22177800	0.55116600	1.35627400	Н	1.97551200	-0.04381800	-5.37962300	
С	3.47017600	2.90633700	0.86453100	Н	4.39640500	0.51624600	-5.57961100	
С	4.21977900	0.64751500	2.32800500	(R ,	5) -TS			
Н	2.72887400	-0.40191500	1.18612000	С	-3.50881400	-5.76381000	-2.78380100	
С	4.46174700	3.00258100	1.84326500	С	-3.16783100	-6.03820200	-1.31323300	

С	-3.71192800	-4.92188400	-0.41325200	Н	-3.08101800	-6.53782100	-3.43254700
С	-3.19639800	-3.53199300	-0.83770300	Н	-2.07613200	-6.10554200	-1.19786100
С	-3.51315400	-3.24877800	-2.32030700	Н	-3.57541100	-7.00679000	-0.99906000
С	-2.99599900	-4.38511000	-3.22134000	Н	-3.43277000	-5.08790700	0.63268000
N	-3.78386400	-2.48849100	0.00234300	Н	-4.81066700	-4.91420600	-0.45546100
N	-2.95018200	-1.98645700	-2.80214000	Н	-2.10801300	-3.50261500	-0.70284000
С	-3.22847700	-2.15492100	1.19468900	Н	-4.60365400	-3.16947700	-2.42660300
0	-2.23020400	-2.71949500	1.65628100	Н	-3.28556100	-4.17321900	-4.25755900
С	-3.54397300	-0.78025100	-2.64889000	Н	-1.89634400	-4.38039200	-3.19425200
0	-4.56059400	-0.59002600	-1.96604800	С	-6.23150600	3.67842100	0.27208500
Н	-4.38533400	-1.80656900	-0.46332300	С	-6.15536100	3.08036700	-0.98564200
Н	-2.00484600	-1.99584100	-3.18909800	С	-4.95680200	2.51789700	-1.42991600
С	-5.46039000	0.68099200	3.54279600	С	-3.81521700	2.54186200	-0.61616300
С	-4.07724100	0.83355700	3.42119500	С	-3.90545900	3.13443800	0.65478300
С	-3.30442400	-0.05102300	2.65683600	С	-5.10089900	3.70412000	1.09136900
С	-3.97030300	-1.10243400	1.98007800	Н	-7.16422200	4.12044100	0.61263500
С	-5.35895200	-1.23999200	2.10146900	Н	-7.02983100	3.05023000	-1.63028200
С	-6.10655900	-0.35892900	2.88218400	Н	-4.92128300	2.04878000	-2.40495800
Н	-6.02547200	1.38221100	4.15088700	Н	-3.03584100	3.16924700	1.30344500
Н	-3.59994400	1.66483900	3.92602400	Н	-5.14687500	4.16683400	2.07370000
Р	-1.48335400	0.23641100	2.39663500	С	0.69563500	5.50208300	-1.13948000
Н	-5.84993600	-2.06120400	1.58839800	С	1.19629800	4.19845800	-1.12305200
Н	-7.18188500	-0.48696500	2.96862700	С	0.31444200	3.11552100	-1.12798800
С	-2.12986800	2.32399000	-5.27363800	С	-1.07742600	3.31567000	-1.14724000
С	-2.02547000	2.51456300	-3.89491300	С	-1.56719500	4.63278700	-1.16771000
С	-2.43762000	1.53310700	-2.97782100	С	-0.68519400	5.71593800	-1.16407400
С	-2.95516000	0.32437100	-3.49514400	Н	1.37727800	6.34885300	-1.13086100
С	-3.03702600	0.13388900	-4.88219300	Н	2.26265700	3.99506600	-1.08672800
С	-2.63658900	1.12663900	-5.77402700	Н	0.72742300	2.11271200	-1.10189300
Η	-1.81107900	3.11338100	-5.94907800	Н	-2.63654000	4.81662700	-1.18372200
Η	-1.61167300	3.44657400	-3.52948700	Н	-1.08125300	6.72831600	-1.17858100
Р	-2.19080900	1.82676900	-1.14639200	С	0.72098200	-2.43886700	5.51095100
Η	-3.43112600	-0.80570700	-5.25787500	С	1.42487800	-1.56121700	4.68310200
Η	-2.71945000	0.96296900	-6.84493500	С	0.74162900	-0.79403700	3.73888000
Н	-4.59921600	-5.80867700	-2.91923700	С	-0.65208100	-0.89224000	3.60929100

С	-1.34978600	-1.77641000	4.44191100	Η	6.44323300	-2.28951600	3.77210600
С	-0.66547900	-2.54344000	5.38727300	Н	5.15000100	-4.38296500	4.04185100
Н	1.25100100	-3.03683600	6.24770000	Н	3.01216800	-4.72226300	2.82060600
Н	2.50444400	-1.47610800	4.76483100	Н	5.65505600	-0.49722700	2.24585200
Н	1.29928100	-0.10957100	3.10468600	Н	3.08889900	0.30554100	0.74126300
Н	-2.42506800	-1.87600800	4.34934400	Н	1.14510300	-4.45334000	0.29975900
Н	-1.22085600	-3.22469200	6.02698800	Н	0.87218100	-4.20064700	2.04748100
С	-0.44008500	4.27185600	4.50573600	Н	-0.04653300	-3.24312500	0.88320000
С	-0.90226100	3.19378100	5.26738100	Н	2.06440500	1.10942100	-4.97557300
С	-1.22943200	1.98773000	4.64969900	Н	1.77111300	-0.64923200	-5.17590600
С	-1.11951300	1.84358500	3.25391200	Н	0.39829300	0.49161300	-5.24168100
С	-0.63643400	2.92536400	2.50572600	С	4.12381200	-0.68726800	-0.97292700
С	-0.30109300	4.13325400	3.12573000	С	5.21250900	0.25605000	-0.78814800
Η	-0.17713300	5.20811100	4.99093700	С	4.83648700	1.64545500	-0.65709900
Н	-0.99575500	3.28852600	6.34608900	0	3.62693600	1.96452800	-0.55214400
Н	-1.55688300	1.14903400	5.25726300	С	4.36015500	-2.07762900	-1.47908700
Н	-0.50066600	2.82011100	1.43537400	С	5.29715700	-2.96683800	-0.92483900
Н	0.07622200	4.95467900	2.52314200	С	5.45695500	-4.24977100	-1.44981700
Pd	-0.91750100	0.15207500	0.05165100	С	4.68964300	-4.67534000	-2.53579500
С	5.51218300	-2.41709700	3.22756100	С	3.75691300	-3.80286600	-3.09909800
С	4.77883800	-3.60469300	3.38099300	С	3.59548200	-2.52180900	-2.57177600
С	3.57757700	-3.80409800	2.69886300	С	6.54593100	-0.17594200	-0.58953900
С	3.14040400	-2.77490600	1.86702300	Ν	7.64486800	-0.54106000	-0.42013100
С	3.87403200	-1.58451400	1.67732700	С	5.86161300	2.74542900	-0.60742000
С	5.07044600	-1.40200300	2.37594700	С	5.55561200	3.88815400	0.14936700
Ν	1.95769300	-2.68741600	1.11529800	С	6.44060400	4.96210600	0.20826900
С	1.92850000	-1.50454100	0.45375300	С	7.63945600	4.92012000	-0.50933700
С	3.16541300	-0.77908300	0.67410300	С	7.94409700	3.79766000	-1.28122600
С	0.92161700	-3.70984500	1.07343600	С	7.06444000	2.71492900	-1.32839700
С	0.83840600	-1.03633800	-0.31541600	Н	3.30682600	-0.19914800	-1.50053400
С	0.31433300	-0.65073700	-1.41789600	Н	5.90956400	-2.65907600	-0.08711400
С	0.41839300	-0.71345000	-2.86834300	Н	6.19091200	-4.91760800	-1.00663900
0	-0.18186000	-1.50309800	-3.58773500	Н	4.82113700	-5.67497700	-2.94205500
0	1.24680000	0.22893900	-3.35230300	Н	3.15649600	-4.11477200	-3.94998300
С	1.37081600	0.29051700	-4.78711900	Н	2.88045100	-1.84226700	-3.02464100

Н	4.61399400	3.91285200	0.68872100	С	-2.04212700	4.11530600	3.13969200
Н	6.19626700	5.83355900	0.81085600	С	-2.08915900	3.94638700	4.52176100
Н	8.33029800	5.75858000	-0.46868300	Н	-2.44572400	2.53777400	6.11731200
Н	8.86954500	3.76187600	-1.85000100	Н	-2.88588700	0.65670700	4.61110500
Н	7.31352600	1.85124500	-1.93442300	Р	-2.87911200	0.28961200	1.68350700
(R , I	R)-TS			Н	-1.79534600	5.08561600	2.71950600
С	0.38940800	6.24071600	-2.24605900	Н	-1.88192300	4.78515500	5.18044700
С	0.58595900	5.24081700	-3.39302000	Н	-0.46791400	6.89115900	-2.47307300
С	-0.60697600	4.28134200	-3.48693700	Н	1.26300100	6.89672300	-2.14930600
С	-0.85731700	3.53893500	-2.15897800	Н	1.50801000	4.66623300	-3.22242700
С	-1.03973400	4.53082400	-0.99236700	Н	0.71883300	5.76933800	-4.34492500
С	0.14265500	5.51427900	-0.91695500	Н	-0.45172100	3.53645300	-4.27452000
N	-2.03507700	2.67531900	-2.26722100	Н	-1.51514400	4.84321800	-3.74919400
N	-1.17687500	3.87586900	0.30896100	Н	0.00954900	2.90386700	-1.93963100
С	-1.93911800	1.43176800	-2.79705000	Н	-1.96868100	5.09174300	-1.16372600
0	-0.88513200	0.96530600	-3.24506400	Н	-0.04769900	6.23258900	-0.11061200
С	-2.34122700	3.39343300	0.79630100	Н	1.04632500	4.95520200	-0.63355300
0	-3.39407800	3.32217000	0.14429500	С	-7.42598800	0.40199500	0.64736000
Н	-2.82368100	2.89126000	-1.65394400	С	-6.85020400	1.47678700	1.32512700
Н	-0.33052900	3.66513400	0.84456100	С	-5.48947800	1.46776200	1.63752300
С	-5.61445700	-0.71797400	-3.41131300	С	-4.68248700	0.38136200	1.27036300
С	-4.52494900	-1.37628800	-2.83542200	С	-5.26866700	-0.68993000	0.57690600
С	-3.31683500	-0.71314100	-2.58117900	С	-6.63018100	-0.68302300	0.27475300
С	-3.22994700	0.66134000	-2.91196900	Н	-8.48631900	0.41013400	0.40878900
С	-4.33347500	1.31569300	-3.47284400	Н	-7.45872000	2.32935600	1.61480800
С	-5.52329400	0.63387700	-3.72751300	Η	-5.05875000	2.31516100	2.15600500
Н	-6.53222700	-1.26732800	-3.60353200	Η	-4.66655000	-1.54363400	0.28288100
Н	-4.62913400	-2.42277100	-2.57384200	Η	-7.06582700	-1.52485600	-0.25655100
Р	-1.91839900	-1.55791200	-1.68391000	С	-2.65722400	-3.19560300	4.79665100
Н	-4.24309400	2.36665100	-3.73017900	С	-1.50009300	-2.67389000	4.21286200
Н	-6.36590300	1.15707400	-4.17078100	С	-1.58928100	-1.63592500	3.28473900
С	-2.40115400	2.69306800	5.04266500	С	-2.83767600	-1.09515100	2.92793400
С	-2.65723600	1.62459400	4.18183700	С	-3.99252400	-1.62060600	3.52834900
С	-2.62222900	1.77582800	2.78567700	С	-3.90164600	-2.66519500	4.45246000
С	-2.31281300	3.05240600	2.26730800	Н	-2.58894100	-4.00871900	5.51447600

Η	-0.52550400	-3.07912900	4.47175700	С	2.94537000	-1.83863800	0.14166300
Н	-0.68517700	-1.24452200	2.82787900	С	2.32450300	0.65126600	-2.51584500
Н	-4.96747800	-1.21796700	3.27571600	С	1.07139300	-0.10336700	0.11546700
Н	-4.80764400	-3.06072300	4.90431800	C	0.59064500	0.60999100	1.06578400
С	0.94384700	-3.19661700	-4.97374500	С	1.00883600	1.56621100	2.08573300
С	1.19247500	-3.42764200	-3.61894800	0	0.87546800	2.77841100	2.01804700
С	0.33608000	-2.89795200	-2.65321500	0	1.53437600	0.95323600	3.16625200
С	-0.77876400	-2.13253800	-3.02650800	С	2.04392500	1.83616100	4.18485400
С	-1.01819400	-1.90230000	-4.38718700	Н	5.87845400	-4.57938600	-2.42311900
С	-0.16123100	-2.43335900	-5.35363800	Н	5.76551900	-2.89766600	-4.23387900
Η	1.61064300	-3.60659000	-5.72768800	Н	4.32692100	-0.88818500	-4.01629700
Η	2.05662400	-4.00894500	-3.31104100	Н	4.61087100	-4.24973900	-0.30860200
Η	0.53717300	-3.08607300	-1.60158700	Н	2.39239400	-2.50133800	0.79935000
Η	-1.86549900	-1.30052100	-4.69531200	Н	2.61221200	0.45509700	-3.54913700
Η	-0.35926800	-2.24537900	-6.40585300	Н	1.24337900	0.80251100	-2.48209000
С	-3.57751600	-5.73690800	-0.40165600	Н	2.84318900	1.54080400	-2.14307500
С	-3.39537900	-5.45188600	-1.75843400	Н	2.43295100	1.18092100	4.96442600
С	-2.90897500	-4.20689600	-2.15501400	Н	2.84047000	2.45859100	3.77074100
С	-2.61048200	-3.21549700	-1.20171600	Н	1.24375900	2.47051500	4.57393600
С	-2.78063200	-3.52185400	0.15508400	C	4.07773200	-1.02172700	1.40960700
С	-3.26398800	-4.77182600	0.55418800	C	5.12064400	-0.19422700	0.81903700
Η	-3.94993600	-6.71074000	-0.09482400	C	4.75593600	1.16670100	0.50791600
Η	-3.62240400	-6.20452000	-2.50898800	0	3.55889800	1.53551300	0.59308200
Η	-2.74727700	-4.00913600	-3.21056300	C	4.38384000	-2.14134800	2.36861900
Η	-2.51755900	-2.78654200	0.90680800	C	5.43257300	-3.06491200	2.22284400
Η	-3.38455100	-4.98443900	1.61286700	C	5.62419500	-4.07656400	3.16680000
Pd	-1.06900900	-0.22020400	0.14372400	C	4.77799400	-4.19256700	4.27047900
С	5.25192200	-3.70090100	-2.29989300	С	3.73151800	-3.28133600	4.42792600
С	5.18551300	-2.74973400	-3.32749900	C	3.53760300	-2.27224200	3.48566900
С	4.38104600	-1.61413200	-3.21208500	C	6.37367800	-0.73404200	0.44547100
С	3.65340700	-1.46786500	-2.03387800	Ν	7.40256800	-1.19948900	0.13702800
С	3.74302000	-2.38653900	-0.97019100	С	5.76739800	2.19572600	0.06677300
С	4.53983500	-3.52213600	-1.11087100	C	5.29081400	3.28831900	-0.67678900
N	2.68942900	-0.49483900	-1.69551100	C	6.14945200	4.30186200	-1.09468800
С	2.19142800	-0.74655400	-0.46909800	С	7.50413600	4.25460300	-0.75428500

С	7.98488500	3.19009600	0.00938100	Η	5.83640400	1.95477700	-0.63135200
С	7.12607500	2.16783400	0.41740600	Р	3.42402600	0.33921700	-1.22251900
Н	3.32400800	-0.36730900	1.83914900	Н	5.28421500	-1.10366400	3.20524900
Н	6.11460800	-2.98765200	1.38593900	Н	7.11385800	0.57096100	3.21879100
Н	6.44756600	-4.77435600	3.03725200	С	-3.24878000	2.16595700	2.71827300
Н	4.93490200	-4.98078200	5.00225900	С	-2.09280700	2.41672900	1.97335800
Н	3.06936000	-3.35210400	5.28759700	С	-0.92882500	1.65388500	2.14095700
Н	2.72471700	-1.56082200	3.61467900	С	-0.96357100	0.59067100	3.07688400
Н	4.23025500	3.33021300	-0.90237800	С	-2.12819300	0.34567200	3.81626300
Н	5.76307300	5.13329900	-1.67946200	С	-3.26785400	1.13330800	3.64974600
Н	8.17737200	5.04565200	-1.07524500	Н	-4.13123900	2.77502200	2.54634600
Н	9.03338300	3.15245300	0.29327600	Н	-2.12343800	3.20047500	1.22821500
Н	7.52049800	1.35528800	1.01507500	Р	0.56219100	1.98673900	1.06548700
(S, F	R)-TS			Н	-2.13155900	-0.46114500	4.54407200
С	1.01226800	-5.04832600	4.65364200	Н	-4.15934200	0.93001300	4.23598200
С	2.02789300	-5.41186900	3.56346100	Н	1.54741400	-4.77328100	5.57370200
С	2.87163800	-4.18915400	3.18597800	Н	0.38119200	-5.90954500	4.90456500
С	2.00916200	-2.99478200	2.72575000	Н	1.49692400	-5.78545800	2.67544900
С	0.93795700	-2.64009100	3.78122700	Н	2.67834800	-6.22709000	3.90243200
С	0.12687700	-3.87678700	4.20936200	Н	3.57626700	-4.42835500	2.38305300
N	2.86090100	-1.83210700	2.47685400	Н	3.46713200	-3.87176100	4.05404500
N	-0.00203500	-1.61174400	3.32441600	Н	1.50792000	-3.26217600	1.78676100
С	3.54823000	-1.68978800	1.31140700	Н	1.45194300	-2.22814500	4.66005100
0	3.48444700	-2.49760200	0.38253400	Н	-0.56429900	-3.58501500	5.00936600
С	0.23191900	-0.27153400	3.37705600	Н	-0.49534500	-4.20201200	3.36119500
0	1.32564400	0.20252500	3.70239000	С	3.45960500	4.36274700	3.83886600
Н	2.69570400	-1.00493300	3.05101700	С	2.13861200	4.15509500	4.24126700
Н	-0.89013500	-1.91803600	2.94860100	С	1.26398700	3.42565900	3.43569100
С	6.59476800	1.35406400	1.27499200	С	1.69887700	2.89061600	2.21382600
С	5.71173500	1.26696500	0.19637900	С	3.02543800	3.10544100	1.81902600
С	4.66831400	0.32912500	0.16977800	С	3.90016200	3.83720000	2.62391900
С	4.52421400	-0.53587900	1.28072800	Н	4.14001900	4.92938500	4.46918000
С	5.40520000	-0.42606500	2.36583800	Н	1.78594800	4.55919700	5.18663000
С	6.43856500	0.50950500	2.36999100	Н	0.24194900	3.27081700	3.76411100
Н	7.39765100	2.08626700	1.25280800	Н	3.38311400	2.70268700	0.87879700

Η	4.92676600	3.98570400	2.30107800	С	-5.64964400	-2.60638700	2.18079900
С	-0.90275500	5.37543100	-1.79360300	С	-4.99323500	-3.84324800	2.25581200
С	-1.21519300	4.03788400	-2.04394600	С	-3.74668300	-4.03493200	1.65442600
С	-0.77309200	3.04034900	-1.17480800	С	-3.19053800	-2.94446900	0.98803500
С	-0.02741800	3.36619800	-0.02992300	С	-3.83769600	-1.69892200	0.88817800
С	0.27115100	4.71594000	0.22038500	С	-5.08203500	-1.52802000	1.49565000
С	-0.16000300	5.71135400	-0.65938500	N	-1.94890600	-2.85022400	0.33274500
Η	-1.24157000	6.15221400	-2.47420100	С	-1.77631000	-1.58412100	-0.15106500
Η	-1.80998700	3.76314300	-2.90970000	С	-3.00356900	-0.82123900	0.04314300
Н	-1.03445800	2.00787300	-1.37659800	С	-1.09247500	-3.99865200	0.07836200
Н	0.84241700	4.99483300	1.09889900	С	-0.56436900	-1.16479600	-0.73989200
Н	0.08162700	6.75071800	-0.45199900	С	0.38227600	-1.38806700	-1.58255700
С	5.10238000	-2.62620600	-4.40299600	С	0.65688600	-2.16500000	-2.79557300
С	4.05816100	-1.75018300	-4.70988700	0	0.51447800	-1.75094700	-3.92956900
С	3.55142500	-0.89376000	-3.73149100	0	1.07461600	-3.41201000	-2.49231300
С	4.08552100	-0.89849200	-2.43268700	С	1.36585900	-4.26048400	-3.61778500
С	5.12565500	-1.78728000	-2.12989100	Н	-6.61952300	-2.48737600	2.65490800
С	5.62924400	-2.64453500	-3.11061000	Н	-5.46046000	-4.66863800	2.78538400
Н	5.50224300	-3.28915100	-5.16607300	Н	-3.24627400	-4.99711500	1.70127000
Н	3.63432700	-1.72798300	-5.71024000	Н	-5.60161300	-0.57865300	1.42892400
Н	2.73945400	-0.22000600	-3.98671800	Н	-2.89551100	0.23491400	0.28893000
Н	5.53644400	-1.82161800	-1.12874600	Н	-0.96789000	-4.57587400	0.99936600
Н	6.43847800	-3.32568900	-2.86045100	Н	-1.54674000	-4.63950600	-0.68570400
С	4.35321100	4.26976900	-3.57279600	Н	-0.11977800	-3.66038200	-0.27581700
С	5.23549500	3.18843600	-3.65875100	Н	1.69876400	-5.20469200	-3.18613000
С	4.97061200	2.00960100	-2.96317200	Н	0.46797800	-4.40853700	-4.22395700
С	3.82163600	1.89482000	-2.15752200	Н	2.15516500	-3.81931800	-4.22934600
С	2.94053000	2.98149000	-2.09126900	С	-3.76764700	-0.55240200	-1.59185500
С	3.20423900	4.16266100	-2.79094000	С	-4.99690200	0.22293800	-1.39223800
Η	4.55828300	5.18491200	-4.12203900	С	-4.80653500	1.58810100	-0.97692700
Η	6.12773400	3.25970800	-4.27535100	0	-3.63886000	2.02145000	-0.80152300
Η	5.65543900	1.17209100	-3.05423500	С	-3.78404800	-1.83705200	-2.37220200
Η	2.03236400	2.90270000	-1.50671200	С	-4.64421700	-2.91207800	-2.08996900
Η	2.50062900	4.98762800	-2.72565800	С	-4.58369700	-4.08719500	-2.84133300
Pd	1.14164900	0.14520300	-0.45956500	С	-3.66716000	-4.21488700	-3.88736900

С	-2.80766300	-3.15399500	-4.17951800	Н	1.30330500	-1.23939600	3.03949900
С	-2.86595400	-1.98082600	-3.42629000	C	-6.65671300	0.45859000	1.45142100
С	-6.26377100	-0.36739600	-1.59502900	C	-5.76467800	0.83827400	0.44621600
N	-7.30633600	-0.87207900	-1.76739400	C	-4.42031000	1.12859600	0.72186800
С	-5.93735700	2.55775000	-0.73092900	C	-3.97803800	1.01389600	2.06224300
С	-5.62488600	3.92448800	-0.84625300	C	-4.88003700	0.61934000	3.06048700
С	-6.58492200	4.90370600	-0.60628100	C	-6.21423900	0.34375500	2.76555700
С	-7.87819700	4.53756300	-0.22229700	Н	-7.69342000	0.25231900	1.19853900
С	-8.19601900	3.18634500	-0.08352000	Н	-6.12844900	0.89784000	-0.57248600
С	-7.23791600	2.20217300	-0.33784800	Р	-3.22504300	1.50845600	-0.66224300
Н	-2.98723300	0.11095400	-1.96368700	Н	-4.52662200	0.55131800	4.08457200
Н	-5.37317900	-2.83112500	-1.29296600	Н	-6.89668200	0.04681900	3.55700100
Н	-5.26502000	-4.90222200	-2.61097600	C	1.46873200	-4.95137700	0.14185600
Н	-3.62950900	-5.12979100	-4.47355000	С	0.43966100	-4.15751700	-0.37156800
Н	-2.08978700	-3.22921700	-4.99189000	С	-0.24048800	-3.22002900	0.42155400
Н	-2.18653300	-1.16674100	-3.66215000	С	0.17208200	-3.07996000	1.76836900
Н	-4.61155900	4.19478900	-1.12343000	С	1.20336200	-3.88087500	2.27621700
Н	-6.32519700	5.95402000	-0.71505100	С	1.84661900	-4.82374000	1.47484400
Н	-8.62980300	5.29952300	-0.03106600	Н	1.97554300	-5.65569400	-0.51104700
Н	-9.19603100	2.89011100	0.22292400	Н	0.17106400	-4.27323100	-1.41404400
Н	-7.51481000	1.16148900	-0.22765100	Р	-1.57471700	-2.14295400	-0.33064100
(5,5	5) -TS			Н	1.49542500	-3.76687400	3.31626600
С	0.98547800	0.83928700	6.47817500	Н	2.63900800	-5.44063000	1.88881100
С	0.34597000	2.14461800	5.98875800	Н	0.31918200	0.35888300	7.20903600
С	-0.94759100	1.85355000	5.21992300	Н	1.93023700	1.03709100	6.99885700
С	-0.72525800	0.89697500	4.02960300	Н	1.05313300	2.67913000	5.33728400
С	-0.02960800	-0.40589900	4.48325000	Н	0.13842300	2.81095800	6.83467100
С	1.23862100	-0.11995600	5.30809100	Н	-1.39458800	2.77563200	4.83484400
N	-2.00696500	0.57684000	3.40137900	Н	-1.68311000	1.39702100	5.89782700
N	0.34422600	-1.27806400	3.36333500	Н	-0.09136900	1.39733400	3.28607500
С	-2.59276000	1.42086400	2.50893100	Н	-0.74013800	-0.97192100	5.10090200
0	-2.09278300	2.49261300	2.16123800	Н	1.64656800	-1.07251500	5.66762900
С	-0.49781200	-2.13785700	2.73293200	Н	2.00204700	0.31479400	4.64571300
0	-1.71006300	-2.19499400	2.96684400	С	-5.54802700	-4.27625400	0.86508700
Н	-2.28536900	-0.40449200	3.39244800	С	-4.32952900	-4.84799000	1.23422000

С	-3.12745500	-4.22069100	0.90282100	С	-3.85666600	0.06748900	-3.00639600
С	-3.12706300	-3.00867500	0.19724900	С	-4.55712100	-0.21197900	-4.18356100
С	-4.35688200	-2.44042200	-0.16484500	Н	-6.15794800	0.39469400	-5.49505100
С	-5.55784700	-3.07014100	0.16288800	Н	-6.77760200	2.36221000	-4.10311600
Η	-6.48280600	-4.76603000	1.12498800	Η	-5.52896400	2.86565900	-2.03830500
Η	-4.31037700	-5.78493900	1.78477400	Η	-3.02018400	-0.55948400	-2.72214300
Η	-2.19114100	-4.67723900	1.20268700	Η	-4.26247800	-1.06337700	-4.79080500
Н	-4.38244100	-1.50387200	-0.71070600	Pd	-1.15535800	0.27518300	-0.40438400
Н	-6.49940600	-2.61105600	-0.12533200	С	5.34856200	-2.00601700	2.84238300
С	-1.28861000	-3.30604700	-4.85410500	С	5.42037600	-0.73970800	3.43650700
С	-0.58506000	-2.21008000	-4.34899000	С	4.64185600	0.32270100	2.96863300
С	-0.68044000	-1.87938600	-2.99561400	С	3.79940100	0.06380400	1.88888700
С	-1.47892200	-2.64047900	-2.12356400	С	3.73792800	-1.19066800	1.25333600
С	-2.18311700	-3.73826600	-2.64416400	С	4.51744800	-2.23806500	1.74160500
С	-2.08763500	-4.06747500	-3.99848500	Ν	2.85432000	0.91530200	1.28627900
Н	-1.21938900	-3.56097900	-5.90829400	С	2.17727300	0.24799200	0.31146400
Н	0.02896900	-1.60135900	-5.00718900	С	2.83938700	-1.03897700	0.08545200
Н	-0.15216900	-1.00839400	-2.61714800	С	2.67822700	2.30639500	1.66988500
Н	-2.81008600	-4.33862900	-1.99295800	С	0.97611000	0.72225800	-0.25614900
Н	-2.64124300	-4.92001300	-4.38336600	С	0.29186700	1.67518200	-0.77231900
С	-3.23146700	6.15598200	-1.05505500	С	0.46587900	2.90516400	-1.55303500
С	-2.69059100	5.34531600	-2.05563000	0	0.21635700	3.00545300	-2.73666900
С	-2.67844700	3.95793200	-1.90597200	0	0.93249600	3.91659100	-0.79002100
С	-3.21044600	3.36087800	-0.75111900	С	1.19211100	5.14239300	-1.49743500
С	-3.74852400	4.18089900	0.24941100	Η	5.96018500	-2.81461800	3.23177800
С	-3.75794300	5.56899600	0.09608500	Η	6.09097000	-0.57668100	4.27522700
Η	-3.24411100	7.23649100	-1.17306300	Η	4.70209800	1.30522500	3.42567300
Η	-2.28117000	5.78802400	-2.96004000	Η	4.48176200	-3.21487900	1.27175300
Η	-2.24992000	3.34464600	-2.69151200	Η	2.19387900	-1.86242300	-0.20014900
Н	-4.14949600	3.74238400	1.15430400	Η	2.48094900	2.37420000	2.74535500
Н	-4.18024200	6.19017900	0.88176100	Η	3.58918900	2.86584100	1.43381800
С	-5.61446300	0.60617500	-4.57792200	Η	1.84801400	2.73648000	1.11392400
С	-5.96332600	1.71128700	-3.79549400	Η	1.53854700	5.84507700	-0.73869400
С	-5.26142500	1.99140500	-2.62394600	Η	1.96184100	4.97987100	-2.25597300
С	-4.20433100	1.16175400	-2.20424500	Н	0.27784700	5.50920300	-1.96898000

С	3.84592600	-0.83117200	-1.44245400	С	0.77771400	5.41869500	-1.07409700
С	4.92156800	0.15092600	-1.30022000	N	-2.40191500	3.32838300	-0.71638500
С	4.54561900	1.52892400	-1.49332100	N	0.43948800	3.40343200	0.24812500
0	3.33786900	1.83417000	-1.63658800	С	-3.31470800	2.55510400	-1.34675300
С	4.11332700	-2.24046200	-1.91127300	0	-3.33266700	2.34876300	-2.56260600
С	5.19518000	-3.03596900	-1.49685400	С	-0.02032800	2.74983000	1.33718700
С	5.34831000	-4.33746500	-1.98109500	0	-1.18005800	2.86890000	1.76915100
С	4.43085300	-4.87615300	-2.88491700	Н	-2.29692700	3.24419700	0.29760000
С	3.35168000	-4.09669300	-3.30730800	Н	1.36215500	3.16750600	-0.13070800
С	3.19838200	-2.79862200	-2.82187400	С	-6.74294400	1.36233600	0.98217100
С	6.20560900	-0.20983700	-0.83291600	С	-5.90216600	0.37206400	0.47069800
N	7.26253100	-0.52343200	-0.43785400	С	-4.74523000	0.69423100	-0.25718900
С	5.55336000	2.65036800	-1.49581400	С	-4.44191200	2.05938900	-0.46060900
С	5.09746700	3.92319200	-1.11376700	С	-5.28230100	3.04395100	0.07545600
С	5.95421700	5.02150000	-1.11540300	С	-6.42977100	2.70558800	0.79146100
С	7.28176500	4.87089900	-1.52564100	Н	-7.63615900	1.07677800	1.53170400
С	7.73859700	3.61694000	-1.93436600	Н	-6.15253000	-0.66683700	0.65081900
С	6.88382900	2.51316100	-1.91871800	Р	-3.55538600	-0.63306200	-0.78745100
Н	3.06746300	-0.38184500	-2.05793700	Н	-5.03009600	4.08788400	-0.08611300
Н	5.93437300	-2.63801100	-0.81387700	Н	-7.06976100	3.48583700	1.19414800
Н	6.20033000	-4.92815100	-1.65397000	С	2.87119500	0.55999800	3.66084900
Н	4.56135200	-5.88658000	-3.26408200	С	1.59901500	0.01596700	3.46267700
Н	2.63203700	-4.49263300	-4.01960600	С	0.63118100	0.66547600	2.68152000
Н	2.35566500	-2.20080600	-3.16000300	С	0.97907100	1.90587400	2.08599700
Н	4.05519100	4.02751400	-0.83038300	С	2.26074100	2.43537300	2.28827300
Н	5.58688700	5.99709300	-0.80567600	С	3.20877300	1.77222800	3.06756000
Н	7.95247600	5.72647400	-1.53395400	Н	3.59200800	0.02617000	4.27409000
Н	8.76499100	3.49388800	-2.27006700	Н	1.36577100	-0.93600000	3.92431700
Н	7.25640100	1.54975900	-2.24549500	Р	-0.99713900	-0.18545000	2.34097500
(R ,S	5)-TS-II			Н	2.51527900	3.38616100	1.83308100
С	0.15236700	6.58576200	-1.84730900	Н	4.19775900	2.20116800	3.19814400
С	-0.84500500	6.07253500	-2.89232500	Н	-0.36670900	7.26065700	-1.15061400
С	-1.92385300	5.21551400	-2.22185700	Н	0.94636900	7.17544300	-2.32192600
С	-1.33237600	4.02626000	-1.43489000	Н	-0.31090500	5.47622500	-3.64629000
С	-0.27321900	4.50374100	-0.41562700	Н	-1.31115600	6.90964500	-3.42692600

Η	-2.63084300	4.81914300	-2.95690900	Η	-3.03054200	-3.12457300	-5.02544900
Н	-2.50002000	5.83769700	-1.52127000	Н	-2.54610700	-2.57955400	-2.67225100
Η	-0.86243900	3.32608300	-2.13785500	Н	-5.36007300	0.67475400	-2.84105700
Н	-0.80079700	5.06408700	0.36928600	Н	-5.87008200	0.10675700	-5.18412400
Н	1.45390100	5.78843700	-0.29380800	С	-5.40504700	-4.56116300	0.95726600
Н	1.39469800	4.81654200	-1.75212900	С	-6.00684700	-3.93441800	-0.13779400
С	-4.08181400	1.72444000	5.25836200	С	-5.46179200	-2.76376800	-0.66455900
С	-2.72042300	1.98284000	5.43394400	С	-4.30811200	-2.19059500	-0.09849900
С	-1.78254800	1.43827300	4.55654700	С	-3.71141100	-2.83445400	0.99415700
С	-2.19482600	0.62522200	3.49082500	С	-4.25459500	-4.01001600	1.52017900
С	-3.56208500	0.37286900	3.32106800	Н	-5.82852700	-5.47656700	1.36215300
С	-4.50015200	0.91805500	4.19946800	Н	-6.89960500	-4.36091100	-0.58771800
Н	-4.81117100	2.15358000	5.94039400	Н	-5.93293500	-2.29617200	-1.52361300
Η	-2.38610300	2.61536700	6.25220300	Н	-2.80708600	-2.42533000	1.42855300
Η	-0.72877000	1.65606200	4.69617300	Н	-3.76875600	-4.49137500	2.36462200
Н	-3.90236800	-0.24668900	2.49801600	Pd	-1.2509360	-0.49836200	-0.08100900
Н	-5.55708300	0.71939300	4.04539900	С	5.27212100	-4.26376700	1.35100700
С	-0.39039600	-4.36735300	4.35616600	С	4.59440600	-5.30554400	0.70101800
С	-0.00306100	-4.14309000	3.03318200	С	3.46679700	-5.05128400	-0.08153300
С	-0.19944200	-2.89074900	2.44997300	С	3.04897100	-3.72536600	-0.17740600
С	-0.76896700	-1.83367100	3.18010900	С	3.72256900	-2.66198700	0.45574200
С	-1.15331100	-2.07266400	4.50962200	С	4.85379000	-2.93695800	1.22559700
С	-0.96807400	-3.32985200	5.08991400	Ν	1.92811100	-3.20094800	-0.84459700
Н	-0.24375900	-5.34338300	4.81104700	С	1.82138600	-1.86648200	-0.58391600
Н	0.45178900	-4.94145100	2.45284300	С	3.02345800	-1.41573400	0.09255000
Η	0.08702500	-2.72747800	1.41593700	С	1.02032400	-3.98074400	-1.67621600
Н	-1.59845100	-1.27682300	5.09709800	С	0.66444500	-1.15236900	-0.95438000
Н	-1.27451300	-3.49483500	6.11961600	С	-0.21162700	-0.78759400	-1.81532000
С	-4.49140200	-1.55011700	-5.26121500	С	-0.34062500	-0.63152800	-3.27190200
С	-3.55193800	-2.29949200	-4.54824400	0	-0.00531700	-1.48783700	-4.07589700
С	-3.27366500	-1.98483200	-3.21808400	0	-0.86461200	0.55431500	-3.58964800
С	-3.92614400	-0.91726400	-2.58102000	C	-1.09832100	0.80983400	-4.98511400
С	-4.86240300	-0.16756500	-3.30459600	Н	6.14620500	-4.49183700	1.95455000
С	-5.14205000	-0.48548900	-4.63597100	Н	4.94838300	-6.32731100	0.80649800
Н	-4.71221900	-1.79396200	-6.29714600	Н	2.93848600	-5.85831000	-0.57940700

Η	7.15203900	5.20433900	-0.64335100
Н	5.98070200	3.15060600	-1.34975000

	P	h	
		, CN	
Ľ_)		≻Bz	
1	Ň	CO2Me	9
	Β'n	-	

С	0.98009800	-1.34559800	-0.37631100
С	1.10109300	0.25009600	-0.07000600
С	-2.46900200	-4.58068200	-1.61851800
С	-3.68397900	-3.90072600	-1.84893600
С	-3.78875500	-2.52267400	-1.69559000
С	-2.64005000	-1.82041800	-1.30906600
С	-1.40165100	-2.49574200	-1.06667200
С	-1.33072700	-3.89221600	-1.22677500
N	-2.46390700	-0.45619100	-1.09437700
С	-1.14326500	-0.27358000	-0.70980900
С	-0.47848000	-1.47796200	-0.69046900
С	-0.30824700	0.84651500	-0.37205800
С	-0.64907000	2.15368200	-0.28555000
С	1.51024900	-2.30151600	0.67974900
С	2.72786000	-2.96317600	0.47059800
С	3.22376100	-3.86539200	1.41398100
С	2.50329900	-4.11989300	2.58146000
С	1.28621100	-3.46908000	2.79812300
С	0.79281600	-2.56959500	1.85438100
С	-4.15831500	1.10559600	-0.08468600
С	-4.31606900	0.32102500	1.06292300
С	-4.99374600	0.82486300	2.17455100
С	-5.52371800	2.11623000	2.15084100
С	-5.36976400	2.90470000	1.00895700
С	-4.68850200	2.40189100	-0.10024600
С	-3.46834600	0.57083200	-1.33164300
С	0.29536800	3.22976900	0.02721400
0	1.50259800	3.11812900	0.17649400
0	-0.34782800	4.41859500	0.12500200
С	0.48997000	5.54164100	0.43127200

Η	5.40766400	-2.12596500	1.68146300
Η	2.94153300	-0.60052600	0.79950400
Н	1.57933300	-4.80519100	-2.12304500
Н	0.19311100	-4.38539100	-1.08054100
Н	0.62317800	-3.35167700	-2.47432700
Н	-1.62880400	1.76048200	-5.00661400
Н	-0.14864100	0.87335000	-5.52435100
Η	-1.71273400	0.01511200	-5.41348500
С	3.94495300	-0.43364200	-1.34025100
С	4.56758300	0.76289300	-0.77186500
С	5.70638600	0.78021600	0.11627800
0	6.17003600	-0.26116100	0.62162200
С	4.66084000	-1.45157100	-2.17237600
С	5.97032100	-1.90350500	-1.93188400
С	6.56713500	-2.82321700	-2.79323700
С	5.87531200	-3.31931500	-3.90101600
С	4.57263100	-2.88415300	-4.14750500
С	3.97365000	-1.96019800	-3.29105100
С	3.77461500	1.91940100	-0.91713900
N	3.05411200	2.83400000	-1.06079600
С	6.35925400	2.08795700	0.49237000
С	6.99153400	2.15922800	1.74439900
С	7.64388200	3.32189200	2.14845800
С	7.69736100	4.42650100	1.29289500
С	7.09756600	4.35638200	0.03436800
С	6.43064700	3.19632200	-0.36392100
Η	3.04821300	-0.12691300	-1.87498000
Η	6.50553900	-1.53564200	-1.06588000
Η	7.58210100	-3.15739300	-2.59345000
Η	6.34842100	-4.03710900	-4.56640700
Η	4.02318200	-3.25306800	-5.00981300
Η	2.96216100	-1.61967500	-3.50383100
Η	6.96883600	1.28011600	2.38060100
Η	8.11972900	3.36569200	3.12500100
Н	8.21178600	5.33270900	1.60255300

H 6.09348200	-0.03124800	1.32241400
--------------	-------------	------------

	I	Ph	
			CN
Ľ)	Ń	7	Bz
12	`Ņ	\mathbb{Z}	
	Β'n	C	O ₂ Me

С	-1.08009700	1.03256800	-0.96937000
С	-1.32178600	-0.33977000	-0.16288800
С	2.78115500	3.80749100	-2.09534900
С	3.96046400	3.04573300	-1.93577200
С	3.92094500	1.71673300	-1.53458600
С	2.66329600	1.14328300	-1.30222100
С	1.46312100	1.90622600	-1.43933600
С	1.53591500	3.25301100	-1.84833200
Ν	2.35155800	-0.15435000	-0.91583300
С	0.96810500	-0.21945300	-0.79651000
С	0.41433800	1.01911600	-1.07734400
С	-0.05378300	-1.20320900	-0.49291900
С	-0.14307700	-2.55547700	-0.44667600
С	-1.72736400	2.27430100	-0.38790500
С	-2.94355100	2.72960700	-0.91757700
С	-3.56836200	3.86598900	-0.40175600
С	-2.98090800	4.56676200	0.65308400
С	-1.76756500	4.12513800	1.18559900
С	-1.14428100	2.98851900	0.66940000
С	3.92090800	-0.65020100	0.97484400
С	5.30454900	-0.66818800	1.18517600
С	5.84435100	-0.33607300	2.42986900
С	5.00168500	0.02540200	3.48123900
С	3.61890700	0.04821000	3.28078500
С	3.08200000	-0.29005700	2.03873900
С	3.35558300	-1.07239300	-0.37233000
С	0.81469900	-3.54945100	-0.94051200
0	1.86112700	-3.35095200	-1.53783600
0	0.34926300	-4.79876200	-0.68528500
С	1.16898000	-5.86935100	-1.17085000
С	-1.25235400	-0.12927200	1.28894600

С	1.38735000	0.50598300	1.34463900
N	1.54916800	0.67773600	2.48174800
С	2.14097500	0.82077400	-1.09640700
С	6.37507100	1.16342000	-0.45089400
С	5.75174900	1.76419200	-1.54964500
С	4.37829400	1.63831300	-1.72321800
С	3.60060600	0.92472800	-0.79322800
С	4.23360800	0.32469000	0.30577500
С	5.61515500	0.44108800	0.46908200
0	1.71452700	1.07263800	-2.20939900
Η	1.56091700	-1.52317900	-1.29048100
Н	-2.43071800	-5.65868900	-1.74589900
Н	-4.56177700	-4.46684500	-2.14784800
Η	-4.73640300	-2.01985700	-1.86312700
Η	-0.39820600	-4.41606900	-1.03924300
Η	-1.67525400	2.46195800	-0.44173800
Н	3.29170500	-2.77089400	-0.43940100
Н	4.16895800	-4.37015200	1.23275300
Η	2.88521300	-4.82260500	3.31713400
Н	0.71892000	-3.66185100	3.70455700
Н	-0.15601600	-2.07103200	2.02867100
Н	-3.90267500	-0.68300700	1.09007700
Н	-5.10440100	0.20701900	3.06159700
Н	-6.04753900	2.50787300	3.01842400
Н	-5.77084000	3.91428400	0.98362200
Н	-4.56562500	3.02404600	-0.98475600
Н	-4.20831400	0.13646500	-2.01300300
Н	-2.99994100	1.39231700	-1.88390700
Н	-0.17911900	6.40178600	0.47660200
Н	0.99422300	5.39535200	1.39040700
Н	1.24556300	5.68282700	-0.34673600
Н	7.44909900	1.25915000	-0.31413500
Н	6.33913600	2.32781800	-2.26943700
Н	3.87856100	2.08773100	-2.57427200
Н	3.66877500	-0.23957100	1.03645400

Ν	-1.11878400	0.00453000 2.43577500
С	-2.64289900	-0.99157100 -0.69102600
С	-6.35926900	-1.28378600 1.43791300
С	-5.46908200	-0.26580100 1.78215200
С	-4.24032000	-0.15390100 1.13088200
С	-3.89965700	-1.05864300 0.11183400
С	-4.81718000	-2.06429200 -0.24766100
С	-6.03062700	-2.18503100 0.41993600
0	-2.60840200	-1.43797900 -1.82481700
Н	-1.52525500	0.85014700 -1.95554400
Н	2.85706500	4.84373400 -2.41235900
Н	4.92287200	3.51122100 -2.12969300
Н	4.83543700	1.14818300 -1.40515500
Н	0.63035900	3.84106000 -1.96149500
Н	-1.08156000	-2.99022300 -0.12234300
Н	-3.40148600	2.19119800 -1.74448100
Н	-4.50908500	4.20460600 -0.82745000
Н	-3.46272300	5.45414100 1.05474100
Н	-1.30188400	4.66684400 2.00430400
Н	-0.19889900	2.65573400 1.08597300
Н	5.96694000	-0.94770900 0.36811800
Н	6.92157900	-0.35436500 2.57361400
Н	5.41778700	0.28861700 4.45003600
Н	2.95374900	0.32602900 4.09397000
Н	2.00394300	-0.26990600 1.90184800
Н	4.16302300	-1.15981300 -1.10729600
Н	2.89534000	-2.05603100 -0.32162700
Н	0.65216200	-6.78606700 -0.88469200
Н	1.27577100	-5.81176400 -2.25773900
Н	2.16324300	-5.83198600 -0.71650300
Н	-7.30913900	-1.37389800 1.95814000
Н	-5.72680600	0.44469800 2.56210300
Н	-3.57104600	0.65063100 1.40773900
Н	-4.55447500	-2.74191300 -1.05313000
Н	-6.72326000	-2.97588900 0.14597700

С	-1.80764400	0.96379500	-1.09106200	
С	-1.25487100	-0.55611700	-1.34466000	
С	0.01795300	5.45079300	-0.43765300	
С	1.42783300	5.38668300	-0.44636400	
С	2.10208400	4.18102500	-0.60341800	
С	1.33385500	3.01982800	-0.76141800	
С	-0.09601300	3.06713800	-0.74842300	
С	-0.74767100	4.30417100	-0.58422900	
N	1.74323300	1.70209900	-0.94597100	
С	0.59350100	0.92786200	-1.03595600	
С	-0.52775000	1.72031100	-0.92577700	
С	0.29566200	-0.46716200	-1.24881400	
С	1.17304300	-1.48948700	-1.39446400	
С	-2.85039600	1.15041800	0.00557700	
С	-4.20195300	0.91795100	-0.29055900	
С	-5.18642300	1.10122000	0.67886200	
С	-4.83616300	1.52872300	1.96189300	
С	-3.49601500	1.76835900	2.26612400	
С	-2.51063500	1.57972300	1.29470300	
С	3.67389600	0.62233800	0.24164400	
С	3.26893100	1.06131200	1.50820200	
С	3.81735200	0.49544600	2.66045300	
С	4.77778700	-0.51388100	2.56092400	
С	5.18663800	-0.95555100	1.30167700	
С	4.63543400	-0.39105100	0.14995900	
С	3.12703600	1.25575000	-1.03004800	
С	0.78934800	-2.88478900	-1.63043600	

700	Η	3.22030400	0.55927200	-1.86943600
000	Н	2.59570300	-5.51007500	-2.20728600
00	Н	1.09715200	-5.49228300	-1.21806500
800	Н	1.00380000	-5.16393400	-2.96366800
800	Н	-0.34055700	-3.24343200	4.42677500
400	Н	-2.10258200	-4.47514700	3.17188700
00	Н	-2.82703500	-3.65383400	0.93282600
i00	Н	-0.03312000	-0.40482500	1.23053300
500	Н	0.68235600	-1.20283700	3.43622300

С	-2.13010100	0.29452100	0.39860200
С	-0.85198800	-4.31122300	-0.48584400
С	0.55266400	-4.45617000	-0.44945000
С	1.37519000	-3.38556800	-0.14005300
С	0.76496600	-2.15193800	0.13547000
С	-0.65116300	-1.97168600	0.07577400
С	-1.45675400	-3.09313400	-0.22789900
N	1.35511200	-0.96370900	0.49982900
С	0.34595400	-0.02816400	0.68415200
С	-0.89328700	-0.59596700	0.39602900
С	-1.90514900	1.31442900	-0.74781700
С	-0.91215000	2.21813700	-0.60106100
0	-0.16929100	2.34589300	0.53316400
С	0.53460300	1.32563000	1.17783100
С	1.25432400	1.78520400	2.23216800
С	-3.49719000	-0.37490200	0.44003100
С	-4.04477200	-1.09538200	-0.63183400
С	-5.30733700	-1.68071900	-0.52431900

0	-0.34649000	-3.32939600	-1.65583700
0	1.88715900	-3.65622300	-1.82154000
С	1.61940700	-5.04432400	-2.06804100
С	-1.59157500	-0.89737700	-2.73667800
N	-1.82633900	-1.06640200	-3.86068800
С	-2.00255900	-1.58433800	-0.42158400
С	-0.66050500	-2.89221800	3.44915100
С	-1.65008600	-3.58462500	2.74411600
С	-2.05783400	-3.13389200	1.49307600
С	-1.47544800	-1.99036500	0.91905800
С	-0.48749500	-1.30016800	1.63563900
С	-0.08596800	-1.74791100	2.89488700
0	-3.07286100	-1.99959700	-0.82029100
Н	-2.29277600	1.25846000	-2.02849400
Н	-0.46972500	6.41286700	-0.31040100
Н	2.00243300	6.30044900	-0.32335500
Н	3.18743100	4.15256600	-0.59603400
Н	-1.83234300	4.35129600	-0.56781300
Н	2.23746900	-1.30772800	-1.31959900
Η	-4.47956900	0.57652200	-1.28407300
Н	-6.22724200	0.91194700	0.43091800
Η	-5.60334300	1.67640700	2.71727700
Н	-3.21318800	2.10495800	3.26003400
Н	-1.47207000	1.78114200	1.53874200
Н	2.52385000	1.84742300	1.59351000
Н	3.49616900	0.84715400	3.63741600
Η	5.20215700	-0.95473400	3.45869300
Η	5.92785200	-1.74507500	1.21341200
Η	4.95453700	-0.74459500	-0.82851200

H 3.72508400 2.13233600 -1.30171500

С	-6.04347900	-1.56227900	0.65588700
С	-5.50925900	-0.85035700	1.72996900
С	-4.24981100	-0.26042300	1.61727500
С	3.44734500	-0.78900300	-0.85895200
С	4.54724800	-1.62546200	-1.07708800
С	5.18230400	-1.66173400	-2.32093000
С	4.71872600	-0.85959000	-3.36350300
С	3.62292500	-0.01763800	-3.15361200
С	2.99379600	0.02018100	-1.90992800
С	2.79789000	-0.72487100	0.51439000
С	-2.68484200	1.26117500	-1.94179000
N	-3.35213600	1.17002200	-2.89081200
С	-0.45353700	3.27035100	-1.59015500
F	-1.19912800	3.32230500	-2.69826200
F	0.82389200	3.00520100	-1.95695300
F	-0.46187100	4.48756800	-1.01837000
С	1.87401500	0.96003900	3.27416300
0	1.92539700	-0.25659100	3.33148900
0	2.39493500	1.76517900	4.23741400
С	3.00472300	1.08093200	5.33955500
Η	-2.07527700	0.90132200	1.31100600
Η	-1.46937900	-5.17476400	-0.71673700
Η	0.99561800	-5.42571900	-0.65944900
Η	2.45297700	-3.49828600	-0.11000700
Н	-2.53548400	-3.01013100	-0.24435700
Η	1.27668200	2.85808200	2.38696000
Η	-3.49255800	-1.20422000	-1.55815300
Н	-5.71496700	-2.22823900	-1.36954400
Н	-7.02635200	-2.01855900	0.73540900
н	-6.07126100	-0 74841100	2 65426000

Η	-3.84384400	0.29611900	2.45898700
Н	4.91308800	-2.25214900	-0.26611400
Η	6.03426500	-2.31892500	-2.47351100
Η	5.20737100	-0.88745300	-4.33362000
Н	3.25969600	0.61443300	-3.95943900
Η	2.15033000	0.68882600	-1.75795700
Н	3.25992000	-1.44412500	1.19723300
Η	2.95198700	0.26235500	0.95027800
Н	3.36734900	1.86472300	6.00551000
Н	2.27587900	0.44774200	5.85329200
Η	3.83363500	0.45534000	4.99620000

F	0.82389200	3.00520100	-1.95695300	С	-1.92399100	-0.78912100	-0.30532200
F	-0.46187100	4.48756800	-1.01837000	С	-2.45536400	3.97593300	-1.01876100
С	1.87401500	0.96003900	3.27416300	С	-1.21401300	4.59206100	-1.28488400
0	1.92539700	-0.25659100	3.33148900	С	-0.04763700	3.84670100	-1.35804500
0	2.39493500	1.76517900	4.23741400	С	-0.14386400	2.46176200	-1.16016200
С	3.00472300	1.08093200	5.33955500	С	-1.37988200	1.82030000	-0.84952800
Н	-2.07527700	0.90132200	1.31100600	С	-2.55057100	2.61109700	-0.80325600
Н	-1.46937900	-5.17476400	-0.71673700	N	0.85492600	1.51046700	-1.23259700
Н	0.99561800	-5.42571900	-0.65944900	С	0.27588800	0.27033600	-0.95756200
Н	2.45297700	-3.49828600	-0.11000700	С	-1.08179200	0.42433000	-0.68918800
Н	-2.53548400	-3.01013100	-0.24435700	С	-1.28740200	-1.37704900	0.98129800
Н	1.27668200	2.85808200	2.38696000	С	-0.05995000	-1.92336400	0.87037600
Н	-3.49255800	-1.20422000	-1.55815300	0	0.57672100	-2.05411000	-0.32755300
Н	-5.71496700	-2.22823900	-1.36954400	С	0.96830400	-0.99886900	-1.13143800
Н	-7.02635200	-2.01855900	0.73540900	С	1.88737200	-1.24807300	-2.09763600
Н	-6.07126100	-0.74841100	2.65426000	С	-3.43597800	-0.61830800	-0.25833300

С	-4.09433700	0.16292300	0.70306700	Η	-7.32690800	-0.31373700	-0.26151500
С	-5.48578900	0.26941400	0.70095000	Η	-6.17809700	-1.70170900	-1.98159200
C	-6.24364500	-0.39773100	-0.26356500	Η	-3.71704700	-1.89967500	-1.96865800
C	-5.60057400	-1.17589900	-1.22630600	Η	3.42709600	4.28907200	-0.77424900
С	-4.20936100	-1.28595000	-1.21766400	Н	4.22102600	5.27492000	1.35260300
С	2.74226200	2.45542400	0.12749800	Н	3.99464600	3.99973800	3.47740000
С	3.32190100	3.72836800	0.15235800	Н	2.98003500	1.72852300	3.44885000
С	3.77402300	4.28446400	1.35129900	Н	2.19987000	0.74089100	1.32990800
С	3.64708100	3.56961000	2.54211900	Н	2.49717100	2.53282400	-2.01520200
С	3.07441700	2.29476900	2.52631300	Н	2.84090600	0.92902700	-1.38604200
С	2.62869000	1.73948000	1.32759100	Н	3.18288900	-5.23962200	-0.78568300
С	2.28559300	1.84625700	-1.18863200	Н	3.11544100	-5.06594300	-2.57227600
С	-1.95995200	-1.30518300	2.23793500	Η	4.44977500	-4.31888900	-1.66466300
N	-2.55038000	-1.21771500	3.23676600	(R	,S)-TS2		
С	0.80740200	-2.52568800	1.95581800	С	-4.43250400	-5.63234000	1.97463800
F	0.22004300	-2.53768000	3.15806000	С	-3.86499900	-4.95313400	3.22777200
F	1.94991800	-1.80362700	2.05611600	С	-4.11806200	-3.44103500	3.18663700
F	1.15233500	-3.78502200	1.64114600	С	-3.54144000	-2.79098300	1.91254600
С	2.69615200	-2.45297500	-2.34797700	С	-4.08969400	-3.47504900	0.64368000
0	3.42187800	-2.55259500	-3.32264000	С	-3.86460500	-4.99732600	0.69824300
0	2.58351300	-3.41595700	-1.40691800	N	-3.84843500	-1.35980400	1.88437900
С	3.38875100	-4.58168100	-1.63057800	N	-3.49469100	-2.96673600	-0.59339700
Н	-1.73399700	-1.55547000	-1.06788200	С	-3.07351300	-0.46975200	2.55217400
Н	-3.35451300	4.58455500	-0.98455400	0	-2.09346000	-0.80526800	3.22718100
Н	-1.17201500	5.66590800	-1.44375900	С	-3.92711800	-1.85903600	-1.23917000
Η	0.90422300	4.32152500	-1.56798200	0	-4.77939000	-1.08277600	-0.78401200
Н	-3.51527900	2.16049500	-0.61249900	Н	-4.44242800	-1.02755000	1.12253300
Н	2.05514600	-0.47353600	-2.83511800	Н	-2.63909300	-3.40847800	-0.93488300
Н	-3.52604100	0.69560700	1.45756800	С	-4.51936100	3.57519400	2.77527800
Н	-5.97612500	0.87444600	1.45842300	С	-3.18153500	3.34884700	2.44298400

С	-2.66011100	2.05299800	2.32120200	С	-5.86105200	3.68579000	-1.68852800
С	-3.54178800	0.96318100	2.52902900	С	-5.97984500	2.47169900	-2.36527900
С	-4.88556600	1.20162100	2.84446200	С	-4.89559300	1.59488000	-2.43821800
С	-5.37895300	2.49955200	2.97270100	С	-3.67552800	1.92174500	-1.82997100
Н	-4.88236700	4.59508800	2.87035700	С	-3.56793800	3.14204100	-1.14361200
Н	-2.54087400	4.20395800	2.26473600	С	-4.65017800	4.01895600	-1.07815500
Р	-0.91840500	1.77914800	1.70852400	Н	-6.70589900	4.36748700	-1.63569700
Н	-5.54142000	0.35252500	3.01101500	Н	-6.91892800	2.20050700	-2.84036800
Н	-6.42285600	2.66261800	3.22541900	Н	-5.00933700	0.65251900	-2.95956800
C	-2.67713600	-1.48320300	-5.33902400	Н	-2.63216200	3.42017200	-0.66935900
C	-2.36052100	-0.46009800	-4.44347500	Н	-4.54559700	4.96090200	-0.54669500
С	-2.71096400	-0.53101600	-3.08529000	С	0.75225600	3.30847400	-4.57927600
С	-3.38817700	-1.68865300	-2.63901000	С	1.22540000	2.29429700	-3.74402400
С	-3.68418700	-2.71965700	-3.54172400	С	0.33369300	1.56179500	-2.95829500
С	-3.34162900	-2.62153400	-4.88912400	С	-1.04493500	1.83308000	-2.99475200
Н	-2.39888000	-1.38428600	-6.38481800	С	-1.50947700	2.85511300	-3.83926800
Н	-1.82869400	0.40756400	-4.81435500	С	-0.61610500	3.58562100	-4.62567100
Р	-2.18166700	0.83163200	-1.91914300	Н	1.44654400	3.88371500	-5.18596700
Н	-4.20058900	-3.60206700	-3.17593700	Н	2.28870700	2.08070200	-3.68498400
Н	-3.59161300	-3.42623900	-5.57497900	Н	0.71605200	0.79217300	-2.29455800
Н	-5.52815000	-5.53829900	1.97412900	Н	-2.56929200	3.08457200	-3.88233700
Н	-4.21073200	-6.70644400	1.98073000	Н	-0.99183000	4.37467800	-5.27195500
Н	-2.78359400	-5.14427000	3.28890600	С	1.82024000	1.17133900	5.42666300
Н	-4.30992500	-5.38409900	4.13292100	С	2.35516600	1.30568400	4.14231800
Н	-3.67610600	-2.94423000	4.05661900	С	1.51023300	1.47163800	3.04431200
Н	-5.19962700	-3.24545900	3.21866300	С	0.11569400	1.50087100	3.21975800
Н	-2.45016000	-2.90337800	1.92209400	С	-0.41398100	1.37042500	4.50913800
Н	-5.16686700	-3.26903900	0.58324300	С	0.43631000	1.20757200	5.60618300
Н	-4.31165000	-5.45153400	-0.19410400	Н	2.47957200	1.04452100	6.28140200
Н	-2.78365200	-5.19349100	0.64349100	Н	3.43059900	1.28112000	3.99108300

Η	1.94425700	1.59468700	2.05434300	С	0.59944100	-3.36727800	-3.86700400
Н	-1.48691600	1.37965300	4.65916700	Н	6.95515900	-1.95594200	3.54189200
Н	0.01187300	1.10975400	6.60226400	Н	5.40971600	-2.67582200	5.33602000
С	0.72352400	6.00722700	0.60039300	Н	2.95034000	-2.72020700	4.94671900
С	0.41975200	5.70864900	1.93258000	Н	6.09598400	-1.24196600	1.32782400
C	-0.07874800	4.45260600	2.27314900	Н	3.11628900	0.01839700	0.64794300
С	-0.30263800	3.47730800	1.28277300	Н	0.66102000	-3.37553500	3.43410700
С	0.02402900	3.78344400	-0.04371500	Н	0.77778700	-1.77339400	4.21845300
С	0.53202800	5.04061500	-0.38480800	Н	-0.22105000	-1.96005400	2.77618000
Н	1.12302500	6.98343700	0.33870600	Н	1.24058000	-2.95394600	-4.64471200
Н	0.58427400	6.45089500	2.70932600	Н	0.99246000	-4.32607100	-3.52213300
Η	-0.28135300	4.22403900	3.31549100	Н	-0.42398600	-3.48790300	-4.22822300
Н	-0.09019400	3.02968100	-0.81271100	С	3.62340600	-1.33644300	-0.76076300
Н	0.78950800	5.24861500	-1.41936900	С	4.76248900	-0.34416600	-1.02819800
Pd	-0.83402300	0.11417000	-0.04346800	С	4.50151600	0.98869900	-0.68869800
С	5.88493900	-1.95757400	3.35591400	0	3.38447900	1.28717200	-0.09695000
С	5.00960000	-2.36961300	4.37362300	C	3.85636500	-2.75840500	-1.25796700
С	3.63102300	-2.39844600	4.16518200	С	3.77478200	-3.88876000	-0.43782900
С	3.17281600	-1.99997700	2.90980800	С	3.93650900	-5.17459600	-0.96406700
С	4.03019600	-1.57254200	1.87819900	С	4.18961200	-5.35258000	-2.32275200
С	5.40934100	-1.55232600	2.10762600	С	4.27855000	-4.23163600	-3.15367900
N	1.84903800	-1.95987900	2.43680100	C	4.11036200	-2.95334500	-2.62623900
С	1.82894500	-1.55508800	1.15123500	C	6.03185300	-0.81434300	-1.43006900
С	3.18086600	-1.18702000	0.72525700	N	7.07612800	-1.23295100	-1.75404300
С	0.69454500	-2.29384000	3.26126000	С	5.44769900	2.12483400	-0.92034600
С	0.65583100	-1.36485200	0.37524300	C	5.36207800	3.23914100	-0.06838600
С	0.00492700	-1.66294200	-0.69037600	C	6.19816300	4.33912800	-0.24547600
С	-0.11983400	-2.68140000	-1.72711100	С	7.12522100	4.35463300	-1.29102500
0	-0.84535600	-3.66612900	-1.65425000	С	7.20452900	3.26203100	-2.15663400
0	0.63940400	-2.40267100	-2.79618200	С	6.37278600	2.15637000	-1.97628900

S385

Η	2.75654600	-0.95572700	-1.31924100	С	1.07184100	-0.86565400	4.43430400
Н	3.59482500	-3.77633100	0.62610800	С	1.59960500	-2.07847900	4.87756300
Н	3.87105300	-6.03525600	-0.30315400	Н	1.74664900	-4.19223900	4.47960900
Н	4.32413300	-6.35097900	-2.73082000	Н	0.42834100	-4.08636200	2.41329400
Н	4.48632100	-4.35323100	-4.21390700	Р	-0.83511900	-1.86487600	0.87379100
Н	4.18368800	-2.08793000	-3.27912900	Н	1.24433200	0.04327700	5.00298200
Н	4.62638300	3.22347600	0.72834600	Н	2.19661600	-2.11319100	5.78462300
Н	6.12501600	5.18739100	0.43094400	С	4.69376600	2.47201200	-2.91921300
Н	7.77707900	5.21319900	-1.43259100	С	4.07091600	1.30257900	-2.47923700
Н	7.91485100	3.26860100	-2.97945400	С	3.32346800	1.26535800	-1.29056500
Н	6.44465600	1.31928800	-2.66080500	С	3.21327300	2.45918600	-0.54441700
I				С	3.82541000	3.63355400	-1.00301200
С	-0.22425400	5.87159200	3.25051400	С	4.56926600	3.64708100	-2.18126100
С	-1.32052100	4.93448900	3.77377900	Н	5.27279800	2.45734700	-3.83887300
С	-0.76687800	3.52147700	3.99478600	Н	4.17075200	0.40476900	-3.07732200
С	-0.12914400	2.94342700	2.71522100	Р	2.42032200	-0.29603900	-0.79538900
С	0.96683600	3.88212600	2.17089600	Н	3.71844100	4.54173600	-0.41740100
С	0.42096100	5.30879200	1.97684800	Н	5.04473500	4.56523300	-2.51526100
N	0.42863200	1.61457400	2.97404800	Н	0.54616100	5.99885300	4.02500200
N	1.54525700	3.43523200	0.90247800	Н	-0.63078000	6.86982800	3.04660300
С	-0.37014400	0.51864400	2.95155000	Н	-2.14594300	4.89650800	3.04806500
0	-1.59052800	0.57854600	2.76947600	Н	-1.74375700	5.32324900	4.70813800
С	2.55222100	2.53771300	0.81017700	Н	-1.55568900	2.83744400	4.32375500
0	2.99424200	1.88921600	1.77010900	Н	-0.00419900	3.54130100	4.78681300
Н	1.43602200	1.50102800	2.84747800	Н	-0.90885700	2.83874600	1.95047000
Н	1.10478300	3.73396600	0.02883200	Н	1.78840000	3.90416500	2.89973400
С	1.34828100	-3.23665300	4.14875400	Н	1.23864900	5.95553300	1.63658500
С	0.58711400	-3.17526000	2.97842100	Н	-0.32429100	5.29138000	1.16802000
С	0.04079800	-1.96909400	2.51888000	С	5.40271100	-2.49259200	2.04232400
С	0.29112200	-0.79723700	3.27434000	С	5.70405500	-1.20487500	1.59809700

С	4.82505700	-0.52603600	0.75200100	Η	-4.84174700	-2.37936500	3.85640800
С	3.62617500	-1.12599500	0.34119300	С	-0.31395200	-6.09805800	-1.04491200
С	3.32572600	-2.41716700	0.80456300	С	-1.12974800	-5.94565200	0.08032900
С	4.20984400	-3.09759000	1.64155400	С	-1.29051200	-4.69050800	0.66625000
Н	6.09010800	-3.02003800	2.69860800	С	-0.62575400	-3.56471100	0.14606500
Н	6.62667500	-0.72169600	1.90899300	С	0.17430900	-3.72953000	-0.99240900
Н	5.07144900	0.47653600	0.42438900	С	0.33351100	-4.98677900	-1.58302300
Н	2.40323600	-2.90274900	0.50192300	Н	-0.19586700	-7.07625100	-1.50384400
Н	3.96092100	-4.09806500	1.98481100	Н	-1.65015700	-6.80425100	0.49690400
С	2.76723100	-2.79166300	-4.73938200	Н	-1.94614400	-4.58282300	1.52527300
С	1.75220600	-1.84710300	-4.56700300	Н	0.66041700	-2.86634700	-1.43215300
С	1.66686000	-1.11561000	-3.38196300	Н	0.95746400	-5.08620900	-2.46704300
С	2.60157000	-1.30950900	-2.34863200	Pd	0.00076800	-0.06618900	-0.48608500
С	3.62260600	-2.25397500	-2.53693600	С	-7.40267700	0.62526200	-3.00870300
С	3.70125100	-2.99156200	-3.72170600	С	-7.60730000	0.98686500	-1.65950100
Η	2.82935100	-3.36657800	-5.65966900	С	-6.53578200	1.20466900	-0.79995000
Η	1.01863200	-1.68300300	-5.35195300	С	-5.24345500	1.04781100	-1.31824800
Н	0.86721600	-0.39216000	-3.25355600	С	-5.01511600	0.69138800	-2.68054300
Н	4.35974800	-2.41945300	-1.75861600	С	-6.12191100	0.47698900	-3.52393400
Н	4.49765600	-3.72079300	-3.84676200	N	-4.02100600	1.19008600	-0.69713400
С	-5.38779200	-2.26543100	1.77183400	С	-3.01883000	0.96090800	-1.63750900
С	-4.91808700	-2.11526900	0.46492900	С	-3.60057800	0.64595200	-2.85649700
С	-3.55076400	-1.96928700	0.22622200	С	-3.83625300	1.60542200	0.68110000
С	-2.63624800	-1.97343500	1.29044400	С	-1.61274300	1.02998000	-1.35380000
С	-3.11555800	-2.12135500	2.59849700	С	-0.49707400	1.57234400	-1.67520500
С	-4.48381400	-2.26766100	2.83596300	С	0.10033000	2.71032800	-2.34246700
Н	-6.45272800	-2.37665000	1.95909400	0	0.46363200	3.74800700	-1.79726000
Н	-5.61348400	-2.09725600	-0.36907300	0	0.24213300	2.50700600	-3.67007700
Н	-3.19796200	-1.84332400	-0.79385500	С	0.85916600	3.58134600	-4.40026200
Н	-2.42495400	-2.10963000	3.43423500	Н	-8.26385800	0.46395000	-3.65189200

Η	-8.62148200	1.09928300	-1.28534200	Р	-1.39711700	0.56345200	2.35021500
Н	-6.69887300	1.48591600	0.23615200	Н	-5.85470800	-1.67333200	1.96485200
н	-5 97248200	0 20245100	-4 56529700	Н	-7.09922700	0.12484100	3.13709900
	-5.972+0200	0.20245100		C	-2.23744000	1.62213100	-5.49966300
Н	-3.05356200	0.40751600	-3.75809700	С	-2.05658900	1.98149000	-4.16329500
Н	-4.02375700	2.68145800	0.79730500	С	-2.46145600	1.14560700	-3.10870400
Н	-4.52503300	1.05165200	1.32523400	С	-3.04696000	-0.09687800	-3.44201100
Н	-2.82398600	1.37399300	1.00951500	C	-3.20423200	-0.45845300	-4.78820400
Н	0.88236700	3.24726000	-5.43804800	C	-2.81370000	0.39455200	-5.81811300
п	0 27078100	4 40701900	1 20626600	Н	-1.92220700	2.30422200	-6.28467700
п	0.27078100	4.49791800	-4.30030000	Н	-1.58808000	2.93237200	-3.94119700
Н	1.87196800	3.76174400	-4.03092500	Р	-2.12202800	1.67580000	-1.34568200
(S, J	R)-II			Н	-3.65069000	-1.42052800	-5.02150100
С	-3.73453100	-6.02115500	-1.91108000	Н	-2.95665700	0.09961400	-6.85395900
С	-3.36048900	-6.10522700	-0.42541900	Н	-4.82893800	-6.05381600	-2.01352100
С	-3.85300300	-4.86383400	0.32865900	Н	-3.34312100	-6.88659300	-2.45932200
С	-3.31549400	-3.55867300	-0.29168500	Н	-2.26802000	-6.18654500	-0.32791600
С	-3.66509500	-3.46792900	-1.79104400	Н	-3.78269000	-7.01128800	0.02588200
С	-3.20033400	-4.72851200	-2.54287700	Н	-3.55003400	-4.89579800	1.38073300
N	-3.85373300	-2.39504400	0.41311000	Н	-4.95193900	-4.83151300	0.31179600
N	-3.08263200	-2.29712500	-2.44972700	Н	-2.22346300	-3.54120000	-0.18817800
С	-3.24881800	-1.90868500	1.52548300	Н	-4.75575100	-3.37254800	-1.88188300
0	-2.24410500	-2.42547000	2.02841400	Н	-3.51303900	-4.64986900	-3.59095600
С	-3.63777000	-1.06353100	-2.44140500	Н	-2.10061800	-4.75073000	-2.54295400
0	-4.62885000	-0.75523900	-1.76386000	С	-6.03617200	3.84608800	-0.02667100
Н	-4.45470000	-1.76901400	-0.12610200	C	-6.05014300	3.03718200	-1.16265700
Н	-2.15579400	-2.39162400	-2.86799000	C	-4.89198900	2.37315000	-1.57308700
С	-5.32741600	1.30213000	3.50027300	C	-3.70073000	2.50680100	-0.84581900
С	-3.94386100	1.38752700	3.32872700	C	-3.69949300	3.31407600	0.30463900
С	-3.21918200	0.37662400	2.68300500	C	-4.85525700	3.98249500	0.70620000
С	-3.93614200	-0.73491200	2.17507700	Н	-6.93752500	4.36678900	0.28593300
С	-5.32472500	-0.80556300	2.34523900	Н	-6.96384500	2.92042500	-1.73938300
С	-6.02319800	0.20206600	3.00942000	Н	-4.92774000	1.74042400	-2.45036100
Н	-5.85385900	2.10232600	4.01327800	Н	-2.78910500	3.44112400	0.88160800
Н	-3.42855500	2.26581600	3.69790300	Н	-4.83005400	4.61111500	1.59244700

С	0.83861900	5.24369100	-1.90475200	С	4.76429400	-3.25073100	3.74524400
С	1.31496100	3.95444000	-1.66028700	С	3.52078600	-3.48441900	3.15219000
С	0.41339100	2.89863800	-1.50280700	С	3.12699900	-2.60709500	2.14607400
С	-0.97328700	3.11565100	-1.57847100	С	3.92716700	-1.54284500	1.70103300
С	-1.43914400	4.41931200	-1.82641000	С	5.15826400	-1.31576500	2.31334100
С	-0.53786800	5.47269600	-1.99075400	Ν	1.91143600	-2.58914400	1.42523700
Н	1.53576000	6.06922900	-2.02374500	С	1.91245400	-1.58114100	0.53829700
Н	2.37482500	3.73987900	-1.56028600	С	3.22084300	-0.86141600	0.57195800
Н	0.81297300	1.91040300	-1.30053300	С	0.81665400	-3.52414400	1.65275600
Н	-2.50478500	4.61520200	-1.88839000	С	0.82225700	-1.19685200	-0.25760700
Н	-0.91474400	6.47452600	-2.18117400	С	0.25599000	-0.89844500	-1.36735100
С	0.81941500	-1.72674400	5.75005600	С	0.29181400	-1.14245100	-2.80638400
С	1.52120100	-0.97056500	4.80805100	0	-0.33239500	-2.02197800	-3.38574000
С	0.83316500	-0.32180400	3.78208100	0	1.07545700	-0.25757700	-3.44186900
С	-0.56363400	-0.41719300	3.68461300	С	1.14220800	-0.38074600	-4.87736000
С	-1.25931600	-1.17867400	4.63205200	Н	6.52990900	-2.01690000	3.81485700
С	-0.56994000	-1.82818900	5.65843200	Н	5.10896900	-3.91182900	4.53528400
Н	1.35296700	-2.23108600	6.55140800	Н	2.89493800	-4.31112000	3.47144900
Н	2.60239100	-0.88760100	4.86639700	Н	5.79766100	-0.50343000	1.98581600
Н	1.38867400	0.27328200	3.06121800	Н	3.05878400	0.22181400	0.68701300
Н	-2.33686200	-1.27413800	4.56718000	Н	1.00357100	-4.46135900	1.11673300
Н	-1.12373300	-2.41386200	6.38780200	Н	0.73982300	-3.72258600	2.72369600
С	-0.13291000	4.79087200	3.87782100	Н	-0.12262400	-3.07804800	1.32401200
С	-0.65200600	3.85687900	4.78033800	Н	1.81269000	0.41601500	-5.19745900
С	-1.04784500	2.59674300	4.33539700	Н	1.54522300	-1.35755600	-5.15593500
С	-0.95264600	2.25465400	2.97319200	Η	0.14921600	-0.25356500	-5.31313600
С	-0.41196000	3.19250600	2.08383100	С	3.98090100	-0.86397400	-0.88363100
С	-0.00625700	4.45386300	2.53137700	С	5.11889900	0.11958100	-0.85076700
Н	0.18446200	5.76904000	4.22920200	С	4.73894200	1.48734800	-0.75375800
Н	-0.73542900	4.10570900	5.83502500	0	3.51940300	1.80595800	-0.60937800
Н	-1.41693900	1.86988800	5.05324800	С	4.26756500	-2.26287200	-1.40249900
Н	-0.28482700	2.93344800	1.03912400	С	5.16973200	-3.15190300	-0.79499700
Н	0.41658700	5.15950600	1.82196300	С	5.37221500	-4.43161100	-1.31461900
Pd	-0.87836700	0.12795000	0.02477200	С	4.68368000	-4.85432800	-2.45289500
С	5.56796400	-2.17774600	3.33709300	С	3.79420700	-3.97886500	-3.07635100

С	3.59394400	-2.70011100	-2.55380800	Н	-4.33708800	-1.41463900	0.97557100
С	6.45356500	-0.32300600	-0.75148600	Н	-2.22808000	-3.56698000	-1.02255400
N	7.55344600	-0.71685200	-0.65291900	С	-4.82280600	3.19611000	2.66168100
С	5.74599500	2.60769900	-0.77521100	C	3 45762200	2 05507200	2 20000500
С	5.43670200	3.77555700	-0.05874600	C	-3.43702200	3.03307200	2.39909300
С	6.30329700	4.86655600	-0.05930700	С	-2.85735000	1.79382700	2.28176900
С	7.48983600	4.81722300	-0.79637200	С	-3.68188300	0.65135300	2.42887100
С	7.79828800	3.66933400	-1.52851800	С	-5.05283100	0.80336000	2.66824600
С	6.93562300	2.57170400	-1.51803300	С	-5.62786500	2.06849100	2.78794000
Η	3.20973300	-0.41415400	-1.51456400	Н	-5.24986100	4.19087400	2.75798900
Η	5.73530900	-2.84304700	0.07479000	н	-2 85830100	3 94924200	2 27431100
Н	6.08143600	-5.09689100	-0.82885500		1.0.000.4200	1 (2120000	1.7(010400
Н	4.84664700	-5.85116100	-2.85481200	Р	-1.06984200	1.62138000	1.76813400
Н	3.25754200	-4.28646100	-3.97058500	Н	-5.66480600	-0.08589700	2.78615900
Н	2.91601900	-2.01620000	-3.05505200	Н	-6.69215200	2.16636800	2.98281000
Н	4.50337900	3.80541500	0.49457900	С	-2.33644200	-1.62169800	-5.40421300
н	0.05577500 8.16660000	5.75757000	0.80244700	С	-2.15508700	-0.58515600	-4.48651000
п	8.10000900	3.62573400	-0.80244700	С	-2.54272600	-0.71138500	-3.14241600
н	7 18837900	1 68941900	-2.09484600	C	-3 11799900	-1 93590700	-2 73561700
(S)-	III	1.00711700	2.09101000	C	2 20102000	2.07/70000	2.75551760
(J)	-3 87441100	-6 00832600	1 8159/800	C	-3.28103000	-2.9/6/9800	-3.65955000
c	-3.67441100	-0.00032000	2.000/1100	С	-2.90145200	-2.82611200	-4.99181600
С	-3.45179500	-5.28021600	3.09864100	Н	-2.03341700	-1.48024000	-6.43827300
С	-3.87032600	-3.80551200	3.04953700	Н	-1.70196800	0.33707800	-4.82906900
С	-3.30503200	-3.08586800	1.80844200	Р	-2.18989800	0.66982500	-1.93190200
С	-3.71640800	-3.81437700	0.51284400	Н	-3.71825600	-3.91167900	-3.32190300
С	-3.32076400	-5.30111500	0.57141800	Н	-3.04518300	-3.64167900	-5.69514300
N	-3.75750500	-1.69333100	1.76967400	Н	-4.97228400	-6.03993000	1.76002800
N	-3.13681800	-3.22912800	-0.69749800	Н	-3.53172000	-7.05019600	1.82972900
С	-3.11243100	-0.74255600	2.48856500	Н	-2.36041600	-5.34868600	3.21520700
0	-2.16134900	-0.99376000	3.23635100	Н	-3.89095600	-5.76669700	3.97818900
С	-3.67719000	-2.17856000	-1.35498700	H	-3.52908300	-3.27058200	3.94162600
0	-4.62898400	-1.50955900	-0.92582600	Н	-4.96727300	-3.73121900	3.02709000

Η	-2.20976900	-3.08197900	1.87326500	С	-0.74334700 1.35608800 4.60975700
Н	-4.80691200	-3.73332700	0.40879400	С	0.03194600 1.26166100 5.76781600
Η	-3.66908200	-5.79505000	-0.34361700	Η	2.02592700 1.14392600 6.58517800
Η	-2.22309200	-5.37229900	0.56985300	Н	3.12613000 1.23108400 4.35263600
С	-6.15651300	3.11730300	-1.75576900	Н	1.76259200 1.41417200 2.30656900
С	-6.12149400	1.92696800	-2.48267700	Н	-1.82420200 1.37083800 4.68809200
С	-4.95068500	1.16837200	-2.53924200	Н	-0.45728800 1.21742100 6.73753900
С	-3.79687600	1.59010200	-1.86370900	С	0.31315700 5.96954100 0.74567400
С	-3.84483500	2.78415400	-1.12705300	С	0.03868000 5.62477500 2.07294300
С	-5.01297700	3.54444200	-1.07806900	С	-0.38001900 4.33321300 2.39009600
Н	-7.06851800	3.70722800	-1.71566700	С	-0.54779900 3.36478300 1.38242100
Н	-7.00727500	1.58256400	-3.00997100	С	-0.25437700 3.72011300 0.05972000
Н	-4.94436000	0.24287700	-3.10172400	С	0.17154500 5.01328500 -0.25905100
Н	-2.96330800	3.13301100	-0.59849900	Н	0.64553900 6.97520500 0.50143400
Н	-5.02850000	4.46750500	-0.50518000	Н	0.16002500 6.36017900 2.86410200
С	0.47270200	3.50504900	-4.52896900	Н	-0.56634900 4.07319100 3.42785600
С	1.04257900	2.49203200	-3.75502300	Н	-0.33419700 2.97768600 -0.72484300
С	0.23024900	1.65522500	-2.98817800	Н	0.40146900 5.25942600 -1.29185400
С	-1.16543900	1.81665900	-2.98074800	Pd	-0.76619800 0.02878600 -0.02641400
С	-1.72761800	2.83628400	-3.76650500	С	5.99593000 -2.11358300 3.42839000
С	-0.91368400	3.67308400	-4.53341800	С	5.09165000 -2.34721700 4.48606400
Н	1.10466300	4.16121600	-5.12165500	С	3.71817100 -2.28432700 4.28476100
Н	2.12055100	2.35993400	-3.73149400	С	3.26520800 -1.97191800 2.99575200
Н	0.68392900	0.88286700	-2.37593200	С	4.15905600 -1.74059200 1.91227500
Н	-2.80261900	2.98120500	-3.78076800	С	5.54722700 -1.81472400 2.14897000
Н	-1.36658600	4.45814200	-5.13351800	N	1.97393500 -1.84323400 2.53448500
С	1.42491500	1.21957500	5.68277000	С	2.01598100 -1.56659800 1.17250600
С	2.04368200	1.27396700	4.43123900	С	3.34874500 -1.49425800 0.75075300
С	1.26999800	1.36947700	3.27425100	С	0.78949400 -2.13512000 3.32172200
С	-0.13083000	1.41206500	3.35155100	С	0.84493300 -1.32852600 0.37139500

S391

С	0.27491500	-1.61225600	-0.74625400	С	4.69944200	5.03925300	-0.23151300
C	0.26272700	-2.61369400	-1.79969500	С	5.83156500	5.23069000	-1.02652700
0	-0.46237300	-3.60155800	-1.82900700	С	6.38517400	4.14687200	-1.71121800
0	1.15511000	-2.33680900	-2.76922100	С	5.81945500	2.87836100	-1.59832700
С	1.24544500	-3.30039900	-3.83632800	Н	2.88046300	-0.95354900	-1.22821800
Н	7.06407700	-2.17191400	3.61860500	Н	4.32095300	-3.78893600	0.15036900
Н	5.47539300	-2.58278900	5.47522300	Н	5.26603600	-5.63350000	-1.19114900
Н	3.02238400	-2.46789200	5.09763300	Н	5.92992400	-5.25133700	-3.55944900
Н	6.25794900	-1.64487600	1.34702900	Н	5.63123000	-2.99051700	-4.56539900
Н	2.31583400	0.63815200	-0.10826700	Н	4.68107300	-1.15145600	-3.21834300
Н	0.70451900	-3.21392200	3.50914500	Н	3.24549900	3.63080400	0.49574400
Н	0.84270400	-1.60913300	4.27855800	Н	4.25624400	5.87650200	0.30083200
Н	-0.10108600	-1.78775100	2.80246700	Н	6.27651200	6.21818900	-1.11635100
Н	2.06298900	-2.95135300	-4.46600000	Н	7.25814000	4.28761400	-2.34247700
Н	1.47212200	-4.29077400	-3.43519300	Н	6.25428400	2.05229800	-2.14801300
Н	0.30607200	-3.33403800	-4.39382200	2a			
С	3.79415400	-1.17451800	-0.66052500	С	-1.25879500	-0.77239200	0.04486000
С	4.64293700	0.11547900	-0.71601400	C	-0.07234400	-0.13198500	-0.16494300
С	4.04821600	1.34564300	-0.64721800	C	1.17776700	-0.99020300	-0.11966700
0	2.70982200	1.46727700	-0.43573100	0	1.06210300	-2.20694200	-0.20326000
С	4.43671000	-2.33596800	-1.43265100	C	-2.64004600	-0.31664600	0.05783100
C	4.60530800	-3.60916000	-0.88057600	С	-3.06584100	1.00832600	-0.18425500
С	5.13907900	-4.65299700	-1.64295700	C	-4.41881500	1.32985800	-0.14561400
С	5.51058400	-4.44053200	-2.96951200	C	-5.37629600	0.34907500	0.13244400
С	5.34235600	-3.17245300	-3.53318800	С	-4.97398700	-0.96657500	0.37404000
С	4.80868900	-2.13465900	-2.77155300	C	-3.62248000	-1.29284400	0.33700800
С	6.05854000	-0.01053000	-0.77067500	C	0.01984800	1.25392200	-0.49232900
N	7.21406200	-0.17022300	-0.80220200	Ν	0.09131300	2.38141800	-0.77911000
С	4.69095400	2.67143300	-0.78614000	С	2.53220400	-0.37412600	0.02027100
С	4.12892300	3.77386300	-0.11567500	С	3.62344600	-1.10609700	-0.47958400

С	4.91963000	-0.61905200	-0.34766600	Н	-5.71133000	-1.73435700	0.59007000
С	5.14606000	0.59456600	0.30959900	Н	-3.30849400	-2.31653000	0.52436900
С	4.07147900	1.31587400	0.83206700	Н	3.43016400	-2.05498600	-0.96880900
С	2.76851700	0.83974700	0.68433900	Н	5.75478600	-1.18492000	-0.75104700
Н	-1.13022500	-1.83620700	0.23692600	Н	6.15863900	0.97428500	0.41693300
Н	-2.34379700	1.78452700	-0.40332900	Н	4.24472300	2.25208200	1.35489900
Н	-4.72934700	2.35348200	-0.33468700	Η	1.94743600	1.40928200	1.10407500
Н	-6.43064900	0.61027300	0.16003400				

Reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

12. (a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648;

(c) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.

13. A. V. Marenich, C. J. Cramer and D. G.Truhlar, J. Phys. Chem. B, 2009, 113, 6378.

14. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.