Supplementary Information

Unprecedented sesterterpenoids orientanoids A-C: Discovery, bioinspired total synthesis and antitumor immunity

 Yao-Yue Fan*a and Jian-Min Yue*abc
${ }^{\text {a }}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ${ }^{\text {b }}$ Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China. ${ }^{\text {c University of Chinese }}$ Academy of Science, No.19A Yuquan Road, Beijing 100049, China. ${ }^{\text {d S School of Pharmaceutical }}$ Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
*E-mail: jai@simm.ac.cn; s040500290@126.com; jmyue@simm.ac.cn
\ddagger These authors contributed equally.

Table of Contents

1. General Information 1
2. Physical Constants and Spectral Data for Orientanoids A-C and Synthetic Isomers 3
3. Synthetic Procedures and Product Characterization 21
4. Biological Assays and Data 33
5. X-Ray Crystallographic Data for Synthetic Compounds 40
6. Spectral Data 48
7. References 105

1. General Information

General Experimental Procedures. Melting points were carried out on a SGW X-4 melting point apparatus. Optical rotations were obtained on a Perkin-Elmer 341 polarimeter at room temperature. UV spectra were measured on a Shimadzu UV-2550 UV-visible spectrophotometer. IR spectra were recorded on a Perkin-Elmer 577 IR spectrometer with KBr disks. ESIMS were measured on a Bruker Daltonics esquire 3000 plus instrument, a Finnigan LCQ-DECA instrument, or a Finnigan LTQ instrument. HRESIMS were measured with a LCT Premier XE mass spectrometer. NMR spectra were acquired on Bruker Avance III 400 or 500 spectrometers with TMS as the internal reference. X-ray crystallographic analyses were performed on a Bruker APE-II CCD detector (Bruker Biospo Rheinstetten, Germany) employing graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA$). Silica gel (300-400 mesh), MCI gel (CHP20P, 75-150 $\mu \mathrm{m}$), C_{18} reverse-phased silica gel ($150-200$ mesh), and Sephadex LH-20 were used for column chromatography. Semi-preparative HPLC was performed on a Waters 1525 pump with a Waters 2489 detector (254 nm and 210 $\mathrm{nm})$ and an YMC-Pack ODS-A column ($250 \times 10 \mathrm{~mm}, \mathrm{~S}-5 \mu \mathrm{~m}, 12 \mathrm{~nm}$). All solvents were of analytical grade (Shanghai Chemical Reagents Co. Ltd., China), and solvents used for HPLC were of HPLC grade (J \& K Scientific Ltd., China). High power LED light sources were purchased from Beijing Perfectlight Technology Co., Ltd. (PLS-LED100C). Unless otherwise stated, all reactions were carried out under anhydrous conditions. Solvents were dried by standard method and all other commercial reagents were used without further purification.

Plant Material. The twigs and leaves of Hedyosmum orientale were collected from Hainan Province, People's Republic of China.

Extraction and Isolation. The dried sample powder (2.5 kg) was extracted at r.t. with $95 \% \mathrm{EtOH}(3 \times 10 \mathrm{~L})$ to obtain the crude extract $(210 \mathrm{~g})$. The crude was dissolved in 1.5 L water to give a suspension, and then partitioned with EtOAc. The EtOAc-soluble part (90 g) was fractionated using a column of MCI gel $\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$,

30 to 100%) to give five fractions F1-F5. Fraction F4 (1.7 g) was separated on a silica gel column eluted with petroleum ether/acetone gradient (20:1 to $1: 1$) to yield fractions F1a-F1i. Fraction F1e (0.47 g) was chromatographed on an RP-18 silica gel column ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 30$ to 100%) to give subfractions F1e1-F1e7. Fraction F1e6 (30mg) was purified by semi-preparative HPLC (mobile phase: $50 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) to give compounds $\mathbf{1}\left(2.8 \mathrm{mg}, \mathrm{t}_{R}=15 \mathrm{~min}\right)$ and $\mathbf{2}\left(1.9 \mathrm{mg}, \mathrm{t}_{R}=16 \mathrm{~min}\right)$. Fraction F1f $(0.18 \mathrm{~g})$ was separated over a Sephadex LH-20 column eluted with MeOH to afford subfractions F1f1-F1f3. Fraction F1f2 (25 mg) was purified by semi-preparative HPLC (mobile phase: $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) to yield compound $\mathbf{3}$ ($3.5 \mathrm{mg}, \mathrm{t}_{R}=15 \mathrm{~min}$).

ECD Calculations. The ChemDraw_Pro_14.1 software with MM2 force field was used to establish the initial conformations of target molecules. Conformational searches were conducted with the torsional sampling (Monte Carlo Multiple Minimum, MCMM) method under OPLS3 ${ }^{1}$ force field by Macromodel 10.2 program (Schrödinger Release 2015-2: MacroModel, Schrödinger, LLC, New York, NY). The value of the 'Energy window for saving structures' was set as $3.01 \mathrm{kcal} / \mathrm{mol}$. All conformations found at least ten times in the result table of conformational searches were examined for geometry and energy to ensure that there were no redundant conformers and that all logically anticipated conformers had been located. Suitable conformations showing appropriate dihedral angle in agreement with the experiment J coupling constant and NOE signals were selected as candidate conformers. All the candidate conformers were subjected to geometry optimization at the b3lyp/6-311g(d,p) level of theory in the corresponding solvents applied in the ECD experiments with IEFPCM solvent model, followed by frequency calculations to compute the Gibbs free energies and ensure that all geometries to be at local minima. All quantum chemical calculations were executed in Gaussian 09 program package. ${ }^{2}$ All TDDFT calculations were computed at the $\mathrm{b} 3 \operatorname{lyp} / 6-311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level of theory in methanol. The Boltzmann-averaged ECD spectra were obtained with SpecDis 1.71. ${ }^{3-5}$

2. Physical Constants and Spectral Data for Orientanoids A-C and Synthetic Isomers

Orientanoid A (1): Colorless crystals; m.p. 189-190 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20.3}:+58.1$ ($c=0.27$ in Methanol); UV/Vis (MeOH): $\lambda_{\max }(\log \varepsilon) 204$ (4.00), 241 (4.09) nm; CD (MeOH): λ ($\Delta \varepsilon$) 199 (20.10), 237 (-4.78), 314 (3.00) nm; IR (KBr) $v_{\max } 3470,2970,1768,1702$, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (methanol- d_{4}) see Table S1; (+)-ESIMS m/z 435.3 $[\mathrm{M}+\mathrm{Na}]^{+} ;(+)-$HRESIMS $\mathrm{m} / \mathrm{z} 435.2145[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}$, 435.2147).

Orientanoid B (2): White amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{20.4}:-84.0(c=0.15$ in MeOH$)$; UV/Vis (MeOH): $\lambda_{\max }(\log \varepsilon) 204$ (4.07), 241 (4.00) nm; CD (MeOH): $\lambda(\Delta \varepsilon) 198$ (-26.30), 237 (-4.25), 314 (1.94) nm; IR (KBr) $v_{\max } 3446,2928,1767,1704,1657$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (methanol- d_{4}) see Table S1; (+)-ESIMS m/z $435.3[\mathrm{M}+$ $\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 411.0[\mathrm{M}-\mathrm{H}]^{-} ;(+)-$HRESIMS $m / z 435.2157[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}, 435.2147$).

Orientanoid C (3): Colorless crystals; m.p. 249-250 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20.3}:+174.1(c=0.09$ in MeOH); UV/Vis (MeOH): $\lambda_{\max }(\log \varepsilon) 270(3.76), 204$ (4.05), 241 (4.01) nm ; CD $(\mathrm{MeOH}): \lambda(\Delta \varepsilon) 198(-7.25), 225$ (4.90), 253 (4.50), 321 (2.95) nm; IR (KBr) $v_{\max }$ 3437, 2923, 1769, 1701, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (methanol- d_{4}) see Table S1; (-)-ESIMS m/z $470.9\left[\mathrm{M}+\mathrm{HCO}_{2}\right]^{-} ;(-)-H R E S I M S ~ m / z 471.2018\left[\mathrm{M}+\mathrm{HCO}_{2}\right]^{-}$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{8}$, 471.2019).

Table S1. ${ }^{1} \mathrm{H}(500 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(\mathbf{1 2 5} \mathbf{~ H z})$ NMR data for $\mathbf{1 - 3}$.

no.	1^{a}		2^{a}		3^{a}	
	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	$\delta_{\text {C }}$
1	2.88 m	50.4	2.87 m	50.4	2.93 m	50.2
2	$\alpha 2.46$ dd (19.1, 7.2)	37.0	$\alpha 2.46$ dd (19.1, 6.7)	37.0	$\alpha 2.48$ dd (19.1, 6.7)	37.0
	$\beta 1.92 \mathrm{~m}$		$\beta 1.92$ dd (19.1, 2.6)		$\beta 1.95$ dd (19.1, 2.4)	
3		210.0		210.1		209.8
4		137.8		138.1		138.5
5		170.2		170.3		168.9
6	$\beta 2.97$ d (14.9)	35.0	$\beta 2.76$ d (14.8)	33.0	$\beta 2.75 \mathrm{~d}$ (14.9)	34.2
	$\alpha 2.85$ d (14.9)		$\alpha 2.69$ d (14.8)		$\alpha 2.59 \mathrm{~d}$ (14.9)	
7		91.3		92.0		90.8
8	4.40 dd (7.0, 1.6)	86.0	4.70 dd (6.8, 1.4)	85.6	$4.45 \mathrm{dd}(7.2,1.9)$	86.7
9	$\beta 2.02$ (m)	39.7	$\beta 2.02 \mathrm{~m}$	39.5	$\beta 2.11$ dd (14.6, 7.2)	39.5
	$\alpha 1.63$ ddd (14.6, 1.6, 1.6)		$\alpha 1.62$ ddd (14.7, 1.4, 1.4)		$\alpha 1.72$ ddd (14.6, 1.9, 1.9)	
10		86.7		87.4		87.9
11		56.1		54.0		57.5
12		181.9		179.9		178.9
13	$2.31 \mathrm{dd}(13.2,5.8)$	27.5	$1.98-2.05 \mathrm{~m}(2 \mathrm{H})$	21.1	2.59 m	27.6
	$1.94 \mathrm{~m}$				2.39 m	
14	1.74 t (1.6)	7.9	1.72 t (1.5)	7.8	1.67 t (1.6)	8.1
15	1.42 s	24.9	1.41 s	24.9	1.47 s	24.8
1^{\prime}	2.42 m	23.6	$2.24-2.31 \mathrm{~m}(2 \mathrm{H})$	23.1	2.76 m	34.5
	2.22 m				2.63 m	
2^{\prime}	5.62 brs	124.0	5.63 brs	124.4		199.5
3^{\prime}		134.0		133.8		136.7
4^{\prime}	3.20 brd (10.3)	50.4	2.67 d (9.1)	45.8		148.2
5^{\prime}	5.79 dd (15.1, 10.3)	123.5	$5.45 \mathrm{dd}(15.4,9.1)$	126.3	$6.06 \mathrm{dd}(16.1,1.0)$	122.2
6^{\prime}	$5.71 \mathrm{~d}(15.1)$	146.1	$5.67 \mathrm{~d}(15.4)$	142.4	$6.17 \mathrm{~d}(16.1)$	150.7
$7{ }^{\prime}$		71.1		71.1		71.5
8^{\prime}	1.23 s	29.6	1.249 s	29.6	1.34 s	29.60
9^{\prime}	1.26 s	30.2	1.253 s	29.8	1.32 s	29.64
10^{\prime}	1.72 brs	22.3	1.74 dd (3.1, 1.7)	22.6	1.97 d (0.9)	13.6

a

b

Fig. S1. The key 2D NMR correlations of 1.

a

Fig. S2. The key 2D NMR correlations of $\mathbf{2}$.

a

b

Fig. S3. The key 2D NMR correlations of $\mathbf{3}$.

Table S2. X-ray crystallographic data for natural orientanoid A (1) ${ }^{a}$

Identification code	cu_dm16184_0m
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$
Formula weight	412.50
Temperature/K	296.15
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2{ }_{1}{ }_{1}$
a/A	9.1977(11)
b/Å	9.2073(11)
c / \AA	26.829(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2272.1(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.206
μ / mm^{-1}	0.667
$\mathrm{F}(000)$	888.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.1 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	6.588 to 140.134
Index ranges	$-10 \leq \mathrm{h} \leq 10,-11 \leq \mathrm{k} \leq 10,-30 \leq 1 \leq 31$
Reflections collected	15484
Independent reflections	$4104\left[\mathrm{R}_{\text {int }}=0.0311, \mathrm{R}_{\text {sigma }}=0.0290\right]$
Data/restraints/parameters	4104/0/278
Goodness-of-fit on F^{2}	1.037
Final R indexes [I $>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0340, \mathrm{wR}_{2}=0.0925$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0362, \mathrm{wR}_{2}=0.0939$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.15
Flack parameter	0.10(7)

${ }^{a}$ Crystals of $\mathbf{1}$ were obtained from MeOH .

Table S3. X-ray crystallographic data for natural orientanoid C (3) ${ }^{\text {a }}$

Identification code	dm16180
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6.5}$
Formula weight	435.50
Temperature/K	296.15
Crystal system	orthorhombic
Space group	P 21212
a/Å	12.4675(9)
b/Å	21.6679(15)
c/Å	9.6367(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2603.3(3)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.111
μ / mm^{-1}	0.652
F(000)	932.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.18 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	8.16 to 138.9
Index ranges	$-15 \leq \mathrm{h} \leq 13,-25 \leq \mathrm{k} \leq 24,-11 \leq 1 \leq 11$
Reflections collected	16866
Independent reflections	$4730\left[\mathrm{R}_{\text {int }}=0.0511, \mathrm{R}_{\text {sigma }}=0.0413\right]$
Data/restraints/parameters	4730/0/294
Goodness-of-fit on F^{2}	1.045
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0369, \mathrm{wR}_{2}=0.1008$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0393, \mathrm{wR}_{2}=0.1031$
Largest diff. peak/hole / e \AA^{-3}	0.12/-0.17
Flack parameter	-0.08(9)

${ }^{a}$ Crystals of $\mathbf{3}$ were obtained from petroleum ether/acetone $=10: 1$.

Structure elucidation of compound 14 . Compound 14 , amorphous white powder, shared the same molecular formula of $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$ with 2 based on its HRESIMS ion at $m / z 435.2137[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}, 435.2147$) and its ${ }^{13} \mathrm{C}$ NMR data (Table S4), indicative of their isomeric nature. The 1D NMR data of compounds 2 and 14 (Table S1 and Table S4) showed high similarity, and detailed analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC spectra of 14 (Fig. S4a) indicated that its 2D structure was identical to that of 2. Examination of NOESY spectrum (Fig. S4b) and the key coupling constants revealed that the stereochemistry of $\mathrm{A}-\mathrm{D}$ rings, the R-configuration of C-4', and the E-geometry of $\triangle^{5^{\prime}}$ double bond ($J_{5^{\prime}, 6^{\prime}}=15.7 \mathrm{~Hz}$) in 14 were retained as those of $\mathbf{2}$, and the major difference was evident in the spiro C -11 configuration. The relative configuration of C-11 in $\mathbf{1 4}$ was assigned as R^{*} by the key NOESY correlations of $\mathrm{H}-13$ with $\mathrm{H}-6 \beta$ and $\mathrm{H}-8, \mathrm{H}-5^{\prime}$ with $\mathrm{H}-6 \alpha$ and $\mathrm{H}-13$, as well as $\mathrm{H}-4$ ' with H-6'. The absolute configuration of $\mathbf{1 4}$ was then determined as $1 R, 7 S, 8 S$, $10 R, 11 R, 4^{\prime} R, 5^{\prime} E$ by the roughly matched experimental and calculated ECD curves (Fig. S6). The absolute configuration of $\mathbf{1 4}$ was finally determined as $1 R, 7 S, 8 S, 10 R$, $11 R, 4^{\prime} R, 5^{\prime} E$ [absolute structure parameter: 0.08 (7); CCDC 2181591] by X-ray crystallography study with $\mathrm{Cu} \mathrm{K} \alpha$ radiation (Table S20).

Fig. S4. The key 2D NMR correlations of $\mathbf{1 4}$.

Structure elucidation of compound 15. Compound 15 was also obtained as amorphous white powder and was assigned the same molecular formula of $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$ as $\mathbf{1 4}$ according to its HRESIMS ion and ${ }^{13} \mathrm{C}$ NMR data (Table S4). The planar structure of $\mathbf{1 5}$ was elucidated to be identical to that of $\mathbf{1 4}$ as deduced from its 1D and 2D NMR spectra (Fig. S5). As in the case of compounds $\mathbf{1}$ and 2, the 1D NMR data of compounds 14 and 15 showed high similarity with the major differences occurring in
the chemical shifts of C-13, C-4', C-5', and C-6', which suggested that $\mathbf{1 5}$ was the $\mathrm{C}-4^{\prime}$ epimer of $\mathbf{1 4}$. This assignment was validated by the key NOESY correlations of H-4' with $\mathrm{H}-13$ and $\mathrm{H}-6 \alpha$. The absolute configuration of $\mathbf{1 5}$ was determined as $1 R, 7 S, 8 S$, $10 R, 11 S, 4^{\prime} S, 5^{\prime} E$ by comparison of its experimental ECD spectrum with the computed one (Fig. S6).

a

b

Fig. S5. The key 2D NMR correlations of $\mathbf{1 5}$.

Fig. S6. Experimental and calculated ECD spectra of compounds 14 and 15.

Table S4. ${ }^{1} \mathrm{H}(500 \mathrm{~Hz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{~Hz})$ NMR data for 14 and 15

no.	$14^{\text {a }}$		15^{a}	
	$\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\delta_{\mathrm{C}}(\mathrm{ppm})$
1	2.86 m	50.9	2.84 m	50.7
2	$\begin{aligned} & \alpha 2.46 \mathrm{dd}(19.1,6.6) \\ & \beta 1.91 \mathrm{~m} \end{aligned}$	37.1	$\begin{aligned} & \alpha 2.46 \mathrm{dd}(19.1,6.3) \\ & \beta 1.91 \mathrm{~m} \end{aligned}$	37.1
3		210.0		210.1
4		138.3		138.5
5		170.2		170.4
6	$\alpha 2.92$ d (14.8)	32.1	$\beta 2.98 \mathrm{~d}$ (14.4)	32.3
	$\beta 2.82 \mathrm{~d}$ (14.8)		$\alpha 2.76$ d (14.4)	
7		92.6		93.2
8	4.59 dd (6.7, 1.3)	85.4	4.60 dd (6.9, 1.6)	85.4
9	$\beta 1.99 \mathrm{~m}$	39.5	$\beta 2.01$ dd (14.7, 6.9)	39.6
	$\alpha 1.62$ m		$\alpha 1.63 \mathrm{dt}(14.7,1.4)$	
10		87.4		87.4
11		52.9		53.8
12		179.2		179.4
13	$1.98 \mathrm{~m}(2 \mathrm{H})$	22.5	$1.85 \mathrm{~m}(2 \mathrm{H})$	26.3
			1.94 m	
14	1.71 t (1.7)	7.8	1.72 t (1.7)	7.8
15	1.44 s	25.0	1.42 s	25.3
1^{\prime}	2.01 m	23.7	$2.21 \mathrm{~m}(2 \mathrm{H})$	22.8
	2.20 m			
2^{\prime}	5.51 brs	122.3	5.58 brs	122.9
3'		133.9		135.1
4^{\prime}	2.95 d (8.2)	45.2	3.23 d (8.8)	44.5
5^{\prime}	5.80 dd (15.7, 8.2)	125.5	5.68 dd (15.6, 8.8)	127.0
6^{\prime}	5.71 d (15.7)	143.6	5.60 d (15.6)	140.8
$7{ }^{\prime}$		71.4		71.4
8^{\prime}	1.28 s	29.9	1.28 s	30.0
9^{\prime}	1.29 s	30.1	1.29 s	30.1
10^{\prime}	1.66 brs	22.7	1.68 brs	22.9
${ }^{a}$ Measured in methanol- d_{4}.				

Comparison of the NMR data of natural and synthetic compounds.

Table S5. Comparison of the ${ }^{1} H$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic orientanoid A (1)

1

position	$\begin{gathered} \text { Natural } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 500 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { Synthetic } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 600 \mathrm{MHz} \end{gathered}$	Err (Natural- Synthetic) $\Delta \delta_{\mathrm{H}}$ (ppm)
1	$2.88 \mathrm{~m}(1 \mathrm{H})$	2.90-2.88 m (1H)	-
2α	2.46 dd (19.1, 7.2, 1H)	2.47 dd (19.1, 6.7, 1H)	-0.01
2β	$1.92 \mathrm{~m}(1 \mathrm{H})$	$1.94-1.91 \mathrm{~m}$ (1H)	-
6α	2.85 d (14.9, 1H)	2.87 d (14.8, 1H)	-0.02
6β	$2.97 \mathrm{~d}(14.9,1 \mathrm{H})$	$2.98 \mathrm{~d}(14.7,1 \mathrm{H})$	-0.01
8	$4.40 \mathrm{dd}(7.0,1.6,1 \mathrm{H})$	$4.41 \mathrm{dd}(7.0,1.7,1 \mathrm{H})$	-0.01
9α	1.63 ddd (14.6, 1.6, 1.6, 1H)	$1.64 \mathrm{dt}(14.6,1.5,1 \mathrm{H})$	-0.01
9β	$2.02 \mathrm{~m}(1 \mathrm{H})$	$2.03-1.98 \mathrm{~m}(1 \mathrm{H})$	-
13	$1.94 \mathrm{~m}(1 \mathrm{H})$	$1.97-1.94 \mathrm{~m}$ (1H)	-
13	$2.31 \mathrm{dd}(13.2,5.8,1 \mathrm{H})$	$2.32 \mathrm{dd}(13.2,5.9,1 \mathrm{H})$	-0.01
14	1.74 t (1.6, 3H)	$1.76 \mathrm{t}(1.7,3 \mathrm{H})$	-0.02
15	$1.42 \mathrm{~s} \mathrm{(3H)}$	$1.43 \mathrm{~s} \mathrm{(3H)}$	-0.01
1 ,	$2.42 \mathrm{~m}(1 \mathrm{H})$	$2.44-2.40 \mathrm{~m},(1 \mathrm{H})$	-
1 ,	$2.22 \mathrm{~m}(1 \mathrm{H})$	$2.27-2.19 \mathrm{~m},(1 \mathrm{H})$	-
2 '	5.62 brs (1H)	$5.63 \mathrm{~s} \mathrm{(1H)}$	-0.01
4	$3.20 \operatorname{brd}(10.3,1 \mathrm{H})$	$3.22 \mathrm{~d}(10.1,1 \mathrm{H})$	-0.02
5	$5.79 \mathrm{dd}(15.1,10.3)$	5.80 dd (15.1, 10.4, 1H)	-0.01
6 '	$5.71 \mathrm{~d}(15.1,1 \mathrm{H})$	$5.73 \mathrm{~d}(15.1,1 \mathrm{H})$	-0.02
8 '	$1.23 \mathrm{~s} \mathrm{(3H)}$	$1.24 \mathrm{~s} \mathrm{(3H)}$	-0.01
$9 \times$	$1.26 \mathrm{~s}(3 \mathrm{H})$	$1.28 \mathrm{~s}(3 \mathrm{H})$	-0.02
10^{\prime}	1.72 brs (3H)	1.74 s, (3H)	-0.02

Table S6. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic orientanoid A (1)

1
\(\left.$$
\begin{array}{lllc}\hline \text { position } & \begin{array}{lll}\text { Natural } \\
\delta_{\mathrm{C}}(\mathrm{ppm})\end{array} & \begin{array}{l}\text { Synthetic } \\
\delta_{\mathrm{C}}(\mathrm{ppm})\end{array} & \begin{array}{l}\text { Err } \\
(\text { Natural- } \\
\text { Synthetic })\end{array}
$$

\& 125 \mathrm{MHz} \& 125 \mathrm{MHz} \& \Delta \delta_{\mathrm{C}}(\mathrm{ppm})\end{array}\right]\)| | | 0 |
| :--- | :--- | :---: |
| | | 50.43 |
| 1 | 50.43 | 37.03 |

Table S7. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic orientanoid B (2)

2

position	$\begin{gathered} \text { Natural } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 500 \mathrm{MHz} \end{gathered}$	Synthetic $\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$ 400 MHz	Err (Natural- Synthetic) $\Delta \delta_{\mathrm{H}}(\mathrm{ppm})$
1	$2.87 \mathrm{~m}(1 \mathrm{H})$	$2.92-2.83 \mathrm{~m}(1 \mathrm{H})$	-
2α	2.46 dd (19.1, 6.7, 1H)	$2.46 \mathrm{dd}(19.0,6.7,1 \mathrm{H})$	0
2β	1.92 dd (19.1, 2.6, 1H)	$1.92 \mathrm{dd}(19.1,2.7,1 \mathrm{H})$	0
6α	$2.69 \mathrm{~d}(14.8,1 \mathrm{H})$	$2.69 \mathrm{~d}(14.2,1 \mathrm{H})$	0
6β	$2.76 \mathrm{~d}(14.8,1 \mathrm{H})$	2.76 d (14.7, 1H)	0
8	$4.70 \mathrm{dd}(6.8,1.4,1 \mathrm{H})$	$4.70 \mathrm{dd}(6.9,1.5,1 \mathrm{H})$	0
9α	$\begin{aligned} & 1.62 \mathrm{ddd}(J=14.7,1.4, \\ & 1.4,1 \mathrm{H}) \end{aligned}$	1.61 ddd (14.6, 1.5, 1.5, 1H)	+0.01
9β	$2.02 \mathrm{~m}(1 \mathrm{H})$	$2.02-1.96 \mathrm{~m}(1 \mathrm{H})$	-
13	$2.05-1.98 \mathrm{~m}(2 \mathrm{H})$	$2.05-1.98 \mathrm{~m}(2 \mathrm{H})$	-
14	$1.72 \mathrm{t}(1.5,3 \mathrm{H})$	$1.71 \mathrm{t}(1.7,3 \mathrm{H})$	+0.01
15	$1.41 \mathrm{~s} \mathrm{(3H)}$	1.41 s (3H)	0
1 ,	$2.31-2.24 \mathrm{~m}(2 \mathrm{H})$	$2.32-2.21 \mathrm{~m}(2 \mathrm{H})$	-
2^{\prime}	$5.63 \mathrm{brs}(1 \mathrm{H})$	5.63 s (1H)	0
4,	2.67 d (9.1, 1H)	$2.67 \mathrm{~d}(9.4,1 \mathrm{H})$	0
5,	$5.45 \mathrm{dd}(15.4,9.1,1 \mathrm{H})$	$5.45 \mathrm{dd}(15.4,9.1,1 \mathrm{H})$	0
6 '	$5.67 \mathrm{~d}(15.4,1 \mathrm{H})$	$5.67 \mathrm{~d}(15.5,1 \mathrm{H})$	0
8,	$1.24 \mathrm{~s} \mathrm{(3H)}$	$1.24 \mathrm{~s}(3 \mathrm{H})$	0
9 '	$1.25 \mathrm{~s} \mathrm{(3H)}$	$1.25 \mathrm{~s}(3 \mathrm{H})$	0
10'	$1.74 \mathrm{dd}(3.1,1.8,3 \mathrm{H})$	$1.74 \mathrm{~d}(1.8,3 \mathrm{H})$	0

Table S8. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic orientanoid B (2)

position	Natural	Synthetic	Err
	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	(Natural-
	125 MHz	125 MHz	Synthetic)
			$\Delta \delta_{\mathrm{C}}(\mathrm{ppm})$
1	50.40	50.44	-0.04
2	37.01	37.05	-0.04
3	210.08	210.10	-0.02
4	138.04	138.07	-0.03
5	170.25	170.26	-0.01
6	32.97	33.01	-0.04
7	91.97	92.01	-0.04
8	85.55	85.58	-0.03
9	39.51	39.54	-0.03
10	87.33	87.36	-0.03
11	54.00	54.04	-0.04
12	179.86	179.88	-0.02
13	21.06	21.09	-0.03
14	7.78	7.81	-0.03
15	24.91	24.95	-0.04
1 ,	23.02	23.05	-0.03
2 '	124.36	124.39	-0.03
3 '	133.73	133.74	-0.01
4,	45.74	45.79	-0.05
5	126.30	126.31	-0.01
6 ,	142.33	142.37	-0.04
7	71.06	71.10	-0.04
8 ,	29.57	29.61	-0.04
9 '	29.77	29.81	-0.04
10^{\prime}	22.56	22.59	-0.03

Table S9. Comparison of the ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectroscopic data (methanol-d4) of natural and synthetic orientanoid C (3)

position	Natural $\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, J (Hz)] 500 MHz	$\begin{gathered} \text { Synthetic } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 600 \mathrm{MHz} \end{gathered}$	Err (Natural- Synthetic) $\Delta \delta_{\mathrm{H}}(\mathrm{ppm})$
1	$2.93 \mathrm{~m}(1 \mathrm{H})$	$2.96-2.89 \mathrm{~m}(1 \mathrm{H})$	-
2α	$\begin{aligned} & 2.48 \text { dd (19.1, 6.7, } \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.47 \mathrm{dd}(19.0,6.8, \\ & 1 \mathrm{H}) \end{aligned}$	+0.01
2β	$\begin{aligned} & 1.95 \mathrm{dd}(19.1,2.4, \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.94 \mathrm{dd}(19.1,2.8, \\ & 1 \mathrm{H}) \end{aligned}$	+0.01
6α	$2.59 \mathrm{~d}(14.9,1 \mathrm{H})$	$2.59 \mathrm{~d}(14.6,1 \mathrm{H})$	0
6β	2.75 d (14.9, 1H)	2.75 d (14.7, 1H)	0
8	$\begin{aligned} & 4.45 \mathrm{dd}(7.1,1.9, \\ & 1 \mathrm{H}) \end{aligned}$	$4.45 \mathrm{dd}(7.2,2.0,1 \mathrm{H})$	0
9α	$\begin{aligned} & 1.72 \mathrm{ddd}(14.6,1.9, \\ & 1.9,1 \mathrm{H}) \end{aligned}$	$1.72 \mathrm{dt}(14.7,1.7,1 \mathrm{H})$	0
9β	$\begin{aligned} & 2.11 \mathrm{dd}(14.6,7.2, \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.11 \mathrm{dd}(14.7,7.2, \\ & 1 \mathrm{H}) \end{aligned}$	0
13	$2.59 \mathrm{~m}(1 \mathrm{H})$	$2.62-2.59 \mathrm{~m}(1 \mathrm{H})$	-
13	$2.39 \mathrm{~m}(1 \mathrm{H})$	$2.41-2.34 \mathrm{~m}(1 \mathrm{H})$	-
14	$1.67 \mathrm{t}(1.6,3 \mathrm{H})$	$1.67 \mathrm{t}(1.6,3 \mathrm{H})$	0
15	$1.47 \mathrm{~s} \mathrm{(3H)}$	$1.47 \mathrm{~s} \mathrm{(3H)}$	0
1 ,	$2.76 \mathrm{~m}(1 \mathrm{H})$	$2.80-2.77 \mathrm{~m}(1 \mathrm{H})$	-
1 '	2.63 m (1H)	$2.67-2.62 \mathrm{~m}(1 \mathrm{H})$	-
5'	$\begin{aligned} & 6.06 \mathrm{dd}(16.1,1.0, \\ & 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 6.06 \text { dd (16.1, 1.2, } \\ & 1 \mathrm{H}) \end{aligned}$	0
6 '	6.17 d (16.1, 1H)	$6.18 \mathrm{~d}(16.0,1 \mathrm{H})$	-0.01
8 ,	$1.34 \mathrm{~s}(3 \mathrm{H})$	$1.34 \mathrm{~s} \mathrm{(3H)}$	0
9 '	$1.32 \mathrm{~s}(3 \mathrm{H})$	$1.32 \mathrm{~s}(3 \mathrm{H})$	0
10^{\prime}	$1.97 \mathrm{~d}(0.9,3 \mathrm{H})$	1.96 d (1.1, 3H)	+0.01

Table S10. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data (methanol- d_{4}) of natural and synthetic orientanoid \mathbf{C} (3)

Table S11. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data $\left(\mathrm{CDCl}_{3}\right)$ of natural and synthetic hedyosumin B (6)

position	Natural $\delta_{\mathrm{H}}[\mathrm{ppm}$, mult, J (Hz)] 400 MHz	Synthetic $\begin{gathered} \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 400 \mathrm{MHz} \end{gathered}$	Err (Natural- Synthetic) $\Delta \delta_{\mathrm{H}}(\mathrm{ppm})$
1	$2.81 \mathrm{~m}(1 \mathrm{H})$	$2.85-2.79 \mathrm{~m}$ (1H)	-
2α	$\begin{aligned} & 2.48 \mathrm{dd}(18.8,7.0, \\ & 1 \mathrm{H}) \end{aligned}$	2.48 dd, (19.0, 6.9, 1H)	0
2β	$\begin{aligned} & 1.82 \mathrm{dd}(18.8,2.8, \\ & 1 \mathrm{H}) \end{aligned}$	$1.81 \mathrm{dd},(19.0,2.8,1 \mathrm{H})$	+0.01
6α	$2.80 \mathrm{~d}(14.4,1 \mathrm{H})$	2.76 d, (14.3, 1H)	+0.04
6β	$2.68 \mathrm{~d}(14.4,1 \mathrm{H})$	2.68 d (14.3, 1H)	0
8	$\begin{aligned} & 4.38 \mathrm{dd}(7.0,1.8, \\ & 1 \mathrm{H}) \end{aligned}$	$4.38 \mathrm{dd}(7.0,1.5,1 \mathrm{H})$	0
9α	$1.74 \mathrm{dd}(14.5,1.8,$ $1 \mathrm{H})$	$1.77-1.73 \mathrm{~m}(1 \mathrm{H})$	-
9β	$\begin{aligned} & 1.98 \mathrm{dd}(14.5,7.0, \\ & 1 \mathrm{H}) \end{aligned}$	1.98 dd (14.6, 7.1, 1H)	0
11	$2.62 \mathrm{q}(7.0,1 \mathrm{H})$	$2.61 \mathrm{q}(7.5,1 \mathrm{H})$,	+0.01
13	$1.34 \mathrm{~d}(7.0,3 \mathrm{H})$	$1.34 \mathrm{~d}(7.3,3 \mathrm{H})$	0
14	$1.72 \mathrm{~s}(3 \mathrm{H})$	$1.72 \mathrm{~s} \mathrm{(3H)}$	0
15	$1.42 \mathrm{~s}(3 \mathrm{H})$	$1.41 \mathrm{~s} \mathrm{(3H)}$	+0.01

Table S12. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data $\left(\mathrm{CDCl}_{3}\right)$ of natural and synthetic hedyosumin B (6)

Table S13. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectroscopic data $\left(\mathrm{CDCl}_{3}\right)$ of natural and synthetic hedyosumin C (10)

position	$\begin{gathered} \text { Natural } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J \\ (\mathrm{Hz})] \\ 400 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { Synthetic } \\ \delta_{\mathrm{H}}[\mathrm{ppm}, \text { mult, } J(\mathrm{~Hz})] \\ 400 \mathrm{MHz} \end{gathered}$	Err (Natural- Synthetic) $\Delta \delta_{\mathrm{H}}(\mathrm{ppm})$
1	$2.51 \mathrm{~m}(1 \mathrm{H})$	$2.50-2.47 \mathrm{~m}(1 \mathrm{H})$	-
2α	2.42 m (1H)	$2.46-2.35 \mathrm{~m}(2 \mathrm{H})$	-
2β	$1.02 \mathrm{~m}(1 \mathrm{H})$	$1.05-0.95 \mathrm{~m}(1 \mathrm{H})$	-
3	4.71 brt (1H)	$4.76-4.60 \mathrm{~m}(1 \mathrm{H})$	-
6α	$2.42 \mathrm{~d}(13.6,1 \mathrm{H})$	$2.46-2.35 \mathrm{~m}(2 \mathrm{H})$	-
6β	$2.28 \mathrm{~d}(13.6,1 \mathrm{H})$	$2.27 \mathrm{~d},(14.3,1 \mathrm{H})$	+0.01
8	4.45 brd (7.1, 1H)	$4.44 \mathrm{dd}(7.1,1.8,1 \mathrm{H})$	+0.01
9α	$1.63 \operatorname{brd}(14.2,1 \mathrm{H})$	$1.69-1.60 \mathrm{~m}(1 \mathrm{H})$	-
9β	$\begin{aligned} & 2.34 \mathrm{dd}(14.2,7.1, \\ & 1 \mathrm{H}) \end{aligned}$	$2.34 \mathrm{dd}(14.3,7.1,1 \mathrm{H})$	0
11	$2.53 \mathrm{q}(7.2,1 \mathrm{H})$	$2.52 \mathrm{q}(7.2,1 \mathrm{H})$	+0.01
13	$1.33 \mathrm{~d}(7.2,3 \mathrm{H})$	$1.29 \mathrm{~d},(7.3,3 \mathrm{H})$	+0.04
14	$1.69 \mathrm{~s}(3 \mathrm{H})$	$1.67 \mathrm{~s}(3 \mathrm{H})$	+0.02
15	$1.31 \mathrm{~s} \mathrm{(3H)}$	$1.29 \mathrm{~s}(3 \mathrm{H})$	+0.02

Table S14. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data $\left(\mathrm{CDCl}_{3}\right)$ of natural and synthetic hedyosumin C (10)

3. Synthetic Procedures and Product Characterization

Synthesis of compound 9

Procedure:

Enone $\mathbf{8} \mathbf{(5 3 0 \mathrm { mg } , 2 . 0 4 \mathrm { mmol } , 1 \text { equiv; } \mathbf { 8 } \text { was made from santonin in one step in } 5 8 \%}$ yield according to the reported procedure), ${ }^{6} \mathrm{Na}$-eosin $\mathrm{Y}(99 \mathrm{mg}, 0.14 \mathrm{mmol}, 7 \mathrm{~mol} \%)$ and $\mathrm{MeCN}(80 \mathrm{~mL})$ were added to a 200 mL eggplant-shaped bottle. After purging the flask with vacuum, O_{2} from a balloon was bubbled through the reaction mixture for 3 min . Then the reaction mixture was stirred for 18 h under 50 W 455 nm LED irradiation (PLS-100C, Beijing Perfectlight ${ }^{\circledR}$, distance $\sim 5 \mathrm{~cm}$) under an O_{2} atmosphere at room temperature. The reaction solution was concentrated in vacuo, then thiourea ($187 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{MeOH}(30 \mathrm{~mL})$ were added to the mixture and stirred for 4 h . Then the reaction solution was concentrated in vacuo and water (10 mL) was added. Finally, the mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting crude product was then purified by column chromatography (petroleum ether:EtOAc $=2: 1$) afford starting material $\mathbf{8}$ (174 mg, 33\%) and product 9 as a white solid ($168 \mathrm{mg}, 30 \%$ yield).

Characterization data of 9

$\mathbf{R}_{\mathbf{f}}=0.50$ (silica, petroleum ether/EtOAc = 1:1);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.75(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=$ $12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{dd}, J=12.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.13$ ($\mathrm{s}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 186.60,175.20,154.72,152.66,146.54,129.84$, 127.19, 123.46, 65.97, 52.38, 42.37, 42.24, 40.10, 25.79, 15.57, 10.36;
$[\alpha] \mathbf{D}^{\mathbf{2 1}}:+110.25\left(\mathrm{c}=0.40\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
IR (KBr) $\nu_{\max } 3442,2926,1736,1649,1604,1404,1201,1074,836 \mathrm{~cm}^{-1}$;
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 277.1434$, Found: 277.1435.

Table S15. Screening of conditions for allylic hydroxylation of enone $8^{\boldsymbol{a}}$

Entry	Conditions	Yield ${ }^{\text {b }}$
1	$\mathrm{SeO}_{2}, t-\mathrm{BuOOH}, \mathrm{DCM}$, r.t. to reflux	n.d.
2	SeO_{2}, dioxane, reflux	16\% (36\% rsm)
3	SeO_{2}, t - $\mathrm{BuOH} / \mathrm{Py}, 120{ }^{\circ} \mathrm{C}$	n.d.
4	O_{2}, AIBN, NHPI, MeCN, $75{ }^{\circ} \mathrm{C}$	n.d.
5	$\mathrm{O}_{2}, 9,10-\mathrm{DBA}, \mathrm{MeCN}$, blue LEDs	n.d.
6	$\mathrm{O}_{2}, \mathrm{AQ}, \mathrm{MeCN}$, blue LEDs	n.d.
7	H_{2}-eosin $\mathrm{Y}, \mathrm{O}_{2}$, blue LEDs, MeCN , then thiourea, MeOH	trace
8	Na_{2}-eosin $\mathrm{Y}, \mathrm{O}_{2}$, blue LEDs, MeCN, then thiourea, MeOH	42\% ($24 \% \mathrm{rsm}$)
9^{c}	Na_{2}-eosin $\mathrm{Y}, \mathrm{O}_{2}$, blue LEDs, MeCN , then thiourea, MeOH	30\% (33\% rsm)

${ }^{a}$ Reactions were carried out on a 1.0 mmol scale. ${ }^{b}$ Isolated yield. ${ }^{c}$ on a 2.0 mmol scale. n.d. $=$ not detected. $\mathrm{rsm}=$ recovered starting material. r. t. $=$ room temperature. $\mathrm{Py}=$ pyridine. AIBN $=2,2^{\prime}$-azobis (isobutyronitrile). $\mathrm{NHPI}=\mathrm{N}$-hydroxyphthalimide. $9,10-\mathrm{DBA}=9,10$-dibromoanthracene. $\mathrm{AQ}=$ anthraquinone.

Synthesis of compound 7

Procedure:

Compound 9 ($400 \mathrm{mg}, 1.45 \mathrm{mmol}$, 1 equiv) was dissolved in $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and AcOH $(20 \mathrm{~mL})$ in a 200 mL round bottom flask. The reaction mixture was degassed by a flow of Ar for 15 min and was then irradiated with 50 W 365 nm LEDs at room temperature for 8.5 h . The solution was concentrated under reduced pressure after addition of EtOH and the residue was purified by column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 2$) to yield $7(343 \mathrm{mg}, 90 \%$ yield $)$ as a white solid.

Table S16. Screening of conditions for photochemical rearrangement/lactonization/alkene migration cascade reaction

Entry	Conditons	Yield a
1	250 W high-pressure Hg lamp, $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 12 \mathrm{~h}$	74%
2	50 W 420 nm LEDs, $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, \mathbf{r t}, 8.5 \mathrm{~h}$	n.d.
3	$50 \mathrm{~W} \mathbf{4 2 0} \mathbf{~ n m ~ L E D s , ~ A c O H} / \mathrm{H}_{2} \mathrm{O}, \mathrm{Ir}(\mathrm{ppy})_{3}, \mathrm{rt}, 8.5 \mathrm{~h}$	trace
$\mathbf{4}$	$\mathbf{5 0} \mathbf{~ W ~ 3 6 5 ~ n m ~ L E D s , ~ \mathbf { A c O H } / \mathbf { H } _ { \mathbf { 2 } } \mathbf { O } , \mathbf { r t } , \mathbf { 8 . 5 } \mathbf { ~ h }}$	$\mathbf{9 0 \%}$

${ }^{a}$ Isolated yield after flash chromatography. n.d. $=$ not detected.

Characterization data of 7

$\mathbf{R}_{\mathbf{f}}=0.23$ (silica, petroleum ether/EtOAc $=1: 2$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.82-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$
(d, $J=20.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dt, $J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.74-2.56$ (m, 2H), 2.47 (ddd, J
$=19.3,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=12.3 \mathrm{~Hz}$,

1H), 1.08 (s, 3H);
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) δ 207.40, 173.36, 164.61, 157.79, 140.02, 125.45, 79.22, 71.81, 53.11, 50.00, 37.97, 29.01, 21.24, 8.69, 8.39;
$[\alpha] \mathrm{D}^{\mathbf{2 1}:}+35.83$ ($\mathrm{c}=0.60$ in Methanol);
IR (KBr) $v_{\max } 3445,2925,1755,1697,1384,1338,1095,1018 \mathrm{~cm}^{-1}$;
HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 263.1278, Found: 263.1277.
Synthesis of compound 6

Procedure:

To a solution of compound $7\left(195 \mathrm{mg}, 0.74 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL})$ and dioxane (11 mL) was added $\mathrm{NaHCO}_{3}(75 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.2$ equiv) and the mixture was stirred under argon at room temperature for 4 h . Then the reaction was quenched with 1 M aqueous HCl and extracted with EtOAc . The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography (petroleum ether:EtOAc $=1: 1$) to yield $\mathbf{6}(138 \mathrm{mg}, 72 \%)$ as a white solid.

Characterization data of 6

$\mathbf{R}_{\mathbf{f}}=0.49$ (silica, petroleum ether/EtOAc $=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.38(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H})$, $2.76(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}$, $J=19.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=14.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=19.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.79,176.83,166.58,137.70,87.63,86.54,85.06$, 48.80, 43.48, 38.91, 36.17, 33.96, 24.68, 8.20, 8.02;
$[\alpha] \mathbf{D}^{21}:+106.53(c=0.50$ in Methanol);
IR (KBr) $\nu_{\max } 2976,2942,1777,1702,1655,1381,1198,1509,1014 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 263.1278, Found: 263.1283.

Table S17. Screening of conditions for oxa-Michael reaction

Entry	Conditons	Yield ${ }^{a}$
1	$p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{r t}$	n.d.
2	$\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{r t}$	n.d.
3	$9 \% \mathrm{HCl}(\mathrm{aq}), \mathrm{EtOH}$, reflux	trace
4	Imidazole, $\mathrm{H}_{2} \mathrm{O} /$ dioxane, rt, 12 h	40%
$\mathbf{5}$	$\mathbf{N a H C O}_{\mathbf{3}}, \mathbf{H}_{\mathbf{2}} \mathbf{O} /$ dioxane, $\mathbf{r t}, \mathbf{4 ~ h}$	$\mathbf{7 2 \%}$

${ }^{a}$ Isolated yield after flash chromatography. n.d. $=$ not detected. CSA $=$ camphorsulfonic acid

Synthesis of compound 10 and 11

Procedure:

To a stirred solution of $\mathbf{6}\left(240 \mathrm{mg}, 0.91 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ in an ice/water bath was added $\mathrm{NaBH}_{4}(69 \mathrm{mg}, 1.83 \mathrm{mmol}, 2.0$ equiv). The resulting mixture was stirred at the same temperature for 30 min before quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic fractions were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude material was purified by column chromatography (petroleum ether: EtOAc $=1: 1)$ to yield $\mathbf{1 0}(209 \mathrm{mg}, 87 \%$ yield $)$ as a white foam and $\mathbf{1 1}(21 \mathrm{mg}, 8 \%$ yield $)$ as a white foam.

Characterization data of 10 :

$\mathbf{R}_{\mathbf{f}}=0.38$ (silica, petroleum ether/EtOAc $=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.76-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dd}, J=14.3$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, 1.29 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDC13) $\delta 177.80,136.26,132.88,87.23,86.57,86.00,79.17$, 52.56, 43.67, 38.89, 34.64, 31.66, 24.12, 10.54, 8.17;
$[\alpha] \mathrm{D}^{21}:-1.05$ ($\mathrm{c}=0.20$ in Methanol);
IR (KBr) $v_{\max } 3444,2940,1774,1448,1378,1360,1203,1164,1092,1043,1016$, $991 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 265.1434, Found: 265.1432.

Characterization data of 11:

$\mathbf{R}_{\mathbf{f}}=0.35$ (silica, petroleum ether/EtOAc $=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 4.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dq}, J=14.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J$ $=14.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=14.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=14.7,8.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{dt}, J=14.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dd}, J=14.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) δ 177.86, 135.91, 135.51, 87.31, 87.02, 85.85, 80.19, 52.93, 43.71, 38.86, 34.93, 32.22, 24.50, 11.40, 8.40;
$[\alpha] \mathrm{D}^{\mathbf{2 1}}:+50.78(\mathrm{c}=0.34$ in Methanol $)$;
IR (KBr) $v_{\max } 3440,2926,2854,1775,1447,1378,1202,1165,1144,1092,1017$, $984 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}:$265.1434, Found: 265.1427 .

Synthesis of compound 5

Procedure:

LDA (2.0 M solution in THF, $1.01 \mathrm{~mL}, 2.02 \mathrm{mmol}, 3.5$ equiv) was added to a stirred solution of $\mathbf{1 0}$ and $\mathbf{1 1}\left(152 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0\right.$ equiv) in 24 mL dry THF at $-78^{\circ} \mathrm{C}$ under argon. After stirring at $-78^{\circ} \mathrm{C}$ for 40 min , a solution of $\mathrm{PhSeBr}(546 \mathrm{mg}, 2.31$ mmol, 4.0 equiv) in 5 mL dry THF was added. After an additional 2 h , the reaction mixture was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous NaSO_{4}, filtered and concentrated by rotary evaporation. The crude selenylated lactones were used directly into next reaction without further purification.

To a solution of the above selenylated lactone in 19 mL DCM was added DMP (366 $\mathrm{mg}, 0.86 \mathrm{mmol}, 1.5$ equiv) at room temperature. After stirred for 20 min at the same temperature, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and to the stirred solution was added m-CPBA ($667 \mathrm{mg}, 75 \mathrm{wt} \% 2.90 \mathrm{mmol}, 5.0$ equiv). After stirred at $0^{\circ} \mathrm{C}$ for 20 \min, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and extracted with EtOAc. The combined organic fractions were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude material was purified by column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) to yield $5(126 \mathrm{mg}, 83 \%$ yield) as a colorless solid.

Characterization data of 5:

$\mathbf{R f}_{\mathbf{f}}=0.43$ (silica, petroleum ether/EtOAc $=1: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=7.3,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (dd, $J=19.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75$
(s, 3H), 1.46 (s, 3H);
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) $\delta 206.50,168.47,165.54,138.27,136.56,125.55$, 87.92, 85.30, 84.30, 48.83, 39.20, 36.17, 33.10, 24.60, 8.08;
$[\alpha] \mathbf{D}^{\mathbf{2 1}}:+190.08$ ($\mathrm{c}=0.64$ in Methanol);
IR (KBr) $v_{\max }$ 2920, 1769, 1703, 1383, 1332, 1126, $1030 \mathrm{~cm}^{-1}$;
HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}(\mathrm{M}-\mathrm{H}):$: 259.0976, Found: 259.0975 .

Synthesis of compound 1, 2, 14 and 15

5

$+$

2, 17\%
1, 48\%

4

15, 7\%
The ratios of 1: 2: 14: $15=6.9: 2.5: 1.3: 1.0$

Orientanoid A (1), Orientanoid B (2), 14, and 15: To the solution of 5 (110 mg, 0.42 mmol, 1.0 equiv) in DCM (4 mL) was added a solution of $4(232 \mathrm{mg}, 1.52 \mathrm{mmol}, 3.6$ equiv) in 3 mL DCM at room temperature. After removal of the solvent under vacuum, the residue was heated to $80^{\circ} \mathrm{C}$ under Ar and kept at that temperature for 18 h before it was cooled to room temperature. The resultant mixture was directly purified by column chromatography (petroleum ether: $\mathrm{EtOAc}=1: 1$) to yield $\mathbf{1}(83 \mathrm{mg}, 48 \%)$ as a colorless solid and a mixture of $\mathbf{2 , 1 4}$ and $\mathbf{1 5}$ as a colorless oil.

This mixture was subjected to HPLC for purification using MeOH/water (70:30, 3.0 $\mathrm{mL} / \mathrm{min}$) as eluent to give $\mathbf{2}(30 \mathrm{mg}, 17 \%$, colorless oil), $\mathbf{1 4}(15 \mathrm{mg}, 9 \%$, colorless oil), and $\mathbf{1 5}$ ($12 \mathrm{mg}, \mathbf{7 \%}$, colorless oil).

Characterization data of 4:

$\mathbf{R}_{\mathbf{f}}=0.22$ (silica, petroleum ether/EtOAc $=10: 1$);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.56(\mathrm{ddd}, J=15.2,11.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=$
$17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 142.32,141.27,135.48,130.79,122.97,112.68$, 71.14, 29.99, 12.15;

IR (KBr) $v_{\max } 3385,2972,1616,1360,1148,986,967,890 \mathrm{~cm}^{-1}$;
HRMS (EI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}(M): 152.1196$, Found: 152.1204.

Characterization data of synthetic 1:

$\mathrm{R}_{\mathrm{f}}=0.47$ (silica, petroleum ether/EtOAc $=1: 1.5$);
${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, Methanol- \boldsymbol{d}_{4}) $\delta 5.80(\mathrm{dd}, J=15.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J$ $=19.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=13.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{dt}, J=14.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, 1.24 (s, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, Methanol $^{\boldsymbol{d}} \boldsymbol{d}$) $\delta 209.97$, 181.91, 170.16, 146.07, 137.76, 134.01, $123.96,123.45,91.29,86.68,85.95,71.06,56.14,50.43,50.37,39.74,37.03,34.99$, 30.18, 29.64, 27.50, 24.91, 23.64, 22.25, 7.89.;
$[\alpha] \mathrm{D}^{\mathbf{2 1}}:+41.67$ ($\mathrm{c}=0.66$ in Methanol);
IR (KBr) $\gamma_{\max } 3464,2971,2929,1769,1702,1655,1382,1340,1274,1211,1022$ cm^{-1};

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 413.2323$, Found: 413.2326.

Characterization data of synthetic 2:

$\mathbf{R}_{\mathbf{f}}=0.38$ (silica, petroleum ether/EtOAc $=1: 1.5$);
${ }^{1}$ H NMR (400 MHz, Methanol-d 4) $\delta 5.67$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 ($\mathrm{s}, 1 \mathrm{H}$), 5.45 (dd, $J=15.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.0$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}$,
$J=19.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{ddd}, J=$ $14.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, Methanol $^{\boldsymbol{d}} \boldsymbol{d}_{4}$) $\delta 210.10,179.88,170.26,142.37$, 138.07, 133.74, $126.31,124.39,92.01,87.36,85.58,71.10,54.04,50.44,45.79,39.54,37.05,33.01$, 29.81, 29.61, 24.95, 23.05, 22.59, 21.09, 7.81;
$\left[\boldsymbol{\alpha} \mathbf{D}^{\mathbf{2 1 2}}:-78.00(\mathrm{c}=0.30\right.$ in Methanol);
IR (KBr) $v_{\max } 3446,2969,2924,2852,1769,1703,1656,1382,1338,1017 \mathrm{~cm}^{-1}$;
HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{-}: 411.2177$, Found: 411.2171 .

Characterization data of 14:

$\mathrm{R}_{\mathrm{f}}=0.38$ (silica, petroleum ether/EtOAc $=1: 1.5$);
${ }^{1}$ H NMR (500 MHz , Methanol- \boldsymbol{d}_{4}): See Table S4;
${ }^{13}$ C NMR (125 MHz , Methanol- \boldsymbol{d}_{4}): See Table S4;
$\left[\boldsymbol{\alpha} \mathbf{D}^{\mathbf{2 1}}:-36.36\right.$ ($\mathrm{c}=0.22$ in Methanol);
IR (KBr) $\nu_{\max } 3360,2922,2851,1703,1658,1633,1469,1411,1271,1164,1075$, $1035 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 435.2142$, Found: 435.2137.

Characterization data of 15:

$\mathbf{R}_{\mathbf{f}}=0.38$ (silica, petroleum ether/EtOAc $=1: 1.5$);
${ }^{1}$ H NMR (500 MHz , Methanol- \boldsymbol{d}_{4}): See Table S4;
${ }^{13}$ C NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, Methanol- \boldsymbol{d}_{4}): See Table S4;
$[\alpha] \mathbf{D}^{\mathbf{2 1}}:+210.00$ ($\mathrm{c}=0.10$ in Methanol);
IR (KBr) $\nu_{\max } 3359,2922,2851,1771,1703,1657,1633,1468,1381,1339,1273$, 1157, 1130, $1075 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 435.2142$, Found: 435.2136 .

Synthesis of compound 3

Orientanoid C (3): To an oxygen bubbled solution of orientanoid A (1) (31 mg , $0.073 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}(10.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added methylene blue (3.4 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.14$ equiv). The reaction mixture was irradiated with an U-shaped fluorescent lamp (Essential 23 W , PHILIPS ${ }^{\circledR}$, distance $\sim 2 \mathrm{~cm}$) at $0{ }^{\circ} \mathrm{C}$ until TLC showed complete consumption of the starting material. The reaction solution was concentrated in vacuo. To a stirred solution of the above residue in DMSO $(1.8 \mathrm{~mL})$ at room temperature was added sequentially p-toluenesulfonic acid ($3.7 \mathrm{mg}, 0.019 \mathrm{mmol}$, 0.27 equiv) and 2-Iodoxybenzoic acid ($15.4 \mathrm{mg}, 0.055 \mathrm{mmol}, 0.75$ equiv). The resulting mixture was stirred for 24 h at room temperature before it was quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous NaSO_{4}, filtered and concentrated by rotary evaporation. The residue was purified by FCC (petroleum ether: $\operatorname{EtOAc}=1: 1.5$) to afford orientanoid C (3) (23 mg, 72\% yield) as colorless solid.

Characterization data of synthetic 3:

$\mathbf{R}_{\mathbf{f}}=0.52$ (silica, petroleum ether/EtOAc $=1: 2$);
${ }^{1}$ H NMR (600 MHz, Methanol $^{2} \boldsymbol{d}_{4}$) $\delta 6.18(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (dd, $J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.77(\mathrm{~m}, 1 \mathrm{H})$, $2.75(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=19.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=14.7,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=19.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dt}, J=14.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, Methanol $^{\left.-d_{4}\right)} \delta$ 209.64, 199.37, 178.81, 168.85, 150.66, 148.11, $138.45,136.59,122.15,90.76,87.82,86.61,71.41,57.43,50.13,39.43,36.94,34.51$, 34.16, 29.62, 29.58, 27.52, 24.83, 13.62, 8.07;
$[\alpha] \mathrm{D}^{\mathbf{2 1}:}+173.07$ ($\mathrm{c}=0.32$ in Methanol);
IR (KBr) $v_{\max } 3446,2971,2925,2854,1771,1704,1660,1382,1353,1338,1208$, $1072 \mathrm{~cm}^{-1}$;

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}: 427.2115$, Found: 427.2121.

4. Biological Assays and Data

Materials and methods

Cell culture. RAW 264.7, E0771 and Hepa1-6 cells were obtained from the American Type Culture Collection (USA). All cell lines in this study were maintained in the appropriate medium as suppliers suggested and were authenticated via single-nucleotide polymorphism (SNP) analysis with the latest test in December 2022 (Crown Bioscience, China).

Macrophages culture and stimulation. The protocols for animal handling were approved by the Institutional Animal Care and Use Committee at Shanghai Institute of Materia Medica and performed according to the institutional ethical guidelines on animal care. Bone marrow cells were isolated from the tibia and femur of $6-8$ weeks old female C57BL/6 mice, seeded at a density of 2×10^{6} cells/well in a 6 -well plate and differentiated in the presence of M-CSF ($20 \mathrm{ng} / \mathrm{mL}$) and 10% fetal bovine serum in IMDM growth medium for 7 days. The medium was changed every three days. To fully polarize M2 macrophages, macrophages were stimulated with $20 \mathrm{ng} / \mathrm{mL}$ IL-4/IL-13. In certain experiments, macrophages were treated with different concentrations of compounds.

Quantitative real-time PCR (RT-PCR). Total RNA was isolated from cells using the EZ-press RNA Purification Kit (EZBioscience, China) and subjected to reverse transcription with $5 \times$ HiScript II qRT SuperMix II (Vazyme, China). PCR was performed with $2 \times$ ChamQ Universal SYBR qPCR Master Mix (Vazyme, China). All primers for qRT-PCR are described in Table S18.

Table S18. RT-PCR primer sequences.

Primer $^{\mathbf{a}}$	Sequence (5' to 3' direction)
ARG1-F	CATATCTGCCAAAGACATCGTG
ARG1-R	GACATCAAAGCTCAGGTGAATC
MRC1-F	CCTATGAAAATTGGGCTTACGG
MRC1-R	CTGACAAATCCAGTTGTTGAGG
CD163-F	GTTTGTGGAGCCATTCTATTGG
CD163-R	GGAAACTGTAAGTCGCTGAATC
$\boldsymbol{\beta - a c t i n - F ~}$	ATCACTATTGGCAACGAGCGGTTC
$\boldsymbol{\beta - a c t i n - R ~}$	CAGCACTGTGTTGGCATAGAGGTC
VEGF-F	GCACATAGAGAGAATGAGCTTCC
VEGF-R	CTCCGCTCTGAACAAGGCT

${ }^{\mathrm{a}} \mathrm{F}=$ Forward Primer, $\mathrm{R}=$ Reverse Primer.

Cell proliferation assay. Cells were seeded in 96 -well tissue culture plates. On the next day, cells were exposed to various concentrations of compounds and further cultured for indicated period. Finally, cell proliferation was determined by using Cell Counting Kit (CCK-8) assay.

CD8 $^{+}$T cells suppression assay. Spleen cells were isolated from C57BL/6 mice, followed by red blood cell (RBC) lysis. BMDMs were induced to M2-like macrophages and treated with different concentrations of compound 1 for 48 h . Then, 1.5×10^{5} spleen cells/well were stimulated with α CD3/ α CD28 /IL-2 and co-cultured with 1×10^{4} pro-treated BMDMs in 96-well plates in LCM (RPMI 1640 with 50 mM 2-mercaptoethanol and 10% fetal bovine serum) at $37{ }^{\circ} \mathrm{C}$. After 72 h , the spleen cells were treated with eBioscience ${ }^{\mathrm{TM}}$ Cell Stimulation Cocktail (plus protein transport inhibitors) for 4 h , and cells activation was then determined by the proportion of IFN $\gamma^{+} \mathrm{CD}^{+} \mathrm{T}$ cells and granzymeB ${ }^{+} \mathrm{CD}^{+} \mathrm{T}$ cells in $\mathrm{CD}^{+} \mathrm{T}$ cells by flow cytometry.

Cell proliferation was determined by the proportion of $\mathrm{Ki} 67^{+} \mathrm{CD} 8^{+} \mathrm{T}$ cells in $\mathrm{CD} 8^{+} \mathrm{T}$ cells by flow cytometry.

In vivo antitumor efficacy. Animal procedures were approved by the Institutional Animal Care and Use Committee of the Shanghai Institute of Materia Medica (approval No. 2022-06-DJ-68 and No. 2022-06-DJ-69). Mice (4-6 weeks-old) were housed five or six mice per cage in a specific pathogen-free room with a 12 h light/dark schedule at $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and were fed an autoclaved chow diet and water ad libitum. E0771 cells (2×10^{6} cells) and Hepa1-6 cells (2×10^{6} cells) were subcutaneously implanted in the right flank of C57 BL/6 mice. Hepal-6 cells (2×10^{6} cells) were subcutaneously implanted in the right flank of BALB/c nu/nu mice. When the tumors reached a volume of around $50 \mathrm{~mm}^{3}$, mice were randomized into each treatment group, vehicle groups were given vehicle alone, and treatment groups received compound 1 as indicated doses via intratumoral injection once daily for indicated days. The tumor volumes and body weights were measured twice per week. Tumor volume (TV) was calculated as follows: TV $=\left(\right.$ length \times width $\left.^{2}\right) / 2$, and the individual relative tumor volume (RTV) was calculated as follows: $R T V=V_{t} / V_{0}$, where V_{t} is the volume on a particular day and V_{0} is the volume at the beginning of the treatment. Significant differences between the treated versus the vehicle groups were determined using Student's t-test.

For analyses of tumor-infiltrating immune cells, E0771 tumor tissues were minced and digested using a Mouse Tumor Dissociation Kit (Miltenyi, Germany). In analysis of the tumor infiltration immune cell as shown in panels c-i, due to the limited tumor size, five individual tumor samples were merged as two samples in the compound 1-treated group and two individual tumor tissues were merged into one sample in the vehicle group. In addition, the cell viability of two individual tumor in vehicle group is too low that was below the analytical limit of detection, so they were excluded. Thus, the samples number in Fig. 6c shown as 6 per group. The cells were passed through a $70 \mu \mathrm{~m}$ cell strainer, stained with a fluorescent antibody or the matching isotype controls for 30 min at room temperature and then tested using a BD LSRFortessa ${ }^{\mathrm{TM}}$. Antibodies specific for the following proteins and the matching
isotype control or FMO control were used to analyze the leukocyte infiltrate: CD45, CD11b, F4/80, CD206, CD3e, CD8a, CD4, IFN γ, and TNF α (BD, eBioscience and Biolegend). Viability was determined by staining with either the LIVE/DEAD ${ }^{\circledR}$ Fixable Violet Dead Cell Stain Kit (Invitrogen) or the Zombie Aqua ${ }^{\text {TM }}$ Fixable Viability Kit (Biolegend). Data were analyzed using FlowJo10.4 software.

Statistical Analysis. Statistical analysis in this paper was conducted using GraphPad Prism 9 software (version 9.0.0; GraphPad Software, La Jolla, CA, USA).

Fig. S7. (a, b) The effect of compounds on cell viability of RAW 264.7 cells and BMDMs. RAW 264.7 cells (a) and BMDM (b) were treated with indicated compounds for 48 h and cell viability was detected by CCK8 assay. ns, $\mathrm{P}>0.05$ vs vehicle control group. (c, d) qRT-PCR analysis of ARG1, MRC1, CD163 mRNA level in RAW264.7 cells (c) and BMDMs (d) stimulated with IL-4/IL-13 alone or combined with compound 1 for 12 h . Data represent means \pm SD from triplicates. ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.01,{ }^{* * *} \mathrm{P}<0.001$, ns, $\mathrm{P}>0.05$, determined by Student's t-test.

Fig. S8. In vivo antitumor effect of compound 1. (a, b) Immune-competent mice bearing E0771 xenograft were intratumorally administrated with compound 1 at $5 \mathrm{mg} / \mathrm{kg}$ or vehicle daily for 18 days ($\mathrm{n}=9$ per group). The relative tumor volume (RTV) (a) and body weight (b) shown as the mean \pm SEM. (c, d) Body weights of immune-competent mice bearing Hepa1-6 xenograft (c) and nude mice bearing Hepa1-6 xenograft (d) related to the Fig. 5a,b. Data are shown as mean \pm SEM. (e) Flow cytometric analysis of tumor infiltrated immune cell subsets in the E0771 tumor model treated with compound $1(5 \mathrm{mg} / \mathrm{kg})\left(\mathrm{n}=6\right.$ per group). Data are shown as the mean $\pm \mathrm{SEM} .{ }^{*} \mathrm{P}<$ 0.05 , ns $\mathrm{P}>0.05$ vs the vehicle group, determined by Student's t-test.

Fig. S9. The effect of compound 1 on Hepa1-6 cells and E0771 cells viability. Hepa1-6 cells (a) and E0771 cells (b) were treated with compound 1 for 72 h and cell viability was detected by CCK8 assay. Data represent means $\pm \mathrm{SD}$ from triplicates. ns, $\mathrm{P}>0.05$ vs control vehicle group. P values were determined by Student's t-test.

Gating strategy. The gating strategy in flow cytometry experiments is shown as below (Figs. S10-S11). Data were analyzed using FlowJo10.4 software.

Fig. S10. The gating strategy for CD8 $^{+} \mathbf{T}$ cells in Fig. 9. CD^{+}T cells were identified by FMO control.

Fig. S11. The gating strategies for $\mathrm{CDB}^{+} \mathbf{T}$ cell (a) and Macrophage (b) in flow cytometry analyses of tumor-infiltrating immune cells in Fig. 5. $\mathrm{TNF} \alpha^{+} \mathrm{CD}^{+} \mathrm{T}$ cell, IFN $\gamma^{+} \mathrm{CD} 8 \mathrm{~T}$ cell, CD206 ${ }^{+}$Macrophage, $\mathrm{CD} 86^{+}$Macrophage were identified by FMO control.

5. X-Ray Crystallographic Data for Synthetic Compounds

Table S19. Crystal data and structure refinement for compound 9

X-ray Crystal Structure for compound 9 (CCDC 2216319)

Identification code	ZZ
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	276.32
Temperature/K	170.00
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/Å	10.2733(2)
b/Å	10.3627(2)
c/Å	13.3957(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/A ${ }^{3}$	1426.09(5)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.287
μ / mm^{-1}	0.748
$\mathrm{F}(000)$	592.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.08 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	10.794 to 149.438
Index ranges	$-12 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 12,-16 \leq 1 \leq 16$
Reflections collected	14626
Independent reflections	$2912\left[\mathrm{R}_{\mathrm{int}}=0.0411, \mathrm{R}_{\text {sigma }}=0.0277\right]$
Data/restraints/parameters	2912/0/186
Goodness-of-fit on F^{2}	1.066
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0325, \mathrm{wR}_{2}=0.0849$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0342, \mathrm{wR}_{2}=0.0869$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.18
Flack parameter	-0.07(9)

Table S20. Crystal data and structure refinement for compound 6

X-ray Crystal Structure for compound 6 (CCDC 2002637)

Identification code	cu_22020154_0m
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$
Formula weight	262.29
Temperature/K	298.0
Crystal system	monoclinic
Space group	P21
a/Å	6.4115(5)
b/Å	6.9501(5)
c/Å	15.4228(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.540(4)
γ^{\prime}	90
Volume/A ${ }^{3}$	675.65(9)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.289
μ / mm^{-1}	0.763
$\mathrm{F}(000)$	280.0
Crystal size/ mm^{3}	$0.16 \times 0.09 \times 0.06$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	5.828 to 149.586
Index ranges	$-8 \leq \mathrm{h} \leq 8,-8 \leq \mathrm{k} \leq 8,-19 \leq 1 \leq 19$
Reflections collected	17282
Independent reflections	$2732\left[\mathrm{R}_{\text {int }}=0.0384, \mathrm{R}_{\text {sigma }}=0.0245\right]$
Data/restraints/parameters	2732/1/175
Goodness-of-fit on F^{2}	1.059
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0794$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}=0.0807$
Largest diff. peak/hole / e \AA^{-3}	0.14/-0.13
Flack parameter	-0.05(6)

Table S21. Crystal data and structure refinement for compound 10

8 9 X-ray Crystal Structure for compound 10 (CCDC 20220	
Identification code	cu_22020479_0m
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$
Formula weight	318.36
Temperature/K	170.0
Crystal system	orthorhombic
Space group	P 2.2121
a/Å	6.7959(2)
b/Å	10.8224(3)
c/Å	22.5827(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/Å ${ }^{3}$	1660.91(8)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.273
μ / mm^{-1}	0.841
F(000)	688.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.08 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	7.83 to 149.248
Index ranges	$-8 \leq \mathrm{h} \leq 8,-13 \leq \mathrm{k} \leq 13,-27 \leq 1 \leq 28$
Reflections collected	14858
Independent reflections	$3388\left[\mathrm{R}_{\text {int }}=0.0586, \mathrm{R}_{\text {sigma }}=0.0424\right]$
Data/restraints/parameters	3388/3/221
Goodness-of-fit on F^{2}	1.052
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0456, \mathrm{wR}_{2}=0.1138$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0519, \mathrm{wR}_{2}=0.1200$
Largest diff. peak/hole / e \AA^{-3}	0.25/-0.25
Flack parameter	-0.08(11)

Table S22. Crystal data and structure refinement for compound 11

X-ray Crystal Structure for compound 11 (CCDC 2022065)

Identification code	cu_22020436_0m
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	264.31
Temperature/K	150.0
Crystal system	tetragonal
Space group	P43
a/Å	13.0969(2)
b/Å	13.0969(2)
c/Å	8.2344(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/A ${ }^{3}$	1412.44(6)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.243
μ / mm^{-1}	0.730
F(000)	568.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.12 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	6.748 to 144.562
Index ranges	$-16 \leq \mathrm{h} \leq 16,-16 \leq \mathrm{k} \leq 16,-9 \leq 1 \leq 10$
Reflections collected	17538
Independent reflections	$2714\left[\mathrm{R}_{\text {int }}=0.0372, \mathrm{R}_{\text {sigma }}=0.0223\right]$
Data/restraints/parameters	2714/1/179
Goodness-of-fit on F^{2}	1.070
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0273, \mathrm{wR}_{2}=0.0716$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0274, \mathrm{wR}_{2}=0.0716$
Largest diff. peak/hole / e \AA^{-3}	0.16/-0.13
Flack parameter	0.03(4)

Table S23. Crystal data and structure refinement for compound 5

X-ray Crystal Structure for compound 5 (CCDC 2002638)

Identification code	cu_22020155_0m
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
Formula weight	260.28
Temperature/K	298
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a/Å	10.4619(19)
b/Å	10.6895(19)
c/Å	11.617(2)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ A 3	1299.1(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.331
μ / mm^{-1}	0.793
F(000)	552.0
Crystal size/mm ${ }^{3}$	$0.16 \times 0.08 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	11.248 to 149.816
Index ranges	$-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 12,-14 \leq 1 \leq 14$
Reflections collected	22909
Independent reflections	2651 [$\left.\mathrm{R}_{\text {int }}=0.0647, \mathrm{R}_{\text {sigma }}=0.0327\right]$
Data/restraints/parameters	2651/0/174
Goodness-of-fit on F^{2}	1.053
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0438, \mathrm{wR}_{2}=0.1129$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0455, \mathrm{wR}_{2}=0.1151$
Largest diff. peak/hole / e \AA^{-3}	0.20/-0.23
Flack parameter	0.09(8)

Table S24. Crystal data and structure refinement for synthetic compound 1

X-ray Crystal Structure for synthetic compound 1 (CCDC 2002639)

Identification code	mj20178_0m
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$
Formula weight	412.50
Temperature/K	200
Crystal system	orthorhombic
Space group	P 212121
a/Å	9.1292(6)
b/Å	9.1825(6)
c/Å	26.7030(16)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ A 3	2238.5(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.224
μ / mm^{-1}	0.435
F(000)	888.0
Crystal size/ mm^{3}	$0.12 \times 0.08 \times 0.06$
Radiation	$\operatorname{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	5.758 to 110.134
Index ranges	$-11 \leq \mathrm{h} \leq 8,-11 \leq \mathrm{k} \leq 11,-32 \leq 1 \leq 32$
Reflections collected	19853
Independent reflections	$4207\left[^{\text {int }}\right.$ $\left.=0.0426, \mathrm{R}_{\text {sigma }}=0.0321\right]$
Data/restraints/parameters	4207/0/277
Goodness-of-fit on F^{2}	1.072
Final R indexes $[\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0546, \mathrm{wR}_{2}=0.1217$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0718, \mathrm{wR}_{2}=0.1352$
Largest diff. peak/hole / e \AA^{-3}	0.20/-0.25
Flack parameter	-0.03(10)

Table S25. Crystal data and structure refinement for compound 14

X-ray Crystal Structure for compound 14 (CCDC 2181591)

Identification code	cu_2022538_0m
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$
Formula weight	412.50
Temperature/K	150.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2 \mathrm{H}_{2} 2_{1}$
a/Å	6.9481(2)
b/Å	15.6259(4)
c/Å	20.1605(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/A ${ }^{3}$	2188.83(9)
Z	4
$\rho_{\text {calcg }} \mathrm{g} / \mathrm{cm}^{3}$	1.252
μ / mm^{-1}	0.692
$\mathrm{F}(000)$	888.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.08 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	7.158 to 160.046
Index ranges	$-8 \leq \mathrm{h} \leq 8,-19 \leq \mathrm{k} \leq 19,-25 \leq 1 \leq 25$
Reflections collected	38753
Independent reflections	$4706\left[\mathrm{R}_{\mathrm{int}}=0.0529, \mathrm{R}_{\text {sigma }}=0.0254\right]$
Data/restraints/parameters	4706/0/277
Goodness-of-fit on F^{2}	1.049
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0738$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0353, \mathrm{wR}_{2}=0.0763$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.18
Flack parameter	0.08(7)

Table S26. Crystal data and structure refinement for synthetic compound 3

X-ray Crystal Structure for synthetic compound 3 (CCDC 2013505)

Identification code	mj20335_0m
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{6.5}$
Formula weight	435.50
Temperature/K	172.99
Crystal system	orthorhombic
Space group	P2 $2_{21} 2$
a/Å	12.2867(14)
b/Å	21.497(3)
c/Å	9.6289(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2543.2(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.137
μ / mm^{-1}	0.429
$\mathrm{F}(000)$	932.0
Crystal size/mm ${ }^{3}$	$0.18 \times 0.09 \times 0.08$
Radiation	$\mathrm{GaK} \alpha(\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ}$	7.21 to 109.73
Index ranges	$-13 \leq \mathrm{h} \leq 14,-26 \leq \mathrm{k} \leq 26,-11 \leq 1 \leq 11$
Reflections collected	27725
Independent reflections	4808 [$\left.\mathrm{R}_{\text {int }}=0.0442, \mathrm{R}_{\text {sigma }}=0.0275\right]$
Data/restraints/parameters	4808/0/291
Goodness-of-fit on F^{2}	1.086
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0278, \mathrm{wR}_{2}=0.0728$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0282, \mathrm{wR}_{2}=0.0733$
Largest diff. peak/hole / e \AA^{-3}	0.15/-0.20
Flack parameter	-0.02(4)

6. Spectral Data

Fig. S12. ${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid A (1) in Methanol- d_{4}.

Fig. S13. ${ }^{13} \mathrm{C}$ NMR spectrum of natural orientanoid $\mathrm{A}(\mathbf{1})$ in Methanol $-d_{4}$.

Fig. S14. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of natural orientanoid A (1) in Methanol- d_{4}.

Fig. S15. HSQC spectrum of natural orientanoid A (1) in Methanol- d_{4}.

Fig. S16. HMBC spectrum of natural orientanoid A (1) in Methanol- d_{4}.

Fig. S17. NOESY spectrum of natural orientanoid A (1) in Methanol- d_{4}.

Fig. S18. (+)-ESIMS spectrum of natural orientanoid A (1).

Fig. S19. (+)-HRESIMS spectrum of natural orientanoid A (1).

Elemental Composition Report

Single Mass Analysis
Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
897 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:
$\begin{array}{lllll}\text { C: } 5-80 & \mathrm{H}: 2-120 & \mathrm{~N}: ~ 0-5 & \mathrm{O}: 0-20 & \mathrm{Na}: 0-1\end{array}$
HES-105 LCT PXE KE324 12-Jan-2016
HES-105_20160112 12 (0.246) AM2 (Ar, 10000.0,0.00,1.00); ABS; Cm (12:25)

Maximum:
Mass Calc. Mass mDa DBE i-FIT i-FIT (Norm) Formula
$\begin{array}{llllllllllllll}435.2145 & 435.2147 & -0.2 & -0.5 & 9.5 & 59.6 & 0.0 & \text { C25 } & \text { H32 } & 05 & \mathrm{Na}\end{array}$

Fig. S20. IR spectrum of natural orientanoid A (1).

Fig. S21. ${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid B (2) in Methanol- d_{4}.

Fig. S22. ${ }^{13} \mathrm{C}$ NMR spectrum of natural orientanoid B(2) in Methanol- d_{4}.

Fig. S23. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of natural orientanoid $\mathrm{B}(\mathbf{2})$ in Methanol- d_{4}.

Fig. S24. HSQC spectrum of natural orientanoid B (2) in Methanol- d_{4}.

Fig. S25. HMBC spectrum of natural orientanoid B (2) in Methanol- d_{4}.

Fig. S26. NOESY spectrum of natural orientanoid B(2) in Methanol- d_{4}.

Fig. S27. ESIMS spectra of natural orientanoid B (2).

Fig. S28. (+)-HRESIMS spectrum of natural orientanoid B (2).

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=3.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
161 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 5-80 & \mathrm{H}: 2-120 & \mathrm{O}: 0-20 & \mathrm{Na}: 0-1\end{array}$
HES-106 LCT PXE KE324 Na: 0-1 12-Jan-2016
HES-106_20160112 16 (0.335) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (13:25)

Fig. S29. IR spectrum of natural orientanoid B (2).

Fig. S30. ${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid $\mathrm{C}(\mathbf{3})$ in Methanol- d_{4}.

Fig. S31. ${ }^{13} \mathrm{C}$ NMR spectrum of natural orientanoid $\mathrm{C}(\mathbf{3})$ in Methanol- d_{4}.

Fig. S32. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of natural orientanoid C (3) in Methanol- d_{4}.

Fig. S33. HSQC spectrum of natural orientanoid $\mathrm{C}(\mathbf{3})$ in Methanol $-d_{4}$.

Fig. S34. HMBC spectrum of natural orientanoid C (3) in Methanol- d_{4}.

Fig. S35. NOESY spectrum of natural orientanoid C (3) in Methanol- d_{4}.

Fig. S36. (-)-ESIMS spectrum of natural orientanoid C (3).

Fig. S37. (-)-HRESIMS spectrum of natural orientanoid C (3).

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=3.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
179 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 5-80 } & \text { H: 2-120 } & \text { O: 0-20 } & \text { Na: 0-1 }\end{array}$
HES-78 LCT PXE KE324
HES-78_20151117 59 (1.288) AM2 (Ar, 10000.0,0.00,1.00); ABS; Cm (50:66)

Minimum:Maximum:		-1.5								
		5.0	3.0	50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form		
471.2018	471.2019	-0.1	-0.2	11.5	102.1	0.0		C26	H31	08

Fig. S38. IR spectrum of natural orientanoid C (3).

Fig. S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in Methanol- d_{4}.

Fig. S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14 in Methanol- d_{4}.

Fig. S41. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 14 in Methanol- d_{4}.

Fig. S42. HSQC spectrum of compound 14 in Methanol- d_{4}.

Fig. S43. HMBC spectrum of compound 14 in Methanol- d_{4}.

f1 (ppm)

Fig. S44. NOESY spectrum of compound 14 in Methanol- d_{4}.

Fig. S45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15 in Methanol- d_{4}.

Fig. S46. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15 in Methanol- d_{4}.

Fig. S47. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 15 in Methanol- d_{4}.

Fig. S48. HSQC spectrum of compound 15 in Methanol- d_{4}.

Fig. S49. HMBC spectrum of compound 15 in Methanol- d_{4}.

Fig. S50. NOESY spectrum of compound 15 in Methanol- d_{4}.

Fig. S51. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of natural and synthetic orientanoid $\mathrm{A}(\mathbf{1})$.

${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid A (Methanol- $d_{4}, 500 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ NMR spectrum of synthetic orientanoid A (Methanol- $\left.d_{4}, 600 \mathrm{MHz}\right)$

Fig. S52. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of natural and synthetic orientanoid $\mathrm{A}(\mathbf{1})$.
N

$\stackrel{0}{\infty} \quad \stackrel{y}{c}$

${ }^{13} \mathrm{C}$ NMR spectrum of natural orientanoid A (Methanol- $d_{4}, 125 \mathrm{MHz}$)

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum of synthetic orientanoid A (Methanol- $d_{4}, 125 \mathrm{MHz}$)

Fig. S53. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of natural and synthetic orientanoid B (2).

${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid B (Methanol- $d_{4}, 500 \mathrm{MHz}$)

Fig. S54. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of natural and synthetic orientanoid B (2).

${ }^{13} \mathrm{C}$ NMR spectrum of natural orientanoid B (Methanol- $d_{4}, 125 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR spectrum of synthetic orientanoid B (Methanol- $d_{4}, 125 \mathrm{MHz}$)

Fig. S55. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of natural and synthetic orientanoid $\mathrm{C}(\mathbf{3})$.

${ }^{1} \mathrm{H}$ NMR spectrum of natural orientanoid C (Methanol- $\left.d_{4}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of synthetic orientanoid C (Methanol- $\left.d_{4}, 600 \mathrm{MHz}\right)$

Fig. S56. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of natural and synthetic orientanoid C (3).

${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $9\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\left.\mathbf{7 (4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

 $\stackrel{\curvearrowleft}{\stackrel{\circ}{\circ}}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $7\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right)$
ờ
$\stackrel{\rightharpoonup}{1}$
N

$\stackrel{8}{\infty} \times$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

[^0]
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 1}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of synthetic orientanoid A (1) $\left(\mathbf{6 0 0} \mathbf{~ M H z}\right.$, Methanol- $\left.\boldsymbol{d}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of synthetic orientanoid A (1) ($\mathbf{1 2 5} \mathbf{~ M H z}$, Methanol- \boldsymbol{d}_{4})

${ }^{1} \mathrm{H}$ NMR spectrum of synthetic orientanoid B (2) ($\mathbf{4 0 0} \mathbf{~ M H z}$, Methanol- \boldsymbol{d}_{4})

${ }^{13} \mathrm{C}$ NMR spectrum of synthetic orientanoid B (2) (125 MHz, Methanol- $\left.\boldsymbol{d}_{4}\right)$
$\stackrel{\circ}{\stackrel{-}{ }}$

2
${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 ($\mathbf{4 0 0} \mathbf{~ M H z , ~ M e t h a n o l - ~} \boldsymbol{d}_{4}$)

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 4}\left(\mathbf{1 2 5} \mathbf{~ M H z}\right.$, Methanol- $\left.\boldsymbol{d}_{4}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound 15 ($\mathbf{4 0 0} \mathbf{~ M H z}$, Methanol- \boldsymbol{d}_{4})

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 5}$ ($\mathbf{1 2 5} \mathbf{~ M H z}$, Methanol- \boldsymbol{d}_{4})
$\stackrel{\circ}{\stackrel{\circ}{\circ}}$

15
${ }^{1} \mathrm{H}$ NMR spectrum of synthetic orientanoid C (3) (600 MHz , Methanol- \boldsymbol{d}_{4})

3

${ }^{13} \mathrm{C}$ NMR spectrum of synthetic orientanoid C (3) (125 MHz, Methanol- \boldsymbol{d}_{4})

3

7. References

1 E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel and R. A. Friesner, J. Chem. Theory Comput., 2016, 12, 281-296.

2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Rev. A.01, Gaussian Inc., Wallingford, CT, 2009.

3 T. Bruhn, A. Schaumlöffel, Y. Hemberger and G. Bringmann, Chirality, 2013, 25, 243-249.
4 T. Bruhn, A. Schaumlöffel, Y. Hemberger and G. Pescitelli, SpecDis version 1.71, Berlin, Germany, 2017.

5 G. Pescitelli and T. Bruhn, Chirality, 2016, 28, 466-474.
6 G. Blay, M. Luz Cardona, B. Garcia and J. R. Pedro, J. Org. Chem. 1991, 56, 6172-6175.
$\left.\begin{array}{llll}\text { Data Filename } & \text { LCMS202300141-2.d } & \begin{array}{l}\text { Sample Name } \\ \text { Pasple ID }\end{array} & \text { Position }\end{array}\right)$ D4-mix-1

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%	AreaSumPercent \%
1	11.224	11.386	11.519	274490	1481229	5.3	2.62
2	11.932	12.071	12.349	48585	521626	1.87	0.92
3	12.568	12.665	12.916	1473281	8876704	31.76	15.73
4	13.051	13.182	13.425	3627426	27949736	100	49.53
5	13.425	13.487	13.561	116890	470754	1.68	0.83
6	13.561	13.661	14.003	2413213	17128008	61.28	30.35

Fragmentor Voltage \#\# Collision Energy 0 Ionization Mode ESI

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%	AreaSumPercent \%
1	11.302	11.392	11.701	13456	75455	2.48	2.42
2	13.417	13.66	14.723	428841	3045602	100	97.58

[^1]
Qualitative Analysis Report

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%	AreaSumPercent \%
1	11.254	11.397	11.543	14599	98083	2.82	1.35
2	11.543	11.649	11.974	25032	130042	3.74	1.79
3	12.527	12.665	13.049	328285	2630405	75.7	36.31
4	13.049	13.184	13.547	284037	3474899	100	47.96
5	13.547	13.661	14.28	140292	911770	26.24	12.58

Integration Peak List

Peak	Start	RT	End	Area	Area \%	AreaSumPercent \%	
1	11.208	11.29	11.422	20.95	88.61	16.9	7.94
2	12.488	12.565	12.728	11.15	46.82	8.93	4.2
3	12.968	13.084	13.268	109.63	456.05	86.95	40.87
4	13.468	13.559	13.748	127.17	524.48	100	47

Spectra

Qualitative Analysis Report

LC-MS Analysis Report for Crude Extracts of the Title Plant

Data Filename	LCMS202300142-2.d	Sample Name	D4-np-1
Sample ID		Position	P1-F5
Instrument Name	Agilent 6545 Q-TOF LCMS	Acq Method	20210825_LCMS_POS.m
Acquired Time	4/7/2023 10:11:11 AM (UTC+08:00)	IRM Calibration Status	Success
DA Method	$0.1323 . \mathrm{m}$	Comment	

Chromatograms

Fragmentor Voltage \#\# Collision Energy 0 Ionization Mode ESI

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%	AreaSumPercent \%
1	11.184	11.251	11.598	1386	3122	3.33	1.49
2	11.598	11.683	11.819	638	4132	4.4	1.97
3	11.819	12.035	12.214	2390	22419	23.89	10.7
4	12.214	12.288	12.437	2338	12841	13.68	6.13
5	12.437	12.544	12.648	2236	10320	11	4.93
6	12.648	12.803	12.88	3755	19576	20.86	9.35
7	12.88	12.927	13.025	1067	5066	5.4	2.42
8	13.025	13.235	13.409	4891	38129	40.63	18.2
9	13.409	13.667	13.922	18420	93842	100	44.8

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%	AreaSumPercent \%
1	11.233	11.4	11.47	421	2255	7.21	4.68
2	11.47	11.655	11.696	464	2530	8.09	5.25
3	11.919	12.057	12.266	414	3836	12.27	7.96
4	12.576	12.679	12.87	1168	8303	26.57	17.23
5	13.053	13.194	13.406	5385	31254	100	64.87

Integration Peak List

Peak	Start	RT	End	Leight	Area	Area \%	AreaSumPercent \%
1	11.238	11.314	11.371	10	36.43	2.08	1.5
2	11.371	11.51	11.625	13.6	71.12	4.07	2.92
3	11.625	11.726	11.906	406.02	1747.26	100	71.85
4	11.906	11.947	12.032	2.58	8.05	0.46	0.33
5	12.032	12.173	12.204	4.91	12.25	0.7	0.5
6	12.204	12.239	12.308	5.54	19.44	1.11	0.8
7	12.308	12.368	12.413	25.07	74.43	4.26	3.06
8	12.413	12.462	12.591	27.23	115.57	6.61	4.75
9	12.591	12.612	12.672	0.88	1.93	0.11	0.08
10	12.672	12.755	12.859	9	41.19	2.36	1.69
11	12.859	12.942	13.045	5.51	31.58	1.81	1.3
12	13.045	13.098	13.128	1.95	4.88	0.28	0.2
13	13.128	13.316	13.433	19.09	137.16	7.85	5.64
14	13.433	13.598	13.644	18.9	59.67	3.42	2.45
15	13.644	13.689	13.832	33.64	70.92	4.06	2.92

Spectra

Fragmentor Voltage	Collision Energy	Ionization Mode
135	ESI	

Qualitative Analysis Report

Fragmentor Voltage	Collision Energy	Ionization Mode
135	ESI	

[^0]: $\begin{array}{lllllllllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]: Fragmentor Voltage \#\# Collision Energy 0 Ionization Mode ESI

