Supporting Information

Nitrenium Ions as New Versatile Reagents for Electrophilic Amination

Idan Avigdori‡, Kuldeep Singh‡, Natalia Fridman, Mark Gandelman*

*Corresponding author: chmark@technion.ac.il

‡These authors contributed equally to this study

Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

Table of Contents

1. (General Information	3
2 .	Experimental procedures	4
3.	NMR spectra	28
4.	Crystallographic data	80
5.	References	83

1. General Information

Oxygen- and moisture-sensitive reactions were carried out under an atmosphere of purified nitrogen in a glovebox equipped with an inert gas purifier. However, the electrophilic amination method presented here can also be utilized in a one-pot procedure without the isolation of the triazane intermediate. In this case, the procedure is carried out in a fume hood under inert conditions - using standard Schlenk techniques (as a standard protocol for working with organolithium or Grignard reagents). DCM, THF, Et₂O, hexane and toluene were purified by passing through a column of an activated alumina under inert atmosphere. Anhydrous MeCN, heptane and MeOH packed under inert gas (argon) were used as purchased. All commercially available reagents were used as received, except for 1,8-diaminonaphthalene which was distilled before use. All organomagnesium (Grignard) reagents used were commercially available and were used as received. 1-Adamantyl-lithium was prepared according to a literature procedure.¹ Aryl-lithium reagents were prepared according to a literature procedure.² Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel 60 F-254 plates (particle size 0.040-0.055 mm, 230-400 mesh). NMR spectra were recorded on either a Bruker Avance300, Bruker AVII400, or on a Bruker AVIII600 spectrometer at 296K, unless mentioned otherwise. All chemical shifts (δ) are reported in parts per million (ppm) and the residual solvent peak was used as an internal standard for ¹H/¹³C NMR: CD₂Cl₂: δ=5.32/53.84; CDCl₃: δ=7.26/77.16; DMSO-d6: δ =2.50/39.52. ¹⁹F, ³¹P, ¹¹B and ¹⁵N NMR signals were referenced to CFCl₃, 85% H₃PO₄ in H₂O, BF₃·Et₂O and CH₃NO₂, respectively. NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sept = septet, m = multiplet, b = broad), coupling constant(s) (Hz) and integration. High resolution mass spectrometry (HRMS) analyses were conducted on Waters HPLC Acquity - Waters LCT Premier system, using an electrospray ionization (ESI+) technique (conditions: MeCN/H₂O (80/20), flow rate: 0.2 ml/min), or on Bruker Maxis Impact system, using an atmospheric-pressure chemical ionization (APCI+) solid probe.

2. Experimental procedures

Preparation of 1N, 3N-dimethylnaphthotriazinium iodide (NHN 1):

NHN 1 and the ¹⁵N-labelled NHN 1' were prepared according to a literature procedure.³

General procedure for the preparation of triazanes:

Scheme S1. Preparation of triazanes from NHN 1.

Within a glovebox containing nitrogen atmosphere, NHN **1** (0.1 g, 0.308 mmol) was loaded into a 20 ml vial, and then Et_2O was added (4 ml) and the vial was cooled to $-10^{\circ}C$. The desired organolithium or Grignard reagent solution (1.1 equiv., 0.338 mmol) was cooled to $-10^{\circ}C$ as well, and then added dropwise to the vial while stirring. The type of organometallic reagent (RLi or RMgBr) was chosen either for reasons of commercial availability, or for ease of preparation, thus most of the aryl nucleophiles were chosen to be aryl-lithium reagents (prepared using *n*-BuLi and an aryl-iodide derivative).² Organolithium and Grignard reagents procured from commercial sources were used directly, while organolithium reagents prepared by us were dissolved in Et_2O (1 ml) before use. The reaction mixture was stirred for 10 minutes while allowing it to reach room temperature, and then the solvent was evaporated. Hexane (2 ml x 5) was then added to the residual solids and the resulting suspension was passed through a pad of Celite. The solvent was evaporated, and the crude triazane product was recrystallized from a hexane or heptane solution.

1N,2N,3N-Trimethylnaphthotriazane 2a

¹H NMR (600 MHz, CD₂Cl₂): δ(ppm)=7.38 (dd, ${}^{3}J_{H,H}$ =8.3 Hz, ${}^{3}J_{H,H}$ =7.3 Hz, 2H; Ar-H), 7.33 (dd, ${}^{3}J_{H,H}$ =8.3 Hz, ${}^{4}J_{H,H}$ =0.9 Hz, 2H; Ar-H), 6.64 (dd, ${}^{3}J_{H,H}$ =7.3 Hz, ${}^{4}J_{H,H}$ =0.9 Hz, 2H; Ar-H), 3.09 (s, 6H; flanking CH₃), 2.40 (s, 3H; central CH₃); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ(ppm)=140.7 (Ar-C),

134.0 (Ar-C), 127.3 (Ar-C), 119.6 (Ar-C), 115.6 (Ar-C), 108.7 (Ar-C), 40.2 (flanking CH₃), 36.0 (central CH₃).

HRMS (APCI): calc. for $C_{13}H_{16}N_3^+$ [(M+H)⁺]: 214.1339, found: 214.1326.

1*N*,3*N*-Dimethyl-2*N*-butylnaphthotriazane **2b**

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.38 (dd, ³*J*_{H,H}=8.3 Hz, ³*J*_{H,H}=7.3 Hz, 2H; Ar-H), 7.33 (dd, ³*J*_{H,H}=8.3 Hz, ⁴*J*_{H,H}=0.9 Hz, 2H; Ar-H), 7.33 (dd, ³*J*_{H,H}=8.3 Hz, ⁴*J*_{H,H}=0.9 Hz, 2H; Ar-H), 3.15 (s, 6H; flanking C*H*₃), 2.58 (t, ³*J*_{H,H}=7.0 Hz, 2H; N-C*H*₂), 1.57-1.51 (m, 2H; C*H*₂), 1.39-1.32 (m, 2H; C*H*₂), 0.92 (t, ³*J*_{H,H}=7.4 Hz, 3H; C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=141.0 (Ar-C), 134.1 (Ar-C), 127.2 (Ar-C), 119.4 (Ar-C), 116.3 (Ar-C), 109.0 (Ar-C), 50.5 (N-CH₂), 41.5 (flanking CH₃), 29.8 (CH₂), 20.8 (CH₂), 14.3 (CH₃).

HRMS (APCI): calc. for $C_{16}H_{22}N_3^+$ [(M+H)⁺]: 256.1808, found: 256.1800.

1N,3N-Dimethyl-2N-benzylnaphthotriazane 2c

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.41 (t, ³*J*_{H,H}=7.7 Hz, 2H; Ar-H), 7.38 (d, ³*J*_{H,H}=8.1 Hz, 2H; Ar-H), 7.34-7.30 (m, 2H; Ar-H), 7.30-7.26 (m, 3H; Ar-H), 6.66 (d, ³*J*_{H,H}=7.1 Hz, 2H; Ar-H), 3.72 (s, 2H; C*H*₂) 3.07 (s, 6H; flanking C*H*₃); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm)=140.7 (Ar-C), 138.1 (Ar-C), 134.2 (Ar-C), 129.8 (Ar-C), 128.4 (Ar-C), 127.4 (Ar-C), 127.3 (Ar-C), 119.6 (Ar-C), 116.2 (Ar-C), 109.0 (Ar-C), 54.9 (N-CH₂), 41.4 (flanking CH₃).

HRMS (APCI): calc. for $C_{19}H_{20}N_3^+$ [(M+H)⁺]: 290.1652, found: 290.1643.

1N,3N-Dimethyl-2N-isopropylnaphthotriazane 2d

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.32 (dd, ³*J*_{H,H}=8.3 Hz, ³*J*_{H,H}=7.3 Hz, 2H; Ar-H), 7.23 (dd, ³*J*_{H,H}=8.3 Hz, ⁴*J*_{H,H}=0.9 Hz, 2H; Ar-H), 7.23 (dd, ³*J*_{H,H}=8.3 Hz, ⁴*J*_{H,H}=0.9 Hz, 2H; Ar-H), 3.20 (s, 6H; flanking C*H*₃), 2.96 (sept, ³*J*_{H,H}=6.2 Hz, 1H; C*H*), 1.02 (d, ³*J*_{H,H}=6.2 Hz, 6H; C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=140.7 (Ar-C), 134.5 (Ar-C), 127.3 (Ar-C), 118.7 (Ar-C), 116.6 (Ar-C), 108.3 (Ar-C), 55.4 (N-CH), 44.6 (flanking CH₃), 20.6 (CH₃).

HRMS (APCI): calc. for C₁₅H₂₀N₃⁺ [(M+H)⁺]: 242.1652, found: 242.1666.

1N,3N-Dimethyl-2N-sec-butylnaphthotriazane 2e

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=7.35 (t, ³*J*_{H,H}=7.6 Hz, 2H; Ar-H), 7.29 (d, ³*J*_{H,H}=8.1 Hz, 1H; Ar-H), 7.25 (d, ³*J*_{H,H}=8.1 Hz, 1H; Ar-H), 6.64 (d, ³*J*_{H,H}=7.2 Hz, 1H; Ar-H), 6.55 (d, ³*J*_{H,H}=7.3 Hz, 1H; Ar-H), 3.27 (s, 3H; flanking *CH*₃), 3.20 (s, 3H; flanking *CH*₃), 2.90-2.83 (m, 1H; *CH*), 1.65-1.56 (m, 1H; *CH*₂), 1.50-1.41 (m, 1H; *CH*₂), 0.99 (d, ³*J*_{H,H}=6.4 Hz, 3H; *CH*₃), 0.83 (d, ³*J*_{H,H}=7.5 Hz, 3H; *CH*₃); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ (ppm)=140.8 (Ar-C), 140.3 (Ar-C), 134.2 (Ar-C), 127.1 (Ar-C), 127.0 (Ar-C), 119.2 (Ar-C), 118.1 (Ar-C), 116.5 (Ar-C), 109.5 (Ar-C), 106.9 (Ar-C), 60.6 (N-CH), 44.8 (flanking *CH*₃), 44.3 (flanking *CH*₃), 26.5 (*CH*₂), 16.6 (*CH*₃), 9.7 (*CH*₃).

HRMS (APCI): calc. for C₁₆H₂₂N₃⁺ [(M+H)⁺]: 256.1808, found: 256.1799.

1N,3N-Dimethyl-2N-cyclopentylnaphthotriazane 2f

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.33 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.25 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 7.25 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 3.24 (quin, ³*J*_{H,H}=7.0 Hz, 1H; N-C*H*), 3.21 (s, 6H; flanking C*H*₃), 1.69-1.60 (m, 6H; C*H*₂), 1.41-1.32 (m, 2H; C*H*₂); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=140.8 (Ar-C), 134.4 (Ar-C), 127.3 (Ar-C), 118.8 (Ar-C), 116.7 (Ar-C), 108.6 (Ar-C), 66.1 (N-CH), 44.1 (flanking CH₃), 30.9 (CH₂), 23.9 (CH₂).

HRMS (APCI): calc. for $C_{17}H_{22}N_3^+$ [(M+H)⁺]: 268.1808, found: 268.1800.

1*N*,3*N*-Dimethyl-2*N*-tert-butylnaphthotriazane 2g

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.29 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.17 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 6.61 (dd, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 3.30 (s, 6H; flanking CH₃), 0.97 (s, 9H; C(CH₃)₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=144.3 (Ar-C), 134.4 (Ar-C), 127.1 (Ar-C), 118.3 (Ar-C), 117.3 (Ar-C), 108.0 (Ar-C), 65.0 (N-C(CH₃)₃), 48.3 (flanking CH₃), 26.9 (C(CH₃)₃).

HRMS (APCI): calc. for $C_{16}H_{22}N_3^+$ [(M+H)⁺]: 256.1808, found: 256.1823.

1*N*,3*N*-Dimethyl-2*N*-adamantylnaphthotriazane **2h**

¹**H NMR** (600 MHz, CD₂Cl₂): δ(ppm)=7.33-7.28 (m, 2H; Ar-H), 7.21-7.16 (m, 2H; Ar-H), 6.65-6.59 (m, 2H; Ar-H), 3.32 (s, 6H; flanking CH₃), 1.94-1.88 (m, 1H; adamantyl), 1.66-1.63 (m, 2H; adamantyl), 1.57-1.48 (m, 2H; adamantyl), 1.43-1.38 (m, 4H; adamantyl), 0.99 (s, 6H; adamantyl); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ(ppm)=144.3 (Ar-C), 134.4 (Ar-C), 127.1 (Ar-C), 118.3 (Ar-C), 117.3 (Ar-C), 108.1 (Ar-C), 65.0 (N-C), 48.4 (flanking CH₃), 40.0 (adamantyl), 37.0 (adamantyl), 30.1 (adamantyl), 26.9 (adamantyl).

HRMS (APCI): calc. for C₂₂H₂₇N₃⁺ [(M+H)⁺]: 334.2278, found: 334.2245.

1N,3N-Dimethyl-2N-phenylnaphthotriazane 2i

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.37 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.30 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 7.16-7.09 (m, 4H; Ar-H), 6.86-6.80 (m, 3H; Ar-H), 3.44 (s, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=151.4 (Ar-C), 141.8 (Ar-C), 134.8 (Ar-C), 129.0 (Ar-C), 127.1 (Ar-C), 122.4 (Ar-C), 120.0 (Ar-C), 117.6 (Ar-C), 116.7 (Ar-C), 109.4 (Ar-C), 43.5 (flanking C*H*₃).

HRMS (APCI): calc. for C₁₈H₁₈N₃⁺ [(M+H)⁺]: 276.1495, found: 276.1489.

1N,3N-Dimethyl-2N-phenylnaphthotriazane (2-15N) 2i'

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.34 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.27 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 7.13-7.06 (m, 4H; Ar-H), 6.83-6.77 (m, 3H; Ar-H), 3.42 (d, ³*J*_{H,N}=3.5 Hz, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=151.4 (d, ¹*J*_{C,N}=8.5 Hz; Ar-C), 141.8 (Ar-C), 134.8 (Ar-C), 129.0 (Ar-C), 127.1 (Ar-C), 122.3 (Ar-C), 120.0 (Ar-C), 117.6 (d, ²*J*_{C,N}=2.9 Hz; Ar-C), 116.7 (d, ²*J*_{C,N}=1.5 Hz; Ar-C), 109.4 (Ar-C), 43.5 (d, ²*J*_{C,N}=4.3 Hz; flanking CH₃); ¹⁵N{¹H} **NMR** (60 MHz, CD₂Cl₂): δ (ppm)=-225.8.

HRMS (APCI): calc. for C₁₈H₁₈N₂¹⁵N⁺ [(M+H)⁺]: 277.1466, found: 277.1452.

1N,3N-Dimethyl-2N-(4-methoxyphenyl)naphthotriazane 2j

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.34 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.30 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 6.98 (d, ³*J*_{H,H}=9.2 Hz, 2H; Ar-H), 6.77 (dd, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 6.64 (d, ³*J*_{H,H}=9.2 Hz, 2H; Ar-H), 3.63 (s, 3H; O-C*H*₃), 3.39 (s, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=155.4 (Ar-C), 144.6 (Ar-C), 141.7 (Ar-C), 134.7 (Ar-C), 127.1 (Ar-C), 119.9 (Ar-C), 118.9 (Ar-C), 116.7 (Ar-C), 114.2 (Ar-C), 109.3 (Ar-C), 55.7 (O-CH₃), 43.3 (flanking CH₃).

HRMS (APCI): calc. for $C_{19}H_{20}N_3O^+$ [(M+H)⁺]: 306.1601, found: 306.1629.

1N,3N-Dimethyl-2N-(3-methoxyphenyl)naphthotriazane 2k

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.33 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.27 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 7.00 (t, ³*J*_{H,H}=8.2 Hz, 1H; Ar-H), 6.79 (dd, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 6.66-6.62 (m, 2H; Ar-H), 6.35 (ddd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=2.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 1H; Ar-H), 3.66 (s, 3H; O-C*H*₃), 3.40 (s, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=160.6 (Ar-C), 153.0 (Ar-C), 141.9 (Ar-C), 134.9 (Ar-C), 129.7 (Ar-C), 127.1 (Ar-C), 120.0 (Ar-C), 116.7 (Ar-C), 110.0 (Ar-C), 109.4 (Ar-C), 107.3 (Ar-C), 104.1 (Ar-C), 55.4 (O-CH₃), 43.5 (flanking CH₃).

HRMS (APCI): calc. for $C_{19}H_{20}N_3O^+$ [(M+H)⁺]: 306.1601, found: 306.1621.

1*N*,3*N*-Dimethyl-2*N*-(4-tolyl)naphthotriazane 2I

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.36 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.28 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 6.98 (d, ³*J*_{H,H}=8.7 Hz, 2H; Ar-H), 6.93 (d, ³*J*_{H,H}=8.7 Hz, 2H; Ar-H), 6.80 (dd, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 3.42 (s, 6H; flanking CH₃), 2.17 (s, 3H; C-CH₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=149.0 (Ar-C), 141.9 (Ar-C), 134.8 (Ar-C), 131.9 (Ar-C), 129.5 (Ar-C), 127.1 (Ar-C), 119.9 (Ar-C), 117.7 (Ar-C), 116.7 (Ar-C), 109.3 (Ar-C), 43.3 (flanking CH₃), 20.5 (C-CH₃).

HRMS (APCI): calc. for C₁₉H₂₀N₃⁺ [(M+H)⁺]: 290.1652, found: 290.1676.

1N,3N-Dimethyl-2N-(3-tolyl)naphthotriazane 2m

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.37 (t, ³*J*_{H,H}=7.8 Hz, 2H; Ar-H), 7.30 (d, ³*J*_{H,H}=8.2 Hz, 2H; Ar-H), 7.01 (t, ³*J*_{H,H}=7.9 Hz, 1H; Ar-H), 6.98-6.95 (m, 1H; Ar-H), 6.86 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=2.0 Hz, 1H; Ar-H), 6.82 (d, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 6.67 (d, ³*J*_{H,H}=7.4 Hz, 1H; Ar-H), 3.43 (s, 6H; flanking CH₃), 2.24 (s, 3H; C-CH₃); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm)=151.4 (Ar-C), 141.9 (Ar-C), 139.0 (Ar-C), 134.9 (Ar-C), 128.8 (Ar-C), 127.1 (Ar-C), 123.2 (Ar-C), 120.0 (Ar-C), 118.4 (Ar-C), 116.7 (Ar-C), 114.5 (Ar-C), 109.4 (Ar-C), 43.5 (flanking CH₃), 21.8 (C-CH₃).

HRMS (APCI): calc. for $C_{19}H_{20}N_3^+$ [(M+H)⁺]: 290.1652, found: 290.1663.

1N,3N-Dimethyl-2N-(2-tolyl)naphthotriazane 2n

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.39 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.3 Hz, 2H; Ar-H), 7.35 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=1.0 Hz, 2H; Ar-H), 7.17 (d, ³*J*_{H,H}=7.3 Hz, 1H; Ar-H), 6.85 (td, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=1.2 Hz, 1H; Ar-H), 6.79 (d, ³*J*_{H,H}=7.7 Hz, 1H; Ar-H), 6.71 (dd, ³*J*_{H,H}=7.3 Hz, ⁴*J*_{H,H}=1.0 Hz, 2H; Ar-H), 6.49 (dd, ³*J*_{H,H}=8.1 Hz, ⁴*J*_{H,H}=1.0 Hz, 1H; Ar-H), 3.28 (s, 6H; flanking C*H*₃), 2.55 (s, 3H; C-C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=146.8 (Ar-C), 142.2 (Ar-C), 134.5 (Ar-C), 133.1 (Ar-C), 132.1 (Ar-C), 127.4 (Ar-C), 125.6 (Ar-C), 123.9 (Ar-C), 119.9 (Ar-C), 117.7 (Ar-C), 116.3 (Ar-C), 108.3 (Ar-C), 42.1 (flanking C*H*₃), 19.9 (C-C*H*₃).

HRMS (APCI): calc. for C₁₉H₂₀N₃⁺ [(M+H)⁺]: 290.1652, found: 290.1672.

1*N*,3*N*-Dimethyl-2*N*-mesitylnaphthotriazane **20**

¹**H NMR** (600 MHz, CD_2Cl_2): δ (ppm)=7.40-7.35 (m, 4H; Ar-H), 6.74 (s, 2H; Ar-H), 6.66 (dd, ${}^{3}J_{H,H}$ =6.7 Hz, ${}^{4}J_{H,H}$ =1.6 Hz, 2H; Ar-H), 3.23 (s, 6H; flanking CH₃), 2.21 (s, 3H; C-CH₃), 2.05 (s, 6H; C-CH₃); ${}^{13}C{}^{1}H$ **NMR** (151 MHz, CD_2Cl_2): δ (ppm)=143.9 (Ar-C), 143.8 (Ar-C), 135.1 (Ar-C), 133.8 (Ar-C), 132.2 (Ar-C), 131.1 (Ar-C), 127.3 (Ar-C), 119.5 (Ar-C), 116.3 (Ar-C), 108.5 (Ar-C), 44.3 (flanking CH₃), 21.8 (C-CH₃), 20.5 (C-CH₃).

HRMS (APCI): calc. for $C_{21}H_{24}N_3^+$ [(M+H)⁺]: 318.1965, found: 318.1992.

1*N*,3*N*-Dimethyl-2*N*-(4-biphenyl)naphthotriazane **2p**

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=7.42 (d, ${}^{3}J_{H,H}$ =7.8 Hz, 2H; Ar-H), 7.36-7.31 (m, 6H; Ar-H), 7.28 (d, ${}^{3}J_{H,H}$ =8.2 Hz, 2H; Ar-H), 7.23 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 1H; Ar-H), 7.14 (d, ${}^{3}J_{H,H}$ =8.8 Hz, 2H; Ar-H), 6.80 (d, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; Ar-H), 3.45 (s, 6H; flanking CH₃); ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ(ppm)=150.4 (Ar-C), 141.6 (Ar-C), 141.0 (Ar-C), 135.0 (Ar-C), 134.6 (Ar-C), 128.7 (Ar-C), 127.6 (Ar-C), 127.3 (Ar-C), 126.8 (Ar-C), 126.7 (Ar-C), 120.0 (Ar-C), 117.7 (Ar-C), 116.6 (Ar-C), 109.2 (Ar-C), 43.6 (flanking CH₃).

HRMS (APCI): calc. for C₂₄H₂₂N₃⁺ [(M+H)⁺]: 352.1808, found: 352.1798.

1N,3N-Dimethyl-2N-(4-chlorophenyl)naphthotriazane 2q

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.35 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.30 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 7.09-7.01 (m, 4H; Ar-H), 6.81 (dd, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=0.8 Hz, 2H; Ar-H), 3.41 (s, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=150.2 (Ar-C), 141.5 (Ar-C), 134.8 (Ar-C), 128.9 (Ar-C), 127.1 (Ar-C), 127.0 (Ar-C), 120.3 (Ar-C), 119.0 (Ar-C), 116.6 (Ar-C), 109.8 (Ar-C), 43.6 (flanking CH₃).

HRMS (APCI): calc. for C₁₈H₁₇ClN₃⁺ [(M+H)⁺]: 310.1106, found: 310.1144.

1N,3N-Dimethyl-2N-(4-fluorophenyl)naphthotriazane 2r

¹**H NMR** (600 MHz, CDCl₃): δ (ppm)=7.30 (dd, ³*J*_{H,H}=8.2 Hz, ³*J*_{H,H}=7.3 Hz, 2H; Ar-H), 7.25 (dd, ³*J*_{H,H}=8.2 Hz, ⁴*J*_{H,H}=0.9 Hz, 2H; Ar-H), 7.02-6.97 (m, 2H; Ar-H), 6.78-6.71 (m, 4H; Ar-H), 3.36 (s, 6H; flanking C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ (ppm)=158.3 (d, ¹*J*_{C,F}=240.2 Hz; Ar-C-F), 147.0 (d, ⁴*J*_{C,F}=2.4 Hz; Ar-C), 141.2 (Ar-C), 134.5 (Ar-C), 126.8 (Ar-C), 120.1 (Ar-C), 118.7 (d, ³*J*_{C,F}=7.7 Hz; Ar-C), 116.5 (Ar-C), 115.3 (d, ²*J*_{C,F}=22.4 Hz; Ar-C), 109.3 (Ar-C), 43.4 (flanking CH₃).

HRMS (APCI): calc. for C₁₈H₁₇FN₃⁺ [(M+H)⁺]: 294.1401, found: 294.1429.

1N,3N-Dimethyl-2N-(4-(trifluoromethyl)phenyl)naphthotriazane 2s

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=7.33-7.29 (m, 4H; Ar-H), 7.27 (dd, ${}^{3}J_{H,H}$ =8.2 Hz, ${}^{4}J_{H,H}$ =1 Hz, 2H; Ar-H), 7.14 (d, ${}^{3}J_{H,H}$ =8.5 Hz, 2H; Ar-H), 6.78 (dd, ${}^{3}J_{H,H}$ =7.3 Hz, ${}^{4}J_{H,H}$ =1 Hz, 2H; Ar-H), 3.40 (s, 6H; flanking CH₃); 13 C{¹H} NMR (151 MHz, CDCl₃): δ(ppm)=154.0 (q, ${}^{4}J_{C,F}$ =1.2 Hz; Ar-C), 141.3 (Ar-C), 134.6 (Ar-C), 126.8 (Ar-C), 126.2 (q, ${}^{3}J_{C,F}$ =3.8 Hz; Ar-C), 124.5 (q, ${}^{1}J_{C,F}$ =271.2 Hz; Ar-C), 123.8 (q, ${}^{2}J_{C,F}$ =32.2 Hz; Ar-C), 120.5 (Ar-C), 117.0 (Ar-C), 116.5 (Ar-C), 109.7 (Ar-C), 43.8 (flanking CH₃).

HRMS (APCI): calc. for $C_{19}H_{17}F_3N_3^+$ [(M+H)⁺]: 344.1369, found: 344.1398.

1*N*,3*N*-Dimethyl-2*N*-(3,5-bis(trifluoromethyl)phenyl)naphthotriazane 2t

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.65 (s, 2H; Ar-H), 7.42-7.32 (m, 5H; Ar-H), 7.14 (d, ³J_{H,H}=8.5 Hz, 2H; Ar-H), 6.95 (dd, ³J_{H,H}=7.2 Hz, ⁴J_{H,H}=1.1 Hz, 2H; Ar-H), 3.49 (s, 6H; flanking CH₃); ¹³C{¹H} **NMR** (151 MHz, CD₂Cl₂): δ (ppm)=153.3 (Ar-C), 141.1 (Ar-C), 135.0 (Ar-C), 132.3 (q, ²J_{C,F}=32.9 Hz; Ar-C), 127.2 (Ar-C), 124.0 (q, ¹J_{C,F}=272.7 Hz; Ar-C), 121.2 (Ar-C), 117.3 (m, Ar-C), 116.7 (Ar-C), 115.6 (m, Ar-C), 111.1 (Ar-C), 44.6 (flanking CH₃).

HRMS (APCI): calc. for $C_{20}H_{16}F_6N_3^+$ [(M+H)⁺]: 412.1243, found: 412.1280.

1N,3N-Dimethyl-2N-(2-naphthyl)naphthotriazane 2u

¹H NMR (600 MHz, CD₂Cl₂): δ(ppm)=7.70-7.65 (m, 2H; Ar-H), 7.62-7.56 (m, 2H; Ar-H), 7.38 (t, ${}^{3}J_{H,H}$ =7.8 Hz, 2H; Ar-H), 7.34 (t, ${}^{3}J_{H,H}$ =7.5 Hz, 1H; Ar-H), 7.30-7.25 (m, 3H; Ar-H), 7.19 (s, 1H; Ar-H), 6.88 (d, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; Ar-H), 3.50 (s, 6H; flanking CH₃); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ(ppm)=148.7 (Ar-C), 141.8 (Ar-C), 134.8 (Ar-C), 134.1 (Ar-C), 130.1 (Ar-C), 129.0 (Ar-C), 127.6 (Ar-C), 127.4 (Ar-C), 127.2 (Ar-C), 126.4 (Ar-C), 124.4 (Ar-C), 120.1 (Ar-C), 120.0 (Ar-C), 116.8 (Ar-C), 112.6 (Ar-C), 109.5 (Ar-C), 43.5 (flanking CH₃).

HRMS (APCI): calc. for $C_{22}H_{20}N_3^+$ [(M+H)⁺]: 326.1652, found: 326.1620.

1N,3N-Dimethyl-2N-(5-benzofuranyl)naphthotriazane 2v

¹**H NMR** (600 MHz, CD₂Cl₂): δ (ppm)=7.51 (d, ⁴*J*_{H,H}=2.1 Hz, 1H; Ar-H), 7.36 (t, ³*J*_{H,H}=7.8 Hz, 2H; Ar-H), 7.30-7.27 (m, 3H; Ar-H), 7.23 (dd, ³*J*_{H,H}=9.0 Hz, ⁴*J*_{H,H}=2.3 Hz, 1H; Ar-H), 7.17 (d, ⁴*J*_{H,H}=2.3 Hz, 1H; Ar-H), 6.83 (d, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 6.61 (d, ⁴*J*_{H,H}=2.0 Hz, 1H; Ar-H), 3.46 (s, 6H; flanking C*H*₃); ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm)=151.4 (Ar-C), 147.1 (Ar-C), 145.9 (Ar-C), 141.8 (Ar-C), 134.8 (Ar-C), 127.7 (Ar-C), 127.2 (Ar-C), 119.9 (Ar-C), 116.8 (Ar-C), 116.1 (Ar-C), 111.5 (Ar-C), 109.4 (Ar-C), 109.0 (Ar-C), 107.0 (Ar-C), 43.5 (flanking CH₃).

HRMS (APCI): calc. for C₂₀H₁₈N₃O⁺ [(M+H)⁺]: 316.1444, found: 316.1402.

1N,3N-Dimethyl-2N-(3-(9-phenyl)carbazolyl)naphthotriazane 2w

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=7.95 (d, ${}^{3}J_{H,H}$ =7.8 Hz, 1H; Ar-H), 7.66 (d, ${}^{4}J_{H,H}$ =2.1 Hz, 1H; Ar-H), 7.47 (t, ${}^{3}J_{H,H}$ =7.7 Hz, 2H; Ar-H), 7.39 (d, ${}^{3}J_{H,H}$ =7.8 Hz, 2H; Ar-H), 7.33 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 1H; Ar-H), 7.30-7.25 (m, 4H; Ar-H), 7.21-7.18 (m, 3H; Ar-H), 7.16-7.11 (m, 2H; Ar-H), 6.77 (d, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; Ar-H), 3.45 (s, 6H; flanking CH₃); 13 C{¹H} NMR (151 MHz, CDCl₃): δ(ppm)=144.5 (Ar-C), 141.7 (Ar-C), 141.3 (Ar-C), 138.0 (Ar-C), 137.1 (Ar-C), 134.5 (Ar-C), 129.8 (Ar-C), 127.2 (Ar-C), 127.0 (Ar-C), 126.9 (Ar-C), 125.8 (Ar-C), 123.5 (Ar-C), 123.4 (Ar-C), 120.3 (Ar-C), 119.8 (Ar-C), 119.5 (Ar-C), 117.6 (Ar-C), 116.7 (Ar-C), 110.0 (Ar-C), 109.8 (Ar-C), 109.0 (Ar-C), 108.9 (Ar-C), 43.5 (flanking CH₃).

HRMS (APCI): calc. for C₃₀H₂₇N₄⁺ [(M+3H)⁺]: 443.2219, found: 443.2195.

General procedure for the hydrogenolysis of triazanes to generate primary amines:

Scheme S2. Hydrogenolysis of triazanes.

Within a glovebox containing nitrogen atmosphere, in a vial, each triazane (0.2 mmol) was dissolved in 0.7 ml of DCM and Pd/C (0.002 g, 10 mol%) was added to the solution. Toluene (0.0212 ml, 0.2 mmol) was then added as an internal standard for measurement of the yield by ¹H NMR. This solution was then transferred into a Schlenk tube containing a stirring magnet. The Schlenk tube was then sealed, removed from the glovebox, cooled to -78°C, and then the N₂ atmosphere was quickly evacuated by vacuum and replaced with H₂ gas (1 bar). The reaction

mixture was then stirred at 40°C for 2 hours. For volatile amines (**3a-b**, **3d-g**), CD₂Cl₂ was used instead of non-deuterated DCM, and the yield was measured directly by ¹HNMR. For all the other amines which were separated, the reaction mixture was then passed through a small column of Celite using DCM as the eluent. The solvent was evaporated, and the product was isolated by preparative TLC (silica), using Hexane/EtOAc (7:3).

The following are the NMR spectra of the amines we isolated:

Benzylamine **3c**

 $Ph NH_2$

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.37-7.29 (m, 4H; Ar-H), 7.28-7.22 (m, 1H; Ar-H), 3.87 (s, 2H; C*H*₂), 1.42 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=143.4 (Ar-C), 128.6 (Ar-C), 127.1 (Ar-C), 126.8 (Ar-C), 46.6 (CH₂).

HRMS (ESI+): calc. for $C_7H_{10}N^+$ [(M+H)⁺]: 108.0808, found: 108.0813.

1-Adamantylamine (Amantadine) 3h

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=2.04 (s, 3H; adamantyl), 1.68-1.52 (m, 12H; adamantyl), 0.90-1.25 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=47.4 (adamantyl *C*-N), 46.4 (adamantyl), 36.4 (adamantyl), 29.9 (adamantyl).

HRMS (ESI+): calc. for $C_{10}H_{18}N^+$ [(M+H)⁺]: 152.1434, found: 152.1439.

Aniline **3i**

 $PhNH_2$

¹**H NMR** (400 MHz, CDCl₃): δ (ppm)=7.22 (dd, ³*J*_{H,H}=8.4 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 6.82 (tt, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=1.0 Hz, 1H; Ar-H), 6.72 (dd, ³*J*_{H,H}=8.4 Hz, ⁴*J*_{H,H}=1.0 Hz, 2H; Ar-H), 3.62 (bs, 2H; N*H*₂); ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ (ppm)=146.4 (Ar-C-N), 129.3 (Ar-C), 118.5 (Ar-C), 115.1 (Ar-C).

HRMS (ESI+): calc. for $C_6H_8N^+$ [(M+H)⁺]: 94.0651, found: 94.0657.

Aniline-15N 3i'

 $Ph^{15}NH_2$

¹H NMR (600 MHz, CDCl₃): δ (ppm)=7.19 (dd, ³*J*_{H,H}=8.4 Hz, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 6.79 (tt, ³*J*_{H,H}=7.4 Hz, ⁴*J*_{H,H}=1.0 Hz, 1H; Ar-H), 6.71 (d, ³*J*_{H,H}=7.8 Hz, 2H; Ar-H), 3.56 (bs, 2H; ¹⁵N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=146.5 (d, ¹*J*_{C,N}=10.8 Hz, Ar-C-¹⁵N), 129.4 (d, ³*J*_{C,N}=1.1 Hz, Ar-C), 118.6 (Ar-C), 115.2 (d, ²*J*_{C,N}=2.7 Hz, Ar-C); ¹⁵N{¹H} NMR (60 MHz, CDCl₃): δ (ppm)=-325.4.

HRMS (ESI+): calc. for $C_6H_8^{15}N^+$ [(M+H)⁺]: 95.0622, found: 95.0628.

4-Methoxyaniline (p-anisidine) 3j

¹**H NMR** (400 MHz, CDCl₃): δ (ppm)=6.75 (d, ³*J*_{H,H}=8.8 Hz, 2H; Ar-H), 6.65 (d, ³*J*_{H,H}=8.8 Hz, 2H; Ar-H), 3.75 (s, 3H; OC*H*₃), 3.32 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=152.9 (Ar-C), 140.0 (Ar-C), 116.5 (Ar-C), 114.9 (Ar-C), 55.8 (OCH₃).

HRMS (ESI+): calc. for C₇H₁₀NO⁺ [(M+H)⁺]: 124.0757, found: 124.0762.

3-Methoxyaniline (m-anisidine) 3k

OMe NH_2

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.08 (t, ³*J*_{H,H}=8.1 Hz, 1H; Ar-H), 6.35 (ddd, ³*J*_{H,H}=8.1 Hz, ⁴*J*_{H,H}=2.3 Hz, ⁴*J*_{H,H}=0.8 Hz, 1H; Ar-H), 6.31 (ddd, ³*J*_{H,H}=7.9 Hz, ⁴*J*_{H,H}=2.1 Hz, ⁴*J*_{H,H}=0.8 Hz, 1H; Ar-H), 6.26 (t, ⁴*J*_{H,H}=2.2 Hz, 1H; Ar-H), 3.78 (s, 3H; OC*H*₃), 3.69 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=160.8 (Ar-C), 147.9 (Ar-C), 130.1 (Ar-C), 107.9 (Ar-C), 103.9 (Ar-C), 101.1 (Ar-C), 55.1 (OCH₃).

HRMS (ESI+): calc. for C₇H₁₀NO⁺ [(M+H)⁺]: 124.0757, found: 124.0763.

4-Methylaniline (p-toluidine) 3I

¹H NMR (400 MHz, CDCl₃): δ (ppm)=7.00 (d, ³*J*_{H,H}=8.2 Hz, 2H; Ar-H), 6.63 (d, ³*J*_{H,H}=8.2 Hz, 2H; Ar-H), 3.46 (bs, 2H; N*H*₂), 2.27 (s, 3H; C*H*₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=143.9 (Ar-C), 129.8 (Ar-C), 127.8 (Ar-C), 115.3 (Ar-C), 20.5 (CH₃).

HRMS (ESI+): calc. for $C_7H_{10}N^+$ [(M+H)⁺]: 108.0808, found: 108.0812.

3-Methylaniline (m-toluidine) 3m

 NH_2

¹**H NMR** (400 MHz, CDCl₃): δ (ppm)=7.13 (t, ³J_{H,H}=7.6 Hz, 1H; Ar-H), 6.67 (d, ³J_{H,H}=7.6 Hz, 1H; Ar-H), 6.59-6.53 (m, 2H; Ar-H), 3.61 (bs, 2H; NH₂), 2.35 (s, 3H; CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=146.4 (Ar-C), 139.1 (Ar-C), 129.2 (Ar-C), 119.4 (Ar-C), 115.9 (Ar-C), 112.2 (Ar-C), 21.4 (CH₃).

HRMS (ESI+): calc. for $C_7H_{10}N^+$ [(M+H)⁺]: 108.0808, found: 108.0813.

2-Methylaniline (o-toluidine) 3n

 NH_2

¹**H NMR** (400 MHz, CDCl₃): δ (ppm)=7.17-7.11 (m, 2H; Ar-H), 6.82 (t, ³*J*_{H,H}=7.4 Hz, 1H; Ar-H), 6.75 (d, ³*J*_{H,H}=7.4 Hz, 1H; Ar-H), 3.61 (bs, 2H; N*H*₂), 2.25 (s, 3H; C*H*₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=144.6 (Ar-C), 130.4 (Ar-C), 127.0 (Ar-C), 122.3 (Ar-C), 118.6 (Ar-C), 114.9 (Ar-C), 17.3 (CH₃).

HRMS (ESI+): calc. for C₇H₁₀N⁺ [(M+H)⁺]: 108.0808, found: 108.0813.

2,4,6-Trimethylaniline (mesitylamine) 30

¹H NMR (400 MHz, CDCl₃): δ(ppm)=6.84 (s, 2H; Ar-H), 3.50 (bs, 2H; N*H*₂), 2.28 (s, 3H; C*H*₃), 2.22 (s, 6H; C*H*₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=140.2 (Ar-C), 128.9 (Ar-C), 127.2 (Ar-C), 121.9 (Ar-C), 20.4 (CH₃), 17.6 (CH₃).

HRMS (ESI+): calc. for $C_9H_{14}N^+$ [(M+H)⁺]: 136.1121, found: 136.1125.

4-Aminobiphenyl (4-phenylaniline) 3p

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.55 (d, ${}^{3}J_{H,H}$ =7.8 Hz, 2H; Ar-H), 7.46-7.38 (m, 4H; Ar-H), 7.28 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 1H; Ar-H), 6.77 (d, ${}^{3}J_{H,H}$ =8.4 Hz, 2H; Ar-H), 3.73 (bs, 2H; N*H*₂); 13 C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=146.0 (Ar-C), 141.3 (Ar-C), 131.7 (Ar-C), 128.8 (Ar-C), 128.1 (Ar-C), 126.5 (Ar-C), 126.4 (Ar-C), 115.5 (Ar-C).

HRMS (ESI+): calc. for C₁₂H₁₂N⁺ [(M+H)⁺]: 170.0964, found: 170.0970.

4-Chloroaniline 3q

CI NH₂

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.10 (d, ³*J*_{H,H}=8.7 Hz, 2H; Ar-H), 6.60 (d, ³*J*_{H,H}=8.7 Hz, 2H; Ar-H), 3.61 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=145.1 (Ar-C), 129.2 (Ar-C), 123.2 (Ar-C), 116.3 (Ar-C).

HRMS (ESI+): calc. for C₆H₇CIN⁺ [(M+H)⁺]: 128.0262, found: 128.0269.

4-Fluoroaniline 3r

 NH_2

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=6.86 (t, ${}^{3}J_{H,H}={}^{3}J_{H,F}=8.7$ Hz, 2H; Ar-H), 6.61 (dd, ${}^{3}J_{H,H}=8.7$ Hz, ${}^{4}J_{H,F}=4.5$ Hz, 2H; Ar-H), 3.51 (bs, 2H; NH₂); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ(ppm)=156.5 (d, ${}^{1}J_{C,F}=235.4$ Hz, Ar-C-F), 142.5 (d, ${}^{4}J_{C,F}=2.1$ Hz, Ar-C), 116.1 (d, ${}^{3}J_{C,F}=7.6$ Hz, Ar-C), 115.7 (d, ${}^{2}J_{C,F}=22.4$ Hz, Ar-C); ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃): δ(ppm)=-126.87.

HRMS (ESI+): calc. for C₆H₇FN⁺ [(M+H)⁺]: 112.0557, found: 112.0563.

4-Trifluoromethylaniline 3s

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.40 (d, ${}^{3}J_{H,H}$ =8.4 Hz, 2H; Ar-H), 6.69 (d, ${}^{3}J_{H,H}$ =8.4 Hz, 2H; Ar-H), 3.94 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=149.5 (Ar-C), 126.8 (q, ${}^{3}J_{C,F}$ =3.8 Hz, Ar-C), 125.0 (q, ${}^{1}J_{C,F}$ =270.5 Hz, Ar-C), 120.2 (q, ${}^{2}J_{C,F}$ =32.5 Hz, Ar-C), 114.3 (Ar-C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ(ppm)=-61.20.

HRMS (ESI+): calc. for C₇H₇F₃N⁺ [(M+H)⁺]: 162.0525, found: 162.0531.

3,5-Bis(trifluoromethyl)aniline 3t

CFঽ FaC

¹H NMR (400 MHz, CDCl₃): δ (ppm)=7.21 (s, 1H; Ar-H), 7.03 (s, 2H; Ar-H), 4.07 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm)=147.5 (Ar-C), 132.7 (q, ²*J*_{C,F}=32.9 Hz, Ar-C), 123.6 (q, ¹*J*_{C,F}=272.3 Hz, Ar-C), 114.3 (m, Ar-C), 111.7 (sept, ³*J*_{C,F}=4.0 Hz, Ar-C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ (ppm)=-63.35.

HRMS (ESI+): calc. for C₈H₆F₆N⁺ [(M+H)⁺]: 230.0399, found: 162.0402.

2-Naphthylamine 3u

 NH_2

¹**H NMR** (400 MHz, CDCl₃): δ(ppm)=7.29 (d, ${}^{3}J_{H,H}$ =8.2 Hz, 1H; Ar-H), 7.26 (d, ${}^{3}J_{H,H}$ =8.6 Hz, 1H; Ar-H), 7.19 (d, ${}^{3}J_{H,H}$ =8.2 Hz, 1H; Ar-H), 6.97 (t, ${}^{3}J_{H,H}$ =7.5 Hz, 1H; Ar-H), 6.85-6.80 (m, 1H; Ar-H), 6.59-6.56 (m, 1H; Ar-H), 6.54 (dd, ${}^{3}J_{H,H}$ =8.6 Hz, ${}^{4}J_{H,H}$ =2.3 Hz, 1H; Ar-H), 3.41 (bs, 2H; NH₂); 1³C{¹H} NMR (100 MHz, CDCl₃): δ(ppm)=144.2 (Ar-C), 135.0 (Ar-C), 129.3 (Ar-C), 128.1 (Ar-C), 127.8 (Ar-C), 126.5 (Ar-C), 125.9 (Ar-C), 122.6 (Ar-C), 118.3 (Ar-C), 108.7 (Ar-C).

HRMS (ESI+): calc. for $C_{10}H_{10}N^+$ [(M+H)⁺]: 144.0808, found: 144.0812.

5-Benzofurylamine 3v

 NH_2

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=7.48 (d, ${}^{4}J_{H,H}$ =2.1 Hz, 1H; Ar-H), 7.23 (d, ${}^{3}J_{H,H}$ =8.6 Hz, 1H; Ar-H), 6.81 (d, ${}^{4}J_{H,H}$ =2.3 Hz, 1H; Ar-H), 6.63 (dd, ${}^{3}J_{H,H}$ =8.6 Hz, ${}^{4}J_{H,H}$ =2.3 Hz, 1H; Ar-H), 6.57-6.54 (m, 1H; Ar-H), 3.56 (bs, 2H; N*H*₂); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ(ppm)=145.6 (Ar-C), 142.1 (Ar-C), 132.6 (Ar-C), 128.4 (Ar-C), 113.7 (Ar-C), 111.7 (Ar-C), 106.2 (Ar-C), 106.1 (Ar-C).

HRMS (ESI+): calc. for C₈H₈NO⁺ [(M+H)⁺]: 134.0600, found: 134.0607.

3-Amino-9-phenylcarbazole 3w

¹**H NMR** (600 MHz, CDCl₃): δ(ppm)=8.04 (d, ${}^{3}J_{H,H}$ =7.7 Hz, 1H; Ar-H), 7.60-7.54 (m, 4H; Ar-H), 7.46 (d, ${}^{4}J_{H,H}$ =2.1 Hz, 1H; Ar-H), 7.43 (t, ${}^{3}J_{H,H}$ =7.1 Hz, 1H; Ar-H), 7.41-7.35 (m, 2H; Ar-H), 7.25 (d, ${}^{3}J_{H,H}$ =8.0 Hz, 1H; Ar-H), 7.22 (t, ${}^{3}J_{H,H}$ =7.3 Hz, 1H; Ar-H), 6.85 (dd, ${}^{3}J_{H,H}$ =8.6 Hz, ${}^{4}J_{H,H}$ =2.3 Hz, 1H; Ar-H), 3.67 (bs, 2H; NH₂); ${}^{13}C{^{1}H}$ NMR (151 MHz, CDCl₃): δ(ppm)=141.3 (Ar-C), 140.0 (Ar-C), 138.3 (Ar-C), 135.5 (Ar-C), 129.9 (Ar-C), 127.1 (Ar-C), 127.0 (Ar-C), 125.9 (Ar-C), 124.4 (Ar-C), 123.2 (Ar-C), 120.4 (Ar-C), 119.4 (Ar-C), 115.8 (Ar-C), 110.6 (Ar-C), 109.8 (Ar-C), 106.0 (Ar-C).

HRMS (ESI+): calc. for $C_{18}H_{15}N_2^+$ [(M+H)⁺]: 259.1230, found: 259.1236.

Phenylalanine ethyl ester 3x

Ph NH_2

¹**H NMR** (600 MHz, CDCl₃): δ (ppm)=7.30 (t, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 7.23 (t, ³*J*_{H,H}=7.4 Hz, 1H; Ar-H), 7.19 (d, ³*J*_{H,H}=7.4 Hz, 2H; Ar-H), 4.16 (q, ³*J*_{H,H}=7.1 Hz, 2H; O-C*H*₂), 3.71 (dd, ³*J*_{H,H}=7.3 Hz, ³*J*_{H,H}=5.8 Hz, 1H; N-C*H*), 3.08 (dd, ³*J*_{H,H}=13.5 Hz, ³*J*_{H,H}=5.3 Hz, 1H; Ph-C*H*₂), 2.86 (dd, ³*J*_{H,H}=13.5 Hz, ³*J*_{H,H}=7.9 Hz, 1H; Ph-C*H*₂), 1.44 (bs, 2H; N*H*₂), 1.24 (t, ³*J*_{H,H}=7.1 Hz, 3H; C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ (ppm)=175.2 (C=O), 137.4 (Ar-C), 129.4 (Ar-C), 128.6 (Ar-C), 126.9 (Ar-C), 61.0 (O-CH₂), 56.0 (N-CH), 41.3 (Ph-CH₂), 14.3 (CH₃).

HRMS (ESI+): calc. for C₁₁H₁₆NO₂⁺ [(M+H)⁺]: 194.1176, found: 194.1181.

Preparation of recyclable NHN 5:

Scheme S3. Preparation of NHN 5.

In a round-bottom flask, triazine **1a** (0.9161 g, 5 mmol) was dissolved in THF (10 ml) and then benzyl bromide (2.97 ml, 25 mmol) was added. A reflux condenser was installed and then the mixture was stirred at 60°C for 16 hours. The solvent was evaporated, and the product was isolated using column chromatography (DCM:MeOH – 9:1, 1.4878g, 4.2mmol, 84% yield).

1*N*-Methyl-3*N*-benzyl-naphthotriazinium bromide 5

¹H NMR (600 MHz, CD₃OD): δ(ppm)=7.69-7.64 (m, 3H, Ar-H), 7.62 (d, ${}^{3}J_{H,H}$ =8.5 Hz, 1H; Ar-H), 7.55 (t, ${}^{3}J_{H,H}$ =8.1 Hz, 1H; Ar-H), 7.49-7.45 (m, 2H; Ar-H), 7.44-7.39 (m, 2H; Ar-H), 7.16 (d, ${}^{3}J_{H,H}$ =7.7 Hz, 1H; Ar-H), 7.04 (d, ${}^{3}J_{H,H}$ =7.7 Hz, 1H; Ar-H), 5.56 (s, 2H; CH₂), 4.02 (s, 3H; CH₃); 1³C{¹H} NMR (151 MHz, CD₃OD): δ(ppm)=135.4 (Ar-C), 132.5 (Ar-C), 132.2 (Ar-C), 131.5 (Ar-C), 130.5 (Ar-C), 130.4 (Ar-C), 130.1 (Ar-C), 129.9 (Ar-C), 129.3 (Ar-C), 127.8 (Ar-C), 127.3 (Ar-C), 124.1 (Ar-C), 109.8 (Ar-C), 109.6 (Ar-C), 61.4 (CH₂), 45.1 (CH₃).

HRMS (APCI): calc. for C₁₈H₁₆N₃⁺ [M⁺]: 274.1339, found: 274.1317.

Preparation of triazane 6:

Scheme S4. Preparation of triazane 6.

Triazane **6** was prepared using the general procedure for the preparation of triazanes, using NHN **5** as the starting material instead of NHN **1**.

1N-Methyl-2N-phenyl-3N-benzyl-naphthotriazane 6

¹**H NMR** (600 MHz, CDCl₃): δ (ppm)=7.52 (d, ³*J*_{H,H}=7.3 Hz, 2H; Ar-H), 7.37-7.32 (m, 4H; Ar-H), 7.30-7.27 (m, 2H; Ar-H), 7.20 (d, ³*J*_{H,H}=8.3 Hz, 1H; Ar-H), 7.05-7.02 (m, 2H; Ar-H), 6.98 (d, ³*J*_{H,H}=8.2 Hz, 2H; Ar-H), 6.88 (dd, ³*J*_{H,H}=7.3 Hz, ⁴*J*_{H,H}=0.8 Hz, 1H; Ar-H), 6.74 (t, ³*J*_{H,H}=7.2 Hz, 1H; Ar-H), 6.65 (d, ³*J*_{H,H}=7.4 Hz, 1H; Ar-H), 4.65 (d, ³*J*_{H,H}=14.1 Hz, 1H; C*H*₂), 4.36 (d, ³*J*_{H,H}=14.1 Hz, 1H; C*H*₂), 3.40 (s, 3H; C*H*₃); ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ (ppm)=150.9 (Ar-C), 141.5 (Ar-C), 140.8 (Ar-C), 138.5 (Ar-C), 134.6 (Ar-C), 129.2 (Ar-C), 128.7 (Ar-C), 128.5 (Ar-C), 127.5 (Ar-C), 126.9 (Ar-C), 126.7 (Ar-C), 122.0 (Ar-C), 121.9 (Ar-C), 118.1 (Ar-C), 117.4 (Ar-C), 116.9 (Ar-C), 113.0 (Ar-C), 105.3 (Ar-C), 60.8 (CH₂), 41.3 (CH₃).

HRMS (APCI): calc. for C₂₄H₂₂N₃⁺ [(M+H)⁺]: 352.1808, found: 352.1789.

Hydrogenolysis of triazane 6 to generate aniline 3i and N-methyl-1,8-diaminonaphthalene 7:

Scheme S5. Hydrogenolysis of triazane 6.

This reaction was performed according to the general procedure for the hydrogenolysis of triazanes, with a few differences: MeOH was used as the solvent (instead of DCM), and the reaction was stirred at 50°C (instead of 40°C) for 2h.

N-methyl-1,8-diaminonaphthalene 7

¹H NMR (600 MHz, CDCl₃): δ(ppm)=7.29-7.24 (m, 2H, Ar-H), 7.19-7.13 (m, 2H; Ar-H), 6.62 (d, ${}^{3}J_{H,H}$ =7.3 Hz, 1H; Ar-H), 6.51 (d, ${}^{3}J_{H,H}$ =7.6 Hz, 1H; Ar-H), 4.96 (m, 3H; NH+NH₂), 2.88 (s, 3H; CH₃); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ(ppm)=147.8 (Ar-C), 143.8 (Ar-C), 136.9 (Ar-C), 126.8 (Ar-C), 126.0 (Ar-C), 120.7 (Ar-C), 118.2 (Ar-C), 117.2 (Ar-C), 112.9 (Ar-C), 105.2 (Ar-C), 31.7 (CH₃).

HRMS (APCI): calc. for C₁₁H₁₃N₂⁺ [(M+H)⁺]: 173.1073, found: 173.1089.

Preparation (recycling) of triazine 1a from N-methyl-1,8-diaminonaphthalene 7:

Scheme S6. Preparation of triazine 1a.

A round bottom flask was loaded with compound **7** (0.02 g, 0.116 mmol) and then water (3 ml) and acetic acid (3 ml) were added. The mixture was cooled to 0°C while stirring, and then a solution of NaNO₂ (0.01 g, 0.145 mmol) in water (1 ml) was added dropwise. The solution was stirred for 3h while allowing it to reach room temperature. The solution was carefully quenched with saturated aqueous NaHCO₃ solution (10 ml) and the product was extracted with DCM (20 ml x 3). The solvent was evaporated and the product was purified by column chromatography (Hexane:EtOAc=4:1; 0.0196 g, 0.107 mmol, 92% yield).

1N-methylnaphthotriazine 1a

¹H NMR (600 MHz, CDCl₃): δ(ppm)=7.35-7.29 (m, 2H, Ar-H), 7.17 (dd, ${}^{3}J_{H,H}$ =8.5 Hz, ${}^{3}J_{H,H}$ =7.5 Hz, 1H; Ar-H), 7.12 (dd, ${}^{3}J_{H,H}$ =6.8 Hz, ${}^{4}J_{H,H}$ =1.4 Hz, 1H; Ar-H), 7.10 (d, ${}^{3}J_{H,H}$ =8.5 Hz, 1H; Ar-H), 5.99 (d, ${}^{3}J_{H,H}$ =7.5 Hz, 1H; Ar-H), 3.56 (s, 3H; CH₃); 13 C{¹H} NMR (151 MHz, CDCl₃): δ(ppm)=138.8 (Ar-C), 134.3 (Ar-C), 133.9 (Ar-C), 129.2 (Ar-C), 128.6 (Ar-C), 124.1 (Ar-C), 119.6 (Ar-C), 118.9 (Ar-C), 115.9 (Ar-C), 98.0 (Ar-C), 39.4 (CH₃).

HRMS (APCI): calc. for C₁₁H₁₀N₃⁺ [(M+H)⁺]: 184.0869, found: 184.0846.

3. NMR spectra

2.15 2.15 2.556 2.556 2.556 2.556 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.555 7.32 7.37 7.37 7.37 7.33 7.32 7.32 7.32 6.67 6.67 6.66 6.66 تسل Current Data Parameters 5 5 NAME Kuldeep600_2 EXPNO 200 PROCNO 1 F2 - Acquisition Parameters *n*Bu

1N,3N-Dimethyl-2N-benzylnaphthotriazane **2c** – ¹**H NMR** (600 MHz, CD₂Cl₂):

1N, 3N-Dimethyl-2N-isopropylnaphthotriazane **2d** – ¹H NMR (600 MHz, CD₂Cl₂):

N,3*N*-Dimethyl-2*N*-sec-butylnaphthotriazane **2e** – ¹**H NMR** (600 MHz, CDCl₃):

N,3*N*-Dimethyl-2*N*-cyclopentylnaphthotriazane $2f - {}^{1}H NMR$ (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-tert-butylnaphthotriazane **2g** – ¹**H NMR** (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-adamantylnaphthotriazane **2h** – ¹H NMR (600 MHz, CD₂Cl₂):

N,3*N*-Dimethyl-2*N*-phenylnaphthotriazane **2i** – ¹**H NMR** (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-phenylnaphthotriazane (2-¹⁵N) 2i' – ¹H NMR (600 MHz, CD₂Cl₂):

¹⁵N{¹H} NMR (60 MHz, CD₂Cl₂):

50			50	100	150	200	250	200	
	L by an a subdivel as when	uninpent men	k.e.dooll doceans table dates.	ملقبا إوراباه بالمبادر استديبت أنه أجداد	and a start of the second s	an ghamparaign ghlad an san galaan	şlı hinnəsən nil _v əsərina glut Niyə	يسا يعلقهم ويربله وأبطله بالإلهمين	يرامعرال
والمراجع وا	فرغونا ومعاليهما ليساقونه واللعربة	فلمتحدث وعتار والأراك	Income static system is a second	a attilio gubic cilai a caratte a cara		والمعمور والاستقالية والمالية والمراجع أوالما المقتان	ومريقة والمرابلة والمرابلة والمرابل	المراقية ومحماله فألبط الاربيان والا	andinikaju.
PC	1.00								
GB	0	****							
LB	0	Hz							
NUW	EM								
SF	60.8763617	PIHZ							
SI	262144	MII -							
F2 - Proce	essing paramete	ers							
PLW12	0.29493019	707							
PLW2	13.17405033	W							
PCPD2	100.00	usec							
NUC2	LH Waltred								
SFOZ	600.5543840	PIHZ							
PLW1	123.96130371	W							
P1	12.70	usec							
NUC1	15N								
SF01	60.8684163	MHz							
TDO	1	~~~							
D11	0.03000000	SAC							
1.D	295.0	N							
DE	6.50	usec							
DW	20.533	usec							
RG	16								
AQ	1.3456725	sec							
FIDRES	0.743123	Hz			~ ~				
SWH	24350.648	Hz			\times				
DS	0				トリ				
NS	257								
SOLVENT	000000 CD2C12			[´ ıl				
POLPROG	ZG1G 65526				$^{\prime}$ $^{\prime\prime}$ $^{\prime}$				
PROBHD :	284/801_0084 (\checkmark \checkmark				
INSTRUM	spect								
Time	18.48	h							
Date_	20210207				N N				
F2 - Acqu:	isition Paramet	ers			. 'N /				
					15NI		0		
PROCNO	1				•• / ''		L)		
EXPNO	10000 <u>2</u> 82				Ph		÷		
NAME	Idan600 2						<u></u>		
Current Di	oto Domorotowa						0		

1N,3N-Dimethyl-2N-(4-methoxyphenyl)naphthotriazane **2j** – ¹**H NMR** (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(3-methoxyphenyl)naphthotriazane 2k – ¹H NMR (600 MHz, CD₂Cl₂):

N,3*N*-Dimethyl-2*N*-(4-tolyl)naphthotriazane **2I** – ¹**H NMR** (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(3-tolyl)naphthotriazane **2m** – ¹H NMR (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-mesitylnaphthotriazane **20** – ¹H NMR (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(4-biphenyl)naphthotriazane $2p - {}^{1}H$ NMR (600 MHz, CDCl₃):

1N,3N-Dimethyl-2N-(4-chlorophenyl)naphthotriazane **2q** – ¹H NMR (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(4-fluorophenyl)naphthotriazane $2r - {}^{1}H$ NMR (600 MHz, CDCl₃):

N,3*N*-Dimethyl-2*N*-(4-(trifluoromethyl)phenyl)naphthotriazane **2s** – ¹**H NMR** (600 MHz, CDCl₃):

1N,3N-Dimethyl-2N-(2-naphthyl)naphthotriazane $2u - {}^{1}H NMR$ (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(5-benzofuranyl)naphthotriazane 2v - ¹H NMR (600 MHz, CD₂Cl₂):

1N,3N-Dimethyl-2N-(3-(9-phenyl)carbazolyl)naphthotriazane 2w – ¹H NMR (600 MHz, CDCl₃):

Benzylamine **3c** – ¹**H NMR** (400 MHz, CDCl₃):

1-Adamantylamine (Amantadine) **3h** – ¹**H NMR** (400 MHz, CDCl₃):

Aniline-¹⁵N **3i'** – ¹H NMR (600 MHz, CDCl₃):

-

¹⁵N{¹H} NMR (60 MHz, CDCl₃):

100	50	0	-50	-100	-150	-200	-250	-300	-350	ppm
s de lander and a angelaging period	indaylahat kontriktiya watan katal perpentet ipen perinten petata pina	ali ni nini parana Ali ni parana di kata kata kata kata kata kata kata kat	anners generations an rhadar Alladean an rhadar	alah kanang sebutah kanang sebutah sebu Pertempikan sebutah seb	an india na shiri jardan nida ni faratar Man	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	le se kladi od provinska ha bom Inge se vejeta od provinska ha bom	nang dina panta ana ina sina nang si	l salinsynin den attens bi De period fer freder er bijer	
* •	1.00									
PC	1 00									
CB CB	0	11.6								
33B T D	0	Ua								
WUW	EM									
SF	60.8/6361/	MHZ								
51	262144									
FZ - Proc	essing paramete	ers								
PLW12	0.29493019	W								
PLW2	13.17405033	W								
PCPD2	100.00	usec								
CPDPRG[2	waltz64									
NUC2	1H									
SFO2	600.5543840	MHz								
PLW1	123.96130371	W								
P1	12.70	usec								
NUC1	15N	**								
SF01	60.8684163	MHz								
TDO	0.000000000	500								
D11	0.03000000	sec								
1 1 1	1 00000000	r.							1	
UL TE	0.5U 205.2	usec v								
DW	10.200	usec								
RG	16 200									
AQ	1.0616184	sec								
FIDRES	U.941958	HZ								
SWH	30864.19/	HZ								
DG	20064 107	TT							1	
NS	32									
SOLVENT	CDC13									
TD	65532									
PULPROG	zgig									
PROBHD	Z847801_0084 (•	··· · · · · · · · · · · · · · · · · ·					
INSTRUM	spect			Р	n' VH ₂					
Time	15.29	h		_	15.0.1					
Date_	20220704								I	
F2 - Acqu	isition Paramet	ters								
									T	
	1							(N	
PROCNO										
EXPNO PROCNO	440							Ļ	2	
NAME EXPNO PROCNO	15N aniline 440							L		

3-Methoxyaniline (m-anisidine) **3k** – ¹**H NMR** (400 MHz, CDCl₃):

4-Aminobiphenyl (4-phenylaniline) **3p** – ¹**H NMR** (400 MHz, CDCl₃):

70 60

¹⁹F{¹H} NMR (376 MHz, CDCl₃):

EXPNO	52		5		
PROCNO	1		H I		
F2 - Acqui	isition Parameters				
Date_	20220214		I		
Time	15.21 h				
INSTRUM	spect				
PROBHD 2	2104450_0316 (
PULPROG	zgfhigqn				
TD	131072				
SOLVENT	CDC13				
NS	128				
DS	2	_			
SWH	89285.711 Hz	E A			
FIDRES	1.362392 Hz				
AQ	0.7340032 sec				
RG	2050				
DW	5.600 usec	U /1			
DE	6.50 usec				
TE	295.1 K	~ NF	2		
D1 D11	2.00000000 sec		2		
DII	0.0000000 sec				
DIZ TDO	0.00002000 Sec				
SEO1	376 71/7//8 MHz				
NUC1	19F				
P1	12 50 USec				
PLW1	21.29999924 W				
SFO2	400.4016016 MHz				
NUC2	1H				
CPDPRG[2	waltz16				
PCPD2	90.00 usec				
PLW2	14.78499985 W				
PLW12	0.24140000 W				
F2 - Proce	essing parameters				
SI	262144				
SF	376.7524368 MHz				
WDW	EM				
SSB	0				
LB	0.30 Hz				
GB	0				
PC	1.00				

4-Trifluoromethylaniline **3s** – ¹**H NMR** (400 MHz, CDCl₃):

¹⁹F{¹H} NMR (376 MHz, CDCl₃):

3,5-Bis(trifluoromethyl)aniline **3t** – ¹**H NMR** (400 MHz, CDCl₃):

¹⁹F{¹H} NMR (376 MHz, CDCl₃):

2-Naphthylamine **3u** – ¹**H NMR** (400 MHz, CDCl₃):

3-Amino-9-phenylcarbazole **3w** – ¹**H NMR** (600 MHz, CDCl₃):

Phenylalanine ethyl ester $3x - {}^{1}H NMR$ (600 MHz, CDCl₃):

N-Methyl-3*N*-benzyl-naphthotriazinium bromide $5 - {}^{1}H NMR$ (600 MHz, CD₃OD):

N-Methyl-2*N*-phenyl-3*N*-benzyl-naphthotriazane **6** – ¹**H NMR** (600 MHz, CDCl₃):

N-methyl-1,8-diaminonaphthalene $7 - {}^{1}H NMR$ (600 MHz, CDCl₃):

4. Crystallographic data

	2a+Lil	2d	2i
Empirical formula	6(C13H15N3)·I8Li8	C ₁₅ H ₁₉ N ₃	C ₁₈ H ₁₇ N ₃
Formula weight	2350.39	241.33	275.34
Temperature (K)	200.15	200.15	200.15
Wavelength (Å)	0.71073	0.71073	0.71073
Color	Colorless	Colorless	Colorless
Crystal system	Trigonal	Triclinic	Orthorhombic
Space group	R-3	P-1	P212121
a (Å)	17.321(3)	7.8040(16)	9.832(3)
b, (Å)	17.321(3)	8.7759(18)	11.907(4)
c (Å)	25.467(5)	11.326(2)	12.610(4)
α (deg)	90	76.189(2)	90
β (deg)	90	73.494(3)	90
γ (deg)	120	64.373(4)	90
Volume (Å ³)	6617(3)	664.5(2)	1476.3(8)
Z	3	2	4
Calculated density (g/cm ³)	1.769	1.206	1.239
Absorption coefficient (mm ⁻¹)	2.864	0.073	0.075
F(000)	3396.0	260.0	584.0
Crystal size (mm)	0.21 × 0.18 × 0.18	0.21 × 0.18 × 0.18	0.33 x 0.12 x 0.09
2θ range (deg)	3.152 to 50.128	5.196 to 50.464	4.704 to 50.146
No. of measured reflections	6203	5202	9170
No. of independent reflections	2591	2392	2601
R _{int}	0.0768	0.0281	0.0509
Completeness (%)	98.9	99.4	99.0
Absorption correction	Multi-scan	Multi-scan	Multi-scan
Data/restraints/parameters	2591 / 0 / 172	2392 / 0 / 167	2601 / 203 / 192
Goodness of fit on F ²	0.875	0.966	1.083
R_1 , w R_2 (I > 2 σ (I))	0.0387, 0.0616	0.0406, 0.0954	0.0612, 0.1250
R ₁ , wR ₂ (all data)	0.0741, 0.0685	0.0789, 0.1137	0.1291, 0.1544
Largest diff. peak and hole $e^{A^{-3}}$	0.77 / -1.21	0.14 / -0.21	0.34 / -0.20
Diffractometer	Bruker APEX II	Bruker APEX II	Bruker APEX II

Table S1. Crystallographic data for all crystallized materials.

	2р
Empirical formula	$C_{24}H_{21}N_3$
Formula weight	351.44
Temperature (K)	200.15
Wavelength (Å)	0.71073
Color	Colorless
Crystal system	Monoclinic
Space group	P2 ₁ /c
a (Å)	12.4541(11)
b, (Å)	14.0752(12)
c (Å)	11.4174(10)
α (deg)	90
β (deg)	113.841(2)
γ (deg)	90
Volume (Å ³)	1830.6(3)
Z	4
Calculated density (g/cm ³)	1.275
Absorption coefficient (mm ⁻¹)	0.076
F(000)	744.0
Crystal size (mm)	0.24 × 0.21 × 0.21
2θ range (deg)	3.576 to 50.2
No. of measured reflections	18653
No. of independent reflections	3244
R _{int}	0.1134
Completeness (%)	99.6
Absorption correction	Multi-scan
Data/restraints/parameters	3244 / 0 / 246
Goodness of fit on F ²	1.013
R_1 , w R_2 (I > 2 σ (I))	0.0642, 0.1295
R ₁ , wR ₂ (all data)	0.1209, 0.1556
Largest diff. peak and hole eÅ-3	0.17 / -0.31
Diffractometer	Bruker APEX II

Crystal structure determination of 2a+Lil, 2d, 2i and 2p

The single-crystal materials were immersed in Paratone–N oil. The crystals were mounted on a Bruker APEX II diffractometer. The structures: **2a**+Lil, **2d**, **2i** and **2p** were measured at 200K. Data collection was performed using monochromated Mo K α radiation, λ =0.71073 Å, using φ and ω scans to cover the Ewald sphere. Accurate cell parameters were obtained with the amount of indicated reflections. Using Olex2⁴, the structure was solved with the olex2.solve⁵ structure solution program using Charge Flipping and refined with the SHELXL⁶ refinement package using Least Squares minimization. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Software used for molecular graphics: Mercury 2020.3.0.⁷

Additional information

Accession code: The X-ray crystallographic coordinates for structures **2a**+Lil, **2d**, **2i** and **2p** reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers: 2221687-2221690.

These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

5. References

- 1. B. D. Shepherd, D. R. Powell and R. West, Synthesis, geometrical isomerism, and crystal structure of a highly hindered disilene, *Organometallics*, 1989, **8**, 2664-2669.
- 2. S. Fernandez, M. A. Ganiek, M. Karpacheva, F. C. Hanusch, S. Reuter, T. Bein, F. Auras and P. Knochel, Synthesis and Reactivity of Triazaphenanthrenes, *Org. Lett.*, 2016, **18**, 3158-3161.
- 3. A. Pogoreltsev, Y. Tulchinsky, N. Fridman and M. Gandelman, Nitrogen Lewis Acids, *J. Am. Chem. Soc.*, 2017, **139**, 4062-4067.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 5. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment Olex2 dissected, *Acta Crystallogr. A*, 2015, **71**, 59-75.
- 6. G. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 7. Mercury Software from CCDC: <u>http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/Mercury.aspx</u>.