Electronic supplementary information

Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat-*p*-phenylene) can be controlled

Sofie K. Jensen, Mathias S. Neumann, Rikke Frederiksen, Mathias L. Skavenborg, Mads C. Larsen, Stinne E. Wessel and Jan O. Jeppesen*

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. E-mail: joj@sdu.dk

Table of contents

1	Co	Complexation of TTF derivatives by CBPQT ⁴⁺ S3					
2	Ex	Experimental detailsS					
	2.1	General methodsS4	4				
	2.2	Synthesis of [2]rotaxane 1•4PF ₆ S	5				
	2.3	Synthesis of [2]rotaxane 2 •4PF ₆ S	9				
	2.4	Characterisation of 1 •OP ⁸⁺ and 2 •OP ⁸⁺ S12	2				
3	ES	SI mass spectrum of 1 •4PF ₆ S14	4				
4	ES	SI mass spectrum of 2 •4PF ₆ S1	5				
5	U٧	//Vis/NIR absorption spectra of the dumbbells 14 and 24					
	an	d of the [2]rotaxanes 1 ⁴⁺ and 2 ⁴⁺ S10	6				
6	¹ H	NMR spectrum of the dumbbell 14	7				
7	СС	DSY spectrum of 1 •4PF ₆ S1	8				
8	¹ H	¹ H NMR spectrum of the dumbbell 24 S19					
9	¹ H	¹ H NMR spectrum of 2 •4PF ₆ S20					
10) CC	DSY spectrum of 2 •4PF ₆ S2	1				
11	Ca	lculations of the distribution between the two translational isomers in 1^{4+} and 2^{4+} S22	2				
12	2 Theoretical calculations of the ratio between the three translational isomers in 1^{4+} and 2^{4+} S23						
13	Suggested mechanism for oxidation of 14 , 24 and 2 •MPTTF ⁴⁺ S24						

14	¹ H NMR spectra of 1 ⁸⁺ recorded at 298 K 5 min and 18 min after oxidation	S25
15	COSY spectrum of 1 ⁸⁺ recorded at 298 K	S26
16	¹ H NMR spectra of 2 ⁸⁺ recorded at 298 K 5 min and 18 min after oxidation	S27
17	COSY spectrum of 2 ⁸⁺ recorded at 298 K	S28
18	¹ H NMR spectra of 2 ⁸⁺ recorded at 298 K and 253 K	S29
19	¹ H NMR spectrum of the oxidised dumbbell 14 ⁴⁺	S30
20	¹ H NMR spectrum of the oxidised dumbbell 24 ⁴⁺	S31
21	A series of ¹ H NMR spectra of 1 ⁸⁺ recorded at 258 K	S32
22	A series of ¹ H NMR spectra of 2 ⁸⁺ recorded at 253 K	S33
23	¹ H NMR spectra of 2 ⁸⁺ recorded at 253 K at different delay times after oxidation	S34
24	First-order analysis	S36
25	Derivation of expression for difference in Gibbs free energy of activation	S40
26	References	S42

1 Complexation of TTF derivatives by CBPQT⁴⁺

Scheme S1 Complexation of TTF derivatives by CBPQT⁴⁺ and their decomplexation induced by oxidation of the TTF unit for a) a symmetric TTF unit and b) a non-symmetric MPTTF unit.

2 Experimental details

2.1 General methods

All reactions were performed under an inert atmosphere of N₂ unless otherwise stated. CH₂Cl₂ was distilled before use. DMF and MeCN were dried over molecular sieves (4 Å), while THF and MeOH were dried over molecular sieves (4 Å) and Mg, respectively, and distilled immediately before use. All chemicals were purchased from Sigma Aldrich and were used as received, unless otherwise stated. 2-[4-(2-Cyanoethylthio)-5-ethylthio-1,3-dithiole-2-yliden]-5-tosyl-(1,3)-dithiolo[4,5-c]pyrrole^{S1} 2-(2-(2-(2-bromoethoxy)ethoxy)-1,3-diisopropylbenzene^{S2} (4), 1,2-bis(iodoethoxy)-(3), ethane^{S3} (7), 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiole-2-thione^{S4} (9), 2-(2-(2-[4-(tris(4-t-butylphenyl)methyl)phenoxy]ethoxy)ethoxy)ethyliodide^{S5} (10), 4-(2-cyanoethylthio)-5-methylthio-1,3dithiol-2-one^{S4} (12), 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)bis(hexafluorophosphate)^{S6} (**15**•2PF₆), MPTTF derivattive^{S2} **17**, and 4-(2-cyanoethylthio)-5-ethylthio-1,3-dithiole-2thione^{S7} (20) were all synthesised according to literature procedures. High pressure reactions were performed in a custom made teflon-tube, using a Psika high pressure apparatus. Thin-layer chromatography (TLC) was carried out using aluminium sheets precoated with SiO₂ (Merck 60 F254) and visualised with UV light (254 nm) or I₂ vapour. Column chromatography was carried out using SiO₂ (Merck 60 F 0.040–0.063 mm). ¹H NMR and ¹³C NMR spectra were recorded at 298 K (unless otherwise stated) at 400 MHz/500 MHz and 100 MHz/125 MHz, respectively, on a 400 MHz Bruker AVANCE III spectrometer or a 500 MHz JEOL JNM-ECZR spectrometer, while ¹H NMR spectra below 298 K were recorded on a 600 MHz Agilent PremiumCompact+ spectrometer using residual non-deuterated solvent as the internal standard. The solvent signals were assigned according to Fulmer *et al.*^{S8} All chemical shifts are quoted on a δ scale. The following abbreviations are used in listing the NMR spectra: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, sept = septet and m = multiplet. Melting points were measured on a Büchi 353 melting point apparatus and are uncorrected. Electrospray ionisation mass spectrometry (ESI-MS) was performed on a Bruker Avance III Daltonics MicrOTOF-Q II ESI-Qq-TOF mass spectrometer. UV-Vis-NIR spectroscopic data were recorded on a Shimadzu UV-1601PC spectrophotometer or an Agilent Cary 5000 spectrophotometer. Cyclic voltammetry (CV) was carried out on an Autolab PGSTAT30 potentiostat. The CV cell consisted of a glassy carbon working electrode (WE), a Pt wire counter electrode (CE) and an Aq/AqNO₃ reference electrode (RE). The measurements were carried out in MeCN with $n-Bu_4N \cdot PF_6$ (0.1 M) as the electrolyte and with a scan rate of 100 mV s⁻¹ at 298 K. The WE was polished with an Al₂O₃ slurry prior to use and all solutions were degassed (N₂) prior to use. All redox potentials were measured against Ag/Ag⁺ and converted into vs. ferrocene/ferrocenium (Fc/Fc⁺). Elemental analyses were performed by Atlantic Microlabs, Inc., Norcross, GA, USA.

2.2 Synthesis of [2]rotaxane 1•4PF₆

Scheme S2 Synthesis of the dumbbell 14 and the [2]rotaxane 1-4PF₆.

MPTTF derivative 5

2-[4-(2-Cyanoethylthio)-5-ethylthio-1,3-dithiole-2-yliden]-5-tosyl-(1,3)-dithiolo[4,5-*c*]pyrrole (3) (497 mg, 0.915 mmol) and 2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)-1,3-diisopropylbenzene (4) (308 mg, 0.824 mmol) were dissolved in anhydrous THF (70 mL) and degassed (N₂, 20 min) before DBU (285 mg, 1.87 mmol) was added. The yellow reaction mixture was heated under reflux for 23 h before another portion of DBU (285 mg, 1.87 mmol) was added. The reaction mixture was heated under reflux for 23 h before another portion of DBU (285 mg, 1.87 mmol) was added. The reaction mixture was heated under reflux for another 20 h and cooled to room temperature before the solvent was removed. The

brown residue was purified by column chromatography (275 mL SiO₂, 5.5 cm Ø, CH₂Cl₂:petroleum ether (bp. 60–80 °C) 4:1). The orange band (R_f = 0.4) was collected, and the solvent evaporated which yielded compound **5** as an orange oil (588 mg, 91%). ¹H NMR (CDCl₃, 400 MHz): ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.21 (d, J = 6.9 Hz, 12H), 1.29 (t, J = 7.4 Hz, 3H), 2.41 (s, 3H), 2.84 (q, J = 7.4 Hz, 2H), 3.01 (t, J = 6.7 Hz, 2H), 3.37 (sept, J = 6.9 Hz, 2H), 3.66–3.73 (m, 4H), 3.73–3.78 (m, 2H), 3.83–3.87 (m, 2H), 3.89–3.93 (m, 2H), 6.92 and 6.93 (AB, J_{AB} = 2.1 Hz, 2H), 7.09 (s, 3H), 7.29 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 23.1, 25.3, 29.5, 69.1, 69.6, 69.7, 69.9, 72.9, 110.3, 123.0, 126.0, 129.1, 140.8.^{S9} MS (ESI): *m*/*z* = 782 [*M*+H]⁺, 799 [*M*+NH₄]⁺, 804 [*M*+Na]⁺. MS (HiRes-FT ESI) calcd. for C₃₅H₄₃NNaO₅S₇⁺: 804.1078; found: 804.1115. Anal. calcd. for C₃₅H₄₃NO₅S₇: C, 53.75; H, 5.54; N, 1.79; S, 28.69; found: C, 53.62; H, 5.70; N, 1.82; S, 28.83.

MPTTF derivative 8

Compound 5 (577 mg, 0.737 mmol) was dissolved in anhydrous THF:MeOH (100 mL, 1:1, v/v), and the yellow solution was degassed (N₂, 25 min). A solution of NaOMe in MeOH (25% w/w 1.6 mL, 7.0 mmol) was added in one portion and the solution was heated under reflux for 50 min, whereupon the reaction mixture was cooled to room temperature followed by removal of the solvent. The brown residue was re-dissolved in CH₂Cl₂ (75 mL), washed with brine (100 mL) and H₂O (3 × 100 mL), whereafter the organic phase was dried (MgSO₄). Removal of the solvent gave compound 6 as a brown oily residue which was used immediately in the next step without any further purification. Compound 6 and 1,2-bis(2-iodoethoxy)ethane (7) (2.82 g, 7.63 mmol) were dissolved in anhydrous DMF (150 mL) and degassed (N₂, 30 min) before NaH (60% w/w dispersion in mineral oil, 311 mg, 7.78 mmol) was added in one portion. The orange reaction mixture was stirred at room temperature for 2 h, before the reaction was quenched by dropwise addition of H₂O (50 mL) until the evolution of gas stopped. The solvent was removed, and the resulting brown oil was purified by column chromatography (275 mL SiO₂, 5.5 cm \emptyset , CH₂Cl₂). The yellow band ($R_f = 0.1$) was collected, and the solvent evaporated to give compound **8** as a yellow oil (254 mg, 40% from **5**). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) =1.22 (d, J = 6.9 Hz, 12H), 1.31 (t, J = 7.4 Hz, 3H), 2.86 (q, J = 7.4 Hz, 2H), 3.03 (t, J = 6.8 Hz, 2H), 3.24 (t, J = 6.7 Hz, 2H), 3.38 (sept, J = 6.9 Hz, 2H), 3.55–3.63 (m, 4H), 3.67–3.79 (m, 10H), 3.84–3.93 (m, 4H), 3.95–4.01 (m, 2H), 6.53 and 6.54 (AB, J_{AB} = 2.1 Hz, 2H), 7.09 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 24.3, 26.4, 70.3, 70.4, 70.8, 70.9, 72.1, 74.0, 124.1.^{S9} MS (ESI): $m/z = 869 [M]^+$, 892 [M+Na]⁺. MS (HiRes-FT ESI) calcd. for C₃₄H₄₈INO₅S₆⁺: 869.0895; found: 869.0902. Anal. calcd. for C₃₄H₄₈INO₅S₆: C, 46.94; H, 5.56; N, 1.61; S, 22.11; found: C, 46.57; H, 5.51; N, 1.50; S, 21.73.

Thione derivative 11

Thione **9** (749 mg, 2.82 mmol) and 2-(2-(2-[4-(tris(4-*t*-butylphenyl)methyl)phenoxy]ethoxy)ethoxy)ethyliodide (**10**) (1.91 g, 2.56 mmol) were dissolved in anhydrous THF (100 mL) and degassed (N₂, 30 min) before DBU (853 mg, 5.53 mmol) was added in one portion. The reaction mixture was heated under reflux for 18 h, whereupon the solvent was removed. The oily residue was purified by column chromatography (300 mL SiO₂, 6 cm Ø, CH₂Cl₂) and the yellow band ($R_f = 0.3$) was collected, whereafter the solvent was evaporated providing compound **11** as a yellow solid (1.46 g, 69%). Mp 169.4–171.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.30 (s, 27H), 2.47 (s, 3H), 3.05 (t, J = 6.3 Hz, 2H), 3.64–3.68 (m, 2H), 3.70–3.74 (m, 4H), 3.82–3.87 (m, 2H), 4.08–4.12 (m, 2H), 6.78 (d, J = 8.9 Hz, 2H) 7.04–7.10 (m, 8H), 7.23 (d, J = 8.6 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 19.3, 31.5, 34.5, 36.4, 63.3, 67.5, 70.1, 70.2, 70.9, 71.0, 77.4, 113.3, 124.2, 130.9, 132.4, 140.0, 144.3, 148.5, 156.7, 211.1.^{S9} MS (ESI): m/z = 831 [M+H]⁺, 853 [M+Na]⁺. MS (HiRes-FT ESI) calcd. for C₄₇H₅₈NaO₃S₅⁺: 853.2882; found: 853.2894. Anal. calcd. for C₄₇H₅₈O₃S₅: C, 67.91; H, 7.03; S, 19.28; found: C, 68.20; H, 7.11; S, 18.99.

TTF derivative 13

Thione **11** (3.50 g 13.1 mmol) and 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiol-2-one (**12**), (2.75 g, 8.83 mmol) were suspended in distilled (EtO)₃P (75 mL) and heated to 130 °C. Two additional portions of the thione **11** were added after 9 min (1.10 g, 4.15 mmol) and 18 min (1.09 g, 4.13 mmol), respectively. The orange reaction mixture was stirred for 3 h at 130 °C and cooled to room temperature, whereupon cold MeOH (100 mL) was added. The reaction mixture was left in the freezer for 24 h and the resulting precipitate was collected by filtration and washed with MeOH. The orange solid was re-dissolved in CH₂Cl₂ (500 mL) and Celite 545 (50 mL) was added to the orange solution. Removal of the solvent gave an orange residue which was purified by column chromatography (800 mL SiO₂, 8 cm Ø, petroleum ether (bp. 60-80 °C):CH₂Cl₂ 1:3). The orange band ($R_f = 0.3$) was collected and concentrated to give an orange solid (2.89 g, 53%) containing compound 13 as a mixture of E- and Z-isomers. The data given below are for a mixture of the E- and Z-isomers. Mp 148.3–150.0 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.30 (s, 27H), 2.41, 2.41, 2.45 and 2.46 (4 × s, 6H), 2.68 and 2.69 (2 × t, J = 7.3 Hz, 2H), 2.96–3.04 (m, 4H), 3.65–3.75 (m, 6H), 3.83–3.87 (m, 2H), 4.06–4.14 (m, 2H), 6.77 (d, J = 8.8 Hz, 2H), 7.04–7.10 (m, 8H), 7.20–7.25 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 19.0, 19.3, 31.6, 34.5, 35.7, 63.2, 67.5, 70.1, 70.8, 71.0, 77.4, 113.2, 124.1, 130.9, 132.4, 144.3, 148.5, 156.7.^{S9} MS (ESI): m/z = 1031 [M]⁺. MS (HiRes-FT ESI) calcd. for C₅₄H₆₅NO₃S₈⁺: 1031.2725; found: 1031.2558. Anal. calcd. for C₅₄H₆₅NO₃S₈: C, 62.81; H, 6.35; N, 1.36; S, 24.84; found: C, 62.64; H, 6.39; N, 1.37; S, 24.62.

Dumbbell 14

TTF derivative **13** (251 mg, 0.243 mmol) and MPTTF derivative **8** (199 mg, 0.229 mmol) were dissolved in anhydrous THF (50 mL) and degassed (N₂, 20 min) before DBU (81 mg, 0.54 mmol) was added in one portion. The reaction mixture was heated under reflux for 18 h and cooled to room temperature. The solvent was removed, and the resulting dark residue was purified by gradient column chromatography (150 mL SiO₂, 4 cm Ø, CH₂Cl₂:EtOAc 1:0–20:1). The yellow band (R_f = 0.2, CH₂Cl₂) was collected and evaporated which gave a yellow solid (340 mg, 86%) containing compound **14** as a mixture of *E*- and *Z*-isomers and traces of grease. The data given below are for a mixture of the *E*- and *Z*-isomers. Mp 106.2–108.7 °C. ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 1.17 and 1.18 (2 × d, *J* = 6.9 Hz ,12H), 1.25 (t, *J* = 7.3 Hz, 3H), 1.28 (s, 27H), 2.35, 2.36 and 2.38 (3 × s, 6H), 2.85 (q, *J* = 7.3 Hz, 2H), 2.88–2.96 (m, 4H), 3.01 (t, *J* = 6.6 Hz, 2H), 3.38 (sept, *J* = 6.9 Hz, 2H), 3.48–3.51 (m, 4H), 3.51–3.57 (m, 4H), 3.57–3.69 (m, 12H), 3.71–3.77 (m, 4H), 3.82–3.85 (m, 2H), 7.03–7.18 (m, 11H), 7.28–7.32 (m, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) = 15.2, 19.2, 19.27, 19.28, 24.3, 26.4, 30.6, 31.5, 34.4, 35.6, 35.73, 35.75, 50.8, 63.2, 67.4, 70.0, 70.2, 70.2, 70.2, 70.3, 70.7, 70.8, 70.8, 70.8, 70.8, 70.9, 70.9, 71.0, 71.3, 71.3, 113.1, 113.2, 113.2, 113.0, 124.1, 124.2,

124.7, 128.7, 130.9, 130.9, 132.4, 139.9, 142.0, 144.3, 148.5, 153.2, 156.7.^{S9} MS (ESI): m/z = 1719 [*M*⁺]. MS (HiRes-FT ESI) calcd. for C₈₅H₁₀₉NO₈S₁₄⁺: 1719.4238; found: 1719.3951. Anal. calcd. for C₈₅H₁₀₉NO₈S₁₄: C, 59.30; H, 6.38; N, 0.81; S, 26.07. Anal. calcd. for C₈₅H₁₀₉NO₈S₁₄ + 2CH₂: C, 59.72; H, 6.51; N, 0.80; S, 25.65; found: C, 59.73; H, 6.14; N, 0.93; S, 25.21.

[2]Rotaxane 1•4PF₆

A mixture of 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)-bis(hexafluorophosphate) (**15**•2PF₆) (183 mg, 0.258 mmol) and 1,4-bis(bromomethyl)benzene (**16**) (73.0 mg, 0.277 mmol) were transferred to a teflon-tube, where after a solution of the dumbbell 14 (111 mg, 0.0645 mmol) in anhydrous DMF (1.9 mL) was added. The teflon-tube was sealed and subjected to 12 kbar pressure at room temperature for 3 d. The green reaction mixture was directly subjected to column chromatography (200 mL SiO₂, 4 cm Ø, Me₂CO:NH₄PF₆ 1:0–100:0.25 (v/w)). Unreacted dumbbell **14** was eluted with Me₂CO, whereupon the eluent was changed to Me₂CO:NH₄PF₆ 100:0.25 (v/w) and the green band containing $1 \cdot 4PF_6$ was collected and concentrated to a minimum volume. Addition of cold H₂O (75 mL, 5 °C) gave a green precipitate which was collected by filtration, washed with H₂O (3 × 2 mL) and Et₂O (3 × 2 mL) and dried affording a green solid (44.3 mg, 24%) containing a mixture of the two translational isomers of 1.4PF₆; each as a mixture of E- and Z-isomers. The data given below are for a mixture of the two translational isomers. Mp 135.3–138.9 °C. MS (ESI): $m/z = 795 [M-3PF_6]^{3+}$, 1265 $[M-2PF_6]^{2+}$. MS (HiRes-FT ESI) calcd. for $C_{121}H_{141}F_6N_5O_8PS_{14}^{3+}$: 794.8832; found: 794.8836. Anal. calcd. for C₁₂₁H₁₄₁F₂₄N₅O₈P₄S₁₄: C, 51.50; H, 5.04; N, 2.48; S, 15.90. Anal. calcd. for C₁₂₁H₁₄₁F₂₄N₅O₈P₄S₁₄ + H₂O: C, 51.17; H, 5.08; N, 2.47; S, 15.80; found: C, 51.00; H, 5.18; N, 2.61; S, 16.35.

Data for **1**•MPTTF•4PF₆: ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 1.17 (d, *J* = 6.9 Hz, 12H), 1.28 (s, 27H), 1.52 (t, *J* = 7.4 Hz, 3H), 2.31, 2.32, 2.37 and 2.38 (4 × s, 6H), 2.76 and 2.77 (2 × t, *J* = 6.2 Hz, 2H), 2.96 and 2.97 (2 × t, *J* = 6.2 Hz, 2H), 3.11 (q, *J* = 7.4 Hz, 2H), 3.30 (t, *J* = 6.3 Hz, 2H), 3.32–3.40 (m, 2H), 3.50–3.67 (m, 8H), 3.67–3.76 (m, 4H), 3.76–3.89 (m, 12H), 3.89–3.96 (m, 4H), 4.03–4.10 (m, 2H), 5.67–5.79 (m, 8H), 6.11 and 6.14 (AB, *J*_{AB} = 1.7 Hz, 2H), 6.78–6.83 (m, 2H), 7.04–7.18 (m, 11H), 7.26–7.34 (m, 6H), 7.66–7.81 (m, 12H), 7.93–8.07 (m, 4H), 8.76–9.12 (m, 8H). ¹³C NMR (CD₃CN, 125 MHz): δ (ppm) = 15.8, 19.2, 19.27, 19.33, 24.35, 24.39, 26.9, 27.0, 30.8, 31.2, 31.5, 34.9, 36.3, 36.4, 64.0, 68.3, 70.2, 70.30, 70.32, 70.5, 70.6, 70.7, 70.9, 71.1, 71.11, 71.2, 71.2, 71.3, 71.3, 71.4, 71.4, 71.4, 110.2, 114.4, 116.9, 117.1, 125.0, 125.1, 125.4, 125.8, 131.2, 131.2, 131.7, 131.7, 132.7, 132.7, 137.5, 137.5, 142.7, 145.5, 147.1, 149.4, 153.9, 157.6.^{S9}

2.3 Synthesis of [2]rotaxane 2•4PF₆

Scheme S3 Synthesis of the dumbbell 24 and the [2]rotaxane 2-4PF₆.

MPTTF derivative 19

Compound **17** (802 mg, 0.732 mmol) was dissolved in anhydrous THF:MeOH (125 mL, 1:1, v/v), and the yellow solution was degassed (N_2 , 20 min). A solution of NaOMe (25% w/w in MeOH, 1.6 mL, 7.00 mmol) was added in one portion and the reaction mixture was heated under reflux for 1 h,

whereafter it was cooled to room temperature followed by removal of the solvent. The yellow residue was re-dissolved in CH₂Cl₂ (100 mL), washed with brine (200 mL) and H₂O (2 × 100 mL) before being dried (MgSO₄). Removal of the solvent gave compound **18** as an orange oily residue which was used immediately in the next step without any further purification. Compound 18 and 1,2-bis(2iodoethoxy)ethane (7) (3.25 g, 8.78 mmol) were dissolved in anhydrous DMF (200 mL) and degassed (N₂, 30 min) before NaH (60% w/w dispersion in mineral oil, 271 mg, 6.78 mmol) was added in one portion. The yellow reaction mixture was stirred at room temperature for 2 h before the reaction was stopped by dropwise addition of H_2O (100 mL) until the evolution of gas stopped. The solvent was removed, and the orange semisolid was re-dissolved in CH₂Cl₂ (100 mL), washed with brine (3 × 150 mL), H₂O (2 × 100 mL) and dried (MgSO₄). Removal of the solvent gave a brown solid, which was purified by column chromatography (350 mL SiO₂, 6 cm Ø, CH₂Cl₂). The yellow band ($R_f = 0.4$) was collected, and the solvent evaporated to provide compound **19** as a yellow solid (615 mg, 71% from **17**). Mp 130.0–132.5°C. ¹H NMR (CDCI₃, 400 MHz): δ (ppm) = 1.30 (s, 27H), 2.40 (s, 3H), 3.00 (t, J = 6.7 Hz, 2H), 3.24 (t, J = 6.6 Hz, 2H), 3.55–3.62 (m, 4H), 3.64–3.73 (m, 10H), 3.82–3.85 (m, 2H), 3.94–3.98 (m, 2H), 4.07–4.10 (m, 2H), 6.51 and 6.52 (AB, J = 2.1 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 7.04–7.10 (m, 8H), 7.20–7.25 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 3.07, 19.2, 31.6, 34.5, 35.6, 63.3, 67.5, 70.1, 70.3, 70.4, 70.8, 70.9, 70.9, 72.1, 77.4, 113.3, 119.1, 119.1, 124.2, 130.6, 130.9, 132.4, 139.9, 144.3, 148.5, 156.8.^{S9} MS (ESI): m/z = 1181 [M]⁺. MS (HiRes-FT ESI) calcd. for C₅₈H₇₂INO₅S₆⁺: 1181.2774; found: 1181.2715. Anal. calcd. for C₅₈H₇₂INO₅S₆: C, 58.91; H, 6.14; N, 1.18; S, 16.27; found: C, 59.05; H, 6.13; N, 1.21; S, 16.34.

Thione derivative 21

2-(2-(2-(2-Bromoethoxy)ethoxy)-1,3-diisopropylbenzene (4) (2.49 g, 6.67 mmol), thione 20 (2.00 g, 7.16 mmol) and KI (331 mg, 2.00 mmol) were dissolved in anhydrous THF (250 mL) and degassed (N₂, 20 min), before DBU (2.15 g, 14.1 mmol) was added in one portion. The reaction mixture was heated under reflux for 20 h, whereafter the solvent was removed. The brown oily residue was dissolved in CH_2CI_2 (250 mL) and washed with H_2O (3 × 250 mL). The combined aqueous phases were extracted with CH₂Cl₂ (100 mL), and the combined organic phases were dried (MgSO₄) followed by removal of the solvent. The brown oily residue was purified by column chromatography (600 mL SiO₂, 8 cm Ø, CH₂Cl₂:EtOAc 49:1) and the orange band ($R_f = 0.6$) was collected. Removal of the solvent gave compound 21 as an orange oil (3.20 g, 93%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.22 (d, J = 6.9 Hz, 12H), 1.36 (t, J = 7.4 Hz, 3H), 2.92 (q, J = 7.4 Hz, 2H), 3.09 (t, J = 6.4 Hz, 2H), 3.38 (sept, J = 6.9 Hz, 2H), 3.68–3.73 (m, 2H), 3.74–3.79 (m, 4H), 3.84–3.88 (m, 2H), 3.90–3.94 (m, 2H), 7.10 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 15.1, 24.3, 26.4, 31.1, 36.4, 70.1, 70.8, 70.9, 71.1, 74.0, 124.1, 124.8, 135.3, 137.8, 141.9, 153.2, 211.4. MS (ESI): $m/z = 519 [M+H]^+$, 536 $[M+NH_4]^+$, 541 $[M+Na]^+$. MS (HiRes-FT ESI) calcd. for C₂₃H₃₄NaO₃S₅⁺: 541.1004; found: 541.1018. Anal. calcd. for C₂₃H₃₄O₃S₅: C, 53.25; H, 6.61; S, 30.90; found: C, 53.37; H, 6.44; S, 31.09.

Ketone derivative 22

Compound **21** (3.11 g, 5.99 mmol) was dissolved in CH_2Cl_2 (125 mL) and $Hg(OAc)_2$ (6.11 g, 19.2 mmol) was added. The resulting orange suspension was stirred at room temperature for 1 h during which it gradually became lighter yellow. The reaction mixture was filtered through a pad of

Celite 545 (125 mL, 8 cm Ø), whereafter the resulting solid on top of the Celite was washed with CH₂Cl₂ (6 × 50 mL). The combined filtrate was washed with H₂O (2 × 300 mL) and dried (MgSO₄) before the solvent was removed. The yellow oily residue was purified by column chromatography (300 mL SiO₂, 6 cm Ø, CH₂Cl₂). The pale yellow band ($R_f = 0.5$) was collected giving compound **22** as a pale yellow oil (2.90 g, 96%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.22 (d, *J* = 6.9 Hz, 12H), 1.34 (t, *J* = 7.4 Hz, 3H), 2.89 (q, *J* = 7.4 Hz, 2H), 3.07 (t, *J* = 6.4 Hz, 2H), 3.38 (sept, *J* = 6.9 Hz, 2H), 3.68–3.78 (m, 6H), 3.84–3.88 (m, 2H), 3.90–3.94 (m, 2H), 7.10 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 15.1, 24.3, 26.4, 31.0, 36.2, 70.1, 70.8, 70.9, 71.1, 74.0, 124.2, 124.8, 142.0, 153.2.^{S9} MS (ESI): *m*/*z* = 503 [*M*+H]⁺, 520 [*M*+NH₄]⁺, 525 [*M*+Na]⁺. MS (HiRes-FT ESI) calcd. for C₂₃H₃₄NaO₄S₄⁺: 525.1232; found: 525.1249. Anal. calcd. for C₂₃H₃₄O₄S₄: C, 54.95; H, 6.82; S, 25.51; found: C, 55.14; H, 6.77; S, 25.22.

TTF derivative 23

Compound 22 (2.88 g, 5.73 mmol) and 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiole-2-thione (9) (2.28 g, 8.60 mmol) were suspended in distilled (EtO)₃P and heated to 130 °C. Two additional portions of the thione 9 were added after 7 min (762 mg, 2.87 mmol) and after 14 min (762 mg, 2.87 mmol), respectively. The dark orange reaction mixture was stirred for 1.5 h at 130 °C and cooled to room temperature, whereupon the suspension was concentrated. The resulting red semisolid was re-dissolved in CH₂Cl₂ (200 mL), washed with brine (100 mL) and H₂O (2 x 200 mL) and dried (MgSO₄) before Celite 545 (75 mL) was added to the organic phase. Removal of the solvent gave an orange semisolid residue which was purified by column chromatography (700 mL SiO₂, 8 cm \emptyset , petroleum ether (bp. 60-80 °C): EtOAc 2:1). The orange band ($R_f = 0.2$) was collected and concentrated to give a red sticky solid (2.00 g, 49%) containing compound 23 as a mixture of E- and Z-isomers. The data given below are for a mixture of the E- and Z-isomers. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 1.22 (d, J = 6.9 Hz, 12H), 1.32 (t, J = 7.4 Hz, 3H), 2.46 and 2.47 (2 × s, 3H), 2.69 and 2.70 (2 × t, J = 7.3 Hz, 2H), 2.86 and 2.86 (2 x g, J = 7.4 Hz, 2H), 2.98–3.06 (m, 4H), 3.38 (sept, J = 6.9 Hz, 2H), 3.68–3.79 (m, 6H), 3.84–3.89 (m, 2H), 3.89–3.94 (m, 2H), 7.09 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 15.2, 18.9, 19.2, 24.3, 26.4, 30.7, 31.4, 35.7, 70.3, 70.3, 70.8, 70.9, 71.1, 71.1, 74.0, 117.7, 124.2, 124.8, 129.0, 142.0, 153.2.^{S9} MS (ESI): m/z = 719 [M]⁺. MS (HiRes-FT ESI) calcd. for C₃₀H₄₁NO₃S₈⁺: 719.0847; found: 719.0841. Anal. calcd. for C₃₀H₄₁NO₃S₈: C, 50.04; H, 5.74; N, 1.95; S, 35.62; found: C, 50.11; H, 5.81; N, 2.03; S, 35.89.

Dumbbell 24

TTF derivative **23** (284 mg, 0.394 mmol) and MPTTF derivative **19** (437 mg, 0.370 mmol) were dissolved in anhydrous THF (50 mL) and degassed (N₂, 35 min) before DBU (0.12 g, 0.79 mmol) was added in one portion. The reaction mixture was heated under reflux for 17 h and cooled to room temperature. The solvent was removed, and the resulting residue was purified by gradient column chromatography (275 mL SiO₂, 5.5 cm Ø, CH₂Cl₂:EtOAc 1:0–20:1). The yellow band (R_f = 0.2, CH₂Cl₂) was collected and evaporated to give a brown solid (610 mg, 96%) containing compound **24** as a mixture of *E*- and *Z*-isomers. The data given below are for a mixture of the *E*- and *Z*-isomers. Mp 101.3–102.6 °C. ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 1.18 and 1.19 (2 × d, *J* = 6.9 Hz, 12H), 1.23 and 1.24 (2 × t, *J* = 7.3 Hz, 3H), 1.28 (s, 27H), 2.37, 2.37 and 2.38 (3 × s, 6H), 2.79–2.87 (m, 2H), 2.91 and 2.91 (2 × t, *J* = 6.2 Hz, 2H), 2.94–3.01 (m, 4H), 3.39 (sept, *J* = 6.9 Hz, 2H), 3.46–3.67

(m, 20H), 3.71–3.77 (m, 4H), 3.83–3.87 (m, 2H), 3.93 (t, J = 4.8 Hz, 2H), 4.00–4.05 (m, 2H), 6.63 (s, 2H), 6.76–6.81 (m, 2H), 7.07–7.19 (m, 11H), 7.28–7.33 (m, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) = 15.3, 19.2, 19.3, 24.3, 26.4, 30.6, 31.5, 34.4, 35.5, 35.7, 35.7, 35.8, 50.8, 63.2, 67.4, 70.0, 70.2, 70.2, 70.2, 70.3, 70.3, 70.7, 70.7, 70.8, 70.8, 70.8, 70.8, 70.9, 71.2, 71.2, 71.3, 74.0, 113.1, 113.2, 113.3, 124.1, 124.2, 124.8, 130.9, 132.4, 139.9, 142.0, 144.3, 148.5, 153.2, 156.8.^{S9} MS (ESI): $m/z = 1719 [M]^+$, 1737 [M+NH₄]⁺, 1742 [M+Na]⁺. MS (HiRes-FT ESI) calcd. for C₈₅H₁₀₉NNaO₈S₁₄⁺: 1742.4135; found: 1742.4198. Anal. calcd. for C₈₅H₁₀₉NO₈S₁₄: C, 59.30; H, 6.38; N, 0.81; S, 26.07; found: C, 59.03; H, 6.43; N, 0.90; S, 25.99.

[2]Rotaxane 2•4PF₆

A mixture of 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)-bis(hexafluorophosphate) (**15**·2PF₆) (479 mg, 0.678 mmol) and 1,4-bis(bromomethyl)benzene (**16**) (184 mg, 0.697 mmol) were transferred to a teflon-tube, whereupon a solution of the dumbbell **24** (286 mg, 0.166 mmol) in anhydrous DMF (1.7 mL) was added. The teflon-tube was sealed and subjected to 12 kbar pressure at room temperature for 3 d. The resulting green reaction mixture was directly subjected to column chromatography (200 mL SiO₂, 4 cm Ø, Me₂CO:NH₄PF₆ 1:0–100:0.25 (v/w)). Unreacted dumbbell **24** was eluted with Me₂CO, whereupon the eluent was changed to Me₂CO:NH₄PF₆ 100:0.25 (v/w) and the green band containing **2**·4PF₆ was collected and concentrated to a minimum volume. Addition of cold H₂O (50 mL, 5 °C) gave a green precipitate which was collected by filtration, washed with H₂O (3 × 2 mL) and Et₂O (3 × 2 mL) and dried affording a green solid (35.6 mg, 8%) containing a mixture of the two translational isomers of **2**·4PF₆; each as a mixture of *E*- and *Z*-isomers. The data given below are for a mixture of the two translational isomers. Mp 152.0–153.2 °C. MS (ESI): $m/z = 795 [M-3PF_6]^{3+}$, 1265 $[M-2PF_6]^{2+}$. MS (HiRes-FT ESI) calcd. for C₁₂₁H₁₄₁F₆N₅O₈PS₁₄³⁺: 794.8832; found: 794.8816. Anal. calcd. for C₁₂₁H₁₄₁F₂₄N₅O₈P4S₁₄: C, 51.50; H, 5.04; N, 2.48; S, 15.90; found: C, 51.20; H, 5.08; N, 2.60; S, 15.67.

Data for **2**•MPTTF•4PF₆: ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 1.17 and 1.17 (2 × d, *J* = 6.9 Hz, 12H), 1.24 and 1.24 (2 × t, *J* = 7.3 Hz, 3H) 1.27 (s, 27H), 2.30 and 2.31 (2 × s, 3H), 2.68 (s, 3H), 2.74 and 2.75 (2 × t, *J* = 6.1 Hz, 2H), 2.83 and 2.85 (2 × q, *J* = 7.3 Hz, 2H), 3.00 (2 × t, *J* = 6.1 Hz, 2H), 3.24 (t, *J* = 6.3 Hz, 2H), 3.33–3.40 (m, 2H), 3.52 and 3.53 (2 × t, *J* = 6.1 Hz, 2H), 3.59–3.70 (m, 8H), 3.73–3.94 (m, 16H), 4.00–4.04 (m, 2H), 4.06–4.11 (m, 2H), 5.66–5.77 (m, 8H), 6.17 and 6.20 (AB, *J*_{AB} = 2.0 Hz, 2H) 6.68 (d, *J* = 8.8 Hz, 2H), 7.04–7.18 (m, 11H), 7.27–7.34 (m, 6H), 7.65–7.81 (m, 12H), 7.93–8.13 (m, 4H), 8.73–9.16 (m, 8H). ¹³C NMR (CD₃CN, 125 MHz): δ (ppm) = 15.5, 19.2, 19.3, 24.4, 26.9, 30.8, 31.1, 31.1, 31.5, 34.9, 64.0, 65.6, 65.6, 68.2, 70.2, 70.2, 70.6, 70.6, 71.1, 71.2, 71.2, 71.2, 71.2, 71.3, 71.4, 71.4, 71.4, 71.4, 71.4, 75.0, 108.8, 110.2, 114.2, 116.9, 117.1, 125,0, 125.0, 125.5, 125.7, 125.7, 131.1, 131.2, 131.7, 132.7, 140.8, 142.8, 145.5, 149.5, 157.4.^{S9}

2.4 Characterisation of 1•OP⁸⁺ and 2•OP⁸⁺

[2]Rotaxane 1•OP8+

Tris(*p*-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) (8.7 mg, 10.7 μ mol) was added to a solution of the [2]rotaxane **1**•4PF₆ (3.05 mg, 1.08 μ mol) in CD₃CN (720 μ L), whereupon

a ¹H NMR spectrum of **1**•OP⁸⁺ was recorded. ¹H NMR (400 MHz, CD₃CN, 298 K): δ (ppm) = 1.16 (d, J = 6.9 Hz, 12H), 1.37 (s, 27H), 1.40–1.44 (m, 2H), 1.53 (t, J = 7.3 Hz, 3H), 2.54 (d, J = 8.8 Hz, 2H), 2.94–3.07 (m, 6H), 3.34 (sept, J = 6.9 Hz, 2H), 3.40–3.45 (m, 2H), 3.51–3.61 (m, 4H), 3.61–3.69 (m, 6H), 3.69–3.78 (m, 6H), 3.79–3.86 (m, 4H), 3.86–3.93 (m, 4H), 3.93–4.07 (m, 6H), 4.51–4.60 (m, 2H), 5.79 and 5.80 (AB, $J_{AB} = 14.1$ Hz, 8H), 6.27 (d, J = 8.8 Hz, 2H), 7.06–7.14 (m, 3H), 7.35 (d, J = 8.5 Hz, 6H), 7.52–7.68 (m, 16H), 8.02 (s, 2H), 8.84 ppm (d, J = 6.4 Hz, 8H).

[2]Rotaxane 2•OP8+

Tris(*p*-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) (8.6 mg, 10.5 µmol) was added to a solution of the [2]rotaxane **2**•4PF₆ (2.97 mg, 1.05 µmol) in CD₃CN (700 µL), whereafter a ¹H NMR spectrum of **2**•OP⁸⁺ was recorded. ¹H NMR (400 MHz, CD₃CN, 298 K): δ (ppm) = 1.19 (d, J = 6.9 Hz, 12H), 1.37 (s, 27H), 1.40–1.44 (m, 2H), 1.51 (t, J = 7.3 Hz, 3H), 2.54 (d, J = 8.4 Hz, 2H), 3.00 (s, 3H), 3.04 (s, 3H), 3.36 (sept, J = 6.9 Hz, 2H), 3.40–3.47 (m, 4H), 3.52–3.58 (m, 2H), 3.58–3.69 (m, 8H), 3.69–3.78 (m, 6H), 3.80–3.93 (m, 8H), 3.93–4.07 (m, 4H), 4.54–4.61 (m, 2H), 5.80 and 5.81 (AB, $J_{AB} = 13.8$ Hz, 8H), 6.27 (d, J = 8.4 Hz, 2H), 7.05–7.15 (m, 3H), 7.35 (d, J = 8.4 Hz, 6H), 7.50–7.72 (m, 16H), 8.08 (s, 2H), 8.85 (d, J = 6.3 Hz, 8H).

Fig. S1 a) ESI mass spectrum of the [2]rotaxane $1 \cdot 4PF_6$, b) zoom of the ESI mass spectrum of $1 \cdot 4PF_6$ showing peaks associated with the $[M - 2PF_6]^{2+}$ ion at m/z = 1265.8072 and c) zoom of the ESI mass spectrum of $1 \cdot 4PF_6$ showing peaks associated with the $[M - 3PF_6]^{3+}$ ion at m/z = 795.5521.

4 ESI mass spectrum of 2•4PF₆

Fig. S2 a) ESI mass spectrum of the [2]rotaxane **2**•4PF₆, b) zoom of the ESI mass spectrum of **2**•4PF₆ showing peaks associated with the $[M - 2PF_6]^{2+}$ ion at m/z = 1265.8043 and c) zoom of the ESI mass spectrum of **2**•4PF₆ showing peaks associated with the $[M - 3PF_6]^{3+}$ ion at m/z = 795.5500.

5 UV/Vis/NIR absorption spectra of the dumbbells 14 and 24 and of the [2]rotaxanes 1⁴⁺ and 2⁴⁺

Fig. S3 UV/Vis/NIR absorption spectra recorded at 298 K of a) dumbbell **14** (0.4 mM, 1:1 MeCN/CH₂Cl₂), b) dumbbell **24** (0.4 mM, 1:1 MeCN/CH₂Cl₂), c) [2]rotaxane 1^{4+} (0.6 mM, MeCN) and d) [2]rotaxane 2^{4+} (0.6 mM, MeCN).

6 ¹H NMR spectrum of the dumbbell 14

Fig. S4 Partial ¹H NMR spectrum of the dumbbell **14** (400 MHz, CD₃CN, 298 K, c < 1.5 mM). The C(CH₃)₃, CD₂HCN, HDO and H₂O signals are not shown in their full height.

7 COSY spectrum of 1•4PF₆

Fig. S5 Partial COSY spectrum of an isomeric mixture of the [2]rotaxane 1^{4+} (400 MHz, CD₃CN, 298 K, 1.5 mM), where the assignments in light green are associated with $1 \cdot \text{TTF}^{4+}$ and the dark green signals are associated with $1 \cdot \text{MPTTF}^{4+}$, while the assignments in grey are associated with a mixture of the two translational isomers.

8 ¹H NMR spectrum of the dumbbell 24

Fig. S6 Partial ¹H NMR spectrum of the dumbbell **24** (400 MHz, CD₃CN, 298 K, c < 1.5 mM). The C(CH₃)₃, CD₂HCN, HDO and H₂O signals are not shown in their full height.

9 ¹H NMR spectrum of 2•4PF₆

Fig. S7 Partial ¹H NMR spectrum of an isomeric mixture of the [2]rotaxane 2^{4+} (400 MHz, CD₃CN, 298 K, 1.5 mM), where the assignments in light green are associated with 2^{-} TTF⁴⁺ and the dark green signals are associated with 2^{-} MPTTF⁴⁺, while the assignments in grey are associated with a mixture of the two translational isomers. The C(CH₃)₃, CD₂HCN and H₂O signals are not shown in their full height.

10 COSY spectrum of 2•4PF₆

Fig. S8 Partial COSY spectrum of an isomeric mixture of the [2]rotaxane 2^{4+} (400 MHz, CD₃CN, 298 K, 1.5 mM), where the assignments in light green are associated with $2 \cdot \text{TTF}^{4+}$ and the dark green signals are associated with $2 \cdot \text{MPTTF}^{4+}$, while the assignments in grey are associated with a mixture of the two translational isomers.

11 Calculations of the distribution between the two translational isomers in 1⁴⁺ and 2⁴⁺

The relative amounts of the two translational isomers present in 1^{4+} (*i.e.* $1 \cdot MPTTF^{4+}$ and $1 \cdot TTF^{4+}$) and 2^{4+} (*i.e.* $2 \cdot MPTTF^{4+}$ and $2 \cdot TTF^{4+}$) were calculated using the integrals (*I*) from three different sets of signals in the ¹H NMR spectra recorded in CD₃CN at 298 K of 1^{4+} (Fig. 2) and 2^{4+} (Fig. S7), respectively, as probes. The distribution between the two translational isomers was calculated as an average of the three probes. Signals associated with the $1 \cdot OP^{4+}$ and $2 \cdot OP^{4+}$ translational isomers were not observed in the ¹H NMR spectra of 1^{4+} and 2^{4+} .

Table S1 Distribution between the two translational isomers **1**•MPTTF⁴⁺ and **1**•TTF⁴⁺ determined by ¹H NMR spectroscopy in CD₃CN at 298 K using three different signals as probes

δ forSignal1•MPTTF4+/1•TTF4+[ppm]		/ of 1•MPTTF ⁴⁺ /1•TTF ⁴⁺	Relative amount of 1• MPTTF ⁴⁺ / 1• TTF ⁴⁺ [%]	Average relative amount of 1 •MPTTF ⁴⁺ / 1 •TTF ⁴⁺ [%]
TTF- SC <i>H</i> ₃	2.31 + 2.32/2.52	2.14/0.50	81/19	
TTF- SC <i>H</i> ₃	2.37 + 2.38/2.58 + 2.59	2.21/0.51	81/19	82/18
Pyrrole- <i>H</i>	6.11 + 6.14/6.44–6.48	1.41/0.27	84/16	

Table S2 Distribution between the two translational isomers **2**•MPTTF⁴⁺ and **2**•TTF⁴⁺ determined by ¹H NMR spectroscopy in CD₃CN at 298 K using three different signals as probes

Signal	δ for 2•MPTTF ⁴⁺ /2•TTF ⁴⁺ [ppm]	/ of 2• MPTTF ⁴⁺ / 2• TTF ⁴⁺	Relative amount of 2• MPTTF ⁴⁺ / 2• TTF ⁴⁺ [%]	Average relative amount of 2• MPTTF ⁴⁺ / 2• TTF ⁴⁺ [%]
TTF- SC <i>H</i> ₃	2.30 + 2.31/2.51 + 2.52	2.50/0.14	95/5	
MPTTF -SC <i>H</i> ₃	2.68/2.41	2.53/0.16	94/6	95/5
Pyrrole- <i>H</i>	6.17 + 6.20/6.46 + 6.47	1.52/0.07	96/4	

12 Theoretical calculations of the ratio between the three translational isomers in 1⁴⁺ and 2⁴⁺

The theoretical distribution of CBPQT⁴⁺ encircling the three different stations (*i.e.* TTF, MPTTF and OP) at equilibrium was calculated using the relationship $K_{eq} = \exp[(\Delta\Delta G^{\circ})/RT]$ where $\Delta\Delta G^{\circ}$ is the difference between the free energy of binding of the two stations in question, *R* is the gas constant and *T* is the absolute temperature. Since the rotaxane 1⁴⁺ contains three stations, two ratios, each representing an equilibrium between two adjacent stations, needs to be combined. Since the MPTTF and OP stations both are adjacent to the TTF station, the two ratios in question are between 1•TTF⁴⁺ and 1•MPTTF⁴⁺ and between 1•OP⁴⁺ and 1•TTF⁴⁺, respectively. Using the free energies ΔG° (MPTTF)^{S10} = -6.0 kcal mol⁻¹, ΔG° (TTF)^{S5} = -4.4 kcal mol⁻¹ and ΔG° (OP)^{S5} = -1.7 kcal mol⁻¹ in MeCN at 298 K, the ratios can be determined. Initially, the ratio representing the equilibrium between 1•TTF⁴⁺ can be calculated:

$$\frac{K_{\text{TTF}}}{K_{\text{MPTTF}}} = e^{\left(\frac{((-6.0)-(-4.4))\text{kcal mol}^{-1}}{1.987 \cdot 10^{-3}\text{kcal K}^{-1} \text{ mol}^{-1} \cdot 298 \text{ K}}\right)} = 0.067$$

The ratio is converted into percentage of 1•TTF⁴⁺ relative to 1•MPTTF⁴⁺:

$$\frac{0.067}{0.067 + 1} = 0.063 \approx 6\%$$

Thus, the ratio between **1**•TTF⁴⁺ and **1**•MPTTF⁴⁺, respectively, is 6:94. The relationship representing the equilibrium between **1**•OP⁴⁺ and **1**•TTF⁴⁺ is calculated:

$$\frac{K_{\text{OP}}}{K_{\text{TTF}}} = e^{\left(\frac{((-4.4) - (-1.7))\text{kcal mol}^{-1}}{1.987 \cdot 10^{-3} \text{ kcal K}^{-1} \text{ mol}^{-1} \cdot 298 \text{ K}}\right)} = 0.010$$
$$\Rightarrow \frac{0.010}{0.010 + 1} = 0.010 \approx 1\%$$

Thus, the ratio between $1 \cdot OP^{4+}$ and $1 \cdot TTF^{4+}$, respectively, is 1:99. If the percentages of $1 \cdot MPTTF^{4+}$, $1 \cdot TTF^{4+}$ and $1 \cdot OP^{4+}$ are defined as *x*, *y* and *z*, respectively, the following relationships are obtained:

By combining equations A and B, *x* can be determined in terms of *z*:

$$94.99z = 6x \Leftrightarrow x = 1551z$$

To determine *z*, the expressions for *x* and *y* are inserted into equation C:

$$1551z + 99z + z = 100 \Leftrightarrow z = 0.06 \approx 0$$

By inserting *z* into the expressions for *x* and *y*, the latter two can be determined:

$$y = 99.0.06 = 5.99 \approx 6$$

 $x = 1551.0.06 = 93.94 \approx 94$

To conclude, the calculated ratio between **1**•MPTTF⁴⁺, **1**•TTF⁴⁺ and **1**•OP⁴⁺, respectively, is 94:6:0.

13 Suggested mechanism for oxidation of 14, 24 and 2•MPTTF⁴⁺

Scheme S4 Suggested mechanism for tetra-oxidation of the dumbbell 14 to produce 14⁴⁺.

Scheme S5 Suggested mechanism for tetra-oxidation of the dumbbell 24 to produce 24⁴⁺.

Scheme S6 Suggested mechanism for tetra-oxidation of **2**•MPTTF⁴⁺ to produce **2**•TEG⁸⁺ in which the CBPQT⁴⁺ ring is located on the TEG linker connecting the TTF²⁺ and MPTTF²⁺ dications.

14 ¹H NMR spectra of 1⁸⁺ recorded at 298 K 5 min and 18 min after oxidation

Fig. S9 Partial ¹H NMR spectra (400 MHz, CD₃CN, 298 K, 1.5 mM) recorded of a) the oxidised [2]rotaxane 1^{8+} , 5 min after mixing 1^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to produce 1^{8+} and b) the oxidised [2]rotaxane 1^{8+} , 18 min after mixing 1^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to produce 1^{8+} . The assignments in red are associated with $1 \cdot OP^{8+}$ (*i.e.* the OP station is located inside the CBPQT⁴⁺ ring) and the assignments in purple are associated with $1 \cdot TEG^{8+}$ (*i.e.* the CBPQT⁴⁺ ring) is located at the TEG linker connecting the TTF²⁺ and MPTTF²⁺ dications). The C(CH₃)₃ and CD₂HCN signals are not shown in their full height.

Fig. S10 Partial COSY spectrum of the oxidised [2]rotaxane 1^{8+} (400 MHz, CD₃CN, 298 K, 1.5 mM), where the assignments in red are associated with $1 \cdot OP^{8+}$.

16 ¹H NMR spectra of 2⁸⁺ recorded at 298 K 5 min and 18 min after oxidation

Fig. S11 Partial ¹H NMR spectra (400 MHz, CD₃CN, 298 K, 1.5 mM) recorded of a) the oxidised [2]rotaxane 2^{8+} , 5 min after mixing 2^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to produce 2^{8+} and b) the oxidised [2]rotaxane 2^{8+} , 18 min after mixing 2^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to produce 2^{8+} and b) the oxidised [2]rotaxane 2^{8+} , 18 min after mixing 2^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to produce 2^{8+} . The assignments in red are associated with $2 \cdot OP^{8+}$ (*i.e.* the OP station is located inside the CBPQT⁴⁺ ring). The C(CH₃)₃, H₂O and CD₂HCN signals are not shown in their full height.

Fig. S12 Partial COSY spectrum of the oxidised [2]rotaxane 2^{8+} (400 MHz, CD₃CN, 298 K, 1.5 mM), where the assignments in red are associated with $2 \cdot OP^{8+}$.

18¹H NMR spectra of 2⁸⁺ recorded at 298 K and 253 K

Fig. S13 Partial ¹H NMR spectra (CD₃CN, 1.5 mM) recorded of a) the [2]rotaxane 2^{4+} (400 MHz) at 298 K, b) the oxidised [2]rotaxane 2^{8+} (400 MHz) at 298 K and c) the oxidised [2]rotaxane 2^{8+} (600 MHz) at 253 K. 2^{8+} was generated by adding an excess of the chemical oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl₆) to 2^{4+} and the spectra were recorded *ca*. 5 min after adding TBPASbCl₆ at the indicated temperature. The assignments in red are associated with $2 \cdot OP^{8+}$ (*i.e.* the OP station is located inside the CBPQT⁴⁺ ring) and the assignments in purple are associated with $2 \cdot TEG^{8+}$ (*i.e.* the CBPQT⁴⁺ ring is located at the TEG linker connecting the TTF²⁺ and MPTTF²⁺ units). The C(CH₃)₃, H₂O and CD₂HCN signals are not shown in their full height.

19 ¹H NMR spectrum of the oxidised dumbbell 14⁴⁺

Fig. S14 Partial ¹H NMR spectrum of the oxidised dumbbell **14**⁴⁺ (400 MHz, CD₃CN, 298 K, c < 1.5 mM), where **14** was mixed with 10 equiv. of TBPASbCl₆ to produce **14**⁴⁺. The C(CH₃)₃, CD₂HCN, H₂O and HDO signals are not shown in their full height.

20 ¹H NMR spectrum of the oxidised dumbbell 24⁴⁺

Fig. S15 Partial ¹H NMR spectrum of the oxidised dumbbell **24**⁴⁺ (400 MHz, CD₃CN, 298 K, c < 1.5 mM), where **24** was mixed with 10 equiv. of TBPASbCl₆ to produce **24**⁴⁺. The C(CH₃)₃, CD₂HCN, H₂O and HDO signals are not shown in their full height.

21 A series of ¹H NMR spectra of 1⁸⁺ recorded at 258 K

Fig. S16 The first 13 ¹H NMR spectra (600 MHz, CD₃CN, 258 K, 1.5 mM) recorded of 1^{8+} showing the change in signals in the first 3873 s after oxidising 1^{4+} to 1^{8+} with an excess of TBPASbCl₆. Red arrows indicate increasing signals for $1 \cdot OP^{8+}$, while purple arrows indicate decreasing signals for $1 \cdot OP^{8+}$. Not all signals are shown in their full height.

22 A series of ¹H NMR spectra of 2⁸⁺ recorded at 253 K

Fig. S17 The first 13 ¹H NMR spectra (600 MHz, CD₃CN, 253 K, 1.5 mM) recorded of **2**⁸⁺ showing the change in signals in the first 3930 s after oxidising **2**⁴⁺ to **2**⁸⁺ with an excess of TBPASbCl₆. Red arrows indicate increasing signals for **2**•OP⁸⁺, while purple arrows indicate decreasing signals for **2**•TEG⁸⁺. Not all signals are shown in their full height.

23 ¹H NMR spectra of 2⁸⁺ recorded at 253 K at different delay times after oxidation

Fig. S18 a) A cartoon representation illustrating the oxidation of **2**•MPTTF⁴⁺ leading initially to the formation of **2**•TEG⁸⁺ followed by the movement of CBPQT⁴⁺ across the MPTTF dication (*i.e.* MPTTF²⁺) to produce **2**•OP⁸⁺. b) A series of partial ¹H NMR spectra (600 MHz, 253 K, CD₃CN) of the oxidised [2]rotaxane **2**⁸⁺ recorded at different delay times after addition of an excess (28–32 equiv.) of TBPASbCl₆ to **2**⁴⁺ (*c* = 1.5 mM) showing the increasing signals for the resonances associated with the C(CH₃)₃ protons (δ = 1.34 ppm) and the CH(CH₃)₂ protons (δ = 1.16 ppm), respectively, in **2**•OP⁸⁺, and the decreasing signals for the resonances associated with the C(CH₃)₃ protons (δ = 1.25 ppm) and the CH(CH₃)₂ protons (δ = 1.18 ppm), respectively, in **2**•TEG⁸⁺. c) Plot of ln *I* against *t* at 253 K for the movement of CBPQT⁴⁺ across the MPTTF²⁺ unit, where *I* is the integral of

the signal at δ = 1.34 ppm. The eight data points have been fitted by the best straight line (black line), giving a correlation coefficient of 0.995, indicating that first-order kinetics are in operation. The slope of the line corresponds to the rate constant k_1 for the movement of CBPQT⁴⁺ over the MPTTF²⁺ unit in **2**⁸⁺, according to the relationship ln $I = k_1 t$.

24 First-order analysis

This section provides further information about the kinetic investigations carried out on 1^{8+} and 2^{8+} at different temperatures.

Initially, a baseline and phase correction were performed on all ¹H NMR spectra, whereupon the TMS signal was integrated and normalised to 100 and then used as an internal reference. All signals that did not overlap with any other signal were used as probes. At each temperature and for each probe, first-order kinetics were observed to be in operation, *i.e.* straight lines are observed when ln *I* is plotted against *t*, where *I* is the integral of the signal in question and *t* is the time. This outcome is a consequence of the fact that the data points (*n*) were collected in the early stage of the experiments where the reverse process is not yet occurring to any significant extent. The slope of the line corresponds to the rate constant *k*₁ for the movement of CBPQT⁴⁺ over the TTF²⁺ unit in 1⁸⁺ or over the MPTTF²⁺ unit in 2⁸⁺ according to the relationship ln *I*= *k*₁ *t*. Only probes that upon linear regression gave a straight line with *R*² > 0.9 were used. The *k*₁ values and the corresponding free energies of activation^{S11} ($\Delta G^{\ddagger}(k_1)$) obtained from these experiments are recorded in Tables S3 and S4. Finally, the rate constant (*k*₁^{av}) and the derived energy of activation $\Delta G^{\ddagger}(k_1^{av})$ for the movement of CBPQT⁴⁺ from the TEG linker to the OP unit at each temperature were obtained (Table 2) as an average of the *k*₁ values obtained for each of the different probes collected in Tables S3 and S4.

Table S3 Rate constants (k_1) and derived free energies of activations ($\Delta G^{\ddagger}(k_1)$) for the movement of CBPQT⁴⁺ over the TTF²⁺ unit in **1**⁸⁺ for probes having correlation coefficients $R^2 > 0.9$ at 243, 253, 258, 263 and 268 K, together with the number of data points (n) included in the linear regression. The purple probes are associated with **1**•TEG⁸⁺ and the red probes are associated with **1**•OP⁸⁺

<i>T</i> [K]	Probe	δ [ppm]	n	<i>k</i> ₁ [10 ⁻⁴ s ⁻¹] ^a	$\Delta G^{\ddagger}(k_1)$ [kcal mol ⁻¹] ^a	R^2
	CBPQT ⁴⁺ α-Η	8.93–9.31	6	0.98 ± 0.11	18.60 ± 0.06	0.953
	Stopper Ar-H	7.20	6	0.36 ± 0.08	19.09 ± 0.11	0.948
2/2	C(CH ₃) ₃	1.26	6	0.33 ± 0.02	19.12 ± 0.04	0.967
243	$CH(CH_3)_2$	1.17	6	0.56 ± 0.06	18.87 ± 0.05	0.964
	CBPQT⁴⁺α- <i>H</i>	8.85	6	0.70 ± 0.12	18.77 ± 0.08	0.904
	C(CH ₃) ₃	1.35	6	0.28 ± 0.05	19.21 ± 0.08	0.980
	CBPQT ⁴⁺ α-Η	8.90–9.29	8	0.94 ± 0.08	19.40 ± 0.05	0.917
	Stopper Ar-H	7.18	8	0.81 ± 0.07	19.48 ± 0.05	0.994
	OP- <i>H</i> b	6.79	8	0.88 ± 0.31	19.44 ± 0.18	0.982
	$C(CH_3)_3$	1.25	8	0.78 ± 0.02	19.50 ± 0.03	0.997
252	$CH(CH_3)_2$	1.17	8	0.80 ± 0.04	19.49 ± 0.03	0.996
205	CBPQT ⁴⁺ α-Η	8.83	8	0.74 ± 0.11	19.53 ± 0.08	0.989
	OP- <i>H</i> a	6.15	8	0.97 ± 0.57	19.39 ± 0.30	0.966
	SCH ₂ CH ₃	1.49	8	0.55 ± 0.22	19.68 ± 0.20	0.925
	$C(CH_3)_3$	1.34	8	0.84 ± 0.03	19.46 ± 0.03	1.000
	$CH(CH_3)_2$	1.13	8	0.84 ± 0.06	19.46 ± 0.04	0.968
	CBPQT ⁴⁺ β- <i>H</i>	8.09-8.44	7	1.52 ± 0.08	19.55 ± 0.03	0.922
	Stopper Ar-H	7.18	7	1.30 ± 0.08	19.63 ± 0.04	0.994
	OP- <i>H</i> b	6.79	7	2.27 ± 0.39	19.35 ± 0.09	0.926
258	C(CH ₃) ₃	1.26	7	1.13 ± 0.02	19.71 ± 0.03	0.993
	$CH(CH_3)_2$	1.17	7	1.15 ± 0.05	19.70 ± 0.03	0.989
	C(CH ₃) ₃	1.34	7	0.87 ± 0.02	19.84 ± 0.03	0.998
	CH(C <i>H</i> ₃) ₂	1.13	7	0.89 ± 0.05	19.83 ± 0.04	0.977
	CBPQT ⁴⁺ α-Η	8.90–9.26	5	1.96 ± 0.14	19.81 ± 0.04	0.914
	Stopper Ar-H	7.18	5	1.70 ± 0.12	19.88 ± 0.04	0.997
	OP- <i>H</i> b	6.80	5	1.31 ± 0.50	20.02 ± 0.20	0.973
	$C(CH_3)_3$	1.26	5	1.73 ± 0.03	19.87 ± 0.03	0.999
	$CH(CH_3)_2$	1.18	5	1.71 ± 0.07	19.88 ± 0.03	0.999
262	CBPQT ⁴⁺ α-Η	8.84	5	2.08 ± 0.15	19.78 ± 0.04	0.999
203	Pyrrole-H	8.00	5	1.78 ± 0.49	19.86 ± 0.15	0.990
	OP- <i>H</i> a	6.18	5	2.36 ± 0.66	19.71 ± 0.15	0.931
	SCH ₂ CH ₃	1.50	5	1.92 ± 0.35	19.82 ± 0.10	0.996
	OCH ₂	1.41–1.46	5	1.58 ± 0.44	19.92 ± 0.15	0.977
	C(CH ₃) ₃	1.35	5	2.14 ± 0.05	19.76 ± 0.03	0.997
	$CH(CH_3)_2$	1.14	5	2.15 ± 0.10	19.76 ± 0.03	0.996
	Stopper Ar-H	7.18	5	2.79 ± 0.12	20.01 ± 0.03	1.000
	OP- <i>H</i> b	6.80	5	1.31 ± 0.50	20.02 ± 0.20	0.973
268	$C(CH_3)_3$	1.26	5	2.56 ± 0.03	20.05 ± 0.02	0.999
	$CH(CH_3)_2$	1.18	5	2.66 ± 0.07	20.03 ± 0.03	1.000
	CBPQT ⁴⁺ α-Η	8.76–8.89	5	2.43 ± 0.12	20.08 ± 0.03	0.996

Pyrrole- <i>H</i>	8.00	5	2.55 ± 0.58	20.06 ± 0.12	1.000
OP- <i>H</i> a	6.19	5	2.67 ± 0.52	20.03 ± 0.11	0.983
NCH ₂	4.54	5	3.58 ± 0.57	19.87 ± 0.09	0.984
OP- <i>H</i> b	2.44	5	2.35 ± 0.53	20.10 ± 0.12	0.938
SCH ₂ CH ₃	1.50	5	1.94 ± 0.28	20.20 ± 0.08	0.993
OCH ₂	1.40–1.46	5	1.18 ± 0.34	20.47 ± 0.15	0.976
C(CH ₃) ₃	1.35	5	2.65 ± 0.04	20.04 ± 0.02	0.990
CH(C <i>H</i> ₃) ₂	1.14	5	2.54 ± 0.07	20.06 ± 0.03	0.998

^aThe errors are calculated using the method presented in Koumura *et al.*^{S12} with $\Delta T = 0.3$ K, I = 5% and t = 0.1 s.

Taking an average of the probes with $R^2 > 0.9$ at the five different temperatures, yielded a rate constant (k_1^{av}) for each temperature, which are listed in Table 2.

Table S4 Rate constants (k_1) and derived free energies of activations ($\Delta G^{\ddagger}(k_1)$) for the movement of CBPQT⁴⁺ over the MPTTF²⁺ unit in **2**⁸⁺ for probes having correlation coefficients $R^2 > 0.9$ at 243, 253, 263 and 268 K, together with the number of data points (n) included in the linear regression. The purple probes are associated with **2**•TEG⁸⁺ and the red probes are associated with **2**•OP⁸⁺

<i>T</i> [K]	Probe	δ [ppm]	n	<i>k</i> ₁ [10 ⁻⁴ s ⁻¹]ª	$\Delta G^{\ddagger}(k_1)$ [kcal mol ⁻¹] ^a	R^2
	Stopper Ar-H	7.24	19	0.39 ± 0.04	19.05 ± 0.05	0.982
	SCH ₂ CH ₃	1.54	19	0.38 ± 0.05	19.06 ± 0.07	0.903
	C(CH ₃) ₃	1.24	19	0.35 ± 0.01	19.10 ± 0.03	0.971
243	CH(C <i>H</i> ₃) ₂	1.17	19	0.43 ± 0.02	19.00 ± 0.03	0.979
	Stopper Ar-H	7.30	19	0.29 ± 0.04	19.18 ± 0.07	0.939
	C(CH ₃) ₃	1.34	19	0.30 ± 0.01	19.18 ± 0.03	0.972
	$CH(CH_3)_2$	1.15	19	0.41 ± 0.02	19.02 ± 0.04	0.970
	CBPQT ⁴⁺ α-H	8.92–9.27	9	1.53 ± 0.06	19.16 ± 0.03	0.925
	CBPQT ⁴⁺ β- <i>H</i>	8.12–8.44	9	1.21 ± 0.05	19.28 ± 0.03	0.965
	C(CH ₃) ₃	1.25	9	1.10 ± 0.01	19.33 ± 0.02	0.992
252	CH(C <i>H</i> ₃) ₂	1.18	9	1.28 ± 0.04	19.25 ± 0.03	0.995
200	CBPQT ⁴⁺ α- <i>Η</i>	8.84	9	1.04 ± 0.07	19.36 ± 0.04	0.932
	C <i>H</i> ₂N⁺	5.78	9	0.93 ± 0.06	19.41 ± 0.04	0.922
	C(CH ₃) ₃	1.34	9	1.26 ± 0.02	19.26 ± 0.03	0.995
	$CH(CH_3)_2$	1.16	9	1.31 ± 0.05	19.24 ± 0.03	0.967
	CBPQT ⁴⁺ α- <i>H</i>	8.89–9.24	5	3.01 ± 0.15	19.58 ± 0.04	0.922
	CBPQT ⁴⁺ β- <i>H</i>	8.12-8.44	5	3.04 ± 0.12	19.58 ± 0.03	0.942
	Stopper Ar-H	7.19 + 7.22	5	3.89 ± 0.14	19.45 ± 0.03	0.996
	OP-H _b	6.71	5	4.55 ± 0.66	19.37 ± 0.08	0.967
	SCH ₂ CH ₃	1.55	5	4.12 ± 0.35	19.42 ± 0.05	0.993
	$C(CH_3)_3$	1.26	5	3.54 ± 0.03	19.50 ± 0.10	0.999
	$CH(CH_3)_2$	1.19	5	3.92 ± 0.09	19.45 ± 0.03	1.000
263	CBPQT ⁴⁺ α-Η	8.84	5	3.19 ± 0.13	19.56 ± 0.03	0.973
	Pyrrole-H	8.06	5	2.98 ± 0.47	19.59 ± 0.09	0.960
	OP- <i>H</i> a	6.18	5	3.43 ± 0.57	19.52 ± 0.09	0.923
	NCH ₂	4.55	5	3.78 ± 0.65	19.47 ± 0.09	0.916
	SCH ₂ CH ₃	1.48	5	2.99 ± 0.32	19.59 ± 0.06	0.975
	OCH ₂	1.42–1.46	5	2.57 ± 0.44	19.67 ± 0.09	0.988
	C(CH ₃) ₃	1.35	5	3.36 ± 0.04	19.53 ± 0.02	0.981
	CH(C <i>H</i> ₃) ₂	1.17	5	3.03 ± 0.08	19.58 ± 0.03	0.986
	CBPQT ⁴⁺ α-H	8.90–9.20	5	8.73 ± 0.39	19.40 ± 0.03	0.928
	OP- <i>H</i> b	6.72	5	9.21 ± 1.58	19.37 ± 0.09	0.942
	SCH ₂ CH ₃	1.55	5	7.83 ± 0.82	19.46 ± 0.06	0.956
260	C(CH ₃) ₃	1.26	5	5.88 ± 0.06	19.61 ± 0.02	0.992
200	$CH(CH_3)_2$	1.19	5	6.42 ± 0.16	19.56 ± 0.03	0.989
	OCH ₂	1.41–1.46	5	2.36 ± 0.35	20.10 ± 0.08	0.914
	C(CH ₃) ₃	1.35	5	3.08 ± 0.03	19.96 ± 0.02	0.940
	$CH(CH_3)_2$	1.17	5	2.40 ± 0.06	20.09 ± 0.03	0.929

^aThe errors are calculated using the method presented in Koumura *et al.*^{S12} with $\Delta T = 0.3$ K, I = 5% and t = 0.1 s.

Taking an average of the probes with $R^2 > 0.9$ at the four different temperatures, yielded a rate constant (k_1^{av}) for each temperature, which are listed for all temperatures in Table 2.

25 Derivation of expression for difference in Gibbs free energy of activation

The Gibbs free energy of activation $(\Delta G^{\ddagger})^{S12}$ is defined as.

$$\Delta G^{\ddagger} = -RT \ln\left(\frac{kh}{k_{\rm B}T}\right)$$

where *R* is the gas constant (1.987 × 10^{-3} kcal K⁻¹ mol⁻¹), *T* is the temperature, *k* is the rate constant, *h* is the Planck constant (1.38 × 10^{-23} J K⁻¹) and *k*_B is the Boltzmann constant (6.626 × 10^{-34} J s).

If k_{MPTTF} is the rate constant and $\Delta G^{\ddagger}(k_{\text{MPTTF}})$ is the Gibbs free energy of activation for the movement of CBPQT⁴⁺ over an MPTTF²⁺ dication and if k_{TTF} is the rate constant and $\Delta G^{\ddagger}(k_{\text{TTF}})$ is the Gibbs free energy of activation for the movement of CBPQT⁴⁺ over a TTF²⁺ dication, the following expression for the difference in the Gibbs free energies of activation ($\Delta\Delta G^{\ddagger}$) can be derived:

т

т

$$\Delta\Delta G^{\ddagger} = \Delta G^{\ddagger}(k_{\text{MPTTF}}) - \Delta G^{\ddagger}(k_{\text{TTF}})$$
$$= -RT \ln \left(\frac{k_{\text{MPTTF}}h}{k_{\text{B}}T}\right) - \left(-RT \ln \left(\frac{k_{\text{TTF}}h}{k_{\text{B}}T}\right)\right)$$
$$= -RT \ln \left(\frac{k_{\text{MPTTF}}h}{k_{\text{B}}T}\right) + RT \ln \left(\frac{k_{\text{TTF}}h}{k_{\text{B}}T}\right)$$
$$= -RT \left(\ln \left(\frac{k_{\text{MPTTF}}h}{k_{\text{B}}T}\right) - \ln \left(\frac{k_{\text{TTF}}h}{k_{\text{B}}T}\right)\right)$$
$$= -RT \ln \left(\frac{\frac{k_{\text{MPTTF}}h}{k_{\text{B}}T}}{k_{\text{B}}T}\right)$$
$$= -RT \ln \left(\frac{k_{\text{MPTTF}}h}{k_{\text{B}}T}\right)$$

This expression can be rearranged to:

$$\Delta \Delta G^{\ddagger} = -RT \ln\left(\frac{k_{\text{MPTTF}}}{k_{\text{TTF}}}\right) \Leftrightarrow \frac{k_{\text{MPTTF}}}{k_{\text{TTF}}} = \exp\left(-\frac{\Delta \Delta G^{\ddagger}}{RT}\right)$$

The percentage ratio of CBPQT⁴⁺ moving over the MPTTF²⁺ dication compared to the TTF²⁺ dication (%MPTTF²⁺) can be calculated in the following way, where it is exploited that $\frac{k_{\text{TTF}}}{k_{\text{TTF}}}$ = 1.

$$\% \text{MPTTF}^{2+} = \frac{k_{\text{MPTTF}}}{k_{\text{MPTTF}} + k_{\text{TTF}}} \cdot 100 \Leftrightarrow \% \text{MPTTF}^{2+} = \frac{k_{\text{MPTTF}}}{k_{\text{MPTTF}} + k_{\text{TTF}}} \cdot \frac{k_{\text{TTF}}}{k_{\text{TTF}}} \cdot 100$$

$$\Leftrightarrow \% MPTTF^{2+} = \frac{k_{MPTTF} \cdot k_{TTF}}{(k_{MPTTF} + k_{TTF})k_{TTF}} \cdot 100$$

$$\Leftrightarrow \% MPTTF^{2+} = \frac{k_{MPTTF}}{k_{TTF}} \cdot \frac{k_{TTF}}{(k_{MPTTF} + k_{TTF})} \cdot 100$$

$$\Leftrightarrow \% MPTTF^{2+} = \frac{\frac{k_{MPTTF}}{k_{TTF}}}{\frac{k_{MPTTF}}{k_{TTF}}} \cdot 100$$

The ratio of CBPQT⁴⁺ moving over the TTF²⁺ dication (%TTF²⁺) can be calculated in a similar way, or by using the following connection between %MPTTF²⁺ and %TTF²⁺.

$$\% TTF^{2+} = 100 - \% MPTTF^{2+}$$

Therefore, the ratios of CBPQT⁴⁺ moving over the MPTTF²⁺ dication and the TTF²⁺ dication can be calculated using either $\Delta\Delta G^{\ddagger}$ or the ratio of the rate constants $\frac{k_{\text{MPTTF}}}{k_{\text{TTF}}}$ using the following equations.

$$\frac{k_{\text{MPTTF}}}{k_{\text{TTF}}} = \exp\left(-\frac{\Delta\Delta G^{\ddagger}}{RT}\right) \text{ and } \% \text{MPTTF}^{2+} = \frac{\frac{k_{\text{MPTTF}}}{k_{\text{TTF}}}}{\frac{k_{\text{MPTTF}}}{k_{\text{TTF}}} + 1} \cdot 100$$

26 References

- S1 L. J. O'Driscoll, S. S. Andersen, M. V. Solano, D. Bendixen, M. Jensen, T. Duedal, J. Lycoops,
 C. Van Der Pol, R. E. Sørensen, K. R. Larsen, K. Myntman, C. Henriksen, S. W. Hansen and
 J. O. Jeppesen, *Beilstein J. Org. Chem.*, 2015, **11**, 1112–1122.
- S2 M. S. Neumann, A. F. Smith, S. K. Jensen, R. Frederiksen, M. L. Skavenborg and J. O. Jeppesen, *Chem. Commun.*, 2023, **59**, 6335–6338.
- S3 R. Crossley, Z. Goolamali, J. J. Gosper and P. G. Sammes, *J. Chem. Soc., Perkin Trans.* 2, 1994, 513–520.
- S4 J. Becher, J. Lau, P. Leriche, P. Mørk and N. Svenstrup, *J. Chem. Soc., Chem. Commun.*, 1994, 2715–2716.
- S5 S. S. Andersen, A. I. Share, B. L. C. Poulsen, M. Kørner, T. Duedal, C. R. Benson, S. W. Hansen, J. O. Jeppesen and A. H. Flood, *J. Am. Chem. Soc.*, 2014, **136**, 6373–6384.
- S6 P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow,
 A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N.
 Spencer, J. F. Stoddart, C. Vicent and D. J. Williams, *J. Am. Chem. Soc.*, 1992, **114**, 193–218.
- S7 J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard, A. B. Braunschweig, N. N. P. Moonen,
 B. W. Laursen, Y. Luo, E. Deionno, A. J. Peters, J. O. Jeppesen, K. Xu, J. F. Stoddart and J.
 R. Heath, *Chem. Eur. J.*, 2006, **12**, 261–279.
- S8 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- S9 Signals are missing or coinciding with other signals.
- S10 M. Jensen, R. Kristensen, S. S. Andersen, D. Bendixen and J. O. Jeppesen, *Chem. Eur. J.*, 2020, **26**, 6165–6175.
- S11 The ΔG^{\ddagger} values were calculated using the Eyring relationship $\Delta G^{\ddagger} = RT \ln(kh/k_{\text{B}}T)$, where *R* is the gas constant, *T* is the absolute temperature, *k* is the rate constant, *h* is the Planck constant and k_{B} is the Boltzmann constant.
- S12 N. Koumura, E. M. Geertsema, M. B. Van Gelder, A. Meetsma and B. L. Feringa, *J. Am. Chem. Soc.*, 2002, **124**, 5037–5051.