Electronic supplementary information

Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat-p-phenylene) can be controlled

Sofie K. Jensen, Mathias S. Neumann, Rikke Frederiksen, Mathias L. Skavenborg, Mads C. Larsen, Stinne E. Wessel and Jan O. Jeppesen*
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. E-mail: joj@sdu.dk

Table of contents

1 Complexation of TTF derivatives by CBPQT ${ }^{4+}$ S3
2 Experimental details S4
2.1 General methods S4
2.2 Synthesis of [2]rotaxane $1 \cdot 4 \mathrm{PF}_{6}$ S5
2.3 Synthesis of [2]rotaxane $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ S9
2.4 Characterisation of $\mathbf{1} \cdot \mathrm{OP}^{8+}$ and $\mathbf{2} \cdot \mathrm{OP}^{8+}$ S12
3 ESI mass spectrum of $1 \cdot 4 \mathrm{PF}_{6}$ S14
4 ESI mass spectrum of $2 \cdot 4 \mathrm{PF}_{6}$ S15
5 UV/Vis/NIR absorption spectra of the dumbbells 14 and 24 and of the [2]rotaxanes $\mathbf{1}^{4+}$ and $\mathbf{2}^{4+}$ S16
$6 \quad{ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell 14 S17
7 COSY spectrum of $1 \cdot 4 \mathrm{PF}_{6}$ S18
$8 \quad{ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell 24 S19
$9{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ S20
10 COSY spectrum of $\mathbf{2 \cdot 4} 4 \mathrm{PF}_{6}$ S21
11 Calculations of the distribution between the two translational isomers in $\mathbf{1 4 +}^{4+}$ and $\mathbf{2}^{4+}$ S22
12 Theoretical calculations of the ratio between the three translational isomers in $\mathbf{1}^{4+}$ and $\mathbf{2}^{4+}$. S23
13 Suggested mechanism for oxidation of 14, $\mathbf{2 4}$ and $\mathbf{2} \bullet$ MPTTF $^{4+}$ S24
$14{ }^{1} \mathrm{H}$ NMR spectra of 1^{1++} recorded at 298 K 5 min and 18 min after oxidation S25
15 COSY spectrum of $\mathbf{1}^{8+}$ recorded at 298 K S26
$16{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{8+}$ recorded at 298 K 5 min and 18 min after oxidation. S27
17 COSY spectrum of $\mathbf{2}^{8+}$ recorded at 298 K S28
$18{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{8+}$ recorded at 298 K and 253 K S29
$19{ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell 14^{4+} S30
$20{ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell 24^{4+} S31
21 A series of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}^{8+}$ recorded at 258 K S32
22 A series of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{8+}$ recorded at 253 K S33
$23{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}^{8+}$ recorded at 253 K at different delay times after oxidation S34
24 First-order analysis S36
25 Derivation of expression for difference in Gibbs free energy of activation S40
26 References S42

1 Complexation of TTF derivatives by CBPQT ${ }^{4+}$

a)

b)

ox

Scheme S1 Complexation of TTF derivatives by CBPQT ${ }^{4+}$ and their decomplexation induced by oxidation of the TTF unit for a) a symmetric TTF unit and b) a non-symmetric MPTTF unit.

2 Experimental details

2.1 General methods

All reactions were performed under an inert atmosphere of N_{2} unless otherwise stated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled before use. DMF and MeCN were dried over molecular sieves ($4 \AA$) , while THF and MeOH were dried over molecular sieves ($4 \AA$) and Mg , respectively, and distilled immediately before use. All chemicals were purchased from Sigma Aldrich and were used as received, unless otherwise stated. 2-[4-(2-Cyanoethylthio)-5-ethylthio-1,3-dithiole-2-yliden]-5-tosyl-(1,3)-dithiolo[4,5-c]pyrrole ${ }^{\text {s1 }}$ (3), 2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)-1,3-diisopropylbenzene ${ }^{\text {S2 }}$ (4), 1,2-bis(iodoethoxy)ethane ${ }^{s 3}$ (7), 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiole-2-thione ${ }^{s 4}$ (9), 2-(2-(2-[4-(tris(4-t-butylphenyl)methyl)phenoxy]ethoxy)ethoxy)ethyliodide ${ }^{55}$ (10), 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiol-2-one ${ }^{\text {S4 }} \quad$ (12), 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)bis(hexafluorophosphate $)^{\mathrm{S6}}\left(15 \cdot 2 \mathrm{PF}_{6}\right)$, MPTTF derivattive ${ }^{\mathrm{S2}}$ 17, and 4-(2-cyanoethylthio)-5-ethylthio-1,3-dithiole-2thione ${ }^{57} \mathbf{(2 0)}$ were all synthesised according to literature procedures. High pressure reactions were performed in a custom made teflon-tube, using a Psika high pressure apparatus. Thin-layer chromatography (TLC) was carried out using aluminium sheets precoated with SiO_{2} (Merck 60 F254) and visualised with UV light (254 nm) or I_{2} vapour. Column chromatography was carried out using SiO_{2} (Merck $60 \mathrm{~F} 0.040-0.063 \mathrm{~mm}$). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 298 K (unless otherwise stated) at $400 \mathrm{MHz} / 500 \mathrm{MHz}$ and $100 \mathrm{MHz} / 125 \mathrm{MHz}$, respectively, on a 400 MHz Bruker AVANCE III spectrometer or a 500 MHz JEOL JNM-ECZR spectrometer, while ${ }^{1} \mathrm{H}$ NMR spectra below 298 K were recorded on a 600 MHz Agilent PremiumCompact+ spectrometer using residual non-deuterated solvent as the internal standard. The solvent signals were assigned according to Fulmer et al. ${ }^{\text {s8 }}$ All chemical shifts are quoted on a δ scale. The following abbreviations are used in listing the NMR spectra: $s=$ singlet, $b s=$ broad singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, sept $=$ septet and $m=$ multiplet. Melting points were measured on a Büchi 353 melting point apparatus and are uncorrected. Electrospray ionisation mass spectrometry (ESI-MS) was performed on a Bruker Avance III Daltonics MicrOTOF-Q II ESI-Qq-TOF mass spectrometer. UV-Vis-NIR spectroscopic data were recorded on a Shimadzu UV-1601PC spectrophotometer or an Agilent Cary 5000 spectrophotometer. Cyclic voltammetry (CV) was carried out on an Autolab PGSTAT30 potentiostat. The CV cell consisted of a glassy carbon working electrode (WE), a Pt wire counter electrode (CE) and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode (RE). The measurements were carried out in MeCN with $n-\mathrm{Bu}_{4} \mathrm{~N} \cdot \mathrm{PF}_{6}(0.1 \mathrm{M})$ as the electrolyte and with a scan rate of $100 \mathrm{mV} \mathrm{s}{ }^{-1}$ at 298 K . The WE was polished with an $\mathrm{Al}_{2} \mathrm{O}_{3}$ slurry prior to use and all solutions were degassed $\left(\mathrm{N}_{2}\right)$ prior to use. All redox potentials were measured against $\mathrm{Ag} / \mathrm{Ag}^{+}$and converted into vs. ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$). Elemental analyses were performed by Atlantic Microlabs, Inc., Norcross, GA, USA.

2.2 Synthesis of [2]rotaxane 1•4PF6

$8 /$ DBU

1. DMF / RT 12 kbar / 3 d

Scheme S2 Synthesis of the dumbbell 14 and the [2]rotaxane $1 \cdot 4 \mathrm{PF}_{6}$.

MPTTF derivative 5

2-[4-(2-Cyanoethylthio)-5-ethylthio-1,3-dithiole-2-yliden]-5-tosyl-(1,3)-dithiolo[4,5-c]pyrrole
($497 \mathrm{mg}, \quad 0.915 \mathrm{mmol}$) and 2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)-1,3-diisopropylbenzene (4) ($308 \mathrm{mg}, 0.824 \mathrm{mmol}$) were dissolved in anhydrous THF (70 mL) and degassed ($\mathrm{N}_{2}, 20 \mathrm{~min}$) before DBU ($285 \mathrm{mg}, 1.87 \mathrm{mmol}$) was added. The yellow reaction mixture was heated under reflux for 23 h before another portion of DBU ($285 \mathrm{mg}, 1.87 \mathrm{mmol}$) was added. The reaction mixture was heated under reflux for another 20 h and cooled to room temperature before the solvent was removed. The
brown residue was purified by column chromatography ($275 \mathrm{~mL} \mathrm{SiO} 2,5.5 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$:petroleum ether (bp. 60-80 ${ }^{\circ} \mathrm{C}$) 4:1). The orange band ($R_{f}=0.4$) was collected, and the solvent evaporated which yielded compound 5 as an orange oil ($588 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})=1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.84$ ($\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.01(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.37 (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.66-3.73 (m, 4H), 3.73$3.78(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.93(\mathrm{~m}, 2 \mathrm{H}), 6.92$ and $6.93\left(\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.09(\mathrm{~s}$, $3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=23.1$, 25.3, 29.5, 69.1, 69.6, 69.7, 69.9, 72.9, 110.3, 123.0, 126.0, 129.1, 140.8. ${ }^{59} \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z}=782$ $[M+H]^{+}, 799\left[M+\mathrm{NH}_{4}\right]^{+}, 804[M+\mathrm{Na}]^{+} . \mathrm{MS}$ (HiRes-FT ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NNaO}_{5} \mathrm{~S}_{7}^{+}$: 804.1078; found: 804.1115. Anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{~S}_{7}$: C, 53.75 ; H, 5.54; N, 1.79; S, 28.69; found: C, 53.62; H, 5.70; N, 1.82; S, 28.83.

MPTTF derivative 8

Compound 5 ($577 \mathrm{mg}, 0.737 \mathrm{mmol}$) was dissolved in anhydrous THF:MeOH ($100 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$), and the yellow solution was degassed ($\mathrm{N}_{2}, 25 \mathrm{~min}$). A solution of NaOMe in $\mathrm{MeOH}(25 \% \mathrm{w} / \mathrm{w} 1.6 \mathrm{~mL}$, 7.0 mmol) was added in one portion and the solution was heated under reflux for 50 min , whereupon the reaction mixture was cooled to room temperature followed by removal of the solvent. The brown residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$, washed with brine (100 mL) and $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, whereafter the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave compound 6 as a brown oily residue which was used immediately in the next step without any further purification. Compound 6 and 1,2-bis(2-iodoethoxy)ethane (7) ($2.82 \mathrm{~g}, 7.63 \mathrm{mmol}$) were dissolved in anhydrous DMF (150 mL) and degassed ($\mathrm{N}_{2}, 30 \mathrm{~min}$) before $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil, 311 mg , 7.78 mmol) was added in one portion. The orange reaction mixture was stirred at room temperature for 2 h , before the reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ until the evolution of gas stopped. The solvent was removed, and the resulting brown oil was purified by column chromatography ($275 \mathrm{~mL} \mathrm{SiO}, 5.5 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The yellow band ($R_{\mathrm{f}}=0.1$) was collected, and the solvent evaporated to give compound 8 as a yellow oil ($254 \mathrm{mg}, 40 \%$ from 5). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta(\mathrm{ppm})=1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.86(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03$ (t, J=6.8 Hz, 2H), 3.24 (t, J=6.7 Hz, 2H), 3.38 (sept, J=6.9 Hz, 2H), 3.55-3.63 (m, 4H), 3.67-3.79 (m, 10H), 3.84-3.93 (m, 4H), 3.95-4.01 (m, 2H), 6.53 and 6.54 (AB, $\left.J_{A B}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.09(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=24.3,26.4,70.3,70.4,70.8,70.9,72.1,74.0,124.1 .{ }^{\text {s9 }}$ MS (ESI): m/z = $869[M]^{+}, 892[M+N a]^{+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{~S}_{6}{ }^{+}$: 869.0895; found: 869.0902. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{INO}_{5} \mathrm{~S}_{6}$: C, 46.94; H,5.56; $\mathrm{N}, 1.61$; S, 22.11; found: C, 46.57; H, 5.51; N, 1.50; S, 21.73.

Thione derivative 11

Thione 9 (749 mg, 2.82 mmol) and 2-(2-(2-[4-(tris(4-t-butylphenyl)methyl)phenoxy]ethoxy)ethoxy) ethyliodide (10) ($1.91 \mathrm{~g}, 2.56 \mathrm{mmol}$) were dissolved in anhydrous THF (100 mL) and degassed ($\mathrm{N}_{2}, 30 \mathrm{~min}$) before DBU ($853 \mathrm{mg}, 5.53 \mathrm{mmol}$) was added in one portion. The reaction mixture was heated under reflux for 18 h , whereupon the solvent was removed. The oily residue was purified by column chromatography ($300 \mathrm{~mL} \mathrm{SiO}, 6 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the yellow band ($R_{\mathrm{f}}=0.3$) was collected, whereafter the solvent was evaporated providing compound 11 as a yellow solid ($1.46 \mathrm{~g}, 69 \%$). Mp $169.4-171.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta(\mathrm{ppm})=1.30(\mathrm{~s}, 27 \mathrm{H}), 2.47$ (s,
$3 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.82-3.87(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) 7.04-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100$ $\mathrm{MHz}): \delta(\mathrm{ppm})=19.3,31.5,34.5,36.4,63.3,67.5,70.1,70.2,70.9,71.0,77.4,113.3,124.2,130.9$, 132.4, 140.0, 144.3, 148.5, 156.7, 211.1. ${ }^{59} \mathrm{MS}$ (ESI): $m / z=831[M+H]^{+}, 853[M+N a]^{+}$. MS (HiResFT ESI) calcd. for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{NaO}_{3} \mathrm{~S}_{5}{ }^{+}$: 853.2882 ; found: 853.2894. Anal. calcd. for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{O}_{3} \mathrm{~S}_{5}$: C, 67.91; H, 7.03; S, 19.28; found: C, 68.20; H, 7.11; S, 18.99.

TTF derivative 13

Thione 11 (3.50 g 13.1 mmol) and 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiol-2-one (12), (2.75 g , $8.83 \mathrm{mmol})$ were suspended in distilled (EtO$)_{3} \mathrm{P}(75 \mathrm{~mL})$ and heated to $130^{\circ} \mathrm{C}$. Two additional portions of the thione 11 were added after $9 \min (1.10 \mathrm{~g}, 4.15 \mathrm{mmol})$ and $18 \mathrm{~min}(1.09 \mathrm{~g}, 4.13 \mathrm{mmol})$, respectively. The orange reaction mixture was stirred for 3 h at $130^{\circ} \mathrm{C}$ and cooled to room temperature, whereupon cold $\mathrm{MeOH}(100 \mathrm{~mL})$ was added. The reaction mixture was left in the freezer for 24 h and the resulting precipitate was collected by filtration and washed with MeOH . The orange solid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and Celite $545(50 \mathrm{~mL})$ was added to the orange solution. Removal of the solvent gave an orange residue which was purified by column chromatography ($800 \mathrm{~mL} \mathrm{SiO}, 8 \mathrm{~cm} \varnothing$, petroleum ether (bp. $60-80^{\circ} \mathrm{C}$): $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$). The orange band ($R_{\mathrm{f}}=0.3$) was collected and concentrated to give an orange solid ($2.89 \mathrm{~g}, 53 \%$) containing compound 13 as a mixture of E - and Z-isomers. The data given below are for a mixture of the E - and Z-isomers. Mp $148.3-150.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})=1.30(\mathrm{~s}, 27 \mathrm{H}), 2.41,2.41,2.45$ and $2.46(4 \times \mathrm{s}, 6 \mathrm{H})$, 2.68 and $2.69(2 \times \mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-3.04(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.75(\mathrm{~m}, 6 \mathrm{H})$, $3.83-3.87(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.25(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=19.0,19.3,31.6,34.5,35.7,63.2,67.5,70.1,70.8,71.0$, $77.4,113.2,124.1,130.9,132.4,144.3,148.5,156.7$. $^{\text {s9 }} \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z}=1031$ [M] ${ }^{+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{NO}_{3} \mathrm{~S}_{8}{ }^{+}$: 1031.2725; found: 1031.2558. Anal. calcd. for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{NO}_{3} \mathrm{~S}_{8}$: C, 62.81; H, 6.35; N, 1.36; S, 24.84; found: C, 62.64; H, 6.39; N, 1.37; S, 24.62.

Dumbbell 14

TTF derivative 13 ($251 \mathrm{mg}, 0.243 \mathrm{mmol}$) and MPTTF derivative 8 ($199 \mathrm{mg}, 0.229 \mathrm{mmol}$) were dissolved in anhydrous THF (50 mL) and degassed ($\mathrm{N}_{2}, 20 \mathrm{~min}$) before DBU ($81 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added in one portion. The reaction mixture was heated under reflux for 18 h and cooled to room temperature. The solvent was removed, and the resulting dark residue was purified by gradient column chromatography ($150 \mathrm{~mL} \mathrm{SiO} 2,4 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$:EtOAc 1:0-20:1). The yellow band ($R_{\mathrm{f}}=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was collected and evaporated which gave a yellow solid ($340 \mathrm{mg}, 86 \%$) containing compound 14 as a mixture of E - and Z-isomers and traces of grease. The data given below are for a mixture of the E - and Z-isomers. Mp 106.2-108.7 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm})=1.17$ and $1.18(2 \times \mathrm{d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 27 \mathrm{H}), 2.35,2.36$ and $2.38(3 \times \mathrm{s}$, $6 \mathrm{H}), 2.85(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.96(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.48-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.51-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.69(\mathrm{~m}, 12 \mathrm{H}), 3.71-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.82-3.85(\mathrm{~m}, 2 \mathrm{H})$, $3.93-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.08(\mathrm{~m}, 2 \mathrm{H}), 6.63$ and $6.64\left(\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.78-6.82(\mathrm{~m}, 2 \mathrm{H})$, $7.03-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})=15.2,19.2,19.27$, 19.28, 24.3, 26.4, 30.6, 31.5, 34.4, 35.6, 35.73, 35.75, 50.8, 63.2, 67.4, 70.0, 70.2, 70.2, 70.2, 70.3, $70.7,70.8,70.8,70.8,70.8,70.9,70.9,71.0,71.3,71.3,113.1,113.2,113.2,119.0,124.1,124.2$,
124.7, 128.7, 130.9, 130.9, 132.4, 139.9, 142.0, 144.3, 148.5, 153.2, 156.7. ${ }^{\text {s9 }} \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z}=1719$ [M^{+}]. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{85} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{~S}_{14}{ }^{+}$: 1719.4238; found: 1719.3951. Anal. calcd. for $\mathrm{C}_{85} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{~S}_{14}: \mathrm{C}, 59.30 ; \mathrm{H}, 6.38 ; \mathrm{N}, 0.81$; S, 26.07. Anal. calcd. for $\mathrm{C}_{85} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{~S}_{14}+2 \mathrm{CH}_{2}: \mathrm{C}, 59.72$; H, 6.51; N, 0.80; S, 25.65; found: C, 59.73; H, 6.14; N, 0.93; S, 25.21.

[2]Rotaxane 1•4PF ${ }_{6}$

A mixture of 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)-bis(hexafluorophosphate) $\left(15 \cdot 2 \mathrm{PF}_{6}\right)$ ($183 \mathrm{mg}, 0.258 \mathrm{mmol}$) and 1,4-bis(bromomethyl)benzene (16) ($73.0 \mathrm{mg}, 0.277 \mathrm{mmol}$) were transferred to a teflon-tube, where after a solution of the dumbbell 14 ($111 \mathrm{mg}, 0.0645 \mathrm{mmol}$) in anhydrous DMF (1.9 mL) was added. The teflon-tube was sealed and subjected to 12 kbar pressure at room temperature for 3 d . The green reaction mixture was directly subjected to column chromatography ($200 \mathrm{~mL} \mathrm{SiO}, 4 \mathrm{~cm} \varnothing, \mathrm{Me}_{2} \mathrm{CO}: \mathrm{NH}_{4} \mathrm{PF}_{6} 1: 0-100: 0.25(\mathrm{v} / \mathrm{w})$). Unreacted dumbbell 14 was eluted with $\mathrm{Me}_{2} \mathrm{CO}$, whereupon the eluent was changed to $\mathrm{Me}_{2} \mathrm{CO}: \mathrm{NH}_{4} \mathrm{PF}_{6}$ 100:0.25 (v/w) and the green band containing $1 \cdot 4 \mathrm{PF}_{6}$ was collected and concentrated to a minimum volume. Addition of cold $\mathrm{H}_{2} \mathrm{O}\left(75 \mathrm{~mL}, 5^{\circ} \mathrm{C}\right)$ gave a green precipitate which was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and dried affording a green solid ($44.3 \mathrm{mg}, 24 \%$) containing a mixture of the two translational isomers of $1 \cdot 4 \mathrm{PF}_{6}$; each as a mixture of E - and Z-isomers. The data given below are for a mixture of the two translational isomers. Mp 135.3-138.9 ${ }^{\circ} \mathrm{C}$. MS (ESI): $m / z=795\left[M-3 P_{6}\right]^{3+}, 1265\left[M-2 \text { PF }_{6}\right]^{2+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{121} \mathrm{H}_{141} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{14}{ }^{3+}$: 794.8832; found: 794.8836. Anal. calcd. for $\mathrm{C}_{121} \mathrm{H}_{141} \mathrm{~F}_{24} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{14}$: C, 51.50; H,5.04; $\mathrm{N}, 2.48$; S, 15.90. Anal. calcd. for $\mathrm{C}_{121} \mathrm{H}_{141} \mathrm{~F}_{24} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{14}+\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.17$; H, 5.08; N, 2.47; S, 15.80; found: C, 51.00; H, 5.18; N, 2.61; S, 16.35.

Data for 1•MPTTF•4PF: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$): $\delta(\mathrm{ppm})=1.17$ (d, $\left.J=6.9 \mathrm{~Hz}, 12 \mathrm{H}\right), 1.28(\mathrm{~s}$, $27 \mathrm{H}), 1.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.31,2.32,2.37$ and $2.38(4 \times \mathrm{s}, 6 \mathrm{H}), 2.76$ and $2.77(2 \times \mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.96$ and $2.97(2 \times \mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-$ $3.40(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.67(\mathrm{~m}, 8 \mathrm{H}), 3.67-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 12 \mathrm{H}), 3.89-3.96(\mathrm{~m}, 4 \mathrm{H}), 4.03-$ $4.10(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.79(\mathrm{~m}, 8 \mathrm{H}), 6.11$ and $6.14\left(\mathrm{AB}, \mathrm{J}_{A B}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.78-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.18$ $(\mathrm{m}, 11 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.81(\mathrm{~m}, 12 \mathrm{H}), 7.93-8.07(\mathrm{~m}, 4 \mathrm{H}), 8.76-9.12(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})=15.8,19.2,19.27,19.33,24.35,24.39,26.9,27.0,30.8,31.2,31.5$, $34.9,36.3,36.4,64.0,68.3,70.2,70.30,70.32,70.5,70.6,70.7,70.9,71.1,71.11,71.11,71.2,71.2$, $71.3,71.3,71.4,71.4,71.4,110.2,114.4,116.9,117.1,125.0,125.1,125.4,125.8,131.2,131.2$, $131.7,131.7,132.7,132.7,137.5,137.5,142.7,145.5,147.1,149.4,153.9,157.6 .{ }^{59}$

2.3 Synthesis of [2]rotaxane $\mathbf{2 \cdot 4} \mathrm{PF}_{6}$

Scheme S3 Synthesis of the dumbbell 24 and the [2]rotaxane $2 \cdot 4 \mathrm{PF}_{6}$.

MPTTF derivative 19

Compound 17 ($802 \mathrm{mg}, 0.732 \mathrm{mmol}$) was dissolved in anhydrous THF:MeOH ($125 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$), and the yellow solution was degassed ($\mathrm{N}_{2}, 20 \mathrm{~min}$). A solution of $\mathrm{NaOMe}(25 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{MeOH}, 1.6 \mathrm{~mL}$, 7.00 mmol) was added in one portion and the reaction mixture was heated under reflux for 1 h ,
whereafter it was cooled to room temperature followed by removal of the solvent. The yellow residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with brine $(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ before being dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave compound 18 as an orange oily residue which was used immediately in the next step without any further purification. Compound 18 and 1,2-bis(2iodoethoxy) ethane (7) ($3.25 \mathrm{~g}, 8.78 \mathrm{mmol}$) were dissolved in anhydrous DMF (200 mL) and degassed ($\mathrm{N}_{2}, 30 \mathrm{~min}$) before $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil, $271 \mathrm{mg}, 6.78 \mathrm{mmol}$) was added in one portion. The yellow reaction mixture was stirred at room temperature for 2 h before the reaction was stopped by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ until the evolution of gas stopped. The solvent was removed, and the orange semisolid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with brine $(3 \times 150 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave a brown solid, which was purified by column chromatography ($350 \mathrm{~mL} \mathrm{SiO}, 6 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The yellow band ($R_{\mathrm{f}}=0.4$) was collected, and the solvent evaporated to provide compound 19 as a yellow solid ($615 \mathrm{mg}, 71 \%$ from 17). Mp $130.0-132.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): $\delta(\mathrm{ppm})=1.30(\mathrm{~s}, 27 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.73(\mathrm{~m}, 10 \mathrm{H})$, $3.82-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.10(\mathrm{~m}, 2 \mathrm{H}), 6.51$ and $6.52(\mathrm{AB}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ (d, J=8.8 Hz, 2H), 7.04-7.10 (m, 8H), 7.20-7.25 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm})=3.07,19.2,31.6,34.5,35.6,63.3,67.5,70.1,70.3,70.4,70.8,70.9,70.9,72.1,77.4,113.3$, 119.1, 119.1, 124.2, 130.6, 130.9, 132.4, 139.9, 144.3, 148.5, 156.8. ${ }^{59} \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z}=1181[\mathrm{M}]^{+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{NO}_{5} \mathrm{~S}_{6}{ }^{+}$: 1181.2774; found: 1181.2715. Anal. calcd. for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{NO}_{5} \mathrm{~S}_{6}$: C, 58.91; H, 6.14; N, 1.18; S, 16.27; found: C, 59.05; H, 6.13; N, 1.21; S, 16.34.

Thione derivative 21

2-(2-(2-(2-Bromoethoxy)ethoxy)ethoxy)-1,3-diisopropylbenzene (4) ($2.49 \mathrm{~g}, 6.67 \mathrm{mmol}$), thione 20 $(2.00 \mathrm{~g}, 7.16 \mathrm{mmol})$ and $\mathrm{KI}(331 \mathrm{mg}, 2.00 \mathrm{mmol})$ were dissolved in anhydrous THF (250 mL) and degassed ($\mathrm{N}_{2}, 20 \mathrm{~min}$), before DBU $(2.15 \mathrm{~g}, 14.1 \mathrm{mmol})$ was added in one portion. The reaction mixture was heated under reflux for 20 h , whereafter the solvent was removed. The brown oily residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$. The combined aqueous phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and the combined organic phases were dried (MgSO_{4}) followed by removal of the solvent. The brown oily residue was purified by column chromatography ($600 \mathrm{~mL} \mathrm{SiO} 2,8 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}: E t O A c 49: 1$) and the orange band ($R_{\mathrm{f}}=0.6$) was collected. Removal of the solvent gave compound 21 as an orange oil ($3.20 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta(\mathrm{ppm})=1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.92(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$ $(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.88(\mathrm{~m}$, $2 \mathrm{H}), 3.90-3.94(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=15.1,24.3,26.4,31.1$, $36.4,70.1,70.8,70.9,71.1,74.0,124.1,124.8,135.3,137.8,141.9,153.2,211.4 . \mathrm{MS}$ (ESI): $m / z=519[M+H]^{+}, 536\left[M+\mathrm{NH}_{4}\right]^{+}, 541[M+\mathrm{Na}]^{+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{~S}_{5}{ }^{+}$: 541.1004; found: 541.1018. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}_{5}$: $\mathrm{C}, 53.25 ; \mathrm{H}, 6.61 ; \mathrm{S}, 30.90$; found: $\mathrm{C}, 53.37$; H, 6.44; S, 31.09.

Ketone derivative 22

Compound 21 ($3.11 \mathrm{~g}, 5.99 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(6.11 \mathrm{~g}$, 19.2 mmol) was added. The resulting orange suspension was stirred at room temperature for 1 h during which it gradually became lighter yellow. The reaction mixture was filtered through a pad of

Celite 545 ($125 \mathrm{~mL}, 8 \mathrm{~cm} \varnothing$), whereafter the resulting solid on top of the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 50 \mathrm{~mL})$. The combined filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 300 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$ before the solvent was removed. The yellow oily residue was purified by column chromatography ($300 \mathrm{~mL} \mathrm{SiO} 2,6 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The pale yellow band ($R_{\mathrm{f}}=0.5$) was collected giving compound 22 as a pale yellow oil ($2.90 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm})=1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$, $1.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.68-3.78(\mathrm{~m}, 6 \mathrm{H}), 3.84-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.94(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm})=15.1,24.3,26.4,31.0,36.2,70.1,70.8,70.9,71.1,74.0,124.2,124.8,142.0,153.2 .^{\text {s9 }}$
 $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{~S}_{4}{ }^{+}$: 525.1232; found: 525.1249. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, 54.95; H, 6.82; S, 25.51; found: C, 55.14; H, 6.77; S, 25.22.

TTF derivative 23

Compound 22 ($2.88 \mathrm{~g}, 5.73 \mathrm{mmol}$) and 4-(2-cyanoethylthio)-5-methylthio-1,3-dithiole-2-thione (9) $(2.28 \mathrm{~g}, 8.60 \mathrm{mmol})$ were suspended in distilled (EtO) $)_{3} \mathrm{P}$ and heated to $130^{\circ} \mathrm{C}$. Two additional portions of the thione 9 were added after $7 \mathrm{~min}(762 \mathrm{mg}, 2.87 \mathrm{mmol})$ and after $14 \mathrm{~min}(762 \mathrm{mg}$, 2.87 mmol), respectively. The dark orange reaction mixture was stirred for 1.5 h at $130^{\circ} \mathrm{C}$ and cooled to room temperature, whereupon the suspension was concentrated. The resulting red semisolid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with brine (100 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$ before Celite $545(75 \mathrm{~mL})$ was added to the organic phase. Removal of the solvent gave an orange semisolid residue which was purified by column chromatography ($700 \mathrm{~mL} \mathrm{SiO}{ }_{2}, 8 \mathrm{~cm} \varnothing$, petroleum ether (bp. 60-80 ${ }^{\circ} \mathrm{C}$):EtOAc 2:1). The orange band ($R_{\mathrm{f}}=0.2$) was collected and concentrated to give a red sticky solid $(2.00 \mathrm{~g}, 49 \%)$ containing compound 23 as a mixture of E - and Z-isomers. The data given below are for a mixture of the E - and Z-isomers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta(\mathrm{ppm})=1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.46$ and $2.47(2 \times \mathrm{s}, 3 \mathrm{H})$, 2.69 and $2.70(2 \times \mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86$ and $2.86(2 \times \mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-3.06(\mathrm{~m}, 4 \mathrm{H}), 3.38$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68-3.79 (m, 6H), 3.84-3.89 (m, 2H), 3.89-3.94 (m, 2H), 7.09 (s, 3H). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm})=15.2,18.9,19.2,24.3,26.4,30.7,31.4,35.7,70.3,70.3,70.8$, $70.9,71.1,71.1,74.0,117.7,124.2,124.8,129.0,142.0,153.2 .{ }^{59} \mathrm{MS}(E S I): m / z=719[M]^{+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{~S}_{8}{ }^{+}$: 719.0847; found: 719.0841. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{~S}_{8}$: C, 50.04; H, 5.74; N, 1.95; S, 35.62; found: C, 50.11; H, 5.81; N, 2.03; S, 35.89.

Dumbbell 24

TTF derivative 23 ($284 \mathrm{mg}, 0.394 \mathrm{mmol}$) and MPTTF derivative 19 ($437 \mathrm{mg}, 0.370 \mathrm{mmol}$) were dissolved in anhydrous THF (50 mL) and degassed ($\mathrm{N}_{2}, 35 \mathrm{~min}$) before DBU ($0.12 \mathrm{~g}, 0.79 \mathrm{mmol}$) was added in one portion. The reaction mixture was heated under reflux for 17 h and cooled to room temperature. The solvent was removed, and the resulting residue was purified by gradient column chromatography ($275 \mathrm{~mL} \mathrm{SiO} 2,5.5 \mathrm{~cm} \varnothing, \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc 1:0-20:1). The yellow band ($R_{\mathrm{f}}=0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was collected and evaporated to give a brown solid ($610 \mathrm{mg}, 96 \%$) containing compound 24 as a mixture of E - and Z-isomers. The data given below are for a mixture of the E - and Z-isomers. Mp 101.3-102.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})=1.18$ and $1.19(2 \times \mathrm{d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$, 1.23 and $1.24(2 \times t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 27 \mathrm{H}), 2.37,2.37$ and $2.38(3 \times \mathrm{s}, 6 \mathrm{H}), 2.79-2.87(\mathrm{~m}$, $2 \mathrm{H}), 2.91$ and $2.91(2 \times \mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94-3.01(\mathrm{~m}, 4 \mathrm{H}), 3.39$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.67$
(m, 20H), 3.71-3.77 (m, 4H), 3.83-3.87 (m, 2H), $3.93(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-4.05(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}$, $2 \mathrm{H}), 6.76-6.81(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.19(\mathrm{~m}, 11 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm})=15.3,19.2,19.3,24.3,26.4,30.6,31.5,34.4,35.5,35.7,35.7,35.8,50.8,63.2,67.4,70.0$, $70.2,70.2,70.2,70.3,70.3,70.7,70.7,70.8,70.8,70.8,70.8,70.9,71.2,71.2,71.3,74.0,113.1$, $113.2,113.3,124.1,124.2,124.8,130.9,132.4,139.9,142.0,144.3,148.5,153.2,156.8 .{ }^{59} \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z}=1719\left[\mathrm{M}^{+}, 1737\left[M+\mathrm{NH}_{4}\right]^{+}, 1742[M+\mathrm{Na}]^{+} . \mathrm{MS}\left(\mathrm{HiRes}-\mathrm{FT}\right.\right.$ ESI) calcd. for $\mathrm{C}_{85} \mathrm{H}_{109} \mathrm{NNaO}_{8} \mathrm{~S}_{14}{ }^{+}$: 1742.4135; found: 1742.4198. Anal. calcd. for $\mathrm{C}_{85} \mathrm{H}_{109} \mathrm{NO}_{8} \mathrm{~S}_{14}$: C, 59.30; H, 6.38; N, 0.81; S, 26.07; found: C, 59.03; H, 6.43; N, 0.90; S, 25.99.

[2]Rotaxane 2•4PF ${ }_{6}$

A mixture of 1,1'-[1,4-phenylene-bis(methylene)]bis(4,4'-bipyridinium)-bis(hexafluorophosphate) $\left(15 \cdot 2 \mathrm{PF}_{6}\right)(479 \mathrm{mg}, 0.678 \mathrm{mmol})$ and 1,4-bis(bromomethyl)benzene (16) (184 mg, 0.697 mmol$)$ were transferred to a teflon-tube, whereupon a solution of the dumbbell $24(286 \mathrm{mg}, 0.166 \mathrm{mmol})$ in anhydrous DMF (1.7 mL) was added. The teflon-tube was sealed and subjected to 12 kbar pressure at room temperature for 3 d . The resulting green reaction mixture was directly subjected to column chromatography ($200 \mathrm{~mL} \mathrm{SiO}_{2}, 4 \mathrm{~cm} \varnothing, \mathrm{Me}_{2} \mathrm{CO}: \mathrm{NH}_{4} \mathrm{PF}_{6} 1: 0-100: 0.25(\mathrm{v} / \mathrm{w})$). Unreacted dumbbell 24 was eluted with $\mathrm{Me}_{2} \mathrm{CO}$, whereupon the eluent was changed to $\mathrm{Me}_{2} \mathrm{CO}: \mathrm{NH}_{4} \mathrm{PF}_{6}$ 100:0.25 (v/w) and the green band containing $2 \cdot 4 \mathrm{PF}_{6}$ was collected and concentrated to a minimum volume. Addition of cold $\mathrm{H}_{2} \mathrm{O}\left(50 \mathrm{~mL}, 5^{\circ} \mathrm{C}\right)$ gave a green precipitate which was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and dried affording a green solid ($35.6 \mathrm{mg}, 8 \%$) containing a mixture of the two translational isomers of $\mathbf{2 \cdot 4} \mathbf{P F}$; each as a mixture of E - and Z-isomers. The data given below are for a mixture of the two translational isomers. Mp 152.0-153.2 ${ }^{\circ} \mathrm{C}$. MS (ESI): $m / z=795\left[M-3 \mathrm{PF}_{6}\right]^{3+}$, $1265\left[M-2 \mathrm{PF}_{6}\right]^{2+}$. MS (HiRes-FT ESI) calcd. for $\mathrm{C}_{121} \mathrm{H}_{141} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{14}{ }^{3+}$: 794.8832; found: 794.8816. Anal. calcd. for $\mathrm{C}_{121} \mathrm{H}_{141} \mathrm{~F}_{24} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{14}$: C, $51.50 ; \mathrm{H}, 5.04 ; \mathrm{N}, 2.48$; S, 15.90; found: C, 51.20; H, 5.08; N, 2.60; S, 15.67.

Data for 2•MPTTF•4PF: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$): $\delta(\mathrm{ppm})=1.17$ and $1.17(2 \times \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}$, $12 \mathrm{H}), 1.24$ and $1.24(2 \times \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) 1.27(\mathrm{~s}, 27 \mathrm{H}), 2.30$ and $2.31(2 \times \mathrm{s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$, 2.74 and $2.75(2 \times \mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ and $2.85(2 \times \mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(2 \times \mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.24(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.52$ and $3.53(2 \times \mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.70(\mathrm{~m}$, 8H), 3.73-3.94 (m, 16H), 4.00-4.04 (m, 2H), 4.06-4.11 (m, 2H), 5.66-5.77 (m, 8H), 6.17 and 6.20 ($\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}$) $6.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.81$ $(\mathrm{m}, 12 \mathrm{H}), 7.93-8.13(\mathrm{~m}, 4 \mathrm{H}), 8.73-9.16(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})=15.5,19.2$, 19.3, 24.4, 26.9, 30.8, 31.1, 31.1, 31.5, 34.9, 64.0, 65.6, 65.6, 68.2, 70.2, 70.2, 70.6, 70.6, 71.1, $71.2,71.2,71.2,71.3,71.4,71.4,71.4,71.4,71.4,75.0,108.8,110.2,114.2,116.9,117.1,125.0$, $125.0,125.5,125.7,125.7,131.1,131.2,131.7,132.7,140.8,142.8,145.5,149.5,157.4 .{ }^{\text {s9 }}$

2.4 Characterisation of $1 \cdot \mathrm{OP}^{8+}$ and $2 \cdot \mathrm{OP}^{8+}$

[2]Rotaxane 1•OP ${ }^{8+}$

Tris(p-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl $)$ ($8.7 \mathrm{mg}, 10.7 \mu \mathrm{~mol}$) was added to a solution of the [2]rotaxane $1 \cdot 4 \mathrm{PF}_{6}(3.05 \mathrm{mg}, 1.08 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{CN}(720 \mu \mathrm{~L})$, whereupon
a ${ }^{1} \mathrm{H}$ NMR spectrum of $1 \cdot \mathrm{OP}^{8+}$ was recorded. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=1.16(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.37(\mathrm{~s}, 27 \mathrm{H}), 1.40-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.94-3.07 (m, 6H), 3.34 (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.40-3.45 (m, 2H), 3.51-3.61 (m, 4H), 3.61-3.69 (m, $6 \mathrm{H}), 3.69-3.78(\mathrm{~m}, 6 \mathrm{H}), 3.79-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.86-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.93-4.07(\mathrm{~m}, 6 \mathrm{H}), 4.51-4.60(\mathrm{~m}$, $2 \mathrm{H}), 5.79$ and $5.80\left(\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=14.1 \mathrm{~Hz}, 8 \mathrm{H}\right), 6.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.52-7.68(\mathrm{~m}, 16 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}), 8.84 \mathrm{ppm}(\mathrm{d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H})$.

[2]Rotaxane 2•OP ${ }^{8+}$

Tris(p-bromophenyl)ammoniumyl hexachloroantimonate ($\mathrm{TBPASbCl}_{6}$) ($8.6 \mathrm{mg}, 10.5 \mu \mathrm{~mol}$) was added to a solution of the [2]rotaxane $\mathbf{2} \cdot 4 \mathrm{PF}_{6}(2.97 \mathrm{mg}, 1.05 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{CN}(700 \mu \mathrm{~L})$, whereafter a ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 \cdot} \mathrm{OP}^{8+}$ was recorded. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=1.19(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.37(\mathrm{~s}, 27 \mathrm{H}), 1.40-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.00(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.36$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 2 \mathrm{H})$, $3.58-3.69(\mathrm{~m}, 8 \mathrm{H}), 3.69-3.78(\mathrm{~m}, 6 \mathrm{H}), 3.80-3.93(\mathrm{~m}, 8 \mathrm{H}), 3.93-4.07(\mathrm{~m}, 4 \mathrm{H}), 4.54-4.61(\mathrm{~m}, 2 \mathrm{H})$, 5.80 and $5.81\left(\mathrm{AB}, J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, 8 \mathrm{H}\right), 6.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.35$ (d, J = $8.4 \mathrm{~Hz}, 6 \mathrm{H}$), $7.50-7.72(\mathrm{~m}, 16 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 8.85(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 8 \mathrm{H})$.

3 ESI mass spectrum of $1 \cdot 4 \mathrm{PF}_{6}$

Fig. S1 a) ESI mass spectrum of the [2]rotaxane $1 \cdot 4 \mathrm{PF}_{6}$, b) zoom of the ESI mass spectrum of $1 \cdot 4 \mathrm{PF}_{6}$ showing peaks associated with the $\left[M-2 \mathrm{PF}_{6}\right]^{2+}$ ion at $\mathrm{m} / \mathrm{z}=1265.8072$ and c) zoom of the ESI mass spectrum of $1 \cdot 4 \mathrm{PF}_{6}$ showing peaks associated with the $\left[M-3 \mathrm{PF}_{6}\right]^{3+}$ ion at $m / z=795.5521$.

4 ESI mass spectrum of $2 \cdot 4 \mathrm{PF}_{6}$

Fig. S2 a) ESI mass spectrum of the [2]rotaxane $\mathbf{2 \cdot 4} \cdot \mathrm{PF}_{6}$, b) zoom of the ESI mass spectrum of 2.4 PF_{6} showing peaks associated with the $\left[M-2 \mathrm{PF}_{6}\right]^{2+}$ ion at $m / z=1265.8043$ and c) zoom of the ESI mass spectrum of $2 \cdot 4 \mathrm{PF}_{6}$ showing peaks associated with the $\left[M-3 \mathrm{PF}_{6}\right]^{3+}$ ion at $m / z=795.5500$.

5 UV/Vis/NIR absorption spectra of the dumbbells 14 and 24 and of the [2]rotaxanes $\mathbf{1 4 +}^{4+}$ and $\mathbf{2}^{4+}$

Fig. S3 UV/Vis/NIR absorption spectra recorded at 298 K of a) dumbbell 14 (0.4 mM, 1:1 $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), b) dumbbell $24\left(0.4 \mathrm{mM}, 1: 1 \mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, c) [2]rotaxane $1^{4+}(0.6 \mathrm{mM}, \mathrm{MeCN})$ and d) [2]rotaxane $2^{4+}(0.6 \mathrm{mM}, \mathrm{MeCN})$.

$6{ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell 14

Fig. S4 Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell $14\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \mathrm{c}<1.5 \mathrm{mM}\right)$. The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CD}_{2} \mathrm{HCN}, \mathrm{HDO}$ and $\mathrm{H}_{2} \mathrm{O}$ signals are not shown in their full height.

7 COSY spectrum of $1 \cdot 4 \mathrm{PF}_{6}$

Fig. S5 Partial COSY spectrum of an isomeric mixture of the [2]rotaxane $1^{4+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, $298 \mathrm{~K}, 1.5 \mathrm{mM}$), where the assignments in light green are associated with $1 \cdot \mathrm{TTF}^{4+}$ and the dark green signals are associated with $1 \cdot \mathrm{MPTTF}^{4+}$, while the assignments in grey are associated with a mixture of the two translational isomers.

$8{ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell 24

Fig. S6 Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the dumbbell $24\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, \mathrm{c}<1.5 \mathrm{mM}\right)$. The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CD}_{2} \mathrm{HCN}, \mathrm{HDO}$ and $\mathrm{H}_{2} \mathrm{O}$ signals are not shown in their full height.

$9{ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NR}$ spectrum of $\mathbf{2 \cdot 4} \mathrm{PF}_{6}$

Fig. S7 Partial ${ }^{1} \mathrm{H}$ NMR spectrum of an isomeric mixture of the [2]rotaxane $\mathbf{2}^{4+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, $298 \mathrm{~K}, 1.5 \mathrm{mM}$), where the assignments in light green are associated with $\mathbf{2 \cdot} \cdot$ TTF $^{4+}$ and the dark green signals are associated with $\mathbf{2} \cdot \mathrm{MPTTF}^{4+}$, while the assignments in grey are associated with a mixture of the two translational isomers. The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CD}_{2} \mathrm{HCN}$ and $\mathrm{H}_{2} \mathrm{O}$ signals are not shown in their full height.

10 COSY spectrum of $2 \cdot 4 \mathrm{PF}_{6}$

Fig. S8 Partial COSY spectrum of an isomeric mixture of the [2]rotaxane $\mathbf{2}^{4+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, $298 \mathrm{~K}, 1.5 \mathrm{mM}$), where the assignments in light green are associated with $2 \cdot$ TTF $^{4+}$ and the dark green signals are associated with $\mathbf{2 \cdot} \mathrm{MPTTF}^{4+}$, while the assignments in grey are associated with a mixture of the two translational isomers.

11 Calculations of the distribution between the two translational isomers in $\mathbf{1 4 +}^{4+}$ and $\mathbf{2 4}^{4+}$

The relative amounts of the two translational isomers present in $\mathbf{1}^{4+}$ (i.e. $\mathbf{1}^{\bullet} \mathrm{MPTTF}^{4+}$ and $\mathbf{1 \cdot T T F}^{4+}$) and $\mathbf{2}^{4+}\left(\right.$ i.e. $\mathbf{2} \cdot \mathrm{MPTTF}^{4+}$ and $\mathbf{2 \cdot} \cdot$ TTF $^{4+}$) were calculated using the integrals (I) from three different sets of signals in the ${ }^{1} \mathrm{H}$ NMR spectra recorded in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K of $\mathbf{1}^{4+}$ (Fig. 2) and $\mathbf{2}^{4+}$ (Fig. S7), respectively, as probes. The distribution between the two translational isomers was calculated as an average of the three probes. Signals associated with the $1 \cdot \mathrm{OP}^{4+}$ and $\mathbf{2 \cdot} \cdot \mathrm{OP}^{4+}$ translational isomers were not observed in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}^{4+}$ and $\mathbf{2}^{4+}$.

Table S1 Distribution between the two translational isomers $1 \cdot \mathrm{MPTTF}^{4+}$ and $1 \cdot \mathrm{TTF}^{4+}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K using three different signals as probes

Signal	δ for $\mathbf{1} \bullet \mathrm{MPTTF}^{4+} / \boldsymbol{1} \cdot \mathrm{TTF}^{4+}$ $[\mathrm{ppm}]$	I of $\mathbf{1} \cdot \mathrm{MPTTF}^{4+} / \mathbf{1} \cdot \mathrm{TTF}^{4+}$	Relative amount of $\mathbf{1} \mathrm{MPTTF}^{4+} / \mathbf{1} \cdot \mathrm{TTF}^{4+}$ $[\%]$	Average relative amount of $1 \cdot \mathrm{MPTFT}^{4+} /$ $\bullet \mathrm{TTF}^{4+}[\%]$
TTF- SCH_{3}	$2.31+2.32 / 2.52$	$2.14 / 0.50$	$81 / 19$	
TTF- SCH	$2.37+2.38 / 2.58+2.59$	$2.21 / 0.51$	$81 / 19$	$82 / 18$
Pyrrole- H	$6.11+6.14 / 6.44-6.48$	$1.41 / 0.27$	$84 / 16$	

Table S2 Distribution between the two translational isomers $2 \cdot \mathrm{MPTTF}^{4+}$ and $2 \cdot$ TTF $^{4+}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K using three different signals as probes

Signal	```\delta for 2•MPTTF 4+/2•TTF 4+ [ppm]```	$\begin{aligned} & \text { I of } \\ & \text { 2•MPTTF }{ }^{4+} / \mathbf{2} \cdot \mathrm{TTF}^{4+} \end{aligned}$	Relative amount of 2•MPTTF ${ }^{4+}$ /2• TTF $^{4+}$ [\%]	Average relative amount of 2•MPTTF ${ }^{4+}$ / $\text { 2•TTF }{ }^{4+} \text { [\%] }$
$\begin{aligned} & \hline \text { TTF- } \\ & \mathrm{SCH}_{3} \end{aligned}$	$2.30+2.31 / 2.51+2.52$	2.50/0.14	95/5	95/5
$\begin{aligned} & \hline \text { MPTTF } \\ & -\mathrm{SCH}_{3} \end{aligned}$	2.68/2.41	2.53/0.16	94/6	
Pyrrole- H	$6.17+6.20 / 6.46+6.47$	1.52/0.07	96/4	

12 Theoretical calculations of the ratio between the three translational isomers in $\mathbf{1 4 +}^{4+}$ and $\mathbf{2}^{4+}$

The theoretical distribution of CBPQT ${ }^{4+}$ encircling the three different stations (i.e. TTF, MPTTF and OP) at equilibrium was calculated using the relationship $K_{\text {eq }}=\exp \left[\left(\Delta \Delta G^{\circ}\right) / R T\right]$ where $\Delta \Delta G^{\circ}$ is the difference between the free energy of binding of the two stations in question, R is the gas constant and T is the absolute temperature. Since the rotaxane 1^{4+} contains three stations, two ratios, each representing an equilibrium between two adjacent stations, needs to be combined. Since the MPTTF and OP stations both are adjacent to the TTF station, the two ratios in question are between $1 \cdot$ TTF $^{4+}$ and $1 \cdot \mathrm{MPTTF}^{4+}$ and between $1 \cdot \mathrm{OP}^{4+}$ and $1 \cdot \mathrm{TTF}^{4+}$, respectively. Using the free energies $\Delta G^{\circ}(\mathrm{MPTTF})^{510}=-6.0 \mathrm{kcal} \mathrm{mol}^{-1}, \Delta G^{\circ}(\mathrm{TTF})^{\mathrm{S5}}=-4.4 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta G^{\circ}(\mathrm{OP})^{55}=-1.7 \mathrm{kcal} \mathrm{mol}^{-1} \mathrm{in}$ MeCN at 298 K , the ratios can be determined. Initially, the ratio representing the equilibrium between $1 \cdot \mathrm{TTF}^{4+}$ and $1 \cdot \mathrm{MPTTF}^{4+}$ can be calculated:

$$
\frac{K_{\text {TTF }}}{K_{\text {MPTTF }}}=e^{\left(\frac{((-6.0)-(-4.4)) \mathrm{kcal} \mathrm{~mol}^{-1}}{1.987 \cdot 10^{-3} \mathrm{kcal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot 298 \mathrm{~K}}\right)}=0.067
$$

The ratio is converted into percentage of $1 \cdot \mathrm{TTF}^{4+}$ relative to $1 \cdot \mathrm{MPTTF}^{4+}$:

$$
\frac{0.067}{0.067+1}=0.063 \approx 6 \%
$$

Thus, the ratio between $1 \cdot$ TTF $^{4+}$ and $1 \cdot \mathrm{MPTTF}^{4+}$, respectively, is 6:94. The relationship representing the equilibrium between $1 \cdot \mathrm{OP}^{4+}$ and $1 \cdot \mathrm{TTF}^{4+}$ is calculated:

$$
\begin{aligned}
\frac{K_{\mathrm{OP}}}{K_{\mathrm{TTF}}}= & e^{\left(\frac{((-4.4)-(-1.7)) \mathrm{kcal} \mathrm{~mol}^{-1}}{1.987 \cdot 10^{-3} \mathrm{kcal} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot 298 \mathrm{~K}}\right)}=0.010 \\
& \Rightarrow \frac{0.010}{0.010+1}=0.010 \approx 1 \%
\end{aligned}
$$

Thus, the ratio between $1 \cdot \mathrm{OP}^{4+}$ and $1 \cdot \mathrm{TTF}^{4+}$, respectively, is $1: 99$. If the percentages of $\mathbf{1} \cdot \mathrm{MPTTF}^{4+}$, $1 \cdot \mathrm{TTF}^{4+}$ and $1 \cdot \mathrm{OP}^{4+}$ are defined as x, y and z, respectively, the following relationships are obtained:

A: $94 y=6 x$
B: $y=99 z$
C: $x+y+z=100$
By combining equations A and B, x can be determined in terms of z :

$$
94.99 z=6 x \Leftrightarrow x=1551 z
$$

To determine z, the expressions for x and y are inserted into equation C :

$$
1551 z+99 z+z=100 \Leftrightarrow z=0.06 \approx 0
$$

By inserting z into the expressions for x and y, the latter two can be determined:

$$
\begin{aligned}
& y=99 \cdot 0.06=5.99 \approx 6 \\
& x=1551 \cdot 0.06=93.94 \approx 94
\end{aligned}
$$

To conclude, the calculated ratio between $\mathbf{1} \cdot \mathrm{MPTTF}^{4+}, \mathbf{1} \cdot \mathrm{TTF}^{4+}$ and $\mathbf{1} \cdot \mathrm{OP}^{4+}$, respectively, is $94: 6: 0$.

13 Suggested mechanism for oxidation of 14, 24 and 2•MPTTF ${ }^{4+}$

Scheme S4 Suggested mechanism for tetra-oxidation of the dumbbell 14 to produce 14^{4+}.

Scheme S5 Suggested mechanism for tetra-oxidation of the dumbbell 24 to produce $\mathbf{2 4}^{4+}$.

Scheme S6 Suggested mechanism for tetra-oxidation of $\mathbf{2} \cdot \mathrm{MPTTF}^{4+}$ to produce $\mathbf{2} \cdot \mathrm{TEG}^{8+}$ in which the CBPQT ${ }^{4+}$ ring is located on the TEG linker connecting the TTF $^{2+}$ and MPTTF ${ }^{2+}$ dications.

$14{ }^{1} \mathrm{H}$ NMR spectra of 1^{8+} recorded at 298 K 5 min and 18 min after oxidation

Fig. S9 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 1.5 \mathrm{mM}$) recorded of a) the oxidised [2]rotaxane $1^{8+}, 5 \mathrm{~min}$ after mixing $\mathbf{1}^{4+}$ with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl ${ }_{6}$) to produce 1^{8+} and b) the oxidised [2]rotaxane $1^{18}, 18 \mathrm{~min}$ after mixing 1^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPASbCl ${ }^{\text {) }}$) to produce 1^{8+}. The assignments in red are associated with $1 \cdot \mathrm{OP}^{8+}$ (i.e. the OP station is located inside the CBPQT ${ }^{4+}$ ring) and the assignments in purple are associated with $1 \cdot \mathrm{TEG}^{8+}$ (i.e. the CBPQT ${ }^{4+}$ ring is located at the TEG linker connecting the TTF $^{2+}$ and MPTTF ${ }^{2+}$ dications). The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{CD}_{2} \mathrm{HCN}$ signals are not shown in their full height.

15 COSY spectrum of 1^{8+} recorded at 298 K

Fig. S10 Partial COSY spectrum of the oxidised [2]rotaxane $\mathbf{1}^{8+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 1.5 \mathrm{mM}\right)$, where the assignments in red are associated with $1 \cdot \mathrm{OP}^{8+}$.

$16{ }^{1} \mathrm{H}$ NMR spectra of 2^{8+} recorded at 298 K 5 min and 18 min after oxidation

a) $2^{8+}, 5 \mathrm{~min}$

Fig. S11 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 1.5 \mathrm{mM}$) recorded of a) the oxidised [2]rotaxane $\mathbf{2}^{8+}$, 5 min after mixing $\mathbf{2}^{4+}$ with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate ($\mathrm{TBPASbCl}_{6}$) to produce $\mathbf{2}^{8+}$ and b) the oxidised [2]rotaxane $\mathbf{2}^{8+}, 18 \mathrm{~min}$ after mixing 2^{4+} with 10 equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate ($\mathrm{TBPASbCl}_{6}$) to produce $\mathbf{2}^{8+}$. The assignments in red are associated with $\mathbf{2 \cdot} \mathrm{OP}^{8+}$ (i.e. the OP station is located inside the CBPQT ${ }^{4+}$ ring). The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CD}_{2} \mathrm{HCN}$ signals are not shown in their full height.

17 COSY spectrum of $\mathbf{2}^{8+}$ recorded at 298 K

Fig. S12 Partial COSY spectrum of the oxidised [2]rotaxane $\mathbf{2}^{8+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 1.5 \mathrm{mM}\right)$, where the assignments in red are associated with $2 \cdot \mathrm{OP}^{8+}$.

$18^{1} \mathrm{H}$ NMR spectra of 2^{8+} recorded at 298 K and 253 K

Fig. S13 Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}, 1.5 \mathrm{mM}\right)$ recorded of a) the [2]rotaxane $\mathbf{2}^{4+}(400 \mathrm{MHz})$ at $298 \mathrm{~K}, \mathrm{~b})$ the oxidised [2]rotaxane $\mathbf{2}^{8+}(400 \mathrm{MHz})$ at 298 K and c) the oxidised [2]rotaxane $\mathbf{2}^{8+}$ $(600 \mathrm{MHz})$ at $253 \mathrm{~K} . \mathbf{2}^{8+}$ was generated by adding an excess of the chemical oxidant tris(4bromophenyl)ammoniumyl hexachloroantimonate ($\mathrm{TBPASbCl}_{6}$) to $\mathbf{2}^{4+}$ and the spectra were recorded ca. 5 min after adding $\mathrm{TBPASbCl}_{6}$ at the indicated temperature. The assignments in red are associated with $\mathbf{2 \cdot \mathrm { OP } ^ { 8 + }}$ (i.e. the OP station is located inside the CBPQT ${ }^{4+}$ ring) and the assignments in purple are associated with $\mathbf{2 \cdot} \mathrm{TEG}^{8+}$ (i.e. the CBPQT ${ }^{4+}$ ring is located at the TEG linker connecting the TTF^{2+} and MPTTF ${ }^{2+}$ units). The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CD}_{2} \mathrm{HCN}$ signals are not shown in their full height.

$19{ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell 14^{4+}

Fig. S14 Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell $14^{4+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$, $c<1.5 \mathrm{mM}$), where 14 was mixed with 10 equiv. of $\mathrm{TBPASbCl}_{6}$ to produce $\mathbf{1 4}^{4+}$. The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, $\mathrm{CD}_{2} \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}$ and HDO signals are not shown in their full height.

$20{ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell 24^{4+}

Fig. S15 Partial ${ }^{1} \mathrm{H}$ NMR spectrum of the oxidised dumbbell $24^{4+}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right.$, $c<1.5 \mathrm{mM}$), where 24 was mixed with 10 equiv. of $\mathrm{TBPASbCl}_{6}$ to produce $\mathbf{2 4}^{4+}$. The $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, $\mathrm{CD}_{2} \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}$ and HDO signals are not shown in their full height.

21 A series of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}^{\mathbf{8 +}}$ recorded at 258 K

Fig. S16 The first $13{ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 258 \mathrm{~K}, 1.5 \mathrm{mM}$) recorded of $\mathbf{1}^{8+}$ showing the change in signals in the first 3873 s after oxidising $\mathbf{1}^{1^{+}}$to $\mathbf{1}^{8+}$ with an excess of TBPASbCl 6 . Red arrows indicate increasing signals for $1 \cdot \mathrm{OP}^{8+}$, while purple arrows indicate decreasing signals for $1 \cdot \mathrm{TEG}^{8+}$. Not all signals are shown in their full height.

22 A series of ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra of $\mathbf{2}^{\mathbf{8 +}}$ recorded at $\mathbf{2 5 3} \mathrm{K}$

Fig. S17 The first $13{ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 253 \mathrm{~K}, 1.5 \mathrm{mM}$) recorded of $\mathbf{2}^{8+}$ showing the change in signals in the first 3930 s after oxidising $\mathbf{2}^{4+}$ to $\mathbf{2}^{8+}$ with an excess of TBPASbCl . Red arrows indicate increasing signals for $2 \cdot \mathrm{OP}^{8+}$, while purple arrows indicate decreasing signals for 2•TEG ${ }^{8+}$. Not all signals are shown in their full height.

$23^{1} \mathrm{H}$ NMR spectra of 2^{8+} recorded at 253 K at different delay times after oxidation

a)

$3031 \mathrm{~s} \longrightarrow$

Fig. S 18 a) A cartoon representation illustrating the oxidation of $2 \cdot \mathrm{MPTTF}^{4+}$ leading initially to the formation of 2•TEG ${ }^{8+}$ followed by the movement of CBPQT ${ }^{4+}$ across the MPTTF dication (i.e. MPTTF ${ }^{2+}$) to produce $2 \cdot \mathrm{OP}^{8+}$. b) A series of partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, 253 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) of the oxidised [2]rotaxane $\mathbf{2}^{8+}$ recorded at different delay times after addition of an excess (28-32 equiv.) of TBPASbCl ${ }_{6}$ to $\mathbf{2}^{4^{+}}(c=1.5 \mathrm{mM})$ showing the increasing signals for the resonances associated with the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ protons ($\delta=1.34 \mathrm{ppm}$) and the $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons $(\delta=1.16 \mathrm{ppm})$, respectively, in $2 \cdot \mathrm{OP}^{8+}$, and the decreasing signals for the resonances associated with the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ protons $(\delta=1.25 \mathrm{ppm})$ and the $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ protons $(\delta=1.18 \mathrm{ppm})$, respectively, in $2 \cdot \mathrm{TEG}^{8+}$. c) Plot of In I against t at 253 K for the movement of CBPQT^{4+} across the MPTTF ${ }^{2+}$ unit, where l is the integral of
the signal at $\delta=1.34 \mathrm{ppm}$. The eight data points have been fitted by the best straight line (black line), giving a correlation coefficient of 0.995 , indicating that first-order kinetics are in operation. The slope of the line corresponds to the rate constant k_{1} for the movement of CBPQT ${ }^{4+}$ over the MPTTF ${ }^{2+}$ unit in $\mathbf{2}^{8+}$, according to the relationship $\ln I=k_{1} t$.

24 First-order analysis

This section provides further information about the kinetic investigations carried out on $\mathbf{1}^{8+}$ and $\mathbf{2}^{8+}$ at different temperatures.

Initially, a baseline and phase correction were performed on all ${ }^{1} \mathrm{H}$ NMR spectra, whereupon the TMS signal was integrated and normalised to 100 and then used as an internal reference. All signals that did not overlap with any other signal were used as probes. At each temperature and for each probe, first-order kinetics were observed to be in operation, i.e. straight lines are observed when In I is plotted against t, where l is the integral of the signal in question and t is the time. This outcome is a consequence of the fact that the data points (n) were collected in the early stage of the experiments where the reverse process is not yet occurring to any significant extent. The slope of the line corresponds to the rate constant k_{1} for the movement of CBPQT4+ over the TTF ${ }^{2+}$ unit in 1^{8+} or over the MPTTF ${ }^{2+}$ unit in $\mathbf{2}^{8+}$ according to the relationship In $I=k_{1} t$. Only probes that upon linear regression gave a straight line with $R^{2}>0.9$ were used. The k_{1} values and the corresponding free energies of activation ${ }^{\text {S11 }}\left(\Delta G^{\ddagger}\left(k_{1}\right)\right)$ obtained from these experiments are recorded in Tables S3 and S4. Finally, the rate constant ($\left.k_{1}{ }^{\mathrm{av}}\right)$ and the derived energy of activation $\Delta G^{\ddagger}\left(k_{1}{ }^{\mathrm{av}}\right)$ for the movement of CBPQT ${ }^{4+}$ from the TEG linker to the OP unit at each temperature were obtained (Table 2) as an average of the k_{1} values obtained for each of the different probes collected in Tables S3 and S4.

Table S3 Rate constants (k_{1}) and derived free energies of activations ($\Delta G^{\ddagger}\left(k_{1}\right)$) for the movement of CBPQT ${ }^{4+}$ over the TTF^{2+} unit in 1^{8+} for probes having correlation coefficients $R^{2}>0.9$ at 243, 253, 258,263 and 268 K , together with the number of data points (n) included in the linear regression. The purple probes are associated with $1 \cdot \mathrm{TEG}^{8+}$ and the red probes are associated with $1 \cdot \mathrm{OP}^{8+}$

T [K]	Probe	δ [ppm]	n	$k_{1}\left[10^{-4} \mathrm{~s}^{-1}\right]^{\text {a }}$	$\Delta G^{\ddagger}\left(k_{1}\right)\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]^{\text {a }}$	R^{2}
243	CBPQT ${ }^{4+}$ - -H	8.93-9.31	6	0.98 ± 0.11	18.60 ± 0.06	0.953
	Stopper Ar-H	7.20	6	0.36 ± 0.08	19.09 ± 0.11	0.948
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	6	0.33 ± 0.02	19.12 ± 0.04	0.967
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	6	0.56 ± 0.06	18.87 ± 0.05	0.964
	CBPQT ${ }^{++} \alpha-H$	8.85	6	0.70 ± 0.12	18.77 ± 0.08	0.904
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.35	6	0.28 ± 0.05	19.21 ± 0.08	0.980
253	CBPQT ${ }^{4+}$ - -H	8.90-9.29	8	0.94 ± 0.08	19.40 ± 0.05	0.917
	Stopper Ar-H	7.18	8	0.81 ± 0.07	19.48 ± 0.05	0.994
	OP- H_{b}	6.79	8	0.88 ± 0.31	19.44 ± 0.18	0.982
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.25	8	0.78 ± 0.02	19.50 ± 0.03	0.997
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	8	0.80 ± 0.04	19.49 ± 0.03	0.996
	CBPQT ${ }^{4+}$ - -H	8.83	8	0.74 ± 0.11	19.53 ± 0.08	0.989
	OP- $\mathrm{Ha}_{\text {a }}$	6.15	8	0.97 ± 0.57	19.39 ± 0.30	0.966
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.49	8	0.55 ± 0.22	19.68 ± 0.20	0.925
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.34	8	0.84 ± 0.03	19.46 ± 0.03	1.000
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.13	8	0.84 ± 0.06	19.46 ± 0.04	0.968
258	CBPQT ${ }^{4+}$ ${ }^{\text {- }}$ -	8.09-8.44	7	1.52 ± 0.08	19.55 ± 0.03	0.922
	Stopper Ar-H	7.18	7	1.30 ± 0.08	19.63 ± 0.04	0.994
	OP- $\mathrm{H}_{\text {b }}$	6.79	7	2.27 ± 0.39	19.35 ± 0.09	0.926
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	7	1.13 ± 0.02	19.71 ± 0.03	0.993
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	7	1.15 ± 0.05	19.70 ± 0.03	0.989
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.34	7	0.87 ± 0.02	19.84 ± 0.03	0.998
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.13	7	0.89 ± 0.05	19.83 ± 0.04	0.977
263	CBPQT ${ }^{4+}$ - -H	8.90-9.26	5	1.96 ± 0.14	19.81 ± 0.04	0.914
	Stopper Ar-H	7.18	5	1.70 ± 0.12	19.88 ± 0.04	0.997
	OP- $\mathrm{H}_{\text {b }}$	6.80	5	1.31 ± 0.50	20.02 ± 0.20	0.973
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	5	1.73 ± 0.03	19.87 ± 0.03	0.999
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.18	5	1.71 ± 0.07	19.88 ± 0.03	0.999
	CBPQT ${ }^{4+}$ - -H	8.84	5	2.08 ± 0.15	19.78 ± 0.04	0.999
	Pyrrole-H	8.00	5	1.78 ± 0.49	19.86 ± 0.15	0.990
	OP- $\mathrm{Ha}_{\text {a }}$	6.18	5	2.36 ± 0.66	19.71 ± 0.15	0.931
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.50	5	1.92 ± 0.35	19.82 ± 0.10	0.996
	OCH_{2}	1.41-1.46	5	1.58 ± 0.44	19.92 ± 0.15	0.977
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.35	5	2.14 ± 0.05	19.76 ± 0.03	0.997
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.14	5	2.15 ± 0.10	19.76 ± 0.03	0.996
268	Stopper Ar-H	7.18	5	2.79 ± 0.12	20.01 ± 0.03	1.000
	OP- H_{b}	6.80	5	1.31 ± 0.50	20.02 ± 0.20	0.973
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	5	2.56 ± 0.03	20.05 ± 0.02	0.999
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.18	5	2.66 ± 0.07	20.03 ± 0.03	1.000
	CBPQT ${ }^{4+}$ a-H	8.76-8.89	5	2.43 ± 0.12	20.08 ± 0.03	0.996

Pyrrole-H	8.00	5	2.55 ± 0.58	20.06 ± 0.12	1.000
$\mathrm{OP}-\mathrm{H}_{\mathrm{a}}$	6.19	5	2.67 ± 0.52	20.03 ± 0.11	0.983
NCH	4.54	5	3.58 ± 0.57	19.87 ± 0.09	0.984
$\mathrm{OP}-\mathrm{H}_{\mathrm{b}}$	2.44	5	2.35 ± 0.53	20.10 ± 0.12	0.938
$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.50	5	1.94 ± 0.28	20.20 ± 0.08	0.993
OCH_{2}	$1.40-1.46$	5	1.18 ± 0.34	20.47 ± 0.15	0.976
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.35	5	2.65 ± 0.04	20.04 ± 0.02	0.990
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.14	5	2.54 ± 0.07	20.06 ± 0.03	0.998

${ }^{a}$ The errors are calculated using the method presented in Koumura et $a l .{ }^{\mathrm{S} 12}$ with $\Delta T=0.3 \mathrm{~K}, I=5 \%$ and $t=0.1 \mathrm{~s}$.
Taking an average of the probes with $R^{2}>0.9$ at the five different temperatures, yielded a rate constant ($k_{1}{ }^{\mathrm{av}}$) for each temperature, which are listed in Table 2.

Table S4 Rate constants (k_{1}) and derived free energies of activations ($\Delta G^{\ddagger}\left(k_{1}\right)$) for the movement of CBPQT ${ }^{4+}$ over the MPTTF ${ }^{2+}$ unit in $\mathbf{2}^{8+}$ for probes having correlation coefficients $R^{2}>0.9$ at 243, 253, 263 and 268 K , together with the number of data points (n) included in the linear regression. The purple probes are associated with $\mathbf{2} \cdot \mathrm{TEG}^{8+}$ and the red probes are associated with $\mathbf{2 \cdot O P ^ { 8 + }}$

T [K]	Probe	δ [ppm]	n	$k_{1}\left[10^{-4} \mathrm{~s}^{-1}\right]^{\text {a }}$	$\Delta G^{\ddagger}\left(k_{1}\right)\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]^{\text {a }}$	R^{2}
243	Stopper Ar-H	7.24	19	0.39 ± 0.04	19.05 ± 0.05	0.982
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.54	19	0.38 ± 0.05	19.06 ± 0.07	0.903
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.24	19	0.35 ± 0.01	19.10 ± 0.03	0.971
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	19	0.43 ± 0.02	19.00 ± 0.03	0.979
	Stopper Ar-H	7.30	19	0.29 ± 0.04	19.18 ± 0.07	0.939
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.34	19	0.30 ± 0.01	19.18 ± 0.03	0.972
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.15	19	0.41 ± 0.02	19.02 ± 0.04	0.970
253	CBPQT ${ }^{4+}$ - -H	8.92-9.27	9	1.53 ± 0.06	19.16 ± 0.03	0.925
	$\mathrm{CBPQT}^{4+} \beta-\mathrm{H}$	8.12-8.44	9	1.21 ± 0.05	19.28 ± 0.03	0.965
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.25	9	1.10 ± 0.01	19.33 ± 0.02	0.992
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.18	9	1.28 ± 0.04	19.25 ± 0.03	0.995
	CBPQT ${ }^{4+}$ - -H	8.84	9	1.04 ± 0.07	19.36 ± 0.04	0.932
	$\mathrm{CH}_{2} \mathrm{~N}^{+}$	5.78	9	0.93 ± 0.06	19.41 ± 0.04	0.922
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.34	9	1.26 ± 0.02	19.26 ± 0.03	0.995
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.16	9	1.31 ± 0.05	19.24 ± 0.03	0.967
263	CBPQT ${ }^{4+}$ - ${ }^{\text {H }}$	8.89-9.24	5	3.01 ± 0.15	19.58 ± 0.04	0.922
	CBPQT ${ }^{4+}$ β - ${ }^{\text {d }}$	8.12-8.44	5	3.04 ± 0.12	19.58 ± 0.03	0.942
	Stopper Ar-H	$7.19+7.22$	5	3.89 ± 0.14	19.45 ± 0.03	0.996
	OP- $\mathrm{H}_{\text {b }}$	6.71	5	4.55 ± 0.66	19.37 ± 0.08	0.967
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.55	5	4.12 ± 0.35	19.42 ± 0.05	0.993
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	5	3.54 ± 0.03	19.50 ± 0.10	0.999
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.19	5	3.92 ± 0.09	19.45 ± 0.03	1.000
	CBPQT ${ }^{4+}$ - -H	8.84	5	3.19 ± 0.13	19.56 ± 0.03	0.973
	Pyrrole-H	8.06	5	2.98 ± 0.47	19.59 ± 0.09	0.960
	OP- $\mathrm{Ha}_{\text {a }}$	6.18	5	3.43 ± 0.57	19.52 ± 0.09	0.923
	NCH_{2}	4.55	5	3.78 ± 0.65	19.47 ± 0.09	0.916
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.48	5	2.99 ± 0.32	19.59 ± 0.06	0.975
	OCH_{2}	1.42-1.46	5	2.57 ± 0.44	19.67 ± 0.09	0.988
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.35	5	3.36 ± 0.04	19.53 ± 0.02	0.981
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	5	3.03 ± 0.08	19.58 ± 0.03	0.986
268	CBPQT ${ }^{4+}$ - H	8.90-9.20	5	8.73 ± 0.39	19.40 ± 0.03	0.928
	OP- H_{b}	6.72	5	9.21 ± 1.58	19.37 ± 0.09	0.942
	$\mathrm{SCH}_{2} \mathrm{CH}_{3}$	1.55	5	7.83 ± 0.82	19.46 ± 0.06	0.956
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.26	5	5.88 ± 0.06	19.61 ± 0.02	0.992
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.19	5	6.42 ± 0.16	19.56 ± 0.03	0.989
	OCH_{2}	1.41-1.46	5	2.36 ± 0.35	20.10 ± 0.08	0.914
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.35	5	3.08 ± 0.03	19.96 ± 0.02	0.940
	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.17	5	2.40 ± 0.06	20.09 ± 0.03	0.929

[^0]Taking an average of the probes with $R^{2}>0.9$ at the four different temperatures, yielded a rate constant ($k_{1}{ }^{\text {av }}$) for each temperature, which are listed for all temperatures in Table 2.

25 Derivation of expression for difference in Gibbs free energy of activation

The Gibbs free energy of activation $\left(\Delta G^{\ddagger}\right)^{S 12}$ is defined as.

$$
\Delta G^{\ddagger}=-R T \ln \left(\frac{k h}{k_{\mathrm{B}} T}\right)
$$

where R is the gas constant $\left(1.987 \times 10^{-3} \mathrm{kcal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right), T$ is the temperature, k is the rate constant, h is the Planck constant ($1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$) and k_{B} is the Boltzmann constant ($6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$).

If $k_{\text {MPTTF }}$ is the rate constant and $\Delta G^{\ddagger}\left(k_{\text {MPTTF }}\right)$ is the Gibbs free energy of activation for the movement of CBPQT ${ }^{4+}$ over an MPTTF ${ }^{2+}$ dication and if $k_{T T F}$ is the rate constant and $\Delta G^{\ddagger}\left(k_{T T F}\right)$ is the Gibbs free energy of activation for the movement of CBPQT ${ }^{4+}$ over a TTF ${ }^{2+}$ dication, the following expression for the difference in the Gibbs free energies of activation $\left(\Delta \Delta G^{\ddagger}\right)$ can be derived:

$$
\begin{gathered}
\Delta \Delta G^{\ddagger}=\Delta G^{\ddagger}\left(k_{\mathrm{MPTTF}}\right)-\Delta G^{\ddagger}\left(k_{\mathrm{TTF}}\right) \\
=-R T \ln \left(\frac{k_{\mathrm{MPTTF}} h}{k_{\mathrm{B}} T}\right)-\left(-R T \ln \left(\frac{k_{\mathrm{TTF}} h}{k_{\mathrm{B}} T}\right)\right) \\
=-R T \ln \left(\frac{k_{\mathrm{MPTTF}} h}{k_{\mathrm{B}} T}\right)+R T \ln \left(\frac{k_{\mathrm{TTF}} h}{k_{\mathrm{B}} T}\right) \\
=-R T\left(\ln \left(\frac{k_{\mathrm{MPTTF}} h}{k_{\mathrm{B}} T}\right)-\ln \left(\frac{k_{\mathrm{TTF}} h}{k_{\mathrm{B}} T}\right)\right) \\
=-R T \ln \left(\frac{\frac{k_{\mathrm{MPTTF}} h}{k_{\mathrm{B}} T}}{\frac{k_{\mathrm{TTF}} h}{k_{\mathrm{B}} T}}\right) \\
=-R T \ln \left(\frac{k_{\mathrm{MPTTF}}}{k_{\mathrm{TTF}}}\right)
\end{gathered}
$$

This expression can be rearranged to:

$$
\Delta \Delta G^{\ddagger}=-R T \ln \left(\frac{k_{\mathrm{MPTTF}}}{k_{\mathrm{TTF}}}\right) \Leftrightarrow \frac{k_{\mathrm{MPTTF}}}{k_{\mathrm{TTF}}}=\exp \left(-\frac{\Delta \Delta G^{\ddagger}}{R T}\right)
$$

The percentage ratio of CBPQT ${ }^{4+}$ moving over the MPTTF ${ }^{2+}$ dication compared to the TTF $^{2+}$ dication $\left(\% \mathrm{MPTTF}^{2+}\right)$ can be calculated in the following way, where it is exploited that $\frac{k_{\text {TTF }}}{k_{\mathrm{TTF}}}=1$.

$$
\% \mathrm{MPTTF}^{2+}=\frac{k_{\mathrm{MPTTF}}}{k_{\mathrm{MPTTF}}+k_{\mathrm{TTF}}} \cdot 100 \Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{k_{\mathrm{MPTTF}}}{k_{\mathrm{MPTTF}}+k_{\mathrm{TTF}}} \cdot \frac{k_{\mathrm{TTF}}}{k_{\mathrm{TTF}}} \cdot 100
$$

$$
\begin{gathered}
\Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{k_{\text {MPTTF }} \cdot k_{\text {TTF }}}{\left(k_{\text {MPTTF }}+k_{\text {TTF }}\right) k_{\text {TTF }}} \cdot 100 \\
\Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}} \cdot \frac{k_{\text {TTF }}}{\left(k_{\text {MPTTF }}+k_{\text {TTF }}\right)} \cdot 100 \\
\Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}}{\frac{k_{\text {MPTTF }}+k_{\text {TTF }}}{k_{\text {TTF }}}} \cdot 100 \\
\Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}}{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}+\frac{k_{\text {TTF }}}{k_{\text {TTF }}}} \cdot 100 \\
\Leftrightarrow \% \mathrm{MPTTF}^{2+}=\frac{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}}{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}+1} \cdot 100
\end{gathered}
$$

The ratio of CBPQT ${ }^{4+}$ moving over the TTF^{2+} dication (\% TFF^{2+}) can be calculated in a similar way, or by using the following connection between \%MPTTF ${ }^{2+}$ and $\%$ TTF $^{2+}$.

$$
\% \mathrm{TTF}^{2+}=100-\% \mathrm{MPTTF}^{2+}
$$

Therefore, the ratios of CBPQT ${ }^{4+}$ moving over the MPTTF ${ }^{2+}$ dication and the TTF $^{2+}$ dication can be calculated using either $\Delta \Delta G^{\ddagger}$ or the ratio of the rate constants $\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}$ using the following equations.

$$
\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}=\exp \left(-\frac{\Delta \Delta G^{\ddagger}}{R T}\right) \text { and } \% \text { MPTTF }^{2+}=\frac{\frac{k_{\text {MPTTF }}}{k_{\text {TTF }}}}{\frac{k_{\text {MPTF }}}{k_{T T F}}+1} \cdot 100
$$

26 References

S1 L. J. O'Driscoll, S. S. Andersen, M. V. Solano, D. Bendixen, M. Jensen, T. Duedal, J. Lycoops, C. Van Der Pol, R. E. Sørensen, K. R. Larsen, K. Myntman, C. Henriksen, S. W. Hansen and J. O. Jeppesen, Beilstein J. Org. Chem., 2015, 11, 1112-1122.

S2 M. S. Neumann, A. F. Smith, S. K. Jensen, R. Frederiksen, M. L. Skavenborg and J. O. Jeppesen, Chem. Commun., 2023, 59, 6335-6338.
S3 R. Crossley, Z. Goolamali, J. J. Gosper and P. G. Sammes, J. Chem. Soc., Perkin Trans. 2, 1994, 513-520.
S4 J. Becher, J. Lau, P. Leriche, P. Mørk and N. Svenstrup, J. Chem. Soc., Chem. Commun., 1994, 2715-2716.
S5 S. S. Andersen, A. I. Share, B. L. C. Poulsen, M. Kørner, T. Duedal, C. R. Benson, S. W. Hansen, J. O. Jeppesen and A. H. Flood, J. Am. Chem. Soc., 2014, 136, 6373-6384.
S6 P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent and D. J. Williams, J. Am. Chem. Soc., 1992, 114, 193218.

S7 J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard, A. B. Braunschweig, N. N. P. Moonen, B. W. Laursen, Y. Luo, E. Deionno, A. J. Peters, J. O. Jeppesen, K. Xu, J. F. Stoddart and J. R. Heath, Chem. - Eur. J., 2006, 12, 261-279.

S8 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
S9 Signals are missing or coinciding with other signals.
S10 M. Jensen, R. Kristensen, S. S. Andersen, D. Bendixen and J. O. Jeppesen, Chem. - Eur. J., 2020, 26, 6165-6175.

S11 The ΔG^{\ddagger} values were calculated using the Eyring relationship $\Delta G^{\ddagger}=R T \ln \left(k h / k_{B} T\right)$, where R is the gas constant, T is the absolute temperature, k is the rate constant, h is the Planck constant and k_{B} is the Boltzmann constant.
S12 N. Koumura, E. M. Geertsema, M. B. Van Gelder, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc., 2002, 124, 5037-5051.

[^0]: ${ }^{a}$ The errors are calculated using the method presented in Koumura et al. ${ }^{\mathrm{S} 12}$ with $\Delta T=0.3 \mathrm{~K}, I=5 \%$ and $t=0.1 \mathrm{~s}$.

