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S1. CONVERTING TO AND FROM ORTHONORMAL BASIS

In this section, we illustrate the steps needed to change the coefficient matrix from the
non-orthonormal basis in which it was computed into an orthonormal basis (which has the
properties listed Section II).

1. Diagonalise the overlap matrix, SDFT as SDFTΛ = λΛ

2. Determine X = S−1/2 = λΛ−1/2λ.

3. Compute the orthogonal Hamiltonian matrix, F = X⊺FDFTX

4. Determine the eigenvalues and eigenvectors of F. The eigenvalues are identical to
those obtained from DFT (i.e. in non-orthonormal basis). The eigenvectors are the
coefficient matrix elements, C, in orthonormal basis.

All operations are available within the class coeffnet.predata.matrices.BaseMatrices.
Molecular orbitals predicted by the model can be returned to the non-orthonormal basis

in which the DFT calculation was performed by,

C′ = S−1/2C (1)

where C′ is the coefficient matrix in non-orthonormal basis.
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S2. PRACTICAL ASPECTS OF D-MATRIX ROTATION

Different electronic structure codes order orbitals and coordinate axes in different ways.
In this section, we describe the transformation needed to ensure that the orbitals computed
with Q-Chem are consistent with those used as spherical harmonics in the neural network
(and with e3nn, the Python package we use to compute tensor products).

A. Modifications to the inputs of the DFT calculation

All calculations were run using the pymatgen / atomate / fireworks framework. To
ensure that the D−matrix of rotation is consistent with the axis of rotation of e3nn, we
switch the x, y and z axes with z, x and y axes. For a given pymatgen molecule, the following
modification needs to be made:

c o o r d i n a t e s = np . ar ray ( molecu le . car t_coords )
c o o r d i n a t e s [ : , [ 0 , 1 , 2 ] ] = c o o r d i n a t e s [ : , [ 2 , 0 , 1 ] ]

mo lecu le = Molecule (
s p e c i e s=molecu le . s p e c i e s ,
coords=coo rd ina t e s ,
charge=molecu le . charge ,
s p i n _ m u l t i p l i c i t y=molecu le . s p i n _ m u l t i p l i c i t y ,

)

B. Modifications to choice of basis set

In this work, we use basis sets where all basis functions are computed in spherical basis
sets. All calculations were run using the purecart=1111 option in Q-Chem.
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S3. MULTIPLE MOLECULAR ORBITALS

FIG. S1: Coefficients of selected molecular orbitals of pyridine

While the example of the molecular orbitals of water in Figure 1 illustrates the role that
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) has on reactivity, other frontier orbitals might be needed for more complex molecu-
lar systems. In this section, we illustrate the need for using more than one molecular orbital
simultaneously for describing reactivity by studying the coefficients of molecular orbitals of
pyridine, a ringed molecule with more than one reactive center.1

Figure S1 shows the coefficients of selected atomic orbitals for the HOMO, LUMO and
one orbital lower than the HOMO (so called, HOMO-1) for pyridine. Using just the HOMO
of pyridine in a model designed to predict reactive quantities might lead to the incorrect
description that it is the carbon atoms that are predominantly important for reactivity.
However, incorporating information from an eigenvalue narrowly lower in energy than the
HOMO provides more information. HOMO-1 shows the lone-pairs of nitrogen as well as the
atomic orbitals of (a different) carbon atom being relevant for reactivity. Since the presence
of multiple molecular orbitals is relevant for a complete description, more complex systems
may be treated with a model with allows for the inclusion of multiple molecular orbitals.
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S4. EFFECT OF PARAMETERS AND HYPERPARAMETERS
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(a) Parallel coordinates plot for validation loss for predicting relative energies
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(b) Parallel coordinates plot for validation loss for predicting coefficients of the HOMO.

FIG. S2: Tests for optimal hyperparameters

In this section, we discuss the effect that the hyperparameters have on the validation loss
of the model for predicting activation barriers and coefficients of the molecular orbital of the
HOMO. Figure S2 shows a parallel coordinates plot with the different tunable hyperparame-
ters. max_radius is the maximum radius used to perform the convolution, radial_nuerons is
the number of hidden-neurons for learning the the radial components, layers is the number
of non-linearities used for the scalar components, num_basis is the number of basis functions
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used for the edge attributes and mul is the number of hidden basis functions for the same
irreps as the node inputs.

From Figure S2(a,b) it is clear that the largest determination of a reduced validation
loss comes from mul. This reduction in loss is expected with a greater number of spherical
harmonics of each irrep in the hidden layer.

S6



S5. DATASET SPLITS

FIG. S3: Occurence of different species in the train (leftmost bars), validation (middle
bars) and test (rightmost bars). Halogens (Br, Cl and F) are present in the reaction only

as attacking and leaving species.

FIG. S4: Distribution of the barriers in the train, validation and test datasets. The dashed
grey line indicates the mean of the distribution (train: 0.291 eV, validation: 0.287 eV and

test: 0.287 eV.)

S7



Figure S3 shows the prevalence of different species in the train, validation and test dataset.
Through a random split, it appears that each species is represented well and equally in all
datasets. Figure S4 shows the distribution of the activation barriers for the train, validate
and test datasets. The mean of all distributions (dashed grey line) is very similar across all
datasets.
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S6. BASELINE PERFORMANCE

0 1
Expected barrier (eV)

0.0

0.5

1.0

1.5

P
re

di
ct

ed
ba

rr
ie

r(
eV

)

a)Train set

0 1
Expected barrier (eV)

0.0

0.5

1.0

1.5

P
re

di
ct

ed
ba

rr
ie

r(
eV

)

b)Validation set

0 1
Expected barrier (eV)

0.0

0.5

1.0

1.5

P
re

di
ct

ed
ba

rr
ie

r(
eV

)

c)Test set

0

5

10

15

20

25

30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

1

2

3

4

5

FIG. S5: Performce of the baseline model (see text) on the barrier prediction task for a)
train b) validation c) test sets.

In this section, we discuss the performance of a baseline model. Through this baseline,
we can gauge how accurate CoeffNet is in comparison to a simpler model.

We construct a baseline model by constructing linear relations between the activation
barrier and the energy difference between the reactant and product. This type of linear
relation is often referred to as a Brønsted-Evans-Polanyi (BEP) relation.2,3 Figure S5 shows
the performance of such a BEP model on the same SN2 dataset used in the manuscript to test
the performance of CoeffNet. Overall, the baseline model predictions are not very accurate.
The relatively low mean absolute error (MAE) comes from the fact that the predictions are
clustered around 0− 0.5 while the real barriers are in a similar range.
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S7. ANALYSIS OF REQUIRED TRAINING DATA
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FIG. S6: Variation of the validation loss against the fraction of training data. Four
different fractions of the training data were sampled (black points).

In this section, we discuss the effect of the number of training data points on the validation
loss. Figure S6 shows the change in the validation loss (y-axis) with the fraction of the
training dataset used in the main text if a large fraction is used (greater than 0.9, which is
approximately 1600-1800 data points), we find that the performance is very similar to that
reported in the main text. However, for smaller fractions of the dataset, we find that the
performance varies markedly with the dataset that is used. This difference is likely due to
the fact that smaller fractions do not “see” certain elements of the dataset (such as triple
bonds of carbon and nitrogen in CN) and hence lead to larger errors.

S10



S8. ACTIVATION BARRIER PERFORMANCE ON DEF2-TZVP
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FIG. S7: Comparison of predicted activation barriers and DFT computed barriers on the
test set for a) minimal-basis representation (i.e. only s and p basis functions, and b)

full-basis (i.e. as computed with DFT) for the def2-TZVP basis set
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S9. TRAINING CURVES FOR COEFFICIENT MATRIX PREDICTION
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FIG. S8: Training curves showing the unsigned-MAE loss function
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S10. TRAINING ON A DATASET WITH DIVERSE CHEMICAL
REACTIONS

Our main goal in this manuscript is to illustrate that the coefficients of molecular orbitals
serve as a chemically expressive descriptor for tasks involving predicting activation barriers
at sufficient accuracy to be used for applications studying chemical reactivity. Typically,
errors in prediction of activation barriers need to be at least of the order of magnitude of
the errors associated with DFT predictions, which are typically less than 0.05 eV.4

Given the scarcity of datasets containing activation energies needed to reach these high
accuracies, we chose to focus on datasets like Ref 5 which have high quality data for a specific
type of reaction. The added benefit of the approach is that we can analyze the predicted
coefficients of the molecular orbitals at the transition state, allowing us to interpret our
results.

In this section, we test the performance of CoeffNet on activation barriers generated from
diverse chemical reactions. Instead of our original goal of high-accuracy activation barrier
prediction, we investigate if CoeffNet can generalize to more diverse datasets out-of-the-box,
simply by increasing the number of parameters of the model.

A. Details of the dataset

We recompute the dataset generated by Ref 6 and Ref 7 to generate coefficients for
molecular orbitals. We choose reactions where the difference between the number of bonds
in the reactant and the product are between -1 and 1, i.e., at most one bond is formed
or broken in the reaction. Overall, this choice generates ≈ 14, 000 activation barriers. We
compute the coefficient matrices for the reactants and products using the computational
setup as described in Section VI.

B. Multi-eigenstate mode of CoeffNet

In order to train a model for a diverse dataset, it is preferred to use more parameters. The
straightforward way of including more useful parameters into CoeffNet is to use coefficients
of more than one molecular orbital as inputs to the model. In this section, we train CoeffNet
using the coefficients from three eigenstates, the HOMO, HOMO-1 and the LUMO orbitals.
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Note that this mode of CoeffNet is more expensive than that used in the main text, where
the coefficients of only one orbital (typically the HOMO) is used as inputs to CoeffNet.
Practically, this mode of operation can be used by setting the idx_eigenvalue flag in the
input yaml file used by CoeffNet.

C. Results

FIG. S9: Histogram of the mean absolute error for approximate prediction of the positions
are atom centers for the transition state (equivalent to the analysis of Figure 4). Results

are reported for train (purple), validation (red) and test (green) datasets.

Figure S9 shows the mean absolute error (MAE) for prediction of the transition state
structure using the same procedure as illustrated in the main text. The train:validation:test
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FIG. S10: Predicted (y-axis) and expected (x-axis) activation barriers for the train (in
blue), validation (in yellow) and test (in green) datasets

split is chosen to be 80:10:10, identical to what is used in the main text.

As expected, the MAE for this diverse dataset is larger than that of the more ordered
dataset studied in the main text. However, the errors for most structures are well below
0.5Å and only a small fraction of reactions (less than 20) have MAE greater than 1Å. Fur-
thermore, all train, validation and test datasets have similar MAE distributions, indicating
that the data splits are indicative representations of the dataset. Given that CoeffNet only
requires somewhat reasonable transition state structures (and not accurate ones) to predict
the activation energies, we believe that no further modification in methods is needed prior
to training.

Figure S10 shows the results of the activation energy prediction task using CoeffNet. The
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blue points show the error for the training set, the yellow for the validation and the green
for the test set. The mean absolute error is 0.42 eV on a dataset which spans ≈ 10 eV. We
do not perform extensive hyperparameter tests as our goal is simply to show that CoeffNet
in its current form can generalize to larger datasets by increasing the number of parameters
in the model. Instead, we apply the procedure as used in the main text for the SN2 dataset
(see Section VI).

FIG. S11: Difference between the expected (computed) and the output (from CoeffNet)
activation energy for the test set; red lines indicate the standard deviation of the error

(= 0.68 eV)

A common use-case of CoeffNet is to act as a sieve for high-throughput reaction network
studies. Instead of performing computationally intensive DFT calculations and transition
state searches on all pathways of a reaction network, CoeffNet is used to predict relevant
pathways where the activation barriers are lower than a chosen threshold. DFT calculations
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and transition state searches are performed only for those reactions which have CoeffNet
predicted activation energies below this chosen threshold. This strategy of pre-sieving a
large compositional space using CoeffNet and then refining activation barrier predictions
with DFT methods is crucial to rapid understanding of complex reaction networks.

In order for this pre-seiving strategy to work accurately in practice, we require a low
standard-deviation of the error as well as a reasonably low mean absolute error. Note that
the absolute value of the activation barrier is less important than the spread of the error,
as the true activation barrier will be computed through DFT calculations if the predicted
value from CoeffNet is lower than a chosen threshold.

Figure S11 shows a histogram of the difference between expected (computed using DFT)
and output (from CoeffNet) activation barriers for the test set of the dataset from Ref 6.
The vertical red lines indicate the standard devation of the errors, which is 0.68 eV. Given
the small deviation of the errors from the mean, we expect that CoeffNet would be able to
accurately predict when barriers would be too large to be chemically interesting (and hence,
not worth computing with DFT) and those that are sufficiently small (and hence, worth
computing with DFT).
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