Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

1. Experimental procedures

1.1 Materials

Sodium dodecyl benzene sulfonate (SDBS, AR grade), ethanol (\geq 99.5%), manganese (II) nitrate tetrahydrate (Mn(NO₃)₂·4H₂O, 98%), sodium bicarbonate (NaHCO₃, \geq 99.8%), urea (99%), potassium permanganate (KMnO₄, 99.0%), commercial manganese dioxide (C-MnO₂, \geq 90%), and manganese sulfate monohydrate (MnSO₄·H₂O, 99.0%) were purchased from Aladdin Co. Ltd. Xylene (\geq 99.0%) and toluene (\geq 99.5%) were acquired from Sinopharm Chemical Reagent Co., Ltd. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO, 98%), 1,4-benzoquinone (BQ, \geq 98.0%), furfuryl alcohol (FA, 98%), and isopropanol (IPA, \geq 99.5%) were obtained from Sigma-Aldrich. 2,2,6,6-Tetramethylpiperidine (TEMP, \geq 99%) and 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO, \geq 98.0%) used in the experiments were acquired from Dojindo Laboratories. All alcohols used as substrates were sourced from Energy Chemical.

1.2 Characterization

X-ray diffraction (XRD) spectra were obtained using a Bruker D8 Advance powder X-ray diffractometer (Bruker, Germany) equipped with Cu K α radiation. The scanning angle range was 10-80°, and the scanning rate was 5 °/min. X-ray photoelectron spectroscopy (XPS) spectra were recorded using a Thermo Scientific K-Alpha system (ThermoFischer, USA) with an Al K α radiation source (h ν =1486.6 eV). Brunauer-Emmett-Teller (BET) surface area data were determined by analyzing adsorption with liquid N₂ at -195.8 °C using an ASAP 2460 sorption instrument (Micromeritics, USA). Morphology observations of N_y-MnO₂ were conducted using a high-resolution transmission electron microscope (TEM) Talos-F200S (FEI, USA). Hydrogen temperature-programmed reduction with H₂ (H₂-TPR) was carried out using an AMI-300 system (Altamira, USA). Samples were pretreated in N₂ atmosphere and subsequently reduced in 10 vol.% H₂/Ar gas mixture at a flow rate of 30 mL/min. Singlet oxygen (¹O₂), superoxide anion (·O₂·), and hydroxyl radical (·OH) generation activated by N_y-MnO₂ were examined using a Bruker A300 electron paramagnetic resonance (EPR) spectroscopy (Bruker, Germany). Fourier Transform infrared (FTIR) spectra were acquired using a Thermo Scientific Nicolet iS50 spectrometer (ThermoFisher, USA). Dynamic light scattering (DLS) analysis was performed using a Malvern Zetasizer Nano ZS90. The conversion of alcohols and the selectivity of target products were determined using Gas chromatography (GC) on a PANNA A91Plus instrument (China).

1.3 Synthesis of ϵ -MnO₂ by hydrothermal method

The synthesis of micrometer-size ε -MnO₂ without N doping was achieved using a hydrothermal method. A solution was prepared by dissolving MnSO₄·H₂O (0.17 g, 1 mmol) in a mixture of deionized water (70 mL) and ethanol (7 mL). Subsequently, NaHCO₃ (0.84 g, 10 mmol) was added to the solution with stirring and allowed to stand for 3 h at room temperature. The resulting powder was carefully collected, dried, and then calcined at 350 °C for 4 hours in an air environment to produce ε -MnO₂ catalyst.

1.4 Synthesis of ϵ -MnO₂ nanocatalysts (ϵ -MnO₂-n) by microemulsion method

ε-MnO₂ nanocatalysts without N doping were synthesized using the microemulsion method. SDBS (10.5 g) was dissolved in xylene (90 mL) with the assistance of ultrasonication. Aqueous solutions of KMnO₄ (0.316 g, 2 mmol) in deionized water (1 mL) and MnSO₄·H₂O (1.44 g, 8.5 mmol) in deionized water (4.4 mL) were sequentially added to the oil phase mentioned earlier, followed by stirring for 0.5 hours. The resulting microemulsion was subjected to hydrothermal treatment at 160 °C for 12 hours. After drying at 80 °C for 12 hours, the obtained precursors were calcined at temperatures of 300, 350, 400, and 500 °C for 4 hours in an air environment, yielding the ε-MnO₂-n-y nanocatalyst, where y corresponds to the calcination temperature (300, 350, 400, and 500 °C).

1.5 Procedures of commercial activated MnO₂ (C-MnO₂)

The standard procedure for activating C-MnO₂ is as follows: The C-MnO₂ sample was slowly heated to 350 °C at a rate of 2 °C/min and maintained at this temperature for 4 hours in an air atmosphere.

1.6 Procedures for kinetic experiments

In a Schlenk flask, N_y -MnO₂ (150 mg), toluene (5 mL), and benzyl alcohol (0.5 mmol) were combined. The reaction mixture was stirred using a magnetic stirrer at 1200 rpm while continuously bubbling oxygen (O₂) into the solution (16 mL/min). The reaction was conducted at various temperatures (20, 25, 30, and 35 °C), and samples were withdrawn from the reaction mixture at specific times intervals (10, 20, 30, 40, and 50 min) for analysis using GC.

1.7 Procedures for EPR test

The qualitative and quantitative analysis of the generation of reactive oxygen species (ROS), including ${}^{1}O_{2}$, O_{2} , and $\cdot OH$, was performed using a Bruker A300 EPR spectrometer. The radiation frequency was set at 9.85 GHz, and a power of 20 mW was applied. The standard test procedures for assessing ${}^{1}O_{2}$, O_{2} , and $\cdot OH$ in the absence of light were as follows.

Qualitative analysis of ${}^{1}O_{2}$, O_{2} , and $\cdot OH$:

For the ${}^{1}O_{2}$ test, 30 mg of the catalyst was sonicated in 2 mL of deionized water to ensure uniform dispersion, followed by bubbling O_{2} for 10 minutes. Subsequently, 30 µL of 2,2,6,6-Tetramethylpiperidine (TEMP) aqueous solution (200 mM) was added to the above dispersion. The concentration of ${}^{1}O_{2}$ in the reaction mixture was determined at the end of the experiment. All ${}^{1}O_{2}$ tests were conducted at room temperature without exposure to light.

5,5-Dimethyl-1-pyrroline *N*-oxide (DMPO) was employed as the capture agent for $\cdot O_2^-$ and $\cdot OH$. To perform the tests, 30 mg of the catalyst was dispersed in the appropriate solvent. Subsequently, 30 µL DMPO solution (200 mM) was added to the dispersion. It is worth noting that methanol was used as the solvent used for O_2^- testing, while deionized water was employed for $\cdot OH$ testing. All O_2^- and $\cdot OH$ tests were conducted at room temperature without exposure to light.

Quantitative analysis of ¹O₂:

For the ¹O₂ test, 30 mg of catalyst was sonicated in 2 mL of deionized water to ensure uniform dispersion,

followed by bubbling O_2 for 10 minutes. Subsequently, 30 µL of 2,2,6,6-tetramethylpiperidine (TEMP) aqueous solution (at concentrations of 50/100/200/250 mM) was added to the dispersion. Based on the experimental results, the optimal concentration of TEMP solution was found to be 200 mM. All 1O_2 tests were conducted at room temperature without exposure to light.

1.8 Procedures for *in-situ* IR test

 N_y -MnO₂ nanocatalysts were compressed into sheets and placed inside a chamber with CaF₂ window. The samples underwent pretreatment at 120 °C for 2 hours under a protective N_2 atmosphere, followed by cooling to room temperature. These treated catalysts served as the background for data acquisition. Subsequently, benzyl alcohol (10 µL) was applied to the catalyst surface, and the adsorption data of the substrate were recorded.

For the chemisorption of O_2 onto the catalysts, the pretreatment procedures remained consistent with those described earlier. After collecting the background data, detailed spectra were obtained within an atmosphere of O_2 .

1.9 DFT calculation method

All calculations are conducted within the framework of density functional theory (DFT) using projection enhanced plane wave methods, as implemented in the Vienna ab initio simulation package.¹ For the exchangecorrelation potential, we adopted the generalized gradient approximation proposed by Perdew, Burke and Ernzerhof.² To account for long-range van der Waals interactions, we employed the DFT-D3 method.³ The plane wave cut-off energy was set to 420 eV. When solving the Kohn-Sham equation iteratively, an energy criterion of 10^{-5} eV was applied. Brillouin zone integration was performed at the Gamma point using a $3 \times 3 \times 1$ k-mesh grid. All structures were relaxed until the residual force on each atom decreased to below 0.03 eV·Å⁻¹.

2. Figures and Tables

Fig. S1 (a) XRD pattern of prepared catalyst precursor MnCO₃; (b) FTIR spectra of N_y-MnO₂ (y=1, 25, 40, 55, 70), and MnCO₃; (c) DLS analysis of N₅₅-MnO₂ dispersed in ethanol; (d) H₂-TPR spectra of N_y-MnO₂ (y=1, 25, 40, 55, 70), and ε -MnO₂.

Fig. S2 N 1s XPS spectra of (a) N_1 -MnO₂, (b) N_{25} -MnO₂, (c) N_{40} -MnO₂, and (d) N_{70} -MnO₂.

Fig. S3 O 1*s* XPS spectra of (a) ε -MnO₂, (b) N₁-MnO₂, (c) N₂₅-MnO₂, (d) N₄₀-MnO₂, (e) N₇₀-MnO₂. The O1*s* can be fitted using lattice oxygen (O_{*l*}), surface oxygen atoms (O_{*s*}) in the vicinity of O_{*v*}, and oxygen from water adsorption (O_{*w*}), corresponding to the binding energies of 529.5, 531.4, and 533.2 eV, respectively.

Fig. S4 Mn 2*p* XPS spectra of (a) ε-MnO₂, (b) N₁-MnO₂, (c) N₂₅-MnO₂, (d) N₄₀-MnO₂, (e) N₅₅-MnO₂, and (f) N₇₀-MnO₂.

Fig. S5 N_2 adsorption-desorption isotherms of (a) ϵ -MnO₂, (b) N_1 -MnO₂, (c) N_{25} -MnO₂, (d) N_{40} -MnO₂, (e) N_{55} -MnO₂, and (f) N_{70} -MnO₂.

Fig. S6 (a) *In-situ* IR spectra of O_2 adsorbed onto the surface of N_{55} -Mn O_2 in $O_2 + H_2O$ vapor atmosphere; (b) 1O_2 concentration detected with different TEMP concentrations; (c) EPR spectra of DMPO-·OH triggered by N₁-MnO₂, N₂₅-MnO₂ and N₅₅-MnO₂.

Fig. S7 XRD patterns of (a) ε -MnO₂-n-300 and ε -MnO₂-n-350, (b) α -MnO₂-n-400 and (c) α -Mn₂O₃-n-500; (d) DLS result of ε -MnO₂-n-350; (e) BET result of ε -MnO₂-n-350.

Fig. S8 O1s XPS spectra of (a) ϵ -MnO₂-n-300, (b) ϵ -MnO₂-n-350, (c) ϵ -MnO₂-n-400, and (d) α -Mn₂O₃-n-500.

Fig. S9 Mn 2*p* XPS spectra of (a) ε -MnO₂-n-300, (b) ε -MnO₂-n-350, (c) ε -MnO₂-n-400, and (d) α -Mn₂O₃-n-500.

Fig. S10 (a) The EPR characteristic peaks of TEMP- ${}^{1}O_{2}$, DMPO- ${}^{\cdot}O_{2}^{-}$ and DMPO- ${}^{\cdot}OH$ generated by ϵ -MnO₂- n-350; (b) ${}^{1}O_{2}$ content in ϵ -MnO₂-n-350 suspension (TEMP concentration: 200 mM).

Fig. S11 The comparison of catalytic performance of N_{55} -MnO₂ under (a) Ar, (b) O₂, and (c) Ar + O₂ atmosphere.

Fig. S12 The EPR characteristic peaks of TEMP- $^{1}O_{2}$, DMPO- $\cdot O_{2}^{-}$ and DMPO- $\cdot OH$ generated by ϵ -MnO₂.

Fig. S13 (a) XRD pattern of C-MnO₂; (b) O 1*s* and (c) Mn 2*p* XPS spectra of C-MnO₂; (d) BET result of C-MnO₂; (e) catalytic performance of activated C-MnO₂ mediated aerobic oxidation of benzyl alcohol.

Fig. S14 Polynomial fitting of benzyl alcohol concentration (C) and reaction time (t) under pressure of (a) 0.1 MPa, (b) 0.2 MPa, (c) 0.3 MPa, and (d) 0.4 MPa; (e) relationship between r_0 and O_2 pressure using N_{55} -Mn O_2 as a catalyst.

Fig. S15 The kinetic experiements results of (a) N_1 -MnO₂, (b) N_{25} -MnO₂, and (c) N_{55} -MnO₂ at different reaction temperature.

Fig. S16 In-situ IR spectra of benzyl alcohol adsorbed on the surface of activated C-MnO₂.

Fig. S17 (a) XRD pattern of recycled N_{55} -MnO₂; (b) N 1s, (c) O 1s, and (d) Mn 2p XPS spectra of recycled N_{55} -MnO₂.

Entry	Catalyst	N (mol%)	$Mn^{3+/}Mn^{4+}$	O_{s} (%) ^a
1	N ₁ -MnO ₂	1.22	0.83	39.0
2	N ₂₅ -MnO ₂	3.37	0.86	42.9
3	N ₄₀ -MnO ₂	3.41	0.88	45.2
4	N ₅₅ -MnO ₂	3.52	0.90	51.1
5	N ₇₀ -MnO ₂	3.83	0.87	47.2
6	Recycled N ₅₅ - MnO ₂	3.51	0.91	50.0
7	C-MnO ₂	/	0.80	27.0
8	ε-MnO ₂	/	0.82	34.8
9	ε-MnO ₂ -n-350	/	0.84	44.4

Table S1 XPS analysis results of N_y -MnO₂ (y=1, 25, 40, 55, 70).

Table S2 The concentration of O_s and proportion of Mn with different valence of Mn-based catalyst.

Entry	Catalyst	$\mathrm{O}_{s}\left(\% ight)$	Mn^{3+}/Mn^{4+}	Ref.
1	Mg-MnO ₂	40	0.69	4
2	ε-MnO ₂	23	1.27	5
3	ε-MnO ₂	21.3	0.45	6
4	$N-Mn_xCo_{3-x}O_4$	45	1.01	7
5	NEG	38.6	/	8
6	$MnO_2@GdO_x$	45	0.91	9
7	N-MnO ₂	37.1	0.83	10
8	8K/MnO ₂	36.3	0.56	11
9	$MnO_2/AC-N_2$	41.5	1.25	12
10	La-MnO ₂	34.6	0.35	13
11	N ₅₅ -MnO ₂	51.1	0.90	This work

Entry	Catalysts	Surface Area (m ² /g)	Pore Volume (cm^{3}/g)	Pore Size (nm)
1	N ₁ -MnO ₂	39.7	0.11	10.06
2	N ₂₅ -MnO ₂	57.5	0.18	11.25
3	N ₄₀ -MnO ₂	67.4	0.17	9.19
4	N ₅₅ -MnO ₂	78.7	0.25	11.41
5	N ₇₀ -MnO ₂	74.2	0.19	9.29
6	ε-MnO ₂	121.1	0.24	8.1
7	ε-MnO ₂ -n- 350	64.8	0.44	21.35
8	C-MnO ₂	17.7	0.07	15.68

Table S3 BET results of N_y -MnO₂ (y=1, 25, 40, 55, 70), C-MnO₂, ϵ -MnO₂, and ϵ -MnO₂-n-350.

Entry	Catalysts	Quenchers	Atmosphere	Conversion (%)	Selectivity (%)
1 a	N ₅₅ -MnO ₂	/	O ₂	>99.9	>99.9
2 a	N ₅₅ -MnO ₂	TEMPO	O_2	26	>99.9
3 a	N ₅₅ -MnO ₂	BQ	O_2	85	>99.9
4 ^a	N ₅₅ -MnO ₂	FA	O_2	7	>99.9
5 a	N ₅₅ -MnO ₂	IPA	O_2	96	>99.9
6 ^{<i>b</i>}	N ₅₅ -MnO ₂	/	N_2	31	>99.9
7 ^c	N ₅₅ -MnO ₂	/	O_2	>99.9	>99.9
8 ^d	N ₅₅ -MnO ₂	/	O_2	>99.9	>99.9
9 ^e	N ₅₅ -MnO ₂	/	Ar	25.5	>99.9

Table S4 The control experiment for the N_{55} -MnO₂ catalyzed aerobic oxidation of benzyl alcohol with different quenchers and under various atmospheres.

^{*a*} Reaction conditions: 5.0 mL of toluene, 0.5 mmol of alcohols, 150.0 mg of N₅₅-MnO₂, 1200 rpm, 25.0 ± 1.0

°C, O_2 flow 16.0 mL·min⁻¹ 1.0 bar, reaction time 2.5 h, quencher 1.0 mmol;

^{*b*} N₂ bubbling 16.0 mL·min⁻¹, 1.0 bar;

^c in dark, O₂ flow 16.0 mL·min⁻¹ 1.0 bar;

^d light irradiation, O₂ flow 16.0 mL·min⁻¹ 1.0 bar;

^{*e*} Ar bubbling 16.0 mL·min⁻¹, 1.0 bar.

Table S5 Turnover frequency (TOF) values of C-MnO₂, ε -MnO₂, ε -MnO₂-n-350, and N_y-MnO₂ (y=1, 25, 40, 55, 70).

Entry	Catalysts	TOF (mmol·g ⁻¹ _{cat} ·h ⁻¹)	Selectivity (%)
1	C-MnO ₂	0.002	95.0
2	ε-MnO ₂	0.019	95.0
3	ε-MnO ₂ -n-350	0.021	99.0
4	N ₁ -MnO ₂	0.023	99.0
5	N ₂₅ -MnO ₂	0.05	99.2
6	N ₄₀ -MnO ₂	0.10	99.5
7	N ₅₅ -MnO ₂	0.14	>99.9
8	N ₇₀ -MnO ₂	0.12	99.5

TOF: moles of benzyl alcohol converted per mole of catalyst/reaction time (h), calculated at reaction time of 2.0 h.

Table S6 The catalytic conversion of benzyl alcohol using N_{55} -MnO₂ under varying O₂ pressure.

P(MPa) t (min)	0.1	0.2	0.3	0.4
10	3.9	4.5	5.8	7.1
20	7.7	9.2	11.3	13.6
30	11.9	13.5	16.6	20.6
40	15.5	18.2	22.4	27.1
50	19.7	24.3	27.6	33.9
60	23.5	27.1	33.2	40.5

Reaction temperature: 25.0 ± 1.0 °C

Table S7 The correlation between the benzyl alcohol concentration in the reaction mixture and the O₂ pressure (P).

P(MPa) t (min)	0.1	0.2	0.3	0.4
10	0.0961	0.0955	0.0942	0.0929
20	0.0923	0.0908	0.0887	0.0864
30	0.0881	0.0865	0.0834	0.0794
40	0.0845	0.0818	0.0776	0.0729
50	0.0803	0.0757	0.0724	0.0661
60	0.0765	0.0729	0.0668	0.0595

Reaction temperature: 25.0 ± 1.0 °C

Entry	P (MPa)	r ₀
1	0.1	0.1001
2	0.2	0.1000
3	0.3	0.0997
4	0.4	0.0997

Table S8 The initial reaction rate (r_0) for the oxidation of benzyl alcohol catalyzed by N₅₅-MnO₂ at varying O₂ pressure.

Experiment analysis: We conducted the oxidation of benzyl alcohol was conducted at different O_2 pressures (P, ranging from 0.1-0.4 MPa). The detailed data regarding the conversion of benzyl alcohol are provided in **Table S6**, while the corresponding benzyl alcohol concentration (C) was shown in **Table S7**. In **Fig. S14**, we performed polynomial fitting on the C versus reaction time (t) to calculate r_0 (r=-dC/dt).¹⁴⁻¹⁶ The polynomial derivative in **Figure S12** yields r_0 at t = 0, as shown in **Table S8**. To assess the influence of O_2 pressure, we fitted a curve relating O_2 pressure and r_0 , resulting in an approximate reaction order (n) of 0 (**Fig. S14e**). These results indicate that the reaction rate is nearly independent of O_2 pressure.

Entry	t (min)	T (K)	Oxidant	Conversion (%)	Selectivity (%)
1	10	303	O ₂	10.05	>99.9
2	20	303	O ₂	13.8	>99.9
3	30	303	O ₂	19.65	>99.9
4	40	303	O ₂	24.9	>99.9
5	50	303	O ₂	31.2	>99.9

Table S10 The kinetic data for the N₅₅-MnO₂-catalyzed aerobic oxidation of benzyl alcohol.

Entry	t (min)	Conversion (%)	$C_0 (mol \cdot L^{-1})$	C (mol·L ⁻¹)	$\ln \frac{C_{A,0}}{C_A}$
1	0	0	0.1	0.1	0
2	10	10.05	0.1	0.08995	0.10592
3	20	13.8	0.1	0.0862	0.1485
4	30	19.65	0.1	0.08035	0.21878
5	40	24.9	0.1	0.0751	0.28634
6	50	31.2	0.1	0.0688	0.37397

Experiment analysis: The results of the oxidation of benzyl alcohol by N_{55} -MnO₂ at 303 K are presented in the **Tables S9** and **S10**. We assume that the oxidation reaction follows a first-order kinetics model. If there

is a linear relationship between $\ln \frac{C_{A,0}}{C_A}$ and t, then the above assumption is valid.^{17,18} A linear regression analysis yielded a correlation coefficient (R²) of 0.99 and a reaction rate constant of k=0.0074 s⁻¹, confirming that the reaction indeed follows first-order kinetics. The activation energies (E_a) of N₁-MnO₂, N₂₅-MnO₂ and N₅₅-MnO₂ catalysts were calculated using the Arrhenius equation based on kinetic data obtained at different reaction temperatures (**Fig. S15** and **Tables S11-S13**). The calculated activation energies were 55.04 kJ·mol⁻¹, 45.87 kJ·mol⁻¹, 43.17 kJ·mol⁻¹, respectively.

Table S11 The kinetic data for the N_1 -MnO₂-catalyzed aerobic oxidation of benzyl alcohol.

Entry	T (K)	k (min ⁻¹)	R ²	
1	293	0.0392	0.99	
2	298	0.0583	0.99	
3	303	0.0879	0.99	
4	308	0.1125	0.99	

Table S12 The kinetic data for the N_{25} -MnO₂-catalyzed aerobic oxidation of benzyl alcohol.

Entry	Т (К)	k (min ⁻¹)	\mathbb{R}^2	
1	293	0.0025	0.99	
2	298	0.0032	0.99	
3	303	0.0043	0.98	
4	308	0.006	0.99	

Table S13 The kinetic data for the N_{55} -MnO₂-catalyzed aerobic oxidation of benzyl alcohol.

Entry	T (K)	k (min ⁻¹)	R ²	
1	293	0.0046	0.97	
2	298	0.0055	0.98	
3	303	0.0074	0.99	
4	308	0.0109	0.99	

					Oxyg			C		TOF	
Entr	r Catalyst		Orilant	Alcoh	coh	en	Т	(1)	Con	Sel.	(mol·m
У		Oxidant	ol	Light	specie	(°C)	t (n)	V.	(%)	ol _{cat} -	Rei.
					S			(%)		¹ ·h ⁻¹)	
	Mg-OMS-	O ₂ (1							>99.	0.00	
1	1(MnO ₂)	bar)	BA	/	/	50	24	92	9	0.08	4
		O ₂ (10							> 00		
2	ε-MnO ₂	bar),	HMF	/	/	100	24	74	>99.	0.01	5
		NaHCO ₃							9		
2	N-	A :	DA	λ>420	$^{1}O_{2}/\cdot O$	20	30 0.5	>99. 9	>99.	1.2	10
3	CoMn ₂ O ₄	Air	BA	nm	2	30			9		19
4	TiO ₂ /Ti ₃ C	O ₂ (1	D۸	λ>420	.0 -	15	E	5 97	0.0	0.01	20
4	2	bar)	DA	nm	· O ₂	<u>15</u> 5	3		98	0.01	
5	N MnO	O ₂ (1	ПМЕ	/	1	25	6	>99.	>99.	0.05	21
5	$N-MnO_2$	bar)	111011	/	1	23	0	9	9	0.03	∠1
6	N-MnO ₂	O ₂ (1	O ₂ (1	/		30	4	>99.	>99.	0.07	\mathbf{r}
6		bar)	DA					9	9		
7	ov-Bi ₂ O ₃	$O_2(1)$	B٨	IIV_vie	¹ O.	25	5	/1	80	0.04	23
7		bar)	DA	0 v - v 15	\mathbf{O}_2	$J_2 23$	5	41	09	0.04	23
	TTEPY			λ=395							
8	(pyridiniu	Air	PNA	nm	/	25	5	90	94	/	24
	m)										
Q	ß-MnO2	O ₂ (1	BA	/	Ļ	50	5	92	>99.	0.13	25
7	p wino ₂	bar)	DIT	,	,	20	U	2	9	0.12	
10	Co_2O_4	O ₂ (1	BA	/	/	100	3	97.5	>99.	0.10	26
10	20304	bar)		,	,	200	2	2110	9	0.10	20
		O ₂ (1							>99.		This
11	N ₅₅ -MnO ₂	bar)	BA	/	$^{1}O_{2}$	25	2	93.6	9	0.14	wor
									-		k

Table S14 Comparison of TOF values between $N_{55}\mbox{-}MnO_2$ and the reported catalysts.

BA: benzyl alcohol; HMF: 5-Hydroxymethylfurfural; PNA: p-nitrobenzyl alcohol.

Reference:

- 1. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. lett., 1996, 77, 3865-3868.
- 3. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 4. M. Koutani, E. Hayashi, K. Kamata and M. Hara, J. Am. Chem. Soc., 2022, 144, 14090-14100.
- 5. E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba and M. Hara, *J. Am. Chem. Soc.*, 2019, **141**, 890-900.
- R. Yang, Z. Guo, L. Cai, R. Zhu, Y. Fan, Y. Zhang, P. Han, W. Zhang, X. Zhu, Q. Zhao, Z. Zhu, C. Chan and Z. Zeng, *Small*, 2021, 17, 2103052.
- 7. Y. Jin, F. Li, P. Cui, Y. Yang, Q. Ke, M. N. Ha, W. Zhan, F. Ruan, C. Wan, Z. Lei, V.N. Nguyen, W. Chen and J. Tang, *Nano Res.*, 2021, 14, 2637-2643.
- Z. Zhang, S. Li, B. Zhao, X. Zhang, X. Wang, Z. Wen, S. Ji and J. Sun, J. Phys. Chem. C, 2021, 125, 20195-20203.
- L. Liu, R. Liu, T. Xu, Q. Zhang, Y. Tan, Q. Zhang, J. Ding and Y. Tang, *Inorg. Chem.*, 2020, 59, 14407-14414.
- 10. T. He, X. Zeng, S. Rong, J. Mater. Chem. A, 2020, 8, 8383-8396.
- 11. S. Rong, K. Li, P. Zhang, F. Liu and J. Zhang, Catal. Sci. Technol., 2018, 8, 1799-1812.
- 12. Y. Huang, Y. Liu, W. Wang, M. Chen, H. Li, S. Lee, W. Ho, T. Huang and J. Cao, *Appl. Catal. B-Environ.*, 2020, **278**, 119294.
- L. Yu, H. Chen, Z. Wen, M. Jin, X. Ma, Y. Li, Y. Sang, M. Chen and Y. Li, *Ind. Eng. Chem. Res.*, 2021, 60, 1624-1632.
- 14. V. D. Makwana, Y. C. Son, A. R. Howell, S. L. Suib, J. Catal., 2002, 210, 46-52.
- 15. L. Kang, X. Liu, A. Wang, L. Li, Y. Ren, X. Li, X. Pan, Y. Li, X. Zong, H. Liu, A. I. Frenkel, T. Zhang, *Angew. Chem. Int. Ed.*, 2020, **59**, 12909-12916.
- 16. A. Abad, A. Corma, H. García, Chem. Eur. J., 2008, 14, 212-222.
- 17. L. Zhang, R. Chen, Y. Tu, X. Gong, X. Cao, Q. Xu, Y. Li, B. Ye, Y. Ye and J. Zhu, *ACS Catal.*, 2023, **13**, 2202-2213.
- 18. Q. Wang, L. Chen, S. Guan, X. Zhang, B. Wang, X. Cao, Z. Yu, Y. He, D. G. Evans, J. Feng and D. Li, ACS Catal., 2018, 8, 3104-3115.
- 19. H. Li, Y. Zhang, J. Tang, G. Huang, P. Cui and Q. Ke, *Green Syn. Catal.*, 2022, https://doi.org/10.1016/j.gresc.2022.09.005.
- 20. X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li and B. Huang, *Appl. Catal. B-Environ.*, 2021, 286, 119885.
- 21. Q. Ke, Y. Jin, F. Ruan, M.N. Ha, D. Li, P. Cui, Y. Cao, H. Wang, T. Wang, X. Han, X. Wang and P. Cui, *Green Chem.*, 2019, 21, 4313-4318.

- 23. J. Wang, X. Xu, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai and B. Huang, *ChemSusChem*, 2020, **13**, 3488-3494.
- 24. S. Ma, J. Cui, C. Rao, M. Jia, Y. Chen and J. Zhang, Green Chem., 2021, 23, 1337-1343.
- 25. Y. Yamaguchi, R. Aono, E. Hayashi, K. Kamata and M. Hara, ACS Appl. Mater. Interfaces, 2020, 12, 36004-36013.
- 26. K. Li, Y. Pei, P. Xiao, Z. He, S. A. C. Carabineiro, H. Jiang and J. Zhu, ACS Appl. Nano Mater., 2022, 5, 3722-3732.