Photochemical α-selective radical ring-opening reactions of 1,3-disubstituted acyl bicyclobutanes with alkyl halides: modular access to the functionalized cyclobutenes

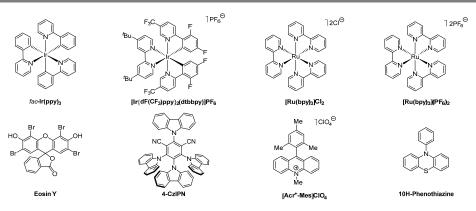
Yuanjiu Xiao,[‡] Tong-Tong Xu,[‡] Jin-Lan Zhou, Feng Wu, Lei Tang, Ruo-Yi Liu, Wen-Biao Wu* and Jian-Jun Feng*

Supporting Information

Table of Contents

1	General Information	S2
2	Optimization of Reaction Conditions (Table S1-S3)	S3
3	Unsuccessful Substrates	S3
4	General Procedure for the Radical Ring-Opening Reactions of BCBs with Alkyl Halides (Condition A)	S5
5	Procedure for the Radical Ring-Opening Reactions of BCB 1a with Benzyl Bromide 2w (Condition B)	S6
6	Procedure for the Radical Ring-Opening Reactions of BCB 1a with α- Chloroacetophenone	S7
7	Scale-Up Experiment	S8
8	Synthetic Transformations	S8
9	Mechanism Studies	S11
	9.1 Radical Trapping Experiments	S11
	9.2 Control Experiments	S12
	9.3 Light On/Off Experiment	S13
	9.4 Stern-Volmer Fluorescence Quenching Experiments	S14
10	Characterization Data of the Products	S16
11	Crystal Structure of 3am	S48
12	References	S50
13	NMR Spectra	S51

1 General Information


All reactions were performed in flame-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen unless otherwise stated. Liquids and solutions were transferred with syringes. Bicyclo[1.1.0]butanes (BCBs)^[1] were prepared according to reported procedures. Other commercially available reagents were purchased from Sigma-Adrich, Levan and Bide Chemical Company. N,N-Dimethylacetamide (DMA), N,N-Dimethylformamide (DMF), Chlorobenzene (PhCI) and Acetonitrile (MeCN) were purchased from *Energy Chemical* (99%, Extra Dry) and used as received. All other solvents (THF, dioxane and 1,2-dichloroethane etc.) were dried and purified following standard procedures. Technical grade solvents for extraction or chromatography (Petroleum ether, CH₂Cl₂, and ethyl acetate) were distilled prior to use. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates by Merck. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh, ASTM) by Grace using the indicated solvents. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on Bruker AV400 instruments. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CHCl₃: δ = 7.26 ppm for ¹H NMR and CDCl₃: δ = 77.0 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplett, q = quartet, m = multiplet), coupling constants (Hz), and integration. The full-scan mass spectra were taken on a hybrid quadrupole-orbitrap mass spectrometer equipped with a heated electrospray ionization source (ThermoFischer Scientific, Bremen, Germany). X-ray data were taken on a Bruker SMART APEX II X-Ray diffractometer equipped with a large area CCD detector. Acknowledgement: the ¹H, ¹³C NMR spectra and HRMS (ESI) were performed at Analytical Instrumentation Center of Hunan University.

2 Optimization of Reaction Conditions (Table S1-S3)

Table S1. Catalyst Optimization^{*a,b*}

	Ph CO_2Me O H Br $-$	atalyst (2 mol%) ₃ PO ₄ (1.0 equiv) MeCN ue LEDs, rt, 12 h		CO ₂ Me + HO ₁₁ Ph	çO O₂Me
	1a 2a	:	3aa 4a	5aa	
entry	catalyst	conv. (%) ^b	yield of 3aa (%) ^b	yield of 4a (%) ^b	yield of 5aa (%) ^b
1	<i>fac</i> -Ir(ppy)₃	83	30	5	12
2	[Ir{dF(CF ₃)ppy} ₂ (dtbbpy)]PF ₆	25	0	5	0
3	Ru(bpy)3Cl2·6H2O	20	6	<5	<5
4	Ru(bpy)3(PF6)2	43	7	<5	<5
5	Eosin Y	10	<5	<5	0
6	4-CzIPN	50	7	<5	0
7	[Acr ⁺ -Mes]ClO ₄	0	0	0	0
8	10H-phenothiazine	8	0	0	0

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), catalyst (2.0 mol%) and K₃PO₃ (1.0 equiv) in MeCN (2.0 mL) stirred at rt in blue LEDs for 12 h. ^bThe yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as the internal standard.

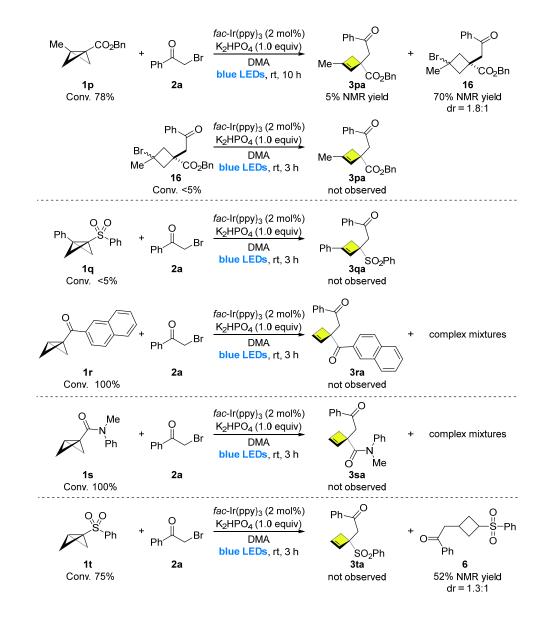
Table S2. Solvent and Base Optimization^{a,b}

	Ph CO ₂ M	+ OBr base	py) ₃ (2 mol%) (1.0 equiv) solvent EDs, rt, 12 h) + Ph-CO ₂ N D_2 Me	Ph C le + HO h CO2	
	1a	2a	3aa	4a	5aa	
entry	solvent	base	conv. (%) ^b	yield of 3aa (%) ^b	yield of 4a (%) ^b	yield of 5aa (%) ^b
1	MeCN	K ₃ PO ₄	83	30	5	12
2	THF	K ₃ PO ₄	100	43	9	6
3	dioxane	K ₃ PO ₄	12	<5	<5	0
4	DCE	K ₃ PO ₄	100	0	36	<5
5	acetone	K ₃ PO ₄	100	23	10	8
6	PhCl	K ₃ PO ₄	100	0	64	0
7	DMF	K ₃ PO ₄	100	58	<5	6
8	DMF	K ₂ HPO ₄	100	62	<5	11
9	DMF	KH ₂ PO ₄	96	30	0	5

10	DMF	K ₂ CO ₃	100	38	<5	<5
11	DMF	Na ₂ CO ₃	100	35	<5	<5
12	DMF	NaOAc	100	25	<5	<5
13	DMF	Et₃N	100	11	5	0
14	DMF	DBU	100	20	25	0
15	DMA	K ₂ HPO ₄	100	71	<5	5
16	NMP	K ₂ HPO ₄	100	70	0	0
17	DMSO	K ₂ HPO ₄	100	35	0	6

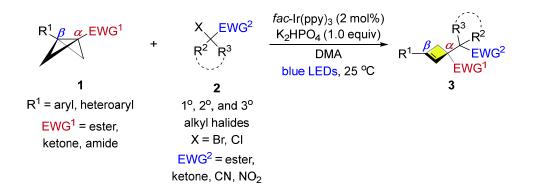
^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), *fac*-Ir(ppy)₃ (2.0 mol%) and base (1.0 equiv) in solvent (2.0 mL) stirred at rt in blue LEDs for 12 h. ^{*b*}The yields were determined by ¹H NMR spectroscopy using CH_2Br_2 as the internal standard.

Table S3. Other Optimizations^{*a,b*}

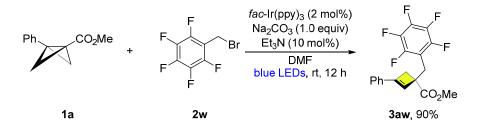


entry	Variation from standard conditions	conv. (%) ^b	yield of 3aa (%) ^b	yield of 4a (%) ^b	yield of 5aa (%) ^b
1	K_2HPO_4 (1.5 equiv) was used	100	68	<5	<5
2	K_2HPO_4 (2.0 equiv) was used	100	67	<5	<5
3	H_2O (0.5 equiv) as additive	100	71	<5	7
4	H_2O (2.0 equiv) as additive	100	64	<5	11
5	Without <i>fac</i> -Ir(ppy)₃	5	0	5	0
6	In dark	36	0	<5	0
7	Raction time: 6 h	100	70	<5	9
8	Raction time: 3 h	100	71	<5	6

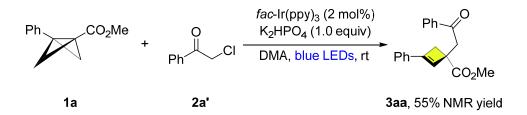
^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), *fac*-Ir(ppy)₃ (2.0 mol%) and K₂HPO₄ (1.0 equiv) in DMA (2.0 mL) stirred at rt in blue LEDs for 12 h. ^bThe yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as the internal standard.


3 Unsuccessful Substrates

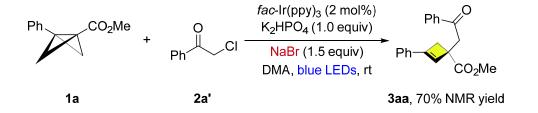
The following Scheme S1 list the BCB substrates that were unsuccessfully tested. The reactions were carried out according to conditions A and were analyzed by crude ¹H NMR with CH_2Br_2 as an internal standard. The reaction is not limited to arylsubstituted BCBs. Alkyl-substituted BCB **1p** was also found to be compatible, albeit with a low yield under conditions A. However, the reaction with 1,3-disubstituted BCB sulfone **1q** did not afford the desired product. Additionally, we investigated the influence of the substituent at the β -position of BCB in this site-selective reaction. The reaction between monosubstituted BCB ketone **1r** and monosubstituted BCB amide **1s** resulted in a complex mixture. However, the ring-opening reaction of monosubstituted BCB sulfone **1t** with **2a** produced the desired cyclobutane product **6** through regular addition reaction, with a 52% NMR yield and a 1.3:1 diastereomeric ratio.


Scheme S1 Unsuccessful BCBs

4 General Procedure for the Radical Ring-Opening Reactions of BCBs with Alkyl Halides (Condition A)

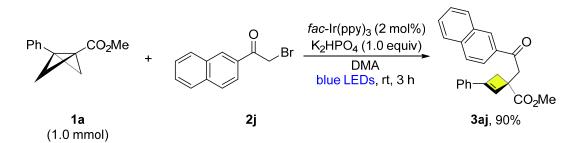

In glove box, to a flame-dried Schlenk tube was charged with the BCB **1** (0.20 mmol), alkyl halide **2** (0.30 mmol, 1.5 equiv), *fac*-Ir(ppy)₃ (4 µmol, 2 mol%), and K₂HPO₄ (0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the dimethylacetamide (DMA) (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. Then the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (2 × 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3**.

5 Procedure for the Radical Ring-Opening Reactions of BCB 1a with Benzyl Bromide 2w (Condition B)

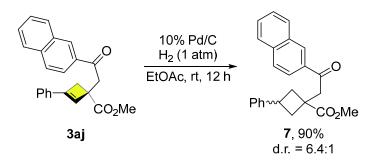


In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.20 mmol), *fac*-lr(ppy)₃ (2.6 mg, 4 µmol, 2 mol%) and Na₂CO₃ (21.2 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times). Then, 1-(bromomethyl)-2,3,4,5,6pentafluorobenzene **2w** (78.3 mg, 0.30 mmol, 1.5 equiv) and Et₃N (2.0 mg, 0.02 mmol, 10 mol%) were added, followed by the addition of the DMF (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 12 h. Then the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (2 × 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (50/1) afforded **3aw** as a colorless oil (66.3 mg, 90% yield).

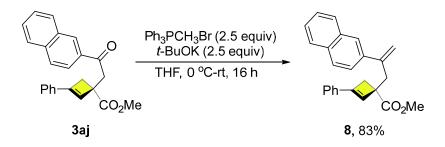
6 Procedure for the Radical Ring-Opening Reactions of BCB 1a with α -Chloroacetophenone



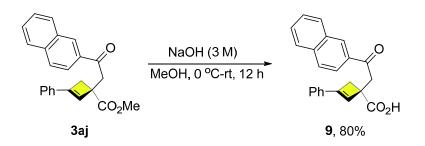
In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.2 mmol), 2-chloro-1phenylethan-1-one **2a**' (46.4 mg, 0.3 mmol, 1.5 equiv), *fac*-lr(ppy)₃ (2.6 mg, 4 µmol, 2 mol%), and K₂HPO₄ (34.8 mg, 0.2 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. Then the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 10 mL). The combined organic layers was washed with brine (2 × 10 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in *vacuo* and analyzed by ¹H NMR spectroscopy to obtain the NMR yield of **3aa** (55% NMR yield) with CH₂Br₂ as an internal standard. <u>Note: Further improvement of the yield was achieved when NaBr</u> <u>was used as additive.</u>

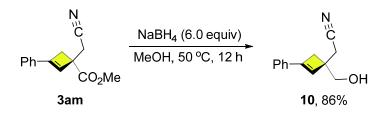

In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.2 mmol), 2-chloro-1phenylethan-1-one **2a**' (46.4 mg, 0.3 mmol, 1.5 equiv), *fac*-lr(ppy)₃ (2.6 mg, 4 µmol, 2 mol%), K₂HPO₄ (34.8 mg, 0.2 mmol, 1.0 equiv), and NaBr (30.9 mg, 0.3 mmol, 1.5 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. Then the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 10 mL). The combined organic layers was washed with brine (2 × 10 mL) and dried over anhydrous MgSO₄.The filtrate was concentrated in *vacuo* and analyzed by ¹H NMR spectroscopy to obtain the NMR yield of **3aa** (70% NMR yield) with CH₂Br₂ as an internal standard.

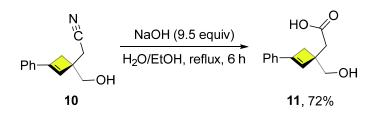
7 Scale-Up Experiment

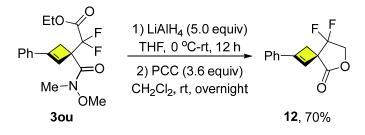


In glove box, to a flame-dried Schlenk tube is charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (188.2 mg, 1.0 mmol), 2-bromo-1-(naphthalen-2-yl)ethan-1-one **2j** (373.7 mg, 1.5 mmol, 1.5 equiv), *fac*-Ir(ppy)₃ (13.1 mg, 20 μ mol, 2 mol%), and K₂HPO₄ (174.2 mg, 1.0 mmol, 1.0 equiv). The tube is evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (10 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. Then the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 20 mL). The combined organic phase was washed with brine (2 × 20 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel using petroleum ether/EtOAc(20/1) afforded **3aj** as a white solid (320.8 mg, 90% yield).

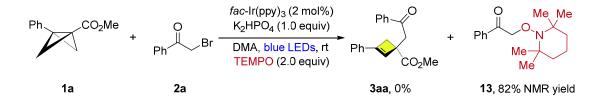

8 Synthetic Transformations

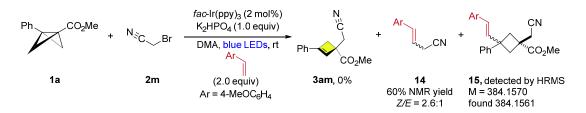

Synthesis of (7): To a solution of cyclobutene **3aj** (35.6 mg, 0.1 mmol) in EtOAc (5 mL) was added 10% Pd/C (10 mg). A balloon filled with hydrogen gas was attached to the flask containing the suspension, which was then briefly evacuated and backfilled with hydrogen gas three times. The mixture was stirred overnight at room temperature and filtered through Celite. After the solvent was evaporated in vacuo, the crude material was purified by flash chromatography on silica gel using petroleum ether/EtOAc(20/1) afforded **7** as a colorless oil (32.2 mg, 90% yield, d.r. = 6.4:1).


Synthesis of (8): To methyl triphenylphosphonium bromide (89.3 mg, 0.25 mmol, 2.5 equiv) charged in a 25 mL oven dried flask was added anhydrous *t*-BuOK/THF (1 M, 2.5 eq). The resulting yellow suspension was stirred at 0 °C for 45 min and a solution of **3aj** (35.6 mg, 0.1 mmol) in THF (1 mL) added dropwise. The resulting mixture was warmed gradually to room temperature and stirred until **3aj** disappeared (monitored by TLC). The reaction mixture was quenched with water, extracted with EtOAc, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purification by flash chromatography on silica gel using petroleum ether/ EtOAc (10/1) afforded **8** as a colorless oil (30.5 mg, 83% yield).

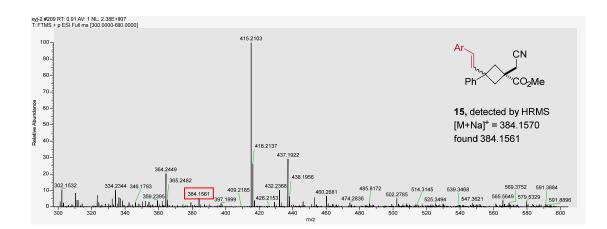

Synthesis of (9): A reaction tube was charged with **3aj** (35.6 mg, 0.1 mmol) and MeOH (1 mL) under N₂ atmosphere. 3 M NaOH (0.1 mL, 0.3 mmol, 3.0 equiv) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at room temperature until complete conversion of the starting material as observed from TLC analysis. 3 M HCl was added to acidify the reaction mixture and the resulting solution was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. Then, filtered and concentrated under reduced pressure the crude material was purified by flash chromatography on silica gel using petroleum ether/EtOAc (1/2) afforded **9** as a white solid (27.4 mg, 80% yield).

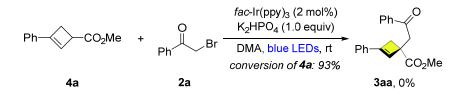
Synthesis of (10): 3am (22.7 mg, 0.1 mmol) was dissolved in MeOH (1.0 mL) at room temperature, and then NaBH₄ (22.7 mg, 0.6 mmol, 6 equiv) was added at the same temperature. The resulting mixture was allowed to warm to 50 °C. After completion, H₂O was added, and the mixture was extracted with diethyl ether. The combined organic phases were washed with saturated brine and dried over Na₂SO₄. Then, filtered and concentrated under reduced pressure, the residue was purification by flash chromatography on silica gel using petroleum ether/ EtOAc (2/1) afforded **10** as a colorless oil (17.3 mg, 86% yield).

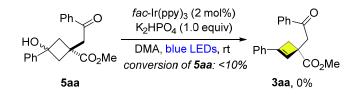

Synthesis of (11): 10 (19.9 mg, 0.1 mmol) was dissolved in H₂O/EtOH (1:1, 2.0 mL) at room temperature, and then NaOH (38.0 mg, 0.95 mmol, 9.5 equiv) was added at the same temperature. The resulting mixture was allowed to warm to reflux. After completion, the reaction was cooled to room temperature. 3 M HCl was added to acidify the reaction mixture and the resulting solution was extracted with ethyl acetate. The combined organic phases were dried over Na₂SO₄. Then, filtered and concentrated under reduced pressure, the residue was purification by flash chromatography on silica gel using petroleum ether/ EtOAc (1/3) afforded **11** as a white solid (15.7 mg, 72% yield).


Synthesis of (12): A solution of **3ou** (33.9 mg, 0.10 mmol, 1.0 equiv) in THF (1.0 mL) was added dropwise to a suspension of LiAlH₄ (19.0 mg, 0.5 mmol, 5.0 equiv) in THF (1.0 mL) at 0 °C. The mixture was stirred at 0 °C for 12 h (monitored by TLC). The reaction was quenched by addition of aq. NaOH (1 M, 0.3 mL) and water (1.5 mL). The mixture was stirred at room temperature for 30 min and extracted with EtOAc (3 x 10 mL). The organic layers were dried over Na₂SO₄ and concentrated in *vacuo*. Then, the crude product mixture in CH₂Cl₂ (1 mL) was added to a mixture of PCC (77.6 mg, 0.36 mmol, 3.6 equiv) and SiO₂ (77.6 mg) in CH₂Cl₂ (2 mL). The orange mixture was stirred overnight then diluted with Et₂O (6 mL) and filtered through a celite pad and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel using petroleum ether/ EtOAc (20/1) afforded **12** as a colorless oil (16.5 mg, 70% yield).

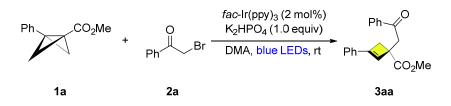
9 Mechanism Studies


9.1 Radical Trapping Experiments


In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.20 mmol), 2-bromo-1phenylethan-1-one **2a** (59.7 mg, 0.30 mmol, 1.5 equiv), *fac*-Ir(ppy)₃ (2.6 mg, 4 μ mol, 2 mol%), K₂HPO₄ (34.8 mg, 0.20 mmol, 1.0 equiv), and TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. The reaction was inhibited and the radical trapping product **13** was obtained in 82% NMR yield, which revealed that the transformation was likely to proceed through a radical pathway.


In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.20 mmol), *fac*-lr(ppy)₃ (2.6 mg, 4 µmol, 2 mol%), K₂HPO₄ (34.8 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of a solution of 2bromoacetonitrile **2m** (36.0 mg, 0.30 mmol, 1.5 equiv) and 4-methoxystyrene (53 µL 53.7 mg, 0.40 mmol, 2.0 equiv) in DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. The aimed cyclobutene **3am** together with **14** and **15** was detected by ¹H NMR and HRMS, indicating that the reaction proceeds via a radical pathway with *α*-selectivity.

9.2 Control Experiments


In glove box, to a flame-dried Schlenk tube was charged with the cyclobutene **4a** (18.8 mg, 0.10 mmol), 2-bromo-1-phenylethan-1-one **2a** (29.9 mg, 0.15 mmol, 1.5 equiv), *fac*-lr(ppy)₃ (1.3 mg, 2 µmol, 2 mol%), and K₂HPO₄ (17.4 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. The aimed product **3aa** was not detected, which demonstrated that the reaction was not proceeding via the cyclobutene intermediate **4a**.

In glove box, to a flame-dried Schlenk tube was charged with the cyclobutane **5aa** (38.7 mg, 0.10 mmol), *fac*-Ir(ppy)₃ (1.3 mg, 2 μ mol, 2 mol%), and K₂HPO₄ (17.4 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times)

followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature for 3 h. No desired product was observed.

9.3 Light On/Off Experiment

In glove box, to a flame-dried Schlenk tube was charged with the methyl-3phenylbicyclo[1.1.0]butane-1-carboxylate **1a** (37.6 mg, 0.20 mmol), 2-bromo-1phenylethan-1-one **2a** (59.7 mg, 0.30 mmol, 1.5 equiv), *fac*-Ir(ppy)₃ (2.6 mg, 4 µmol, 2 mol%), and K₂HPO₄ (34.8 mg, 0.20 mmol, 1.0 equiv). The tube was evacuated and backfilled with N₂ (3 times) followed by the addition of the DMA (2 mL). The reaction mixture was irradiating with 12 W blue LEDs at room temperature. The light was turned off at intervals of 20 minutes, and the reaction was allowed to stir in the dark for 30 minutes before the LED was turned back on. Five parallel experiments were carried out to fit each point. After the reaction was completed, the reaction mixture was poured into water and then extracted with ethyl acetate (3 × 10 mL). The combined organic phase was washed with brine (2 × 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The yield was calculated by NMR with CH₂Br₂ as an internal standard.

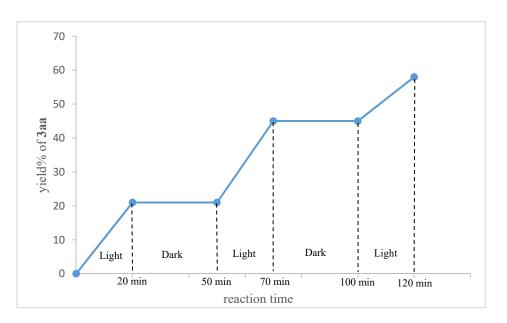


Figure S1. Light on/off experiment

9.4 Stern-Volmer Fluorescence Quenching Experiments

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of 0.1 mM *fac*-lr(ppy)₃ in degassed dry CH₃CN added the appropriate amount of a quencher in a screw-top quartz cuvette at room temperature. The solutions were irradiated at 395 nm and fluorescence was measured from 450 nm to 650 nm. Control experiments showed that the excited state *fac*-lr(ppy)₃ was mainly quenched by 2-bromo-1-phenylethan-1-one **2a**

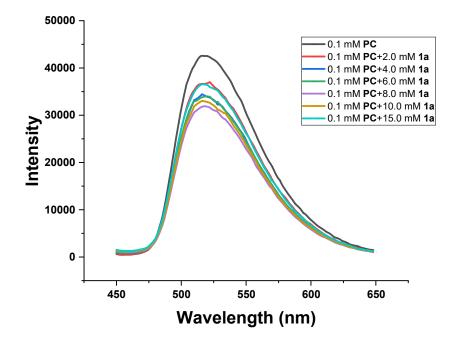


Figure S2. Fluorescence quenching experiments date with Ir(ppy)₃ and variable 1a

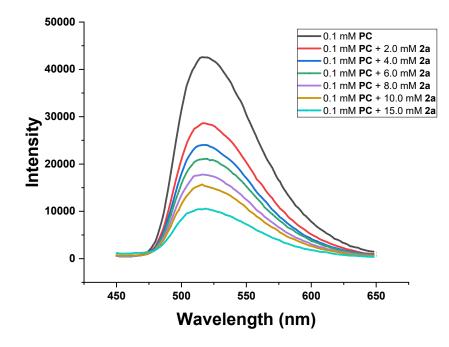


Figure S3. Fluorescence quenching experiments date with Ir(ppy)₃ and variable 2a

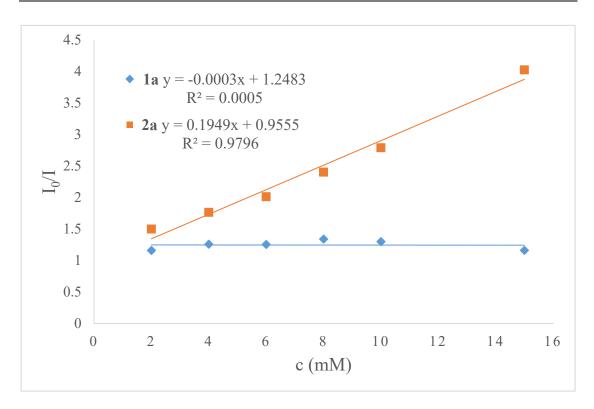



Figure S4. Stern-Volmer plots of Ir(ppy)₃ with different quenchers

10 Characterization Data of the Products

Methyl-1-(2-oxo-2-phenylethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3aa): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-phenylethan-1-one (2a, 59.7 mg, 0.3 mmol) at rt for 3 h according to the Condition A. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3aa as a colorless oil (41.1 mg, 67% yield).

3aa: **R**_f = 0.45 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.97 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.47-7.44 (m, 2H), 7.38-7.26 (m, 5H), 6.51 (s, 1H), 3.73 (d, *J* = 17.2 Hz, 1H), 3.71 (s, 3H), 3.58 (d, *J* = 17.6 Hz, 1H), 3.38 (d, *J* = 13.2 Hz, 1H), 2.74 (d, J = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 198.1, 175.0, 146.8, 136.5, 133.5, 133.2, 128.8, 128.5, 128.4, 128.3, 128.0, 124.8, 52.2, 47.4, 45.1, 38.6 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₁₈O₃Na: 329.1148; Found: 329.1145.

Methyl-1-(2-(4-methoxyphenyl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate

(**3ab**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-1-(4-methoxyphenyl)ethan-1-one (**2b**, 68.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ab** as a colorless oil (40.4 mg, 60% yield).

3ab: $\mathbf{R}_{f} = 0.4$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 2H), 7.38-7.26 (m, 5H), 6.93 (d, J = 8.8 Hz, 2H), 6.50 (s, 1H), 3.86 (s, 3H), 3.71 (s, 3H), 3.68 (d, J = 17.6 Hz, 1H), 3.53 (d, J = 17.6 Hz, 1H), 3.37 (d, J = 13.2 Hz, 1H), 2.73 (d, J = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 175.1, 163.6, 146.7, 133.6, 130.3, 129.7, 129.0, 128.42, 128.36, 124.8, 113.7, 55.4, 52.2, 47.5, 44.8, 38.6 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₀O₄Na: 359.1254; Found: 359.1258.

Methyl-1-(2-oxo-2-(*p*-tolyl)ethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3ac): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-(p-tolyl)ethan-1-one (2c, 63.9 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ac** as a white solid (48.7 mg, 76% yield).

3ac: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.87 (d, J = 8.0 Hz, 2H), 7.38-7.24 (m, 7H), 6.50 (s, 1H), 3.71 (s, 3H), 3.70 (d, J = 17.6 Hz, 1H), 3.56 (d, J = 17.6 Hz, 1H), 3.37 (d, J = 13.2 Hz, 1H), 2.73 (d, J = 13.2 Hz, 1H), 2.40 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 197.7, 175.0, 146.7, 144.0, 134.1, 133.6, 129.2, 128.9, 128.4, 128.3, 128.1, 124.8, 52.2, 47.4, 45.0, 38.6, 21.6 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₀O₃Na: 343.1305; Found: 343.1306.

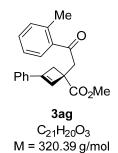


Methyl-1-(2-(4-bromophenyl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate

(**3ad**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-1-(4-bromophenyl)ethan-1-one (**2d**, 83.4 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ad** as a colorless oil (43.9 mg, 57% yield).

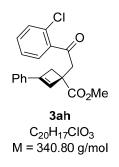
3ad: $\mathbf{R}_{f} = 0.50$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.38-7.28 (m, 5H), 6.49 (s, 1H), 3.71 (s, 3H), 3.69 (d, J = 18.8 Hz, 1H), 3.53 (d, J = 17.6 Hz, 1H), 3.37 (d, J = 13.2 Hz, 1H), 2.74 (d, J = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 197.1, 174.9, 146.9, 135.2,

133.5, 131.9, 129.5, 128.7, 128.5, 128.41, 128.39, 124.8, 52.3, 47.3, 45.0, 38.6 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₁₇BrO₃Na: 407.0253; Found: 407.0252.


Methyl-1-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-3-phenylcyclobut-2-ene-1carboxylate (3ae): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-(4-(trifluoromethyl)phenyl)ethan-1-one (2e, 80.1 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ae** as a colorless oil (41.2 mg, 55% yield).

3ae: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.08 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.39-7.29 (m, 5H), 6.51 (s, 1H), 3.74 (d, J = 18.4 Hz, 1H), 3.72 (s, 3H), 3.58 (d, J = 18.0 Hz, 1H), 3.39 (d, J = 13.2 Hz, 1H), 2.76 (d, J = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 197.3, 174.8, 147.1, 139.2, 134.5 (q, J = 32.5 Hz), 133.4, 128.6, 128.5, 128.42, 128.37, 125.7 (q, J = 3.6 Hz), 124.8, 123.5 (q, J = 271.0 Hz), 52.3, 47.4, 45.3, 38.7 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.12 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₁₇F₃O₃Na: 309.1022; Found: 309.1021.

Methyl-1-(2-(4-cyanophenyl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3af): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 4-(2-bromoacetyl)benzonitrile (**2f**, 67.2 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3af** as a colorless oil (36.5 mg, 55% yield).


3af: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.06 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.39-7.31 (m, 5H), 6.50 (s, 1H), 3.73 (d, J = 15.2 Hz, 1H), 3.71 (s, 3H), 3.56 (d, J = 18.0 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.76 (d, J = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 196.9, 174. 8, 147.1, 139.4, 133.3, 132.5, 128.6, 128.42, 128.41, 128.3, 124.8, 117.9, 116.4, 52.3, 47.3, 45.2, 38.6 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₁₇NO₃Na: 354.1101; Found: 354.1103.

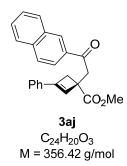
Methyl-1-(2-oxo-2-(o-tolyl)ethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3ag): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-(o-tolyl)ethan-1-one (2g, 63.9 mg, 0.3 mmol) at rt for 3 h according to the Condition A. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3ag as a colorless oil (40.4 mg, 63% yield).

3ag: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 7.6 Hz, 1H), 7.39-7.23 (m, 8H), 6.50 (s, 1H), 3.71 (s, 3H), 3.64 (d, J = 17.6 Hz, 1H), 3.50 (d, J = 17.6 Hz, 1H), 3.37 (d, J = 13.2 Hz, 1H), 2.74 (d, J = 13.2 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 175.0, 146.8, 138.3, 137.3, 133.6, 131.9, 131.4, 128.9, 128.6, 128.5, 128.4, 125.6, 124.8, 52.2, 47.8, 47.7, 38.7,

21.3 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₁H₂₀O₃Na: 343.1305; Found: 343.1303.

Methyl-1-(2-(2-chlorophenyl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate

(**3ah**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-1-(2-chlorophenyl)ethan-1-one (**2h**, 70.0 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ah** as a colorless oil (42.3 mg, 62% yield).


3ah: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹**H** NMR (400 MHz, CDCl₃): δ 7.59-7.57 (m, 1H), 7.41-7.31 (m, 8H), 6.50 (s, 1H), 3.72 (s, 3H), 3.68 (d, *J* = 18.0 Hz, 1H), 3.55 (d, *J* = 18.0 Hz, 1H), 3.36 (d, *J* = 13.2 Hz, 1H), 2.77 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C** NMR (100 MHz, CDCl₃): δ 201.0, 174.8, 147.0, 138.7, 133.5, 131.9, 131.1, 130.6, 129.3, 128.6, 128.5, 128.4, 126.9, 124.9, 52.3, 49.1, 47.8, 38.7 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₁₇ClO₃Na: 363.0758; Found: 363.0760.

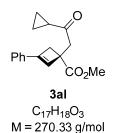
Methyl-1-(2-(2-chlorophenyl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3ai): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-(2-chlorophenyl)ethan-1-one (2i, 70.0 mg, 0.3 mmol) at rt

for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1 to 10/1) afforded **3ai** as a colorless oil (47.8 mg, 70% yield).

3ai: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.94 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.42-7.29 (m, 6H), 6.49 (s, 1H), 3.71 (s, 3H), 3.68 (d, *J* = 16.8 Hz, 1H), 3.53 (d, *J* = 18.0 Hz, 1H), 3.37 (d, *J* = 13.2 Hz, 1H), 2.74 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 196.9, 174.8, 147.0, 138.1, 134.9, 133.5, 133.1, 129.9, 128.6, 128.5, 128.4, 128.2, 126.1, 124.8, 52.2, 47.4, 45.1, 38.7 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₁₇ClO₃Na: 363.0758; Found: 363.0753.

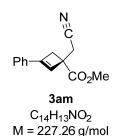
Methyl-1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate

(**3aj**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2j**, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3aj** as a white solid (64.9 mg, 91% yield).

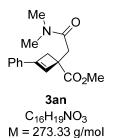

3aj: **R**_{*f*} = 0.40 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 8.4 Hz, 2H), 7.60-7.52 (m, 2H), 7.39-7.24 (m, 5H), 6.55 (s, 1H), 3.86 (d, *J* = 17.6 Hz, 1H), 3.72 (s, 3H), 3.71 (d, *J* = 17.6 Hz, 1H), 3.41 (d, *J* = 13.2 Hz, 1H), 2.79 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 198.0, 175.1, 146.8, 135.6, 133.9, 133.6, 132.4, 129.8, 129.5, 128.9, 128.5, 128.43, 128.38, 127.8, 126.8, 124.8, 123.7, 52.2, 47.6, 45.2,

38.7 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₄H₂₀O₃Na: 379.1305; Found: 379.1305.

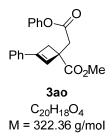
Methyl-1-(2-oxo-2-(thiophen-2-yl)ethyl)-3-phenylcyclobut-2-ene-1-carboxylate (**3ak**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-1-(thiophen-2-yl)ethan-1-one (**2k**, 61.5 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ak** as a colorless oil (35.6 mg, 57% yield).


3ak: **R**_{*f*} = 0.45 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.73 (d, *J* = 3.6 Hz, 1H), 7.63 (d, *J* = 4.8 Hz, 1H), 7.38-7.26 (m, 5H), 7.13 (t, *J* = 4.4 Hz, 1H), 6.50 (s, 1H), 3.70 (s, 3H), 3.66 (d, *J* = 17.2 Hz, 1H), 3.50 (d, *J* = 17.2 Hz, 1H), 3.35 (d, *J* = 13.2 Hz, 1H), 2.77 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 190.9, 174.8, 146.8, 143.8, 133.63, 133.55, 132.0, 128.8, 128.5, 128.4, 128.1, 124.8, 52.2, 47.5, 45.6, 38.7 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₁₆O₃SNa: 355.0712; Found: 355.0712.

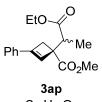
Methyl-1-(2-cyclopropyl-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3al): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromo-1-cyclopropylethan-1-one (2l, 48.9 mg, 0.3 mmol) at rt for 3 h


according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3al** as a colorless oil (23.8 mg, 44% yield).

3al: **R**_f = 0.5 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.36-7.32 (m, 4H), 7.30-7.26 (m, 1H), 6.42 (s, 1H), 3.69 (s, 3H), 3.31 (d, *J* = 18.0 Hz, 1H), 3.27 (d, *J* = 13.2 Hz, 1H), 3.14 (d, *J* = 17.2 Hz, 1H), 2.65 (d, *J* = 13.2 Hz, 1H), 1.97-1.91 (m, 1H), 1.07-1.03 (m, 2H), 0.91- 0.86 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 208.7, 174.9, 146.6, 133.6, 128.8, 128.4, 128.3, 124.8, 52.1, 49.3, 47.3, 38.6, 20.6, 10.7 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₇H₁₈O₃Na: 293.1148; Found: 293.1148.


Methyl-1-(cyanomethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3am): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 2-bromoacetonitrile (2m, 36.0 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3am as a white solid (27.7 mg, 61% yield).

3am: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.40-7.32 (m, 5H), 6.34 (s, 1H), 3.76 (s, 3H), 3.31 (d, *J* = 13.2 Hz, 1H), 2.99 (d, *J* = 16.4 Hz, 1H), 2.93 (d, *J* = 16.8 Hz, 1H), 2.84 (d, *J* = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 172.8, 148.7, 132.6, 129.1, 128.5, 126.0, 125.0, 117.3, 52.7, 47.1, 38.1, 24.2 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₄H₁₃O₂Na: 250.0838; Found: 250.0838.

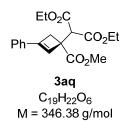


Methyl-1-(2-(dimethylamino)-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate (**3an**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 2-bromo-*N*,*N*-dimethylacetamide (**2n**, 49.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded **3an** as a colorless oil (24.6 mg, 45% yield).

3an: $\mathbf{R}_{f} = 0.25$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.32 (m, 4H), 7.30-7.26 (m, 1H), 6.50 (s, 1H), 3.72 (s, 3H), 3.29 (d, *J* = 13.2 Hz, 1H), 3.07 (d, *J* = 16.4 Hz, 1H), 3.00 (s, 3H), 2.95 (s, 3H), 2.88 (d, *J* = 16.0 Hz, 1H), 2.69 (d, *J* = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 170.7, 146.4, 133.7, 129.4, 128.3, 124.7, 52.2, 47.9, 40.2, 38.4, 37.0, 35.1 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₆H₁₉NO₃Na: 296.1257; Found: 296.1255.

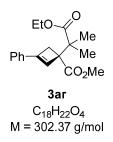
Methyl-1-(2-oxo-2-phenoxyethyl)-3-phenylcyclobut-2-ene-1-carboxylate (3ao): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and phenyl 2-bromoacetate (2o, 64.5 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3ao as a colorless oil (40.0 mg, 62% yield). **3ao**: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.30 (m, 7H), 7.24-7.19 (m, 1H), 7.11-7.08 (m, 2H), 6.50 (s, 1H), 3.73 (s, 3H), 3.34 (d, J = 13.2 Hz, 1H), 3.24 (d, J = 16.8 Hz, 1H), 3.10 (d, J = 16.4 Hz, 1H), 2.84 (d, J =13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 170.1, 150.5, 147.3, 133.3, 129.3, 128.7, 128.4, 128.2, 125.8, 124.9, 121.5, 52.3, 47.5, 40.7, 38.5 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₁₈O₄Na: 345.1097; Found: 345.1095.

 $C_{17}H_{20}O_4$ M = 288.34 g/mol


Methyl-1-(1-ethoxy-1-oxopropan-2-yl)-3-phenylcyclobut-2-ene-1-carboxylate

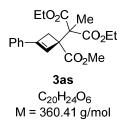
(**3ap**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and ethyl 2-bromopropanoate (**2p**, 54.3 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ap** as a colorless oil (31.1 mg, 54% yield, d.r. = 1.7:1). The diastereomer of **3ap** cannot be separated by chromatography. Additionally, the diastereomer of **3ap** exhibits slight chemical shifts, making it difficult to determine the major diastereomer. Treatment of **3ap** (dr = 1.7:1) with either conditions A or K₂HPO₄ did not result in any changes to the diastereomeric ratio of **3ap**. The low diastereomeric ratio of **3ap** may be attributed to inadequate selectivity in the elimination reaction facilitated by the base.

3ap: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). For major diastereomer: ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.29 (m, 5H), 6.38 (s, 1H), 4.20-4.09 (m, 2H), 3.70 (s, 3H), 3.14-3.07 (m, 2H), 2.94 (d, J = 13.2 Hz, 1H), 1.27-1.21 (m, 6H) ppm. For minor diastereomer: ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.29 (m, 5H), 6.33 (s, 1H), 4.20-4.09 (m, 2H), 3.70 (s, 3H), 3.27 (d, J = 13.2 Hz, 1H), 3.14-3.07 (m, 1H), 2.82 (d, J =13.2 Hz, 1H), 1.27-1.21 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 174.3, 174.21, 174.17, 147.8, 147.2, 133.3, 128.50, 128.45, 128.3, 127.8, 127.1, 124.83,

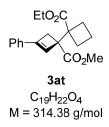

S28

124.80, 60.5, 60.4, 52.8, 52.3, 52.0, 43.6, 43.3, 36.5, 34.9, 14.2, 12.6, 12.3 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₇H₂₀O₄Na: 311.1254; Found: 311.1252.

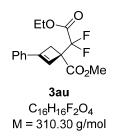
Diethyl-2-(1-(methoxycarbonyl)-3-phenylcyclobut-2-en-1-yl)malonate (3aq): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and diethyl 2-bromomalonate (2q, 71.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3aq as a colorless oil (43.6 mg, 63% yield).


3aq: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.32-7.29 (m, 1H), 6.37 (s, 1H), 4.21-4.18 (m, 4H), 4.10 (s, 1H), 3.72 (s, 3H), 3.30 (d, *J* = 13.6 Hz, 1H), 3.11 (d, *J* = 13.6 Hz, 1H), 1.25-1.20 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 167.9, 167.8, 148.1, 133.1, 128.7, 128.3, 126.7, 124.9, 61.43, 61.39, 55.9, 52.4, 49.8, 36.6, 14.00, 13.99 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₉H₂₂O₆Na: 369.1309; Found: 369.1302.

Methyl-1-(1-ethoxy-2-methyl-1-oxopropan-2-yl)-3-phenylcyclobut-2-ene-1-


carboxylate (**3ar**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and ethyl 2-bromo-2-methylpropanoate (**2r**, 58.5 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ar** as a colorless oil (29.6 mg, 49% yield).

3ar: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.34 (m, 5H), 7.32-7.29 (m, 1H), 6.39 (s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.66 (s, 3H), 3.05 (s, 2H), 1.28 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.27 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 174.3, 147.6, 133.4, 128.42, 128.37, 127.7, 124.8, 60.5, 56.6, 51.9, 45.0, 34.9, 21.9, 21.5, 14.2 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₂₂O₄Na: 325.1410; Found: 325.1406.


Diethyl-2-(1-(methoxycarbonyl)-3-phenylcyclobut-2-en-1-yl)-2-methylmalonate (**3as**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and diethyl 2-bromo-2-methylmalonate (**2s**, 75.9 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3as** as a colorless oil (68.5 mg, 95% yield).

3as: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.30 (m, 5H), 6.38 (s, 1H), 4.25-4.16 (m, 4H), 3.69 (s, 3H), 3.14 (d, *J* = 13.6 Hz, 1H), 3.04 (d, *J* = 13.6 Hz, 1H), 1.64 (s, 3H), 1.28-1.22 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 173.8, 171.2, 171.1, 147.9, 133.1, 128.5, 128.3, 127.5, 124.8, 61.35, 61.31, 57.4, 54.1, 52.1, 35.4, 17.8, 13.91, 13.88 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₂₄O₆Na: 383.1465; Found: 383.1462.

1'-ethyl-1-methyl-3-phenyl-[1,1'-bi(cyclobutan)]-2-ene-1,1'-dicarboxylate (**3at**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and ethyl-1-bromocyclobutane-1-carboxylate (**2t**, 62.1 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3at** as a colorless oil (56.6 mg, 90% yield).

3at: $\mathbf{R}_f = 0.35$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 7.2 Hz, 2H), 7.36 (t, J = 7.2 Hz, 2H), 7.32-7.29 (m, 1H), 6.42 (s, 1H), 4.19 (q, J = 4.8 Hz, 2H), 3.64 (s, 3H), 3.17 (d, J = 13.6 Hz, 1H), 2.82 (d, J = 13.2 Hz, 1H), 2.54-2.48 (m, 1H), 2.39-2.32 (m, 1H), 2.26-2.19 (m, 2H), 2.14-2.02 (m, 1H), 1.83-1.72 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 176.3, 174.3, 149.2, 133.3, 128.5, 128.4, 126.0, 124.9, 60.5, 54.6, 51.8, 50.1, 35.1, 27.1, 26.6, 15.9, 14.1 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₉H₂₂O₄Na: 337.1410; Found: 337.1407.

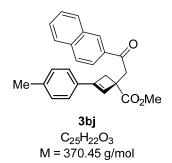
Methyl-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenylcyclobut-2-ene-1carboxylate (3au): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1carboxylate (1a, 37.6 mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2u, 60.9 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3au as a colorless oil (38.5 mg, 62% yield).

3au: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.34 (m, 5H), 6.31 (s, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 3.74 (s, 3H), 3.29 (d, *J* = 13.2 Hz, 1H), 3.20 (d, *J* = 13.6 Hz, 1H), 1.38 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 170.3 (t, *J* = 4.5 Hz), 163.5 (t, *J* = 32.3 Hz), 150.9, 132.5, 129.2, 128.5,

125.1, 122.1 (t, J = 3.6 Hz), 113.8 (t, J = 252.2 Hz), 62.8, 54.4 (t, J = 26.2 Hz), 52.6, 34.2 (t, J = 4.3 Hz), 13.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.90 (d, J = 267.7 Hz), -113.12 (d, J = 267.7 Hz) ppm. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₆H₁₆F₂O₄Na: 333.0909; Found: 333,0908.

Methyl-1-(5-nitro-1,3-dioxan-5-yl)-3-phenylcyclobut-2-ene-1-carboxylate (3av): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (1a, 37.6 mg, 0.2 mmol) and 5-bromo-5-nitro-1,3-dioxane (2v, 63.6 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3av** as a colorless oil (43.4 mg, 68% yield).

3av: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.38-7.36 (m, 5H), 6.25 (s, 1H), 5.02-4.96 (m, 2H), 4.89 (dd, *J* = 12.8 and 2.0 Hz, 1H), 4.66 (d, *J* = 6.0 Hz, 1H), 4.10 (d, *J* = 13.2 Hz, 1H), 4.06 (d, *J* = 13.2 Hz, 1H), 3.72 (s, 3H), 3.27 (d, *J* = 14.0 Hz, 1H), 3.21 (d, *J* = 14.0 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 170.3, 149.0, 131.9, 129.6, 128.6, 125.1, 123.5, 93.4, 87.9, 68.0, 67.9, 53.5, 52.9, 35.8 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₆H₁₇NO₆Na: 342.0948; Found: 342.0948.



 $C_{19}H_{13}F_5O_2$ M = 368.30 g/mol

Methyl-1-((perfluorophenyl)methyl)-3-phenylcyclobut-2-ene-1-carboxylate

(**3aw**): Prepared from methyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1a**, 37.6 mg, 0.2 mmol) and 1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene (**2w**, 78.3 mg, 0.3 mmol) at rt for 3 h according to the **Condition B**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (50/1) afforded **3aw** as a colorless oil (66.3 mg, 90% yield).

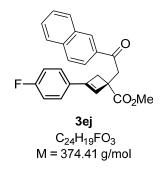
3aw: $\mathbf{R}_{f} = 0.60$ (petroleum ether/EtOAc = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.24 (m, 5H), 6.30 (s, 1H), 3.72 (s, 3H), 3.37-3.26 (m, 2H), 3.21 (d, *J* = 13.2 Hz, 1H), 2.73 (d, *J* = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 147.0, 146.7 (m), 144.3 (m), 138.7 (m), 133.1, 128.7, 128.4, 127.1, 124.9, 111.1(m), 52.3, 50.6, 37.5, 28.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -142.07 (dd, *J* = 22.5, 7.8 Hz), -155.97 (t, *J* = 20.9 Hz), -162.46 (td, *J* = 22.6, 8.2 Hz). **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₉H₁₃F₅O₂Na: 391.0728; Found: 391.0726.

Methyl-1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-(p-tolyl)cyclobut-2-ene-1-

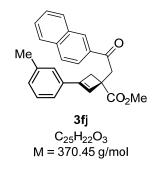
carboxylate (**3bj**): Prepared from methyl methyl 3-(*p*-tolyl)bicyclo[1.1.0]butane-1carboxylate (**1b**, 40.4 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2j**, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3bj** as a white solid (54.1 mg, 73% yield).

3bj: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.04-8.02 (m, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.89-7.85 (m, 2H), 7.61-7.52 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 3.72 (d, *J* = 18.0 Hz, 1H), 3.72 (s, 3H), 3.40 (d, *J* = 13.2 Hz, 1H), 2.77 (d, *J* = 13.2 Hz, 1H), 2.34 (s, 3H)

ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 198.1, 175.2, 146.8, 138.4, 135.6, 133.9, 132.4, 130.9, 129.8, 129.5, 129.0, 128.44, 128.40, 127.7, 126.7, 124.8, 123.7, 52.2, 47.5, 45.3, 38.7, 21.4 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₃O₃Na: 393.1461; Found: 393.1459.


Methyl-1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-(4-(trifluoromethoxy)phenyl)cyclobut-2ene-1-carboxylate (3cj): Prepared from methyl 3-(4-(trifluoromethoxy)phenyl)bicyclo[1.1.0]butane-1-carboxylate (1c, 54.4 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (2j, 74.7 mg, 0.3 mmol) at rt for 3 h according to the Condition A. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3cj as a white solid (49.3 mg, 56% yield).

3cj: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 8.8 Hz, 2H), 7.62-7.53 (m, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.56 (s, 1H), 3.87 (d, J = 17.6 Hz, 1H), 3.73-3.69 (s, 4H), 3.40 (d, J = 13.2 Hz, 1H), 2.79 (d, J = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 174.7, 149.1 (q, J = 1.7 Hz), 135.7, 133.9, 132.5, 132.4, 130.0, 129.8, 129.5, 128.53, 128.48, 127.8, 126.8, 126.4, 123.7, 120.9, 120.4 (q, J = 255.8 Hz), 52.3, 47.6, 45.0, 38.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.82 (s) ppm. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₅H₁₉F₃O₄Na: 463.1128; Found: 463.1119.


Methyl-3-(4-bromophenyl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)cyclobut-2-ene-1carboxylate (3dj): Prepared from methyl 3-(4-bromophenyl)bicyclo[1.1.0]butane-1carboxylate (1d, 53.4 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (2j, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3dj as a white solid (69.7 mg, 80% yield).

3dj: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 8.04-8.01 (m, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.89-7.85 (m, 2H), 7.61-7.52 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.56 (s, 1H), 3.87 (d, J = 17.6 Hz, 1H), 3.72 (s, 3H), 3.70 (d, J = 16.4 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 174.7, 145.7, 135.6, 133.7, 132.4, 132.4, 131.5, 129.8, 129.5, 128.5, 128.4, 127.7, 126.8, 126.4, 123.6, 122.4, 52.3, 47.6, 45.0, 38.6 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₄H₁₉BrO₃Na: 457.0410; Found: 457.0407.

Methyl-3-(4-fluorophenyl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)cyclobut-2-ene-1carboxylate (3ej): Prepared from methyl 3-(4-fluorophenyl)bicyclo[1.1.0]butane-1carboxylate (1e, 41.2 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (2j, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ej** as a white solid (52.4 mg, 70% yield).

3ej: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.03 (dd, J = 8.8 and 1.6 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 8.8 Hz, 2H), 7.62-7.53 (m, 2H), 7.35 (dd, J = 8.8 and 5.2 Hz, 2H), 7.03 (t, J = 8.8 Hz, 2H), 6.49 (s, 1H), 3.87 (d, J = 17.6 Hz, 1H), 3.73 (s, 3H), 3.72 (d, J = 17.6 Hz, 1H), 3.39 (d, J = 13.2 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 175.0, 162.8 (d, J = 246.8 Hz), 145.8, 135.6, 133.8, 132.4, 130.0 (d, J = 3.3 Hz), 129.8, 129.5, 128.51, 128.45, 128.4 (d, J = 2.4 Hz), 127.8, 126.8 (d, J = 4.7 Hz), 126.7, 123.6, 115.4 (d, J = 21.7 Hz), 52.3, 47.4, 45.1, 38.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.27 (s) ppm. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₂₄H₁₉FO₃Na: 397.1210; Found: 397.1205.

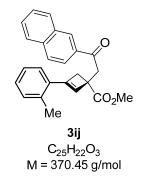
Methyl-1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-(*m***-tolyl)cyclobut-2-ene-1-carboxylate** (**3fj**): Prepared from methyl 3-(*m***-tolyl**)bicyclo[1.1.0]butane-1-carboxylate (**1f**, 40.4 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2j**, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3fj** as a white solid (51.9 mg, 70% yield).

3fj: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 8.4 Hz, 2H), 7.60-7.51 (m, 2H), 7.25-7.17 (m, 3H), 7.10 (d, J = 6.8 Hz, 1H), 6.52 (s, 1H), 3.85 (d, J = 17.6 Hz, 1H), 3.72 (s, 3H), 3.70 (d, J = 17.6 Hz, 1H), 3.40 (d, J = 13.2 Hz, 1H), 2.78 (d, J = 13.2 Hz, 1H), 2.34 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 175.1,

147.0, 138.0, 135.6, 133.9, 133.6, 132.5, 129.8, 129.5, 129.3, 128.7, 128.44, 128.41,
128.3, 127.7, 126.7, 125.5, 123.7, 122.0, 52.2, 47.6, 45.2, 38.7, 21.3 ppm. HRMS
(ESI) *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₂O₃Na: 393.1461; Found: 393.1458.

Methyl-3-(3-chlorophenyl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)cyclobut-2-ene-1carboxylate (3gj): Prepared from methyl 3-(3-chlorophenyl)bicyclo[1.1.0]butane-1carboxylate (1g, 44.6 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (2j, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3gj as a white solid (46.9 mg, 60% yield).

3gj: $\mathbf{R}_f = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 8.02 (dd, J = 8.4 and 1.6 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 8.4 Hz, 2H), 7.61-7.52 (m, 2H), 7.34 (s, 1H), 7.26-7.24 (m, 3H), 6.59 (s, 1H), 3.88 (d, J = 17.6 Hz, 1H), 3.73 (s, 3H), 3.70 (d, J = 17.6 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 174.7, 145.5, 135.6, 135.4, 134.5, 133.8, 132.4, 130.7, 129.8, 129.7, 129.5, 128.5, 128.5, 128.4, 127.7, 126.8, 125.0, 123.6, 123.0, 52.3, 47.7, 45.0, 38.7 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₄H₁₉ClO₃Na: 413.0915; Found: 413.0909.



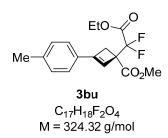
 $C_{24}H_{19}FO_3$ M = 374.41 g/mol

Methyl-3-(3-fluorophenyl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)cyclobut-2-ene-1-

carboxylate (**3hj**): Prepared from methyl 3-(3-fluorophenyl)bicyclo[1.1.0]butane-1carboxylate (**1h**, 41.2 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2j**, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3hj** as a white solid (52.4 mg, 70% yield).

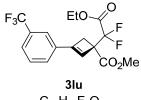
3hj: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹**H** NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 8.8 Hz, 2H), 7.61-7.52 (m, 2H), 7.33-7.28 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.05 (d, J = 9.6 Hz, 1H), 6.98 (t, J = 8.4 Hz, 1H), 6.58 (s, 1H), 3.88 (d, J = 17.6 Hz, 1H), 3.73 (s, 3H), 3.71 (d, J = 17.2 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.78 (d, J = 13.2 Hz, 1H) ppm. ¹³**C** NMR (100 MHz, CDCl₃): δ 197.9, 174.7, 162.9 (d, J = 244.7 Hz), 145.7 (d, J = 2.5 Hz), 135.8 (d, J = 7.7 Hz), 135.6, 133.8, 132.4, 130.5, 130.0 (d, J = 8.2 Hz), 129.8, 129.5, 128.5, 128.4, 127.7, 123.6, 120.6 (d, J = 2.7 Hz), 120.6, 115.3 (d, J = 21.2 Hz), 111.6 (d, J = 21.5 Hz), 52.3, 47.6, 45.0, 38.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.12 (s) ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₄H₁₉FO₃Na: 397.1210; Found: 397.1205.

Methyl-1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-(o-tolyl)cyclobut-2-ene-1-carboxylate (**3ij**): Prepared from methyl 3-(o-tolyl)bicyclo[1.1.0]butane-1-carboxylate (**1b**, 40.4 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2j**, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ij** as a colorless oil (37.0 mg, 50% yield). **3ij**: $\mathbf{R}_{f} = 0.35$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 9.2 Hz, 2H), 7.61-7.52 (m, 2H), 7.25-7.17 (m, 4H), 6.44 (s, 1H), 3.89 (d, J = 17.6 Hz, 1H), 3.74 (d, J = 17.6 Hz, 1H), 3.73 (s, 3H), 3.50 (d, J = 13.2 Hz, 1H), 2.87 (d, J = 13.2 Hz, 1H), 2.43 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 175.1, 146.7, 137.3, 135.6, 134.0, 132.5, 132.5, 132.3, 130.7, 129.8, 129.5, 128.5, 128.4, 128.3, 127.8, 126.8, 126.7, 125.8, 123.7, 52.2, 47.9, 45.4, 40.2, 21.7 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₂O₃Na: 393.1461; Found: 393.1459.


Methyl-3-(naphthalen-2-yl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)cyclobut-2-ene-1carboxylate (**3**jj): Prepared from methyl 3-(naphthalen-2-yl)bicyclo[1.1.0]butane-1carboxylate (**1**j, 47.6 mg, 0.2 mmol) and 2-bromo-1-(naphthalen-2-yl)ethan-1-one (**2**j, 74.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3**jj as a white solid (66.7 mg, 82% yield).

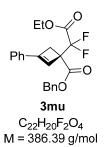
3j: **R**_f = 0.40 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.04 (d, *J* = 7.2 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.88-7.77 (m, 6H), 7.70 (s, 1H), 7.59-7.51 (m, 3H), 7.48-7.44 (m, 2H), 6.65 (s, 1H), 3.90 (d, *J* = 17.6 Hz, 1H), 3.74 (d, *J* = 17.2 Hz, 1H), 3.74 (s, 3H), 3.52 (d, *J* = 12.8 Hz, 1H), 2.89 (d, *J* = 12.8 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 198.0, 175.0, 146.9, 135.6, 133.9, 133.3, 133.2, 132.5, 131.1, 129.8, 129.6, 129.5, 128.44, 128.42, 128.2, 128.1, 127.7, 126.7, 126.4, 126.3, 124.1, 123.7, 122.6, 52.2, 47.7, 45.2, 38.8 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₈H₂₂O₃Na: 429.1461; Found: 429.1460.

Diethyl 2-(3-(4-bromothiophen-2-yl)-1-(methoxycarbonyl)cyclobut-2-en-1-yl)-2methylmalonate (3ks): Prepared from methyl-3-(4-bromothiophen-2yl)bicyclo[1.1.0]butane-1-carboxylate (1k, 54.6 mg, 0.2 mmol) and diethyl 2-bromo-2methylmalonate (2s, 75.9 mg, 0.3 mmol) at rt for 3 h according to the Condition A. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3ks as a yellow oil (63.3 mg, 71% yield).


3ks: **R**_f = 0.40 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.17 (s, 1H), 6.92 (s, 1H), 6.19 (s, 1H), 4.24-4.16 (m, 4H), 3.70 (s, 3H), 3.10 (d, *J* = 13.2 Hz, 1H), 3.03 (d, *J* = 17.6 Hz, 1H), 1.62 (s, 3H), 1.25 (q, *J* = 7.6 Hz, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 173.2, 171.0, 170.9, 140.4, 138.1, 127.8, 127.5, 123.2, 110.2, 61.51, 61.46, 57.4, 55.2, 52.3, 36.6, 17.9, 14.0, 13.9 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₈H₂₁BrO₆SNa: 467.0134; Found: 467.0126.

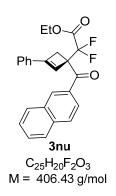
Methyl-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-(p-tolyl)cyclobut-2-ene-1-carboxylate

(**3bu**): Prepared from methyl 3-(*p*-tolyl)bicyclo[1.1.0]butane-1-carboxylate(**1b**, 40.4 mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2u**, 60.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3bu** as a yellow oil (33.7 mg, 52% yield).


3bu: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.30 (d, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 6.23 (s, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 3.73 (s, 3H), 3.26 (d, J = 13.2 Hz, 1H), 3.17 (d, J = 13.6 Hz, 1H), 2.36 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H) ppm. ¹³**C** NMR (100 MHz, CDCl₃): δ 170.4 (t, J = 4.5 Hz), 163.5 (t, J = 32.4 Hz), 150.9, 139.4, 129.9, 129.1, 125.1, 121.0 (t, J = 3.6 Hz), 113.9 (t, J = 252.0 Hz), 62.8, 54.4 (t, J = 26.1 Hz), 52.6, 34.2 (t, J = 4.1 Hz), 21.4, 13.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.95 (d, J = 267.7 Hz), -113.15 (d, J = 267.7 Hz) ppm. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₇H₁₈F₂O₄Na: 347.1065; Found: 347.1063.

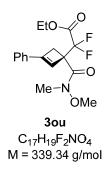
 $C_{17}H_{15}F_5O_4$ M = 378.30 g/mol

Methyl-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-(3-(trifluoromethyl)phenyl)cyclobut-2ene-1-carboxylate (3lu): Prepared from methyl 3-(3-(trifluoromethyl)phenyl)bicyclo[1.1.0]butane-1-carboxylate (1l, 51.2 mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2u, 60.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3lu** as a yellow oil (41.6 mg, 55% yield).


3lu: **R**_f = 0.30 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.64 (s, 1H), 7.61-7.57 (m, 2H), 7.53-7.49 (m, 1H), 6.43 (s, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 3.32 (d, *J* = 13.2 Hz, 1H), 3.22 (d, *J* = 13.6 Hz, 1H), 1.39 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 169.9 (t, *J* = 4.4 Hz), 163.3 (t, *J* = 32.1 Hz), 149.5, 133.2, 131.1 (q, *J* = 32.3 Hz), 129.1, 128.3, 125.7 (q, *J* = 3.7 Hz), 124.4 (t, *J* = 3.4 Hz), 123.9 (q, *J* = 271.0 Hz), 122.0 (q, *J* = 3.6 Hz), 113.7 (t, *J* = 252.8 Hz), 63.0, 54.6 (t, *J* = 26.3 Hz), 52.7, 34.2 (t, *J* = 4.2 Hz), 13.9 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.90 (s), -111.90 (d, *J* = 268.8 Hz), -113.17 (d, *J* = 268.8 Hz) ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₇H₁₅F₅O₄Na: 401.0783; Found: 401.0777.

Benzyl-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenylcyclobut-2-ene-1-carboxylate

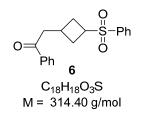
(**3mu**): Prepared from benzyl 3-phenylbicyclo[1.1.0]butane-1-carboxylate (**1m**, 52.9 mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2u**, 60.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3mu** as a yellow oil (31.7 mg, 41% yield).


3mu: **R**_{*f*} = 0.30 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.41-7.32 (m, 10H), 6.32 (s, 1H), 5.18 (dd, *J* = 15.6 and 12.4 Hz, 2H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.29 (d, *J* = 13.2 Hz, 2H), 3.21 (d, *J* = 13.6 Hz, 2H), 1.25 (t, *J* = 6.8 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 169.5 (t, *J* = 4.5 Hz), 163.4 (t, *J* = 32.5 Hz), 151.0, 135.1, 132.6, 129.2, 128.6, 128.5, 128.4, 128.2, 125.2, 122.18 (t, *J* = 4.5 Hz), 113.8 (t, *J* = 269.0 Hz), 67.35, 62.80, 54.6 (t, *J* = 26.0 Hz), 34.2 (t, *J* = 4.1 Hz), 13.8 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.43 (d, *J* = 268.1 Hz), -112.68 (d, *J* = 268.1 Hz) ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₇H₂₀F₂O₄Na: 409.1222; Found: 409.1220.

Ethyl-2-(1-(2-naphthoyl)-3-phenylcyclobut-2-en-1-yl)-2,2-difluoroacetate(3nu):Prepared from naphthalen-2-yl(3-phenylbicyclo[1.1.0]butan-1-yl)methanone (1n, 56.9)

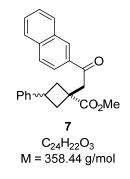
mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2u**, 60.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3nu** as a yellow oil (28.4 mg, 51% yield).

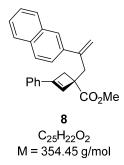
3nu: **R**_{*f*} = 0.40 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.54 (s, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.90-7.83 (m, 3H), 7.60-7.50 (m, 2H), 7.42-7.34 (m, 5H), 6.64 (s, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.62 (d, *J* = 13.6 Hz, 1H), 3.37 (d, *J* = 13.8 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 197.6 (t, *J* = 1.8 Hz), 163.4 (t, *J* = 31.9 Hz), 150.7, 135.3, 133.7, 132.5, 132.2, 130.8, 129.7, 129.4, 128.7, 128.6, 128.2, 127.7, 126.8, 125.2, 124.6, 124.1 (t, *J* = 3.8 Hz), 114.8 (t, *J* = 253.6 Hz), 63.0, 60.2 (t, *J* = 24.5 Hz), 36.1 (t, *J* = 4.3 Hz), 13.9 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -109.34 (d, *J* = 256.4 Hz), -110.57 (d, *J* = 256.4 Hz) ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₀F₂O₃Na: 429.1273; Found: 429.1267.



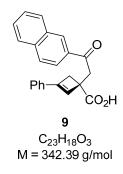
Ethyl-2,2-difluoro-2-(1-(methoxy(methyl)carbamoyl)-3-phenylcyclobut-2-en-1-yl)acetate (3ou): Prepared from *N*-methoxy-*N*-methyl-3-phenylbicyclo[1.1.0]butane-1carboxamide(1o, 43.4 mg, 0.2 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2u, 60.8 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded **3ou** as a yellow oil (46.2 mg, 68% yield).

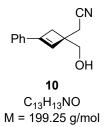
3ou: $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.32 (m, 5H), 6.37 (s, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.68 (s, 3H), 3.42 (d, J = 13.6 Hz, 1H), 3.24 (d, J = 13.2 Hz, 1H), 3.22 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.8 (t, J = 2.5 Hz), 163.5 (t, J = 32.2 Hz), 149.4, 132.7, 129.0, 128.5, 125.0, 122.3 (t, J = 3.7 Hz), 114.6 (t, J = 253.6 Hz), 62.8, 61.6, 55.3 (t, J =

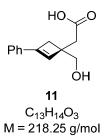

Methyl 3-hydroxy-1-(2-oxo-2-phenylethyl)-3-phenylcyclobutane-1-carboxylate (5aa): yellow oil. \mathbf{R}_f = 0.25 (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.51-7.46 (m, 4H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 4.01 (s, 2H), 3.67 (s, 3H), 3.25 (d, *J* = 14.2 Hz, 2H), 2.41 (d, *J* = 14.2 Hz, 2H), 2.12 (broad s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 176.3, 146.2, 136.7, 133.2, 128.6, 128.5, 128.1, 127.4, 124.7, 73.9, 52.2, 46.6, 44.4, 37.9 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₀H₂₀O₄Na: 347.1249; Found: 347.1254.

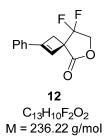

1-phenyl-2-(3-(phenylsulfonyl)cyclobutyl)ethan-1-one (**6**): Prepared from 1-(phenylsulfonyl)bicyclo[1.1.0]butane (**1t**, 38.9 mg, 0.2 mmol) and 2-bromo-1phenylethan-1-one (**2a**, 59.7 mg, 0.3 mmol) at rt for 3 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **6** as a yellow oil (26.4 mg, 42% combined isolated yield).

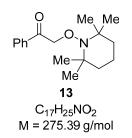
For the major diastereomer: $\mathbf{R}_{f} = 0.45$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.6 Hz, 2H), 7.86 (d, J = 7.6 Hz, 2H), 7.64 (t, J = 7.2 Hz, 1H), 7.59-7.53 (m, 3H), 7.47 (t, J = 7.2 Hz, 2H), 3.80-3.72 (m, 1H), 3.22 (d, J = 6.8 Hz, 2H), 2.88-2.80 (m, 1H), 2.52-2.45 (m, 2H), 2.34-2.27 (m, 2H) ppm. ¹³C NMR (150


For the minor diastereomer: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.6 Hz, 4H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.59-7.52 (m, 3H), 7.45 (t, *J* = 7.2 Hz, 2H), 3.88-3.80 (m, 1H), 3.15 (d, *J* = 7.2 Hz, 2H), 3.07-2.96 (m, 1H), 2.86-2.79 (m, 2H), 2.10-2.03 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 198.3, 137.8, 136.5, 133.6, 133.3, 129.2, 128.7, 128.3, 127.9, 54.8, 44.1, 28.0, 26.8 ppm. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd. for C₁₈H₁₉O₃S: 315.1049; Found: 315.1032.


Methyl 1-(2-(naphthalen-2-yl)-2-oxoethyl)-3-phenylcyclobutane-1-carboxylate (7): yellow oil. \mathbf{R}_{f} = 0.45 (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.92-7.87 (m, 2H), 7.63-7.55 (m, 2H), 7.34-7.28 (m, 4H), 7.22-7.19 (m, 1H), 3.89 (s, 2H), 3.71 (s, 3H), 3.64-3.59 (m, 1H), 2.87 (dd, *J* = 11.6 and 10.4 Hz, 2H), 2.48 (dd, *J* = 10.8 and 10.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 176.0, 144.5, 135.7, 134.1, 132.5, 129.7, 129.5, 128.52, 128.48, 128.4, 127.8, 126.8, 126.6, 126.3, 123.7, 52.1, 44.9, 40.3, 37.3, 33.8 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₄H₂₂O₃Na: 381.1461; Found: 381.1463.


Methyl-1-(2-(naphthalen-2-yl)allyl)-3-phenylcyclobut-2-ene-1-carboxylate (8): colorless oil. \mathbf{R}_{f} = 0.45 (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.81-7.76 (m, 4H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.46-7.44 (m, 2H), 7.31-7.24 (m, 5H), 6.16 (s, 1H), 5.42 (s, 1H), 5.21 (s, 1H), 3.47 (s, 3H), 3.30 (d, *J* = 14.4 Hz, 1H), 3.18 (d, *J* = 12.8 Hz, 1H), 3.16 (d, *J* = 14.4 Hz, 1H), 2.77 (d, *J* = 12.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.9, 145.80, 145.76, 139.0, 133.7, 133.2, 132.8, 129.1, 128.29, 128.26, 128.1, 127.7, 127.5, 126.1, 125.8, 125.1, 125.0, 124.8, 115.5, 51.7, 50.8, 42.2, 38.5 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₅H₂₂O₂Na: 377.1512; Found: 377.1511.

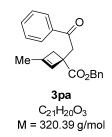

1-(2-oxopropyl)-3-phenylcyclobut-2-ene-1-carboxylic acid (**9**): white solid. **R**_{*f*} = 0.3 (petroleum ether/EtOAc = 1/2). ¹**H NMR** (400 MHz, CD₃COCD₃): δ 8.71 (s, 1H), 8.12-8.06 (m, 2H), 8.01-7.97 (m, 2H), 7.67-7.59 (m, 2H), 7.46 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.32 (d, J = 7.2 Hz, 1H), 6.64 (s, 1H), 3.90 (d, J = 17.6 Hz, 1H), 3.81 (d, J = 18.0 Hz, 1H), 3.40 (d, J = 13.2 Hz, 1H), 2.84 (d, J = 13.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CD₃COCD₃): δ 197.8, 175.0, 146.8, 135.7, 134.4, 134.2, 132.8, 129.9, 129.8, 129.6, 128.5, 128.4, 128.3, 127.7, 126.8, 124.8, 123.6, 47.5, 44.7, 38.5 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₃H₁₈O₃Na: 365.1148; Found: 365.1145.


2-(1-(hydroxymethyl)-3-phenylcyclobut-2-en-1-yl)acetonitrile (**10**): colorless oil. **R**_f = 0.3 (petroleum ether/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.38-7.29 (m, 5H), 6.38 (s, 1H), 3.80 (dd, *J* = 13.6 and10.8 Hz, 2H), 2.76-2.64 (m, 4H), 1.85 (broad s, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 146.8, 133.4, 128.7, 128.4, 128.1, 124.8, 118.2, 67.2, 44.9, 36.7, 23.2 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₃H₁₃NONa: 222.0889; Found:222.0888.

2-(1-(hydroxymethyl)-3-phenylcyclobut-2-en-1-yl)acetic acid (**11**): white solid. **R**_{*f*} = 0.3 (petroleum ether/EtOAc = 1/3). ¹**H NMR** (400 MHz, CD₃COCD₃): δ 7.40 (d, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 6.54 (s, 1H), 3.73 (s, 2H), 2.93 (broad s, 2 H), 2.76 (d, *J* = 15.2 Hz, 1H), 2.66 (d, *J* = 3.6 Hz, 2H), 2.63 (d, *J* = 15.2 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CD₃COCD₃): δ 172.8, 144.9, 134.8, 131.8, 128.4, 127.9, 124.6, 67.2, 45.4, 38.5, 37.1 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₃H₁₄O₃Na: 241.0835; Found: 241.0831.

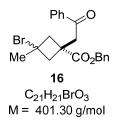
8,8-difluoro-2-phenyl-6-oxaspiro[3.4]oct-1-en-5-one (**12**): colorless oil. **R**_f = 0.5 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.46-7.36 (m, 5H), 6.20 (s, 1H), 4.57-4.43 (m, 2H), 3.26 (d, *J* = 12.8 Hz, 1H), 3.06 (d, *J* = 12.8 Hz, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 173.1 (dd, *J* = 13.3 and 4.8 Hz), 151.6, 132.1, 129.6, 128.6, 125.2, 123.0 (dd, *J* = 252.2 and 247.1 Hz), 119.1 (dd, *J* = 7.1 and 1.6 Hz), 70.5 (t, *J* = 32.4 Hz), 50.2 (t, *J* = 25.8 Hz), 33.7 (dd, *J* = 6.7 and 3.0 Hz) ppm. ¹⁹**F**

1-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethan-1-one (**13**): colorless oil. **R**_f = 0.6 (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 6.92 (d, *J* = 7.6 Hz, 2H), 6.54 (t, *J* = 7.2 Hz, 1H), 6.43 (t, *J* = 7.6 Hz, 2H), 4.09 (s, 2H), 0.58-0.53 (m, 1H), 0.47-0.43 (m, 4H), 0.33-0.30 (m, 1H), 0.16 (s, 12H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 195.7, 135.4, 133.2, 128.5, 127.9, 81.3, 60.1, 39.7, 32.8, 20.2, 17.0 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₇H₂₅NO₂Na: 298.1778; Found: 298.1772.



4-(4-methoxyphenyl)but-3-enenitrile (14): colorless oil.

(*Z*)-**14**: $\mathbf{R}_{f} = 0.60$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.16 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.67 (d, *J* = 11.2 Hz, 1H), 5.63-5.57 (m, 1H), 3.82 (s, 3H), 3.29 (d, *J* = 7.2 Hz, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 159.1, 134.1, 129.8, 127.6, 118.2, 117.3, 114.0, 55.3, 17.1 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₂NO: 174.0913; Found: 174.0911.

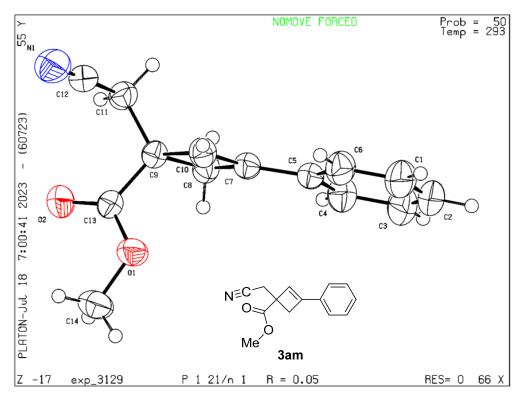

(*E*)-14: $\mathbf{R}_{f} = 0.55$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 16.0 Hz, 1H), 5.94-5.87 (m, 1H), 3.81 (s, 3H), 3.26 (d, *J* = 5.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 159.6,

134.0, 128.4, 127.7, 117.5, 114.3, 114.1, 55.3, 20.7 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₂NO: 174.0913; Found: 174.0910.

Benzyl-3-methyl-1-(2-oxo-2-phenylethyl)cyclobut-2-ene-1-carboxylate (3pa): Prepared from benzyl-3-methylbicyclo[1.1.0]butane-1-carboxylate (1p, 40.5 mg, 0.2 mmol) and 2-bromo-1-phenylethan-1-one (2a, 59.7 mg, 0.3 mmol) at rt for 10 h according to the Condition A. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded 3pa as a colorless oil (1.9 mg, 3% yield). The desired 3pa containing unknown by-products that cannot be separated using flash chromatography on silica gel.

3pa: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹**H NMR** (600 MHz, CDCl₃): δ 7.94 (d, J = 7.8 Hz, 2H), 7.60-7.55 (m, 1H), 7.51-7.44 (m, 2H), 7.37-7.27 (m, 5H), 5.96 (s, 1H), 5.13 (d, J = 6.0 Hz, 2H), 3.62 (d, J = 18.0 Hz, 1H), 3.51 (d, J = 17.4 Hz, 1H), 3.01 (d, J = 13.2 Hz, 1H), 2.35 (d, J = 13.2 Hz, 1H), 1.77 (s, 3H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 198.3, 174.8, 147.9, 136.6, 136.3, 133.1, 131.0, 128.5, 128.4, 128.0, 127.8, 127.7, 66.3, 48.0, 45.0, 42.4, 16.8 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₁O₃: 321.1485; Found: 321.1483.

Benzyl 3-bromo-3-methyl-1-(2-oxo-2-phenylethyl)cyclobutane-1-carboxylate (16): Prepared from benzyl 3-methylbicyclo[1.1.0]butane-1-carboxylate (1p, 40.5 mg, 0.2 mmol) and 2-bromo-1-phenylethan-1-one (2a, 59.7 mg, 0.3 mmol) at rt for 10 h according to the **Condition A**. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded **16** as a colorless oil (48.2 mg, 60% combined isolated yield).


For the major diastereomer: $\mathbf{R}_{f} = 0.40$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 6.8 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.32-7.21 (m, 5H), 5.12 (s, 2H), 3.93 (s, 2H), 3.15 (d, *J* = 14.4 Hz, 2H), 2.82 (d, *J* = 14.4 Hz, 2H), 1.96 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 197.4, 175.0, 136.3, 135.7, 133.4, 128.6, 128.5, 128.1, 128.02, 127.99, 66.9, 56.7, 49.2, 47.5, 38.8, 34.5 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₂BrO₃: 401.0747; Found: 401.0729.

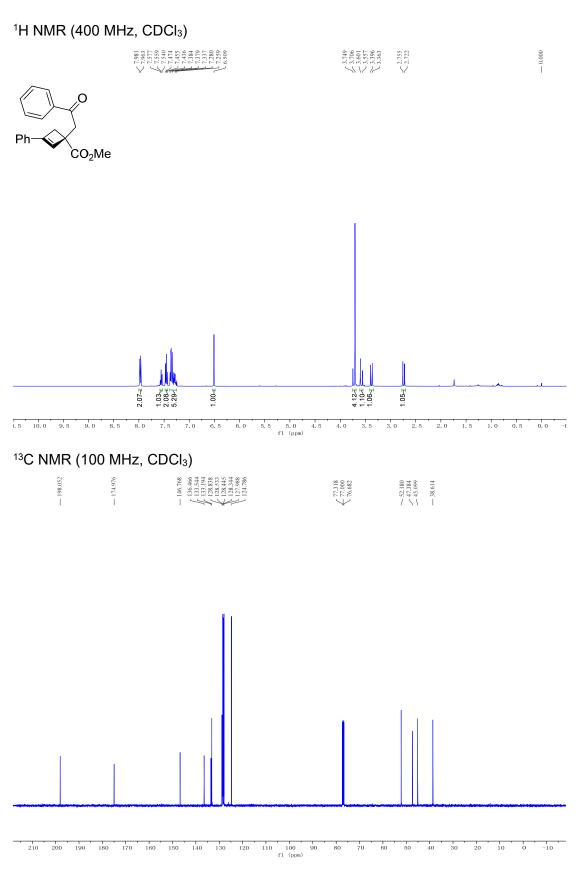
For the minor diastereomer: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.37-7.29 (m, 5H), 5.18 (s, 2H), 3.55 (s, 2H), 3.54 (d, J = 14.4 Hz, 2H), 2.55 (d, J = 14.4 Hz, 2H), 1.99 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 196.9, 174.6, 136.2, 135.8, 133.5, 128.6, 128.4, 128.03, 127.96, 127.9, 67.0, 54.3, 49.2, 46.6, 39.0, 35.9 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₁H₂₂BrO₃: 401.0747; Found: 401.0727.

11 Crystal Structure of 3am

Note: The thermal ellipsoids are 50% probability level. The crystals are grown by slow solvent (CH_2Cl_2/n -Hexane) evaporation at room temperature. CCDC number of **3am** is 2287475.

Datablock exp_3129 - ellipsoid plot

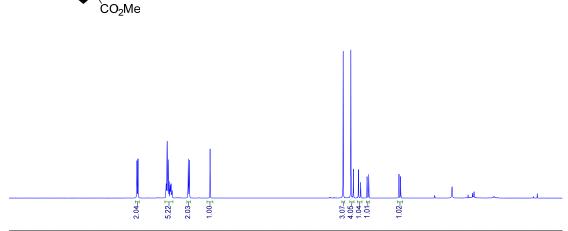
Datablock: exp_3129


Bond precision:	C-C = 0.0028 A	Wavelength=1.54184				
Cell:	a=10.84837(19) alpha=90	b=8.49086(12) beta=111.998(2)				
Temperature:	293 K					
	Calculated	Reported				
Volume	1229.50(4)	1229.50(4)				
Space group	P 21/n	P 1 21/n 1	L			
Hall group	-P 2yn	-P 2yn				
Moiety formula	C14 H13 N O2	C14 H13 N	02			
Sum formula	C14 H13 N O2	C14 H13 N	02			
Mr	227.25	227.25				
Dx,g cm-3	1.228	1.228				
Z	4	4				
Mu (mm-1)	0.666	0.666				
F000	480.0	480.0				
F000'	481.46					
h,k,lmax	12,10,17	12,10,17				
Nref	2160	2160				
Tmin, Tmax	0.852,0.936	0.640,1.00	00			
Tmin'	0.819					
Correction metho AbsCorr = MULTI-	-	mits: Tmin=0.640 Tma	ax=1.000			
Data completenes	ss= 1.000	Theta(max) = 66.595	i			
R(reflections)=	0.0481(2012)		wR2(reflections)= 0.1439(2160)			
S = 1.079	Npar= 15	5				

12 References

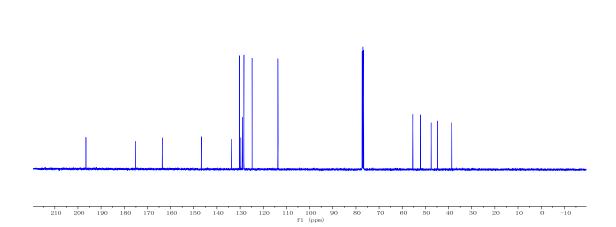
[1] (a) Dhake, K.; Woelk, K. J.; Becica, J.; Un, A.; Jenny, S. E.; Leitch, D. C.; Angew. Chem. Int. Ed. 2022, 61, e202204719. (b) Livingstone, K.; Siebold, K.; Meyer, S.; Heras, V. M.; Daniliuc, C. G.; Gilmour, R. ACS Catal. 2022, 12, 14507. (c) Guo, R.; Chang, Y.-C.; Herter, L.; Salome, C.; Braley, S. E.; Fessard, T. C.; Brown, M. K. J. Am. Chem. Soc. 2022, 144, 7988; d) Sharland, J. C.; Davies, H. M. L. Org. Lett. 2023, 25, 5214.

13 NMR Spectra

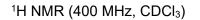

¹H and ¹³C NMR Spectra for Compound 3aa:

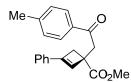
¹H and ¹³C NMR Spectra for Compound 3ab:

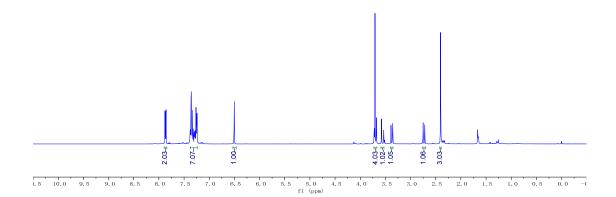
¹H NMR (400 MHz, CDCl₃)



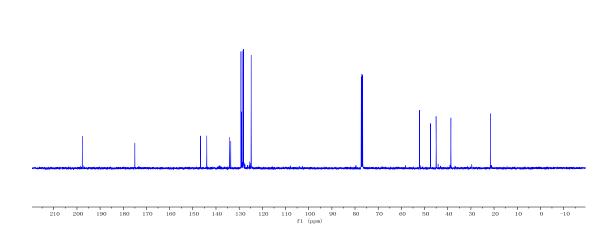
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)


¹³C NMR (100 MHz, CDCl₃)

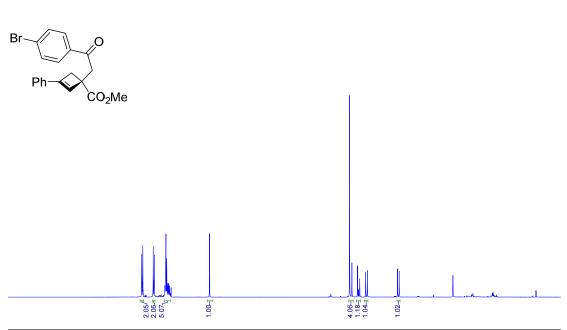

196.568	175.094	163.556	146.686	133.649 130.284 129.696 129.029 128.355 128.355 124.806	113.690	77.317 77.000 76.682	55.420 52.158 47.516 44.810 38.638
						\checkmark	22115



¹H and ¹³C NMR Spectra for Compound 3ac:

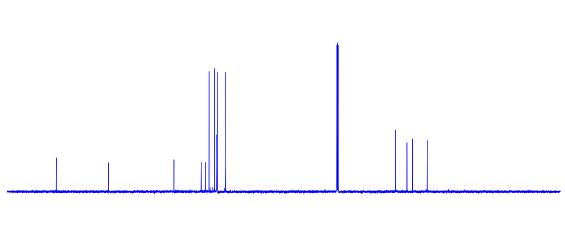


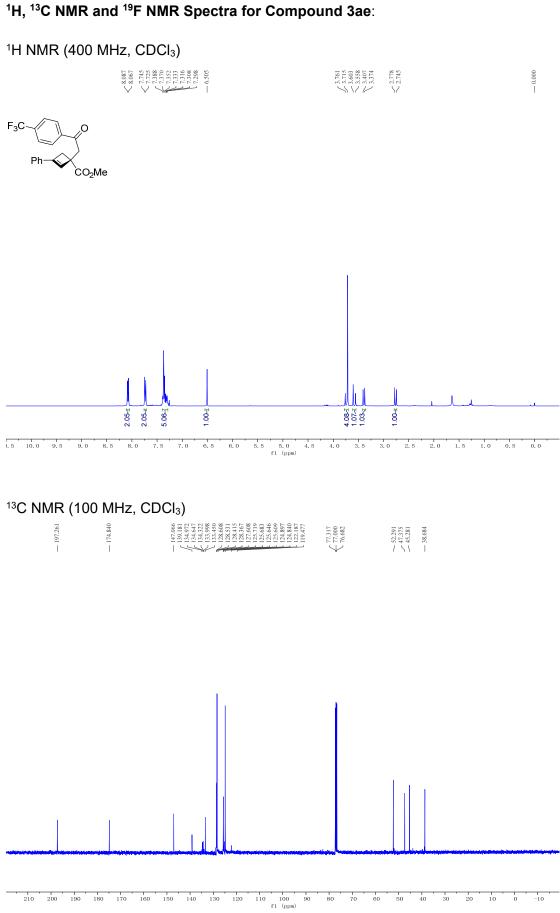
¹³C NMR (100 MHz, CDCl₃)

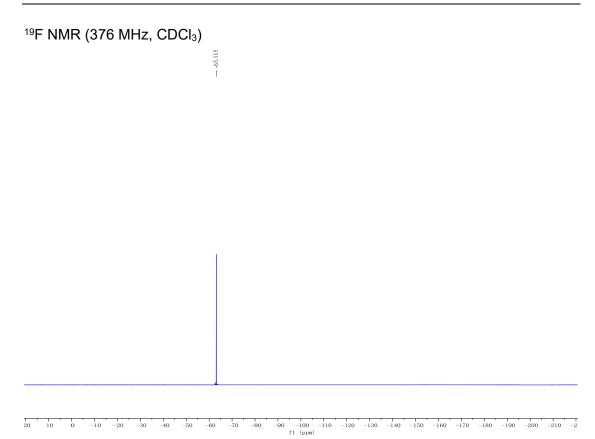

197.669	175.031	146.705 143.981 143.605 133.599 129.207 128.417 128.417 128.3114 124.789	77.318 777.000 76.682	52.158 47.439 45.008 38.623	21.604
I.	I		\checkmark	7.53 1	I

¹H and ¹³C NMR Spectra for Compound 3ad:

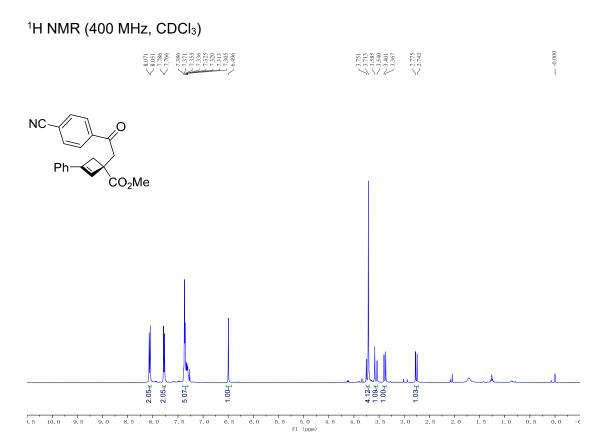
¹H NMR (400 MHz, CDCl₃)

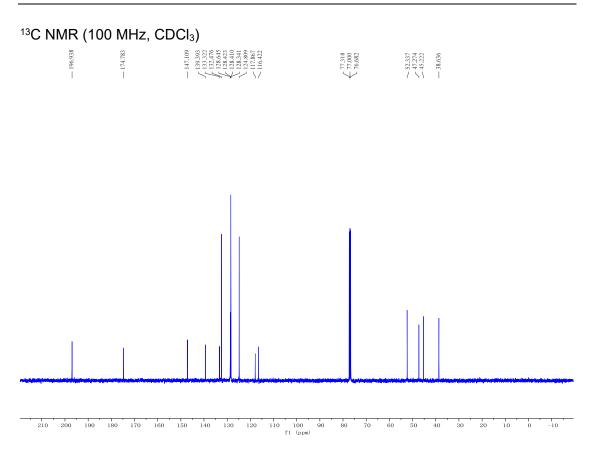


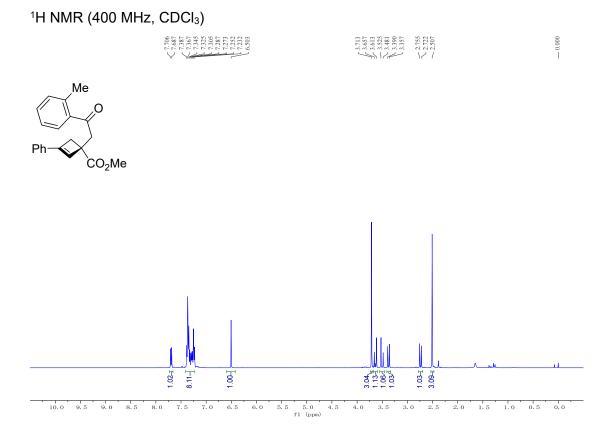

L 5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(fl (ppm)

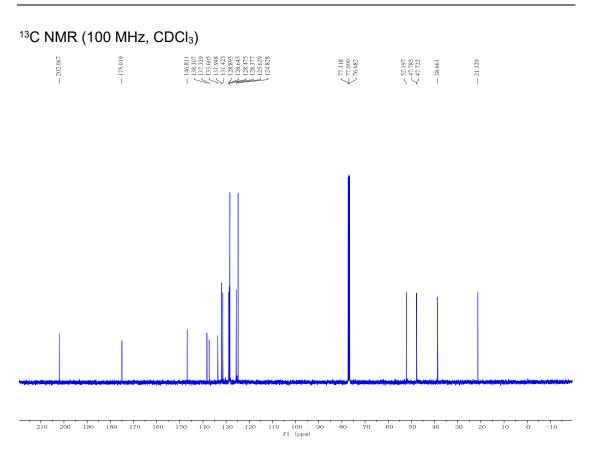

¹³C NMR (100 MHz, CDCl₃)

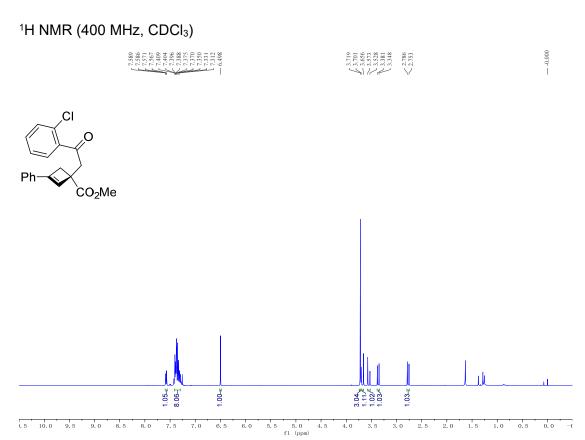
. 197.129	146.913 135.229 133.478 133.478 133.5476 133.5476 128.657 128.657 128.657 128.657 128.657 128.657 128.657 128.657 128.657	77.318 77.000 76.682	52.270 47.345 45.008
I I		\checkmark	7 2 7 1

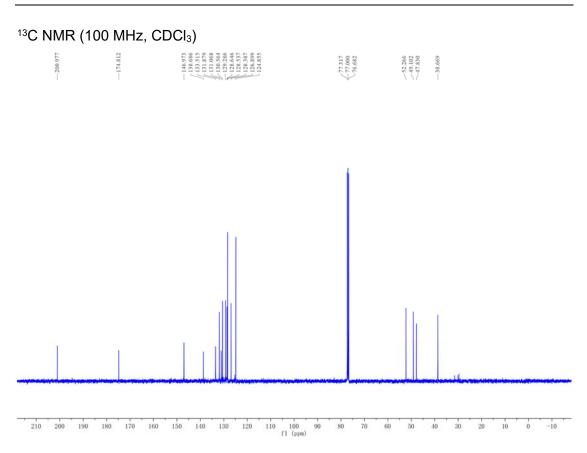


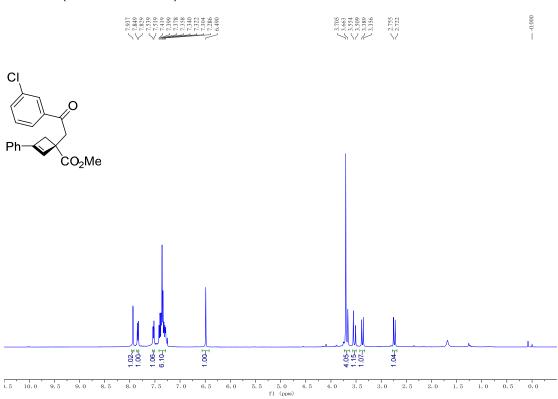

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

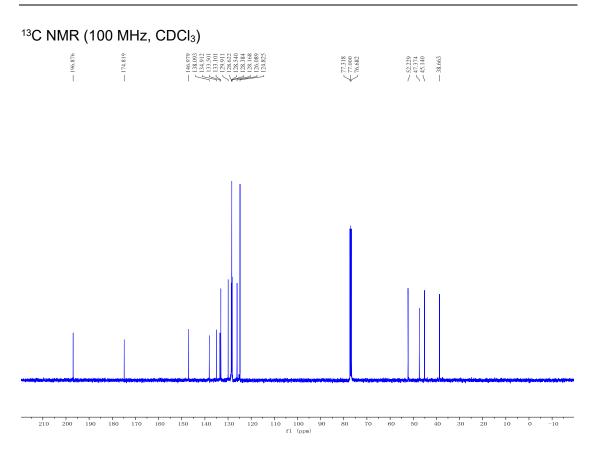



¹H and ¹³C NMR Spectra for Compound 3af:

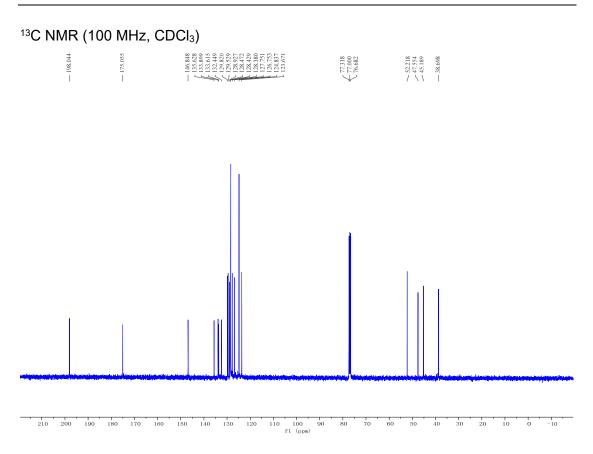



¹H and ¹³C NMR Spectra for Compound 3ag:

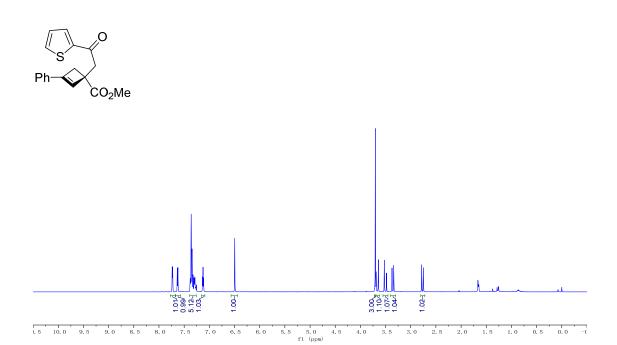

¹H and ¹³C NMR Spectra for Compound 3ah:

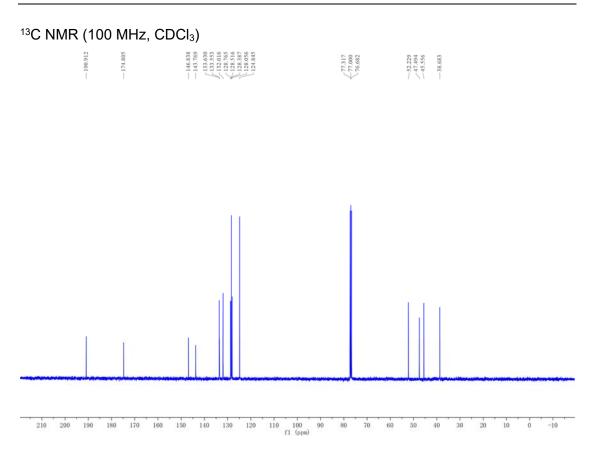


¹H and ¹³C NMR Spectra for Compound 3ai:


¹H NMR (400 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 3aj:

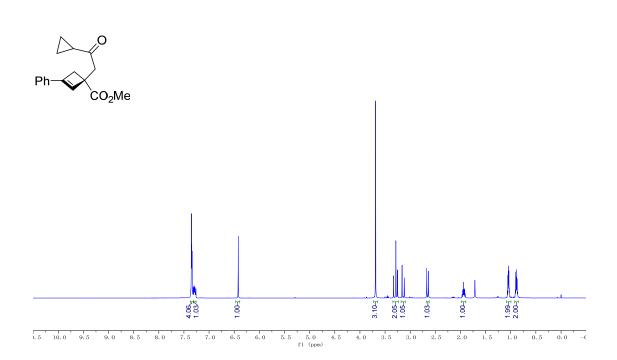


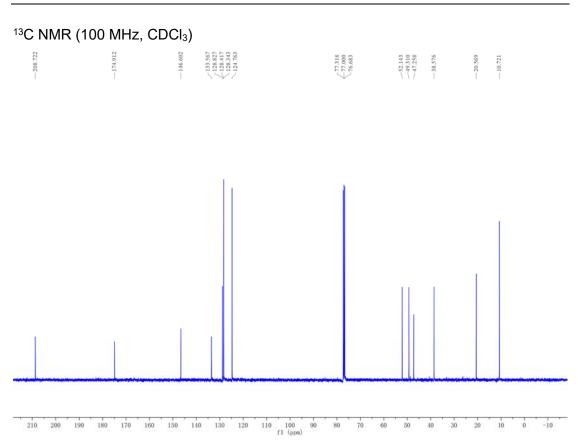


¹H and ¹³C NMR Spectra for Compound 3ak:

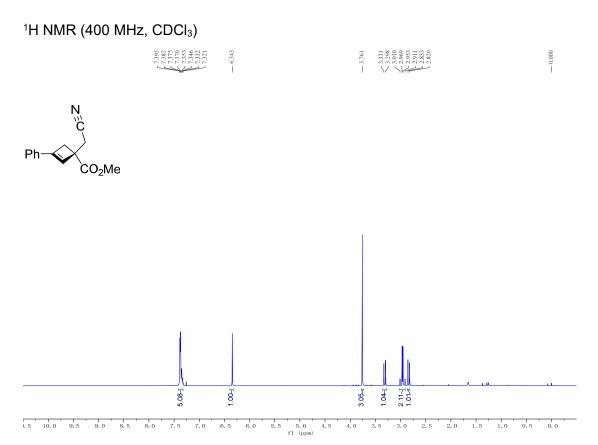
¹H NMR (400 MHz, CDCl₃)

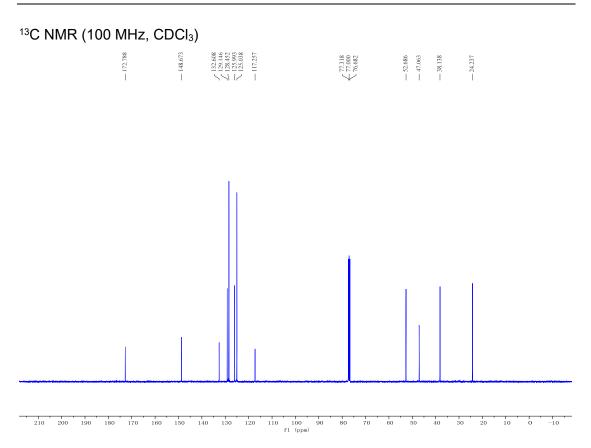
77737 7778 7778 7779 7779 7737 77328 77328 77328 77328 77328 77328 77328 73328 73495 7345 7345 7345 7345 7345 7345 7345 734	$\sum_{\substack{3.643\\3.643}} \frac{3.703}{3.643}$	-0.000
---	--	--------

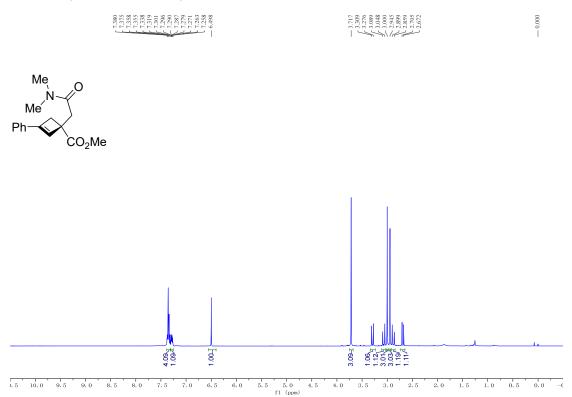


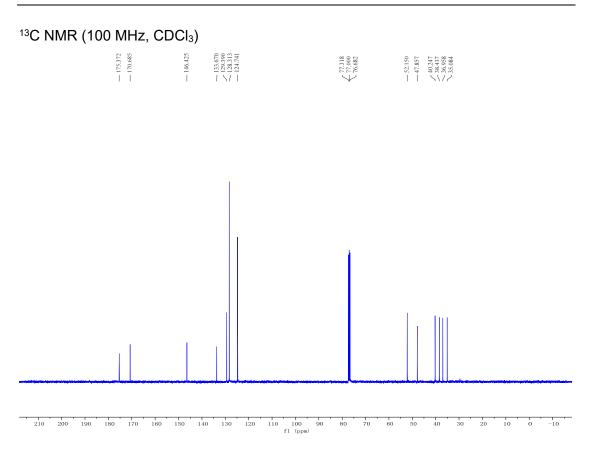

¹H and ¹³C NMR Spectra for Compound 3al:

¹H NMR (400 MHz, CDCl₃)


36	35	34	33	32	31	5	30	3	3	28	5	7.262	4
												_	

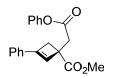

$\begin{array}{c} 3.688 \\ 3.3330 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3328 \\ 3.3318 \\ 1.996 \\ 1.9$

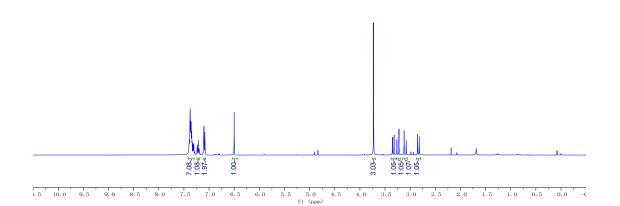

¹H and ¹³C NMR Spectra for Compound 3am:

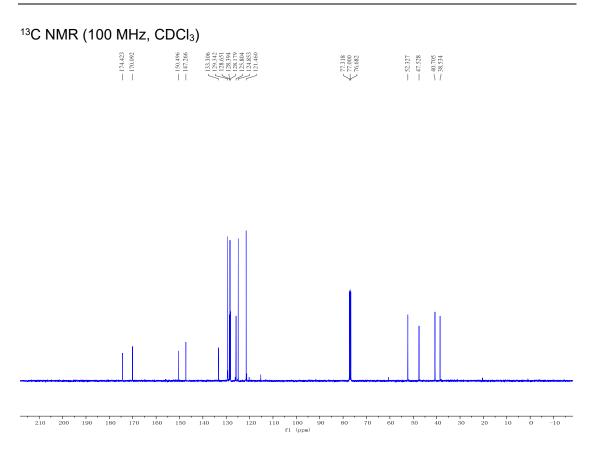


¹H and ¹³C NMR Spectra for Compound 3an:

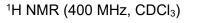
¹H NMR (400 MHz, CDCl₃)

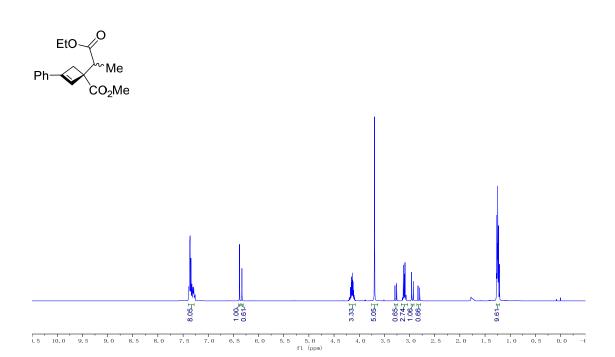


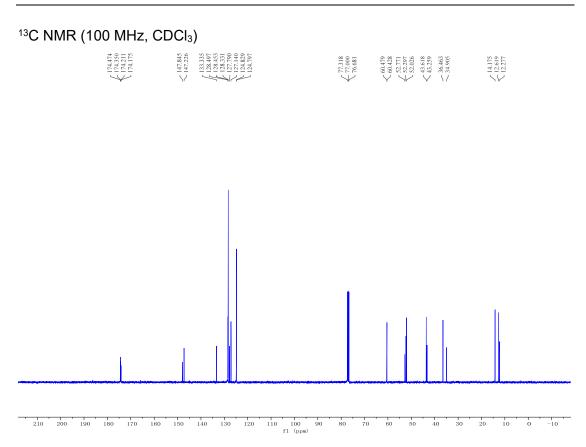



¹H and ¹³C NMR Spectra for Compound 3ao:

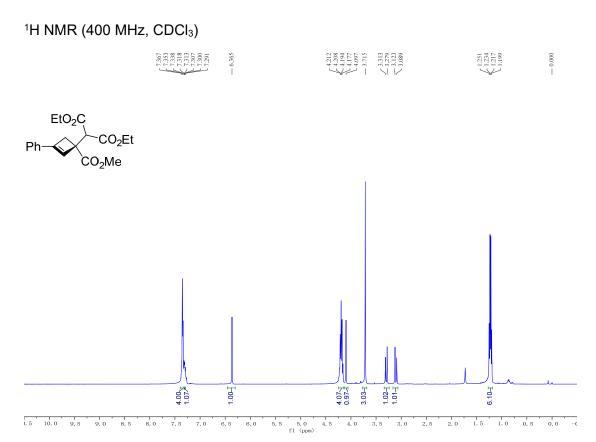
¹H NMR (400 MHz, CDCl₃)

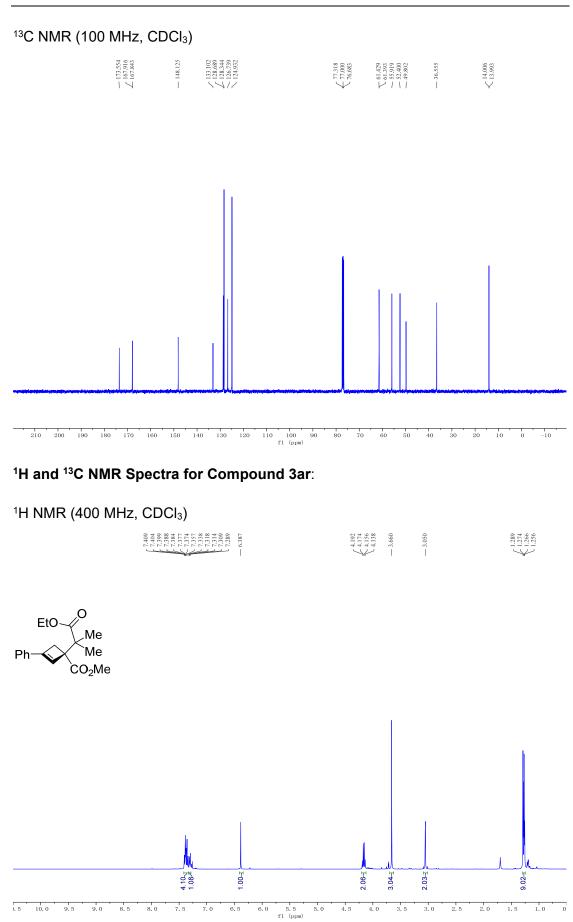

7 7400 7 7555 7 755 7 75	3.3728 3.3528 3.3265 3.3265 3.3275 3.3275 2.819 2.819 2.819	- 0.000
--	---	---------

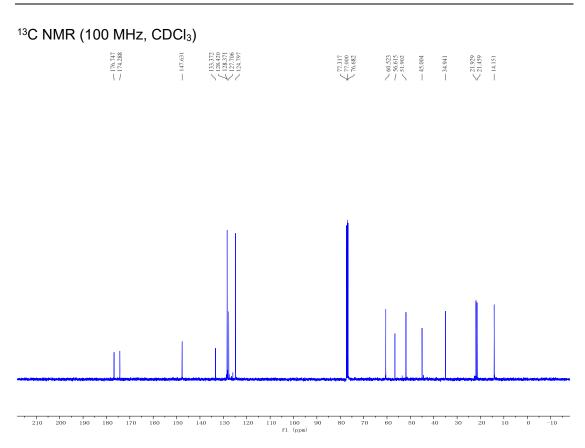


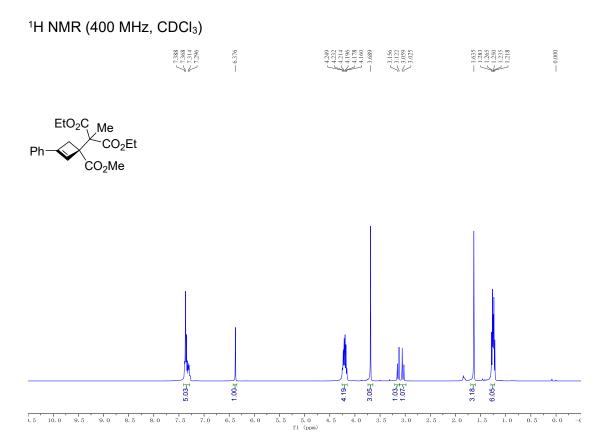


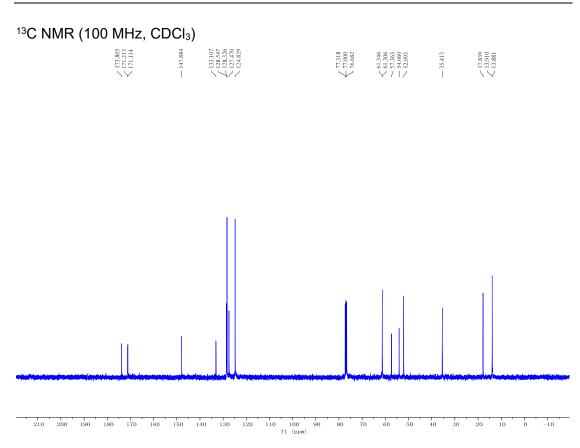
¹H and ¹³C NMR Spectra for Compound 3ap:

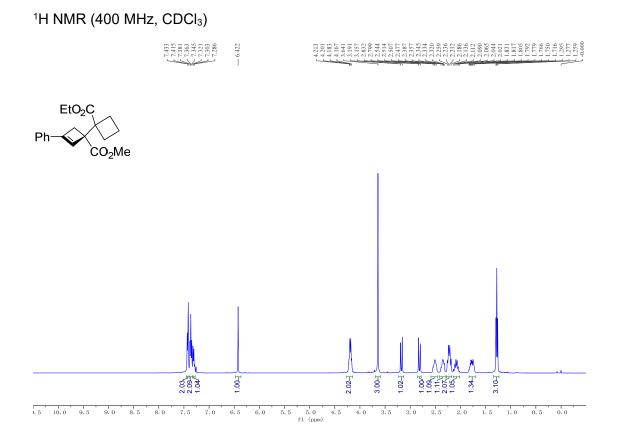


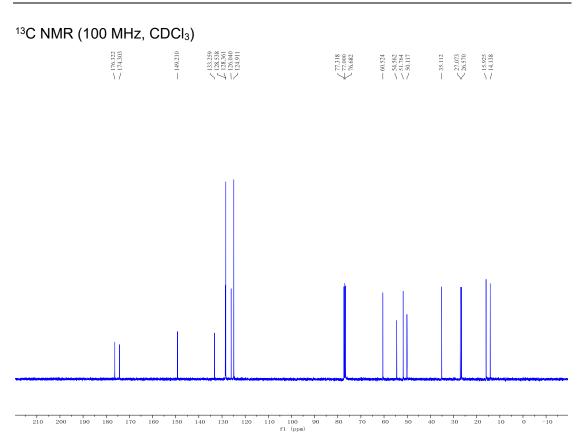


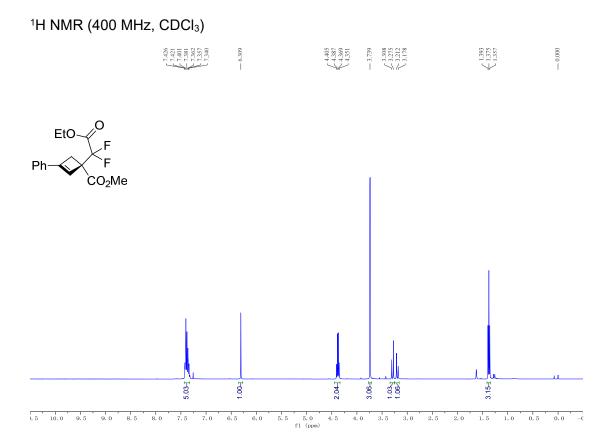


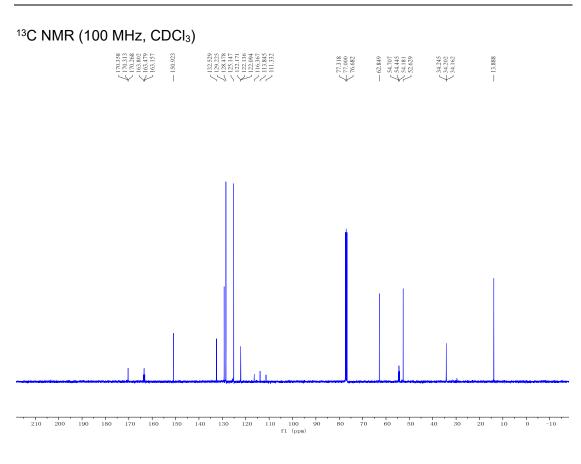

¹H and ¹³C NMR Spectra for Compound 3aq:



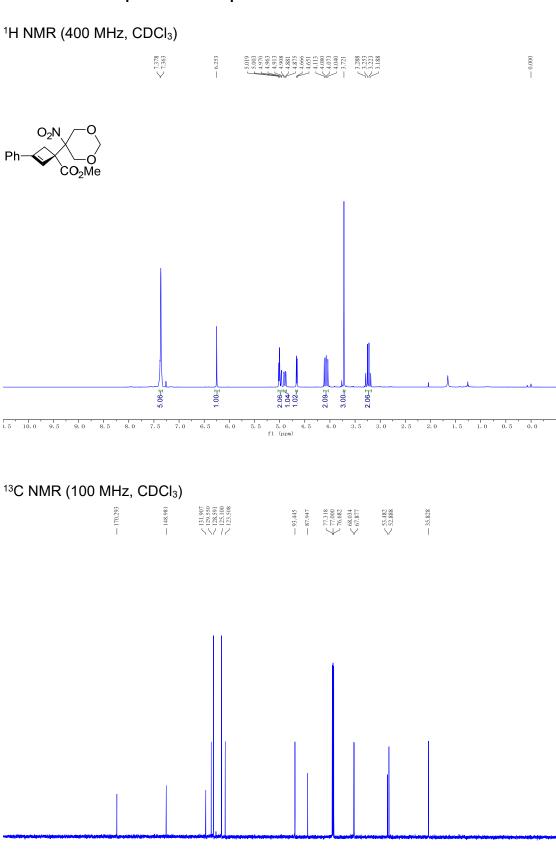



¹H and ¹³C NMR Spectra for Compound 3as:

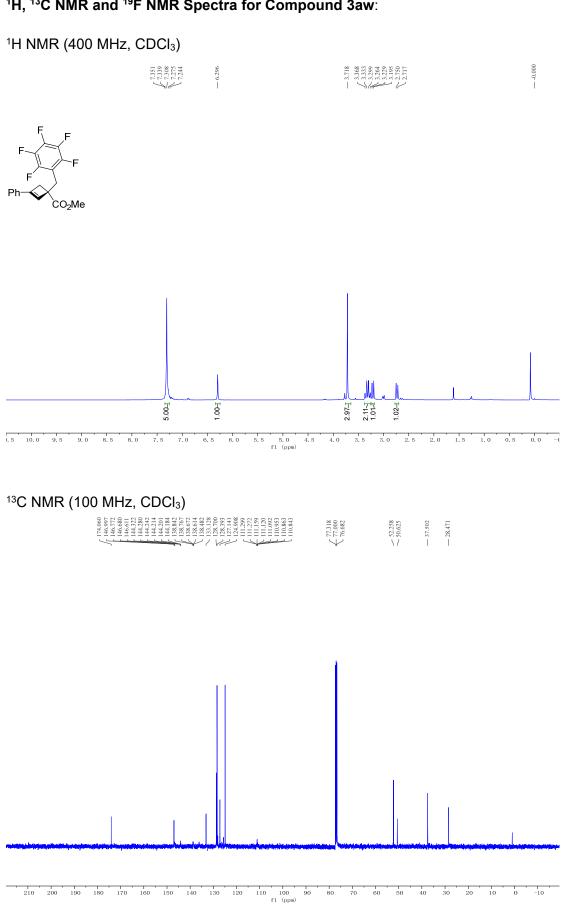


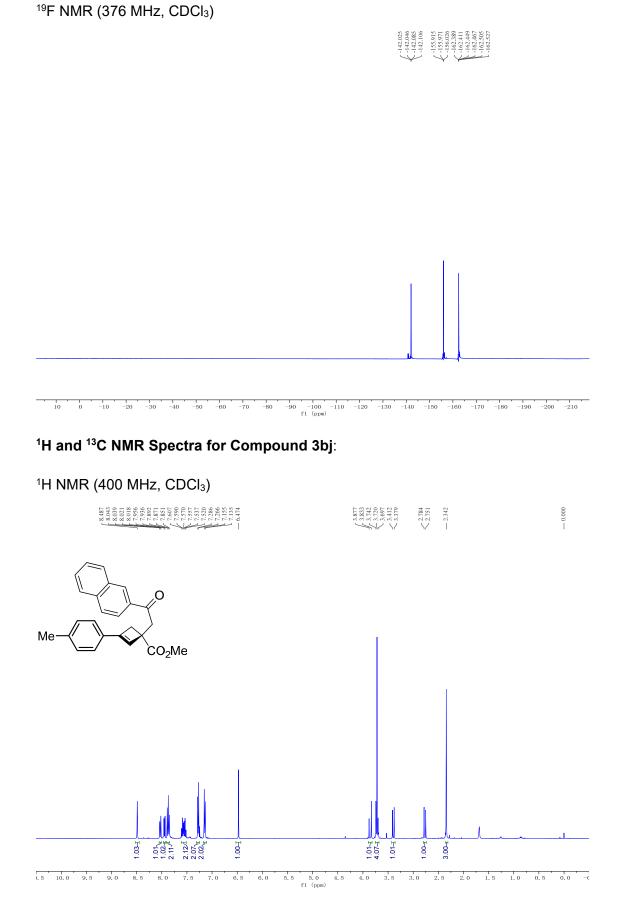

¹H and ¹³C NMR Spectra for Compound 3at:

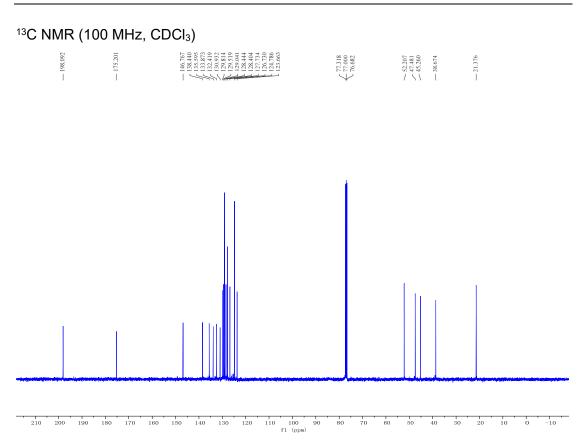
¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3au:



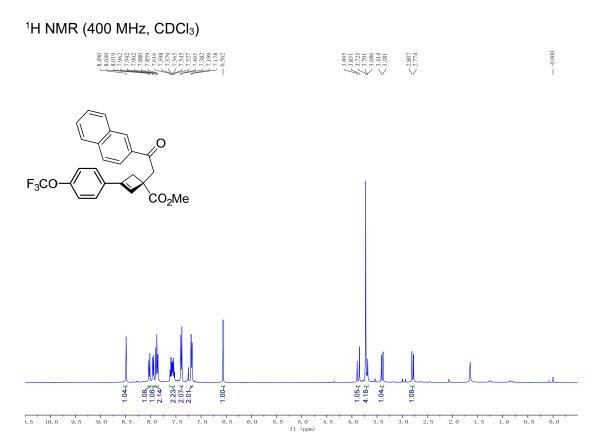
¹⁹F NMR (376 MHz, CDCl₃)

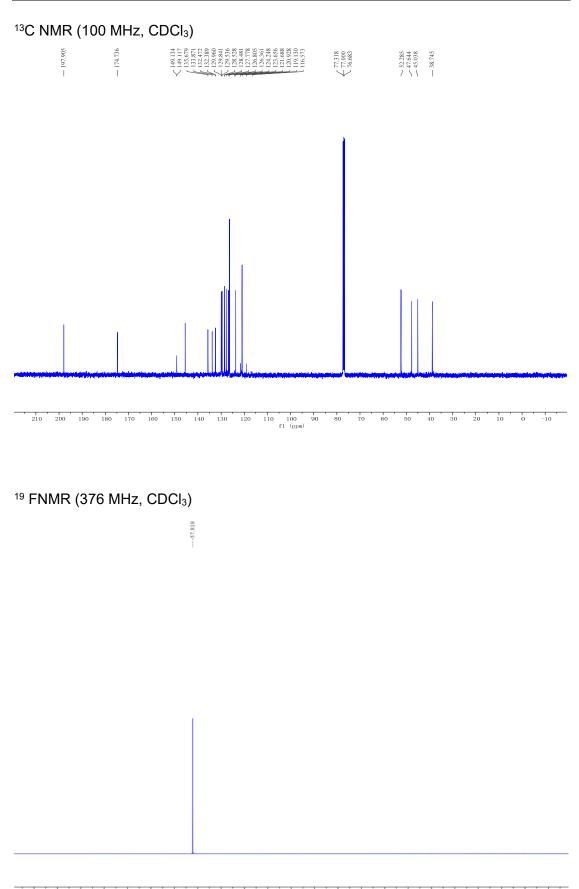


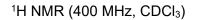

¹H and ¹³C NMR Spectra for Compound 3av:

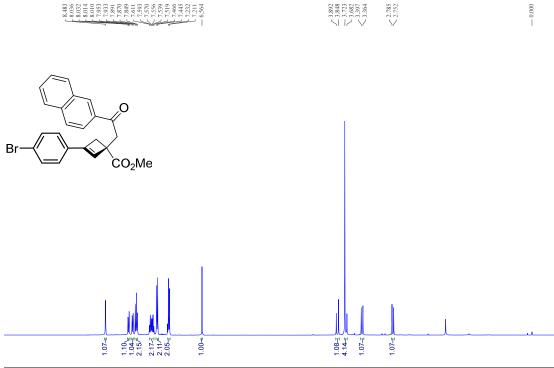


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

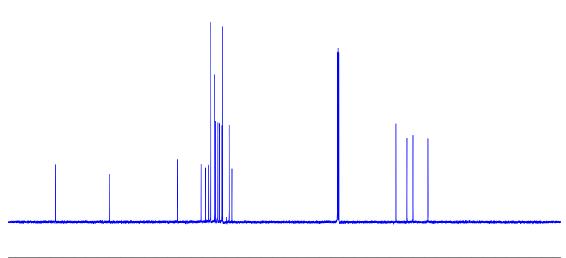



¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3aw:

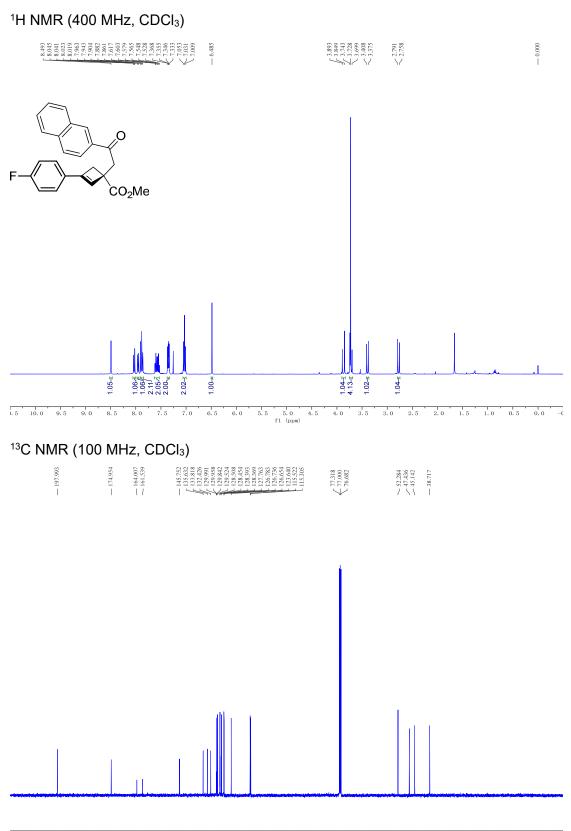



¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3cj:

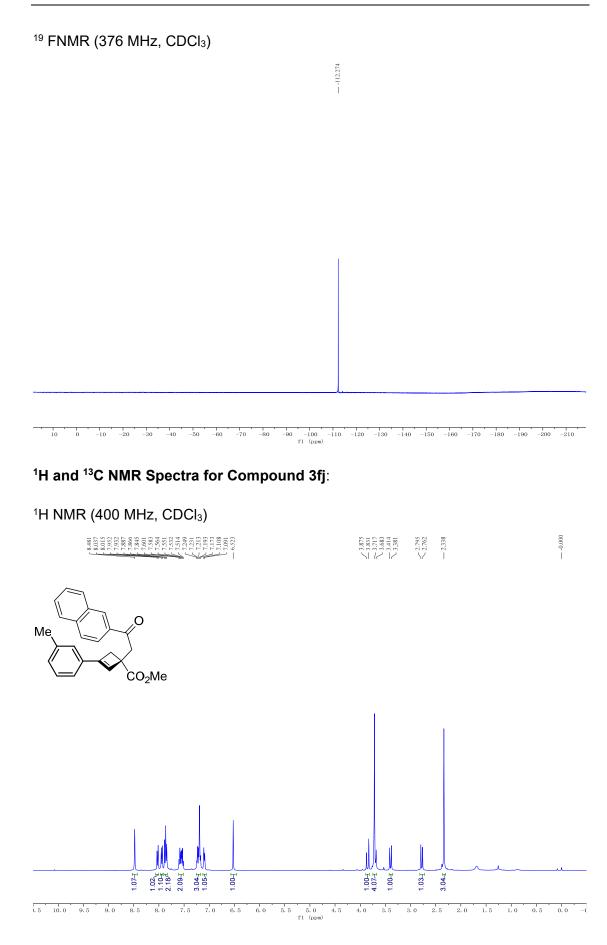
¹H and ¹³C NMR Spectra for Compound 3dj:

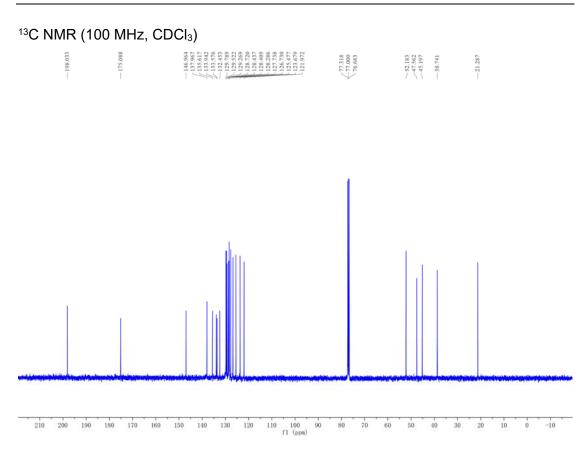


 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

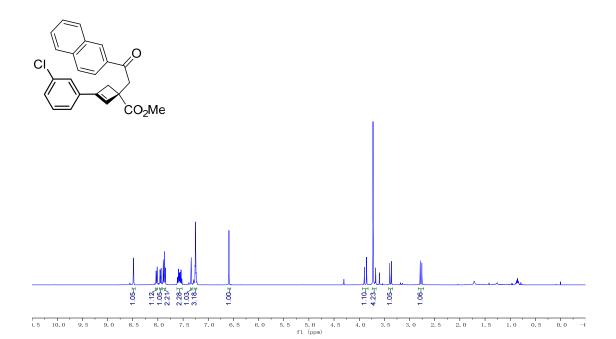

^{13}C NMR (100 MHz, CDCl₃)

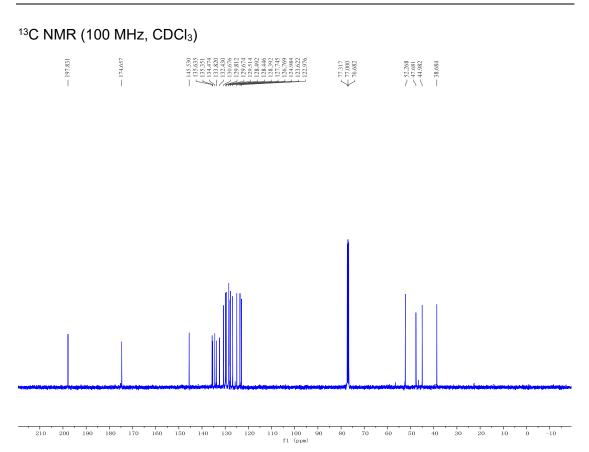
197.874	174.726	145.701 135.599 135.591 132.548 132.344 132.344 132.344 132.344 132.442 122.440 122.422 122.422	77.317 77.000 76.682	52.274 47.565 45.000 38.577
			\checkmark	7 5 5 1




210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

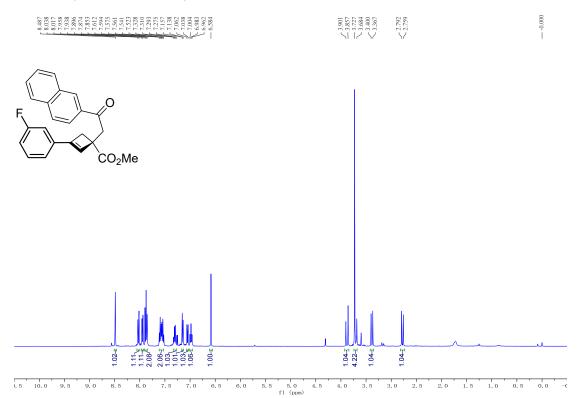
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

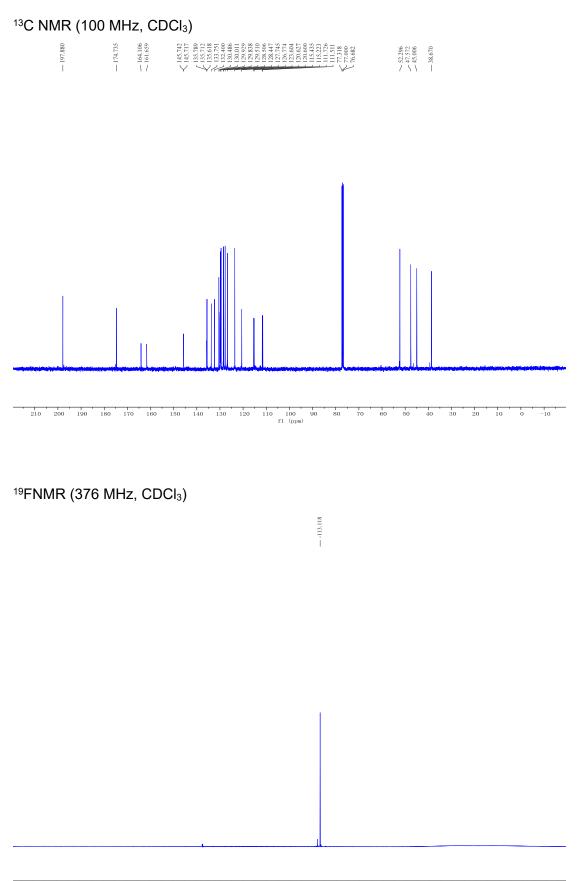




¹H and ¹³C NMR Spectra for Compound 3gj:

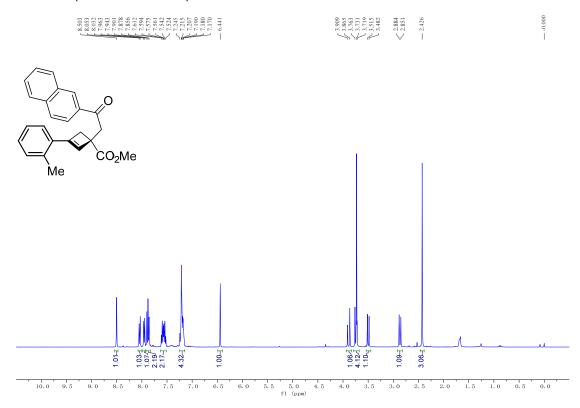
¹H NMR (400 MHz, CDCl₃)


8.485 8.037 8.037 8.033 8.037 7.937 7.937 7.937 7.937 7.541 7.551 7.541 7.552 7.551 7.552 7.552 7.552 7.552 7.552 7.552 7.55277 7.55277 7.55277 7.552777 7.5527777777777	3.808 3.824 3.725 3.775 3.674 3.5674 5.3674 5.3674 5.3674 5.3674 5.3674 5.3674 5.3755	
---	---	--

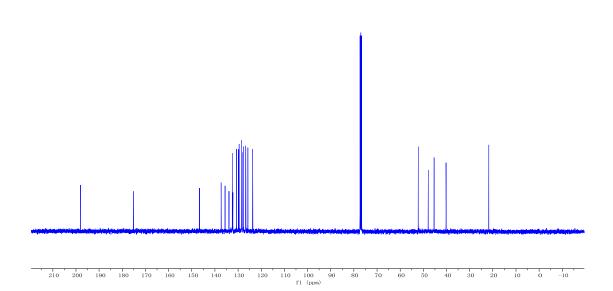


¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3hj:

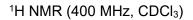
¹H NMR (400 MHz, CDCl₃)



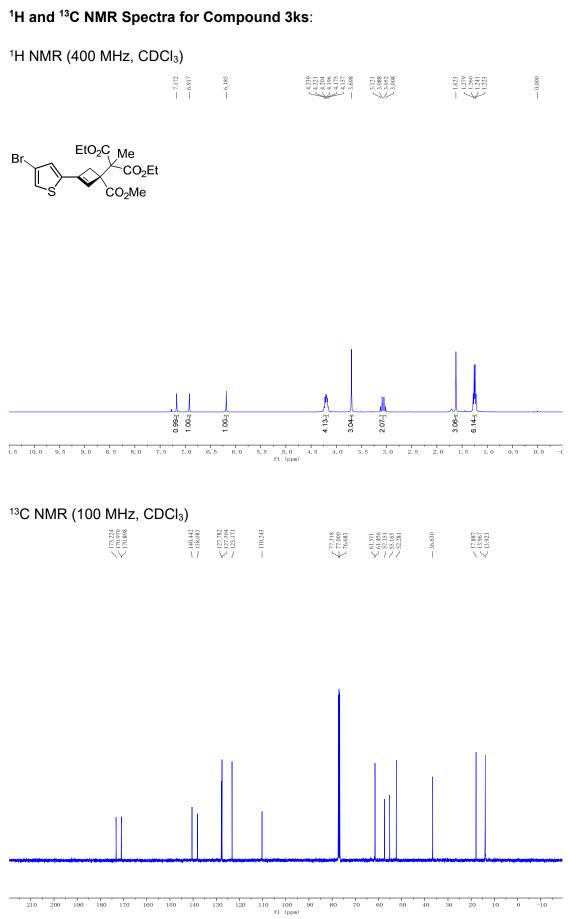
^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210} fl (ppm)

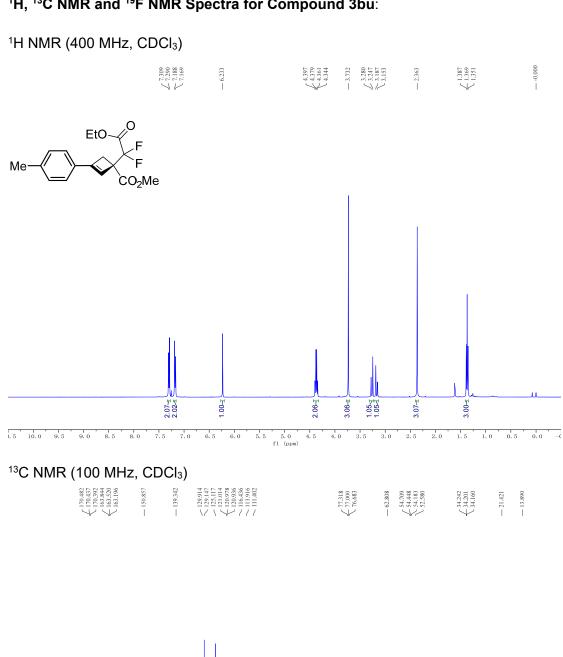

¹H and ¹³C NMR Spectra for Compound 3ij:

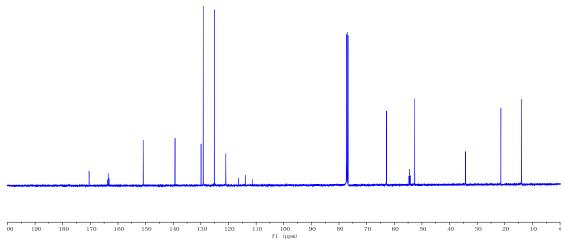
¹H NMR (400 MHz, CDCl₃)

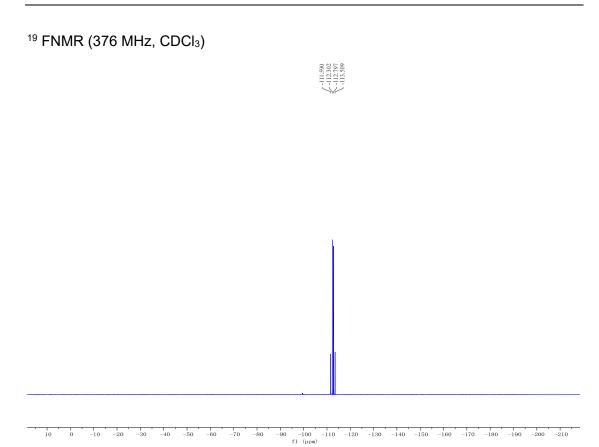



¹³C NMR (100 MHz, CDCl₃)

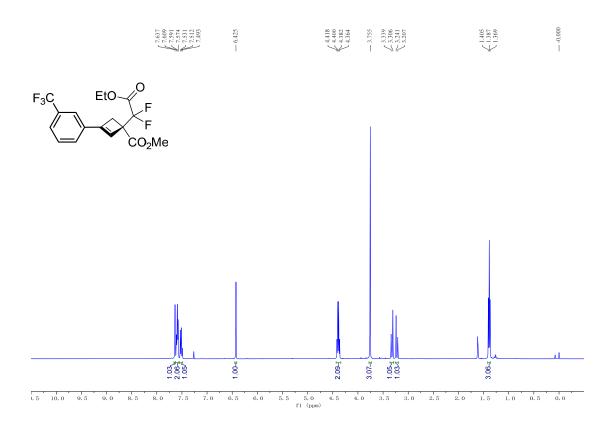


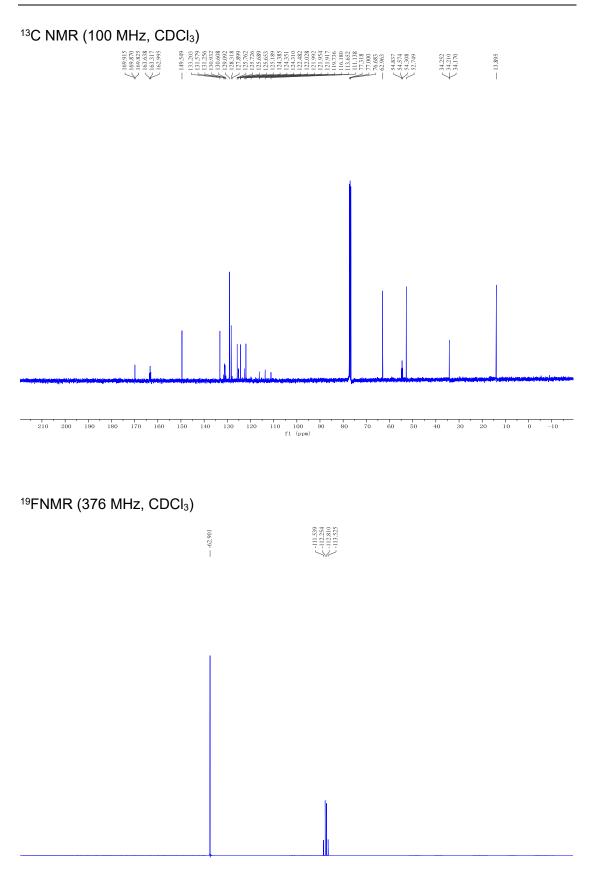

¹H and ¹³C NMR Spectra for Compound 3jj:

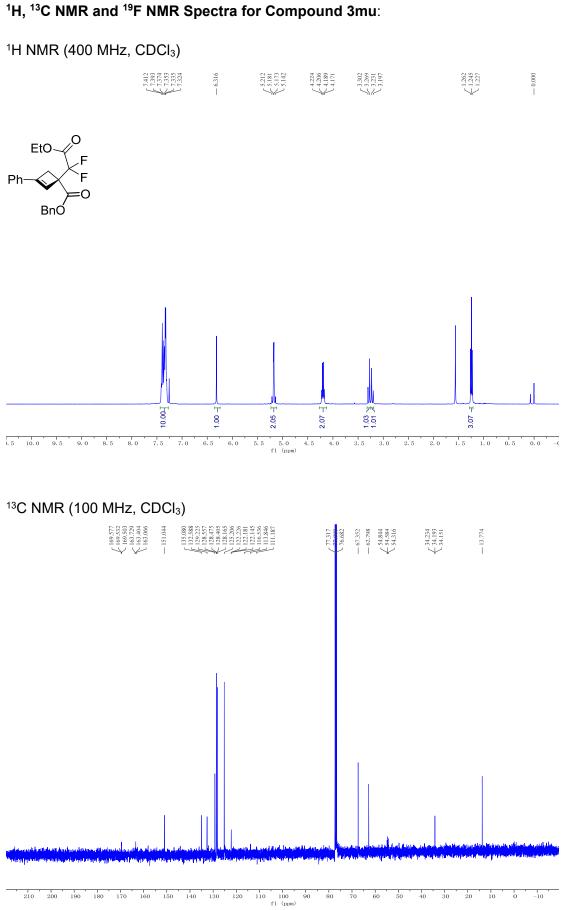




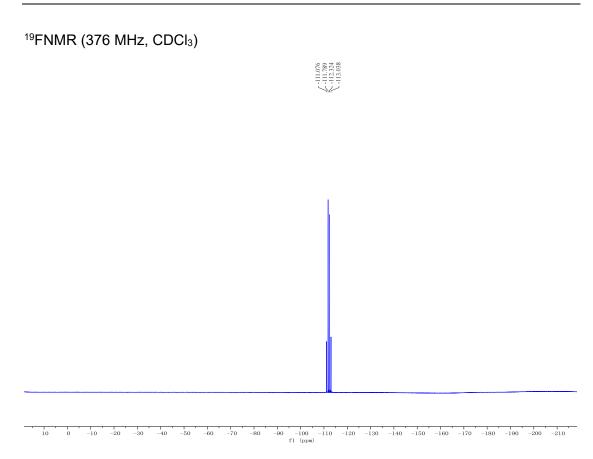
. .

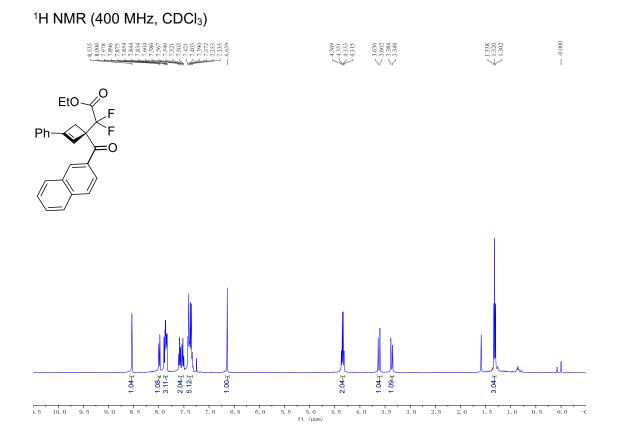

¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3bu:

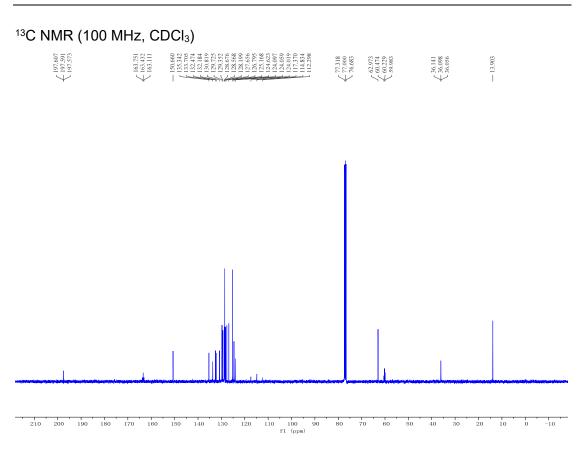


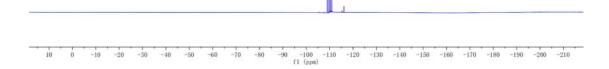

¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3lu:

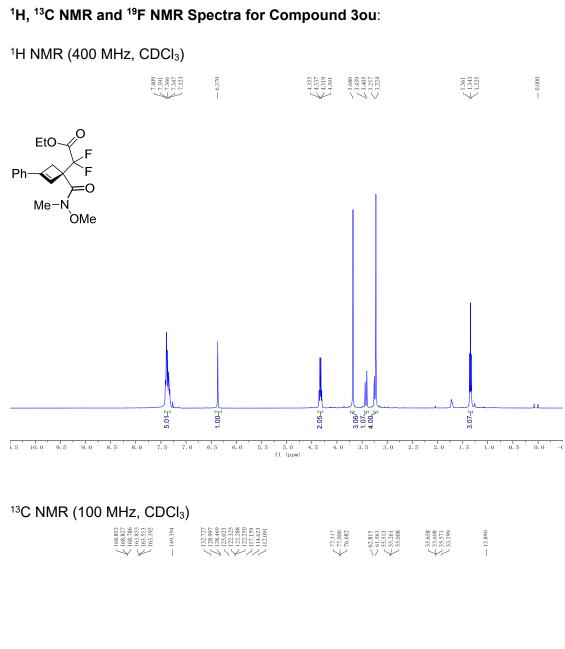
¹H NMR (400 MHz, CDCl₃)

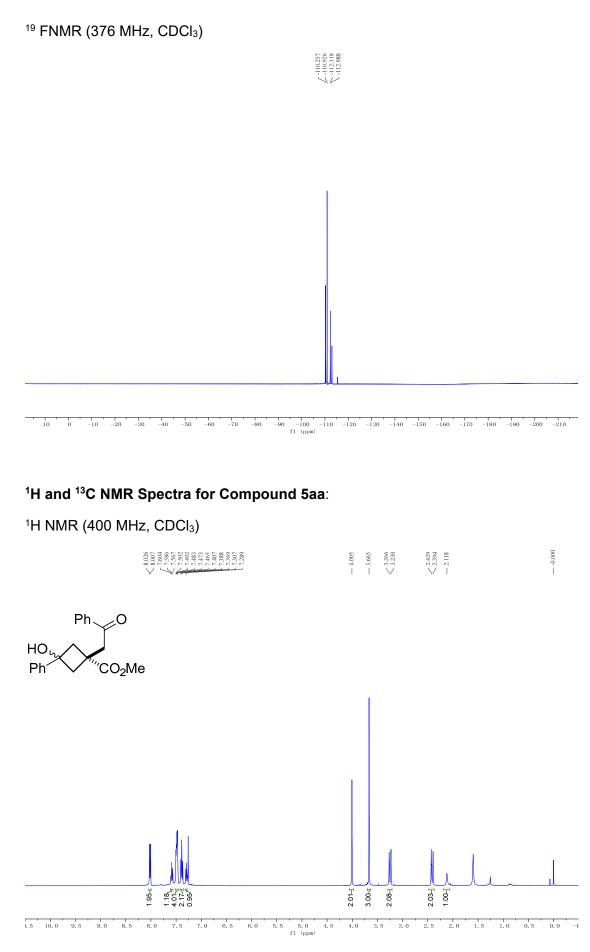


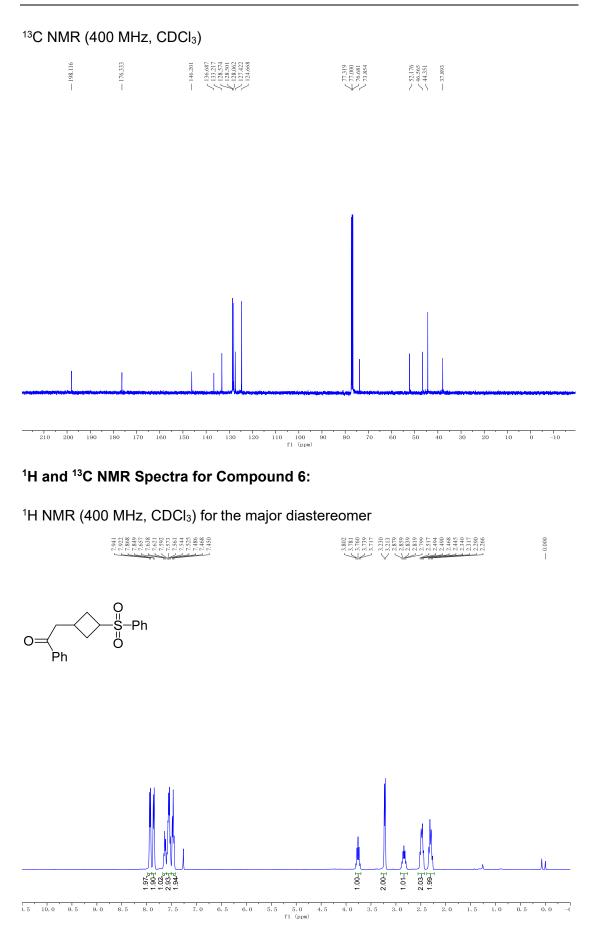

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

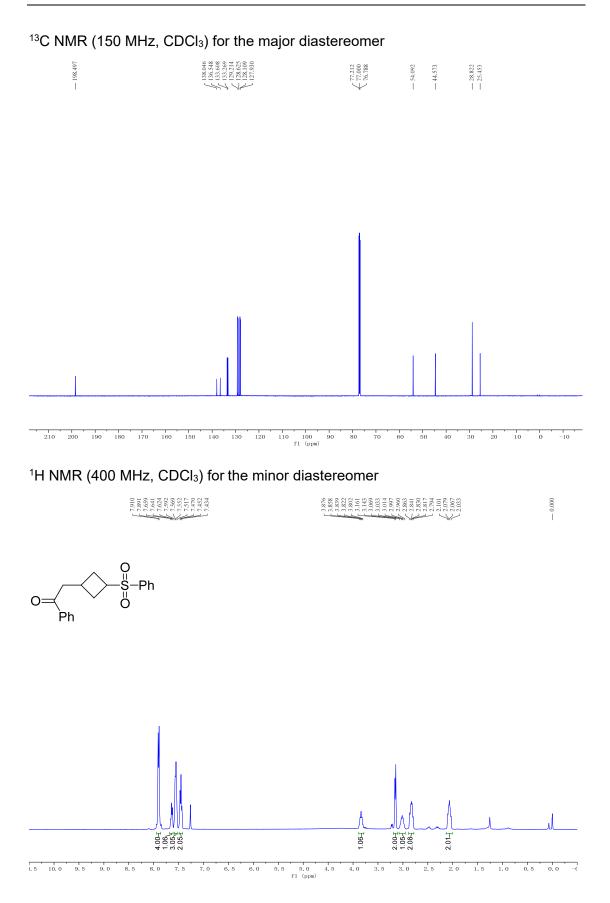


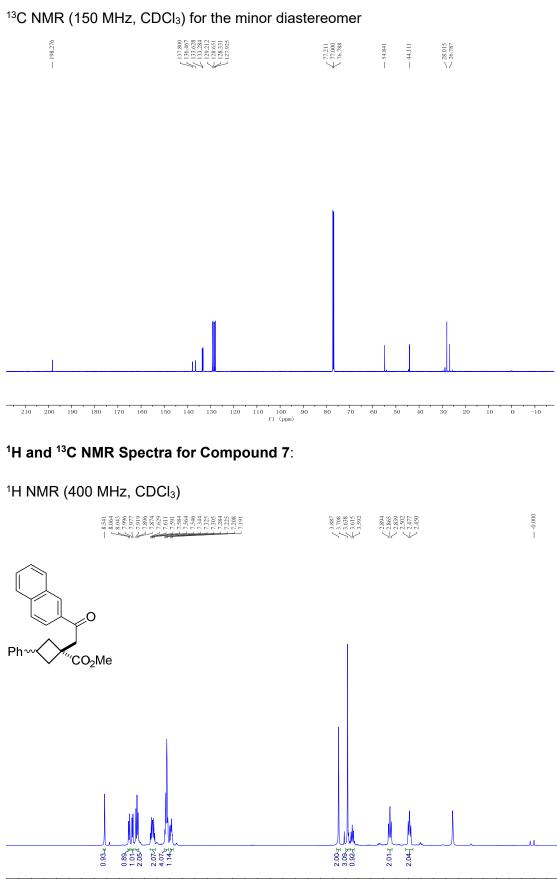

¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 3nu:

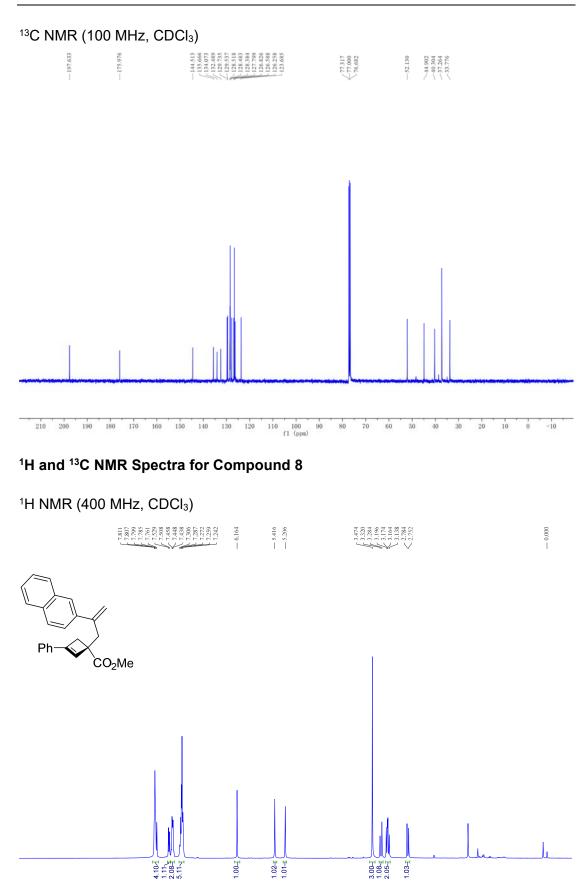


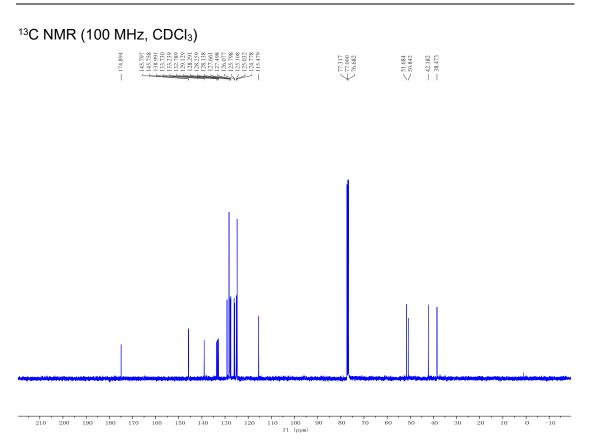

¹⁹FNMR (376 MHz, CDCl₃)

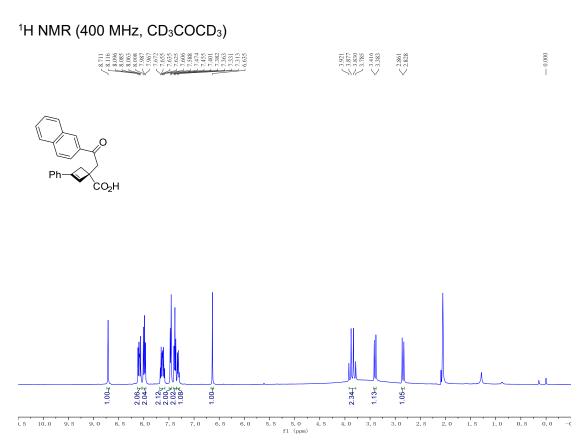

-109.003 -109.685 -110.230 -110.912

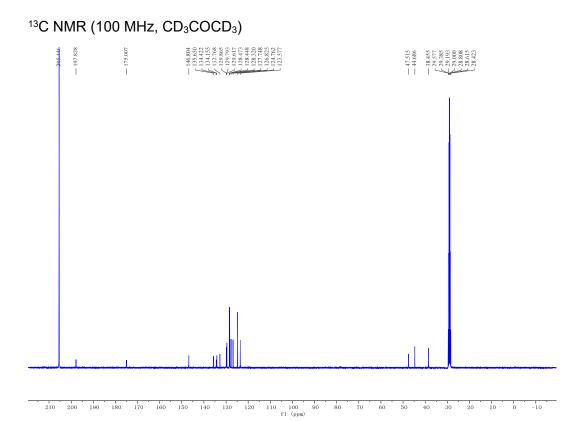




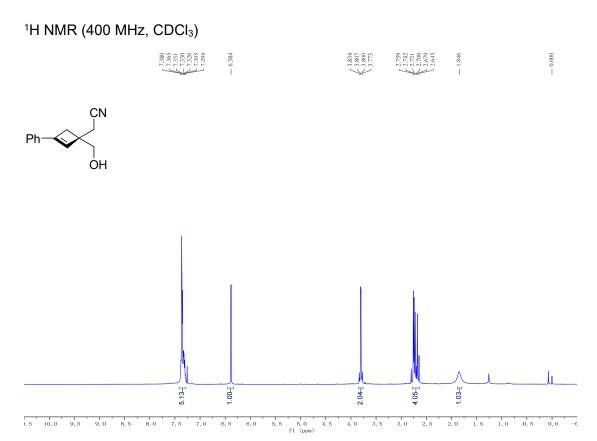


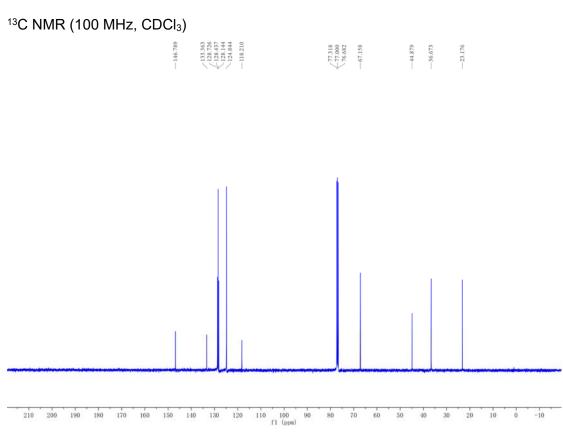


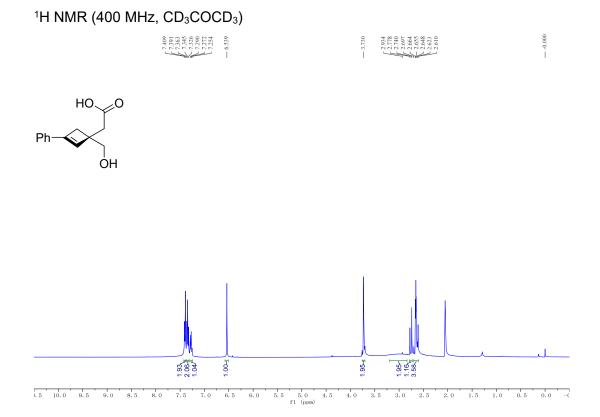

л.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(fl (ppm)

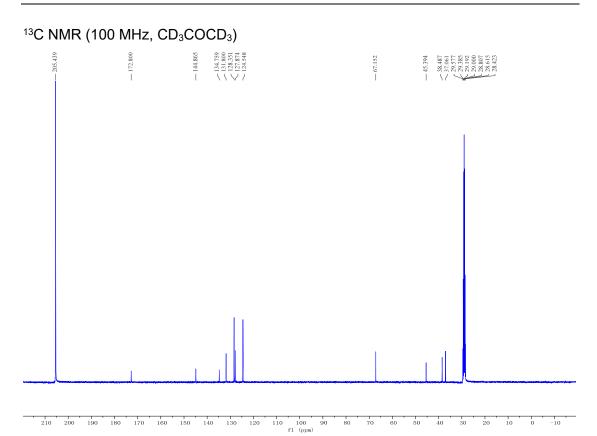


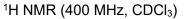
ь.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -С fl (ppm)

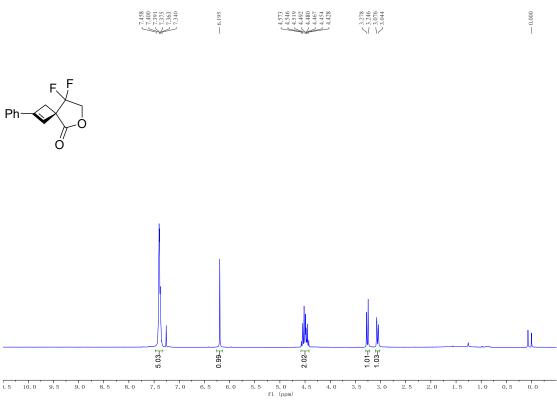


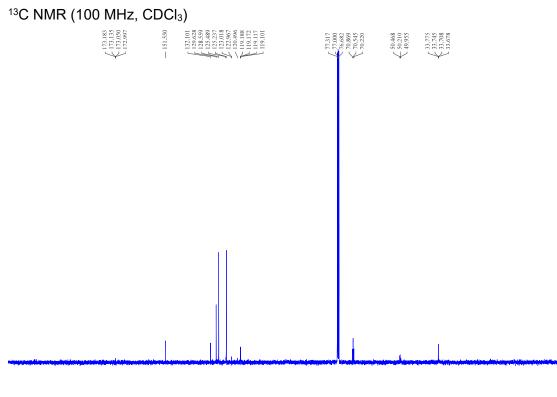

¹H and ¹³C NMR Spectra for Compound 9:



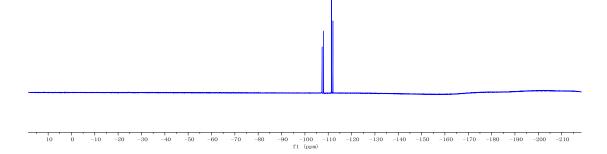

¹H and ¹³C NMR Spectra for Compound 10:



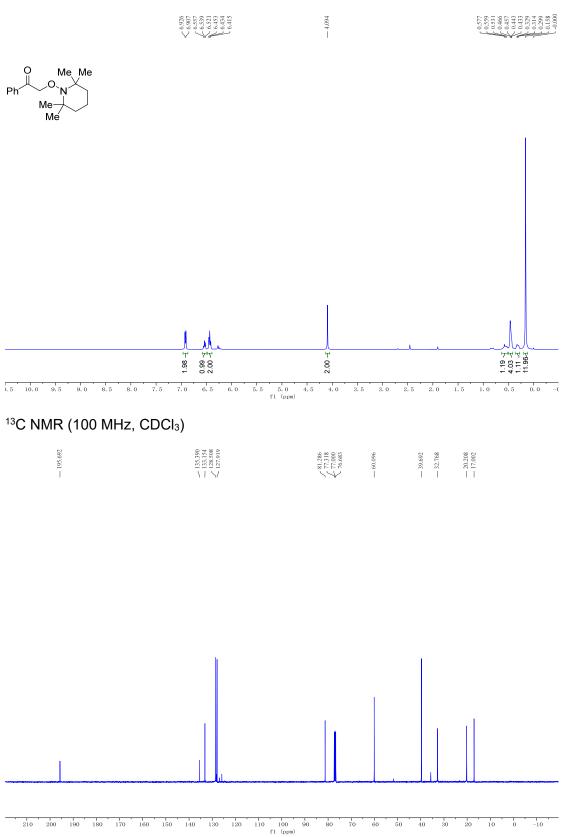

¹H and ¹³C NMR Spectra for Compound 11:

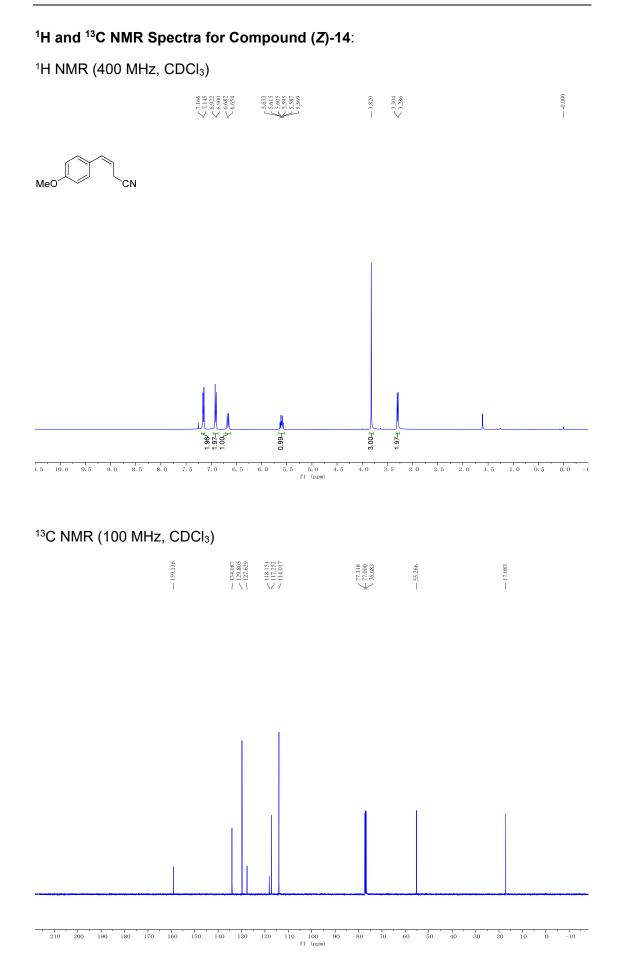


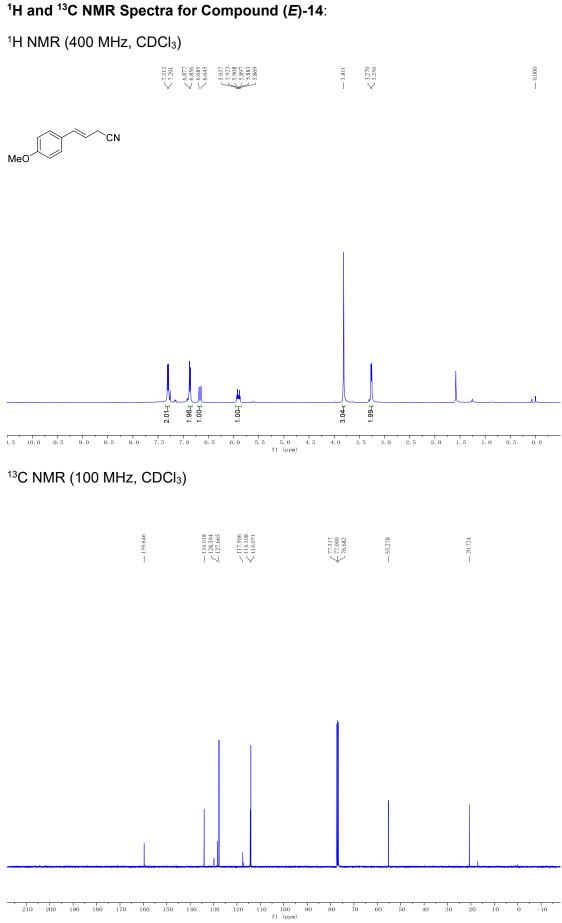
¹H, ¹³C NMR and ¹⁹F NMR Spectra for Compound 12:



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

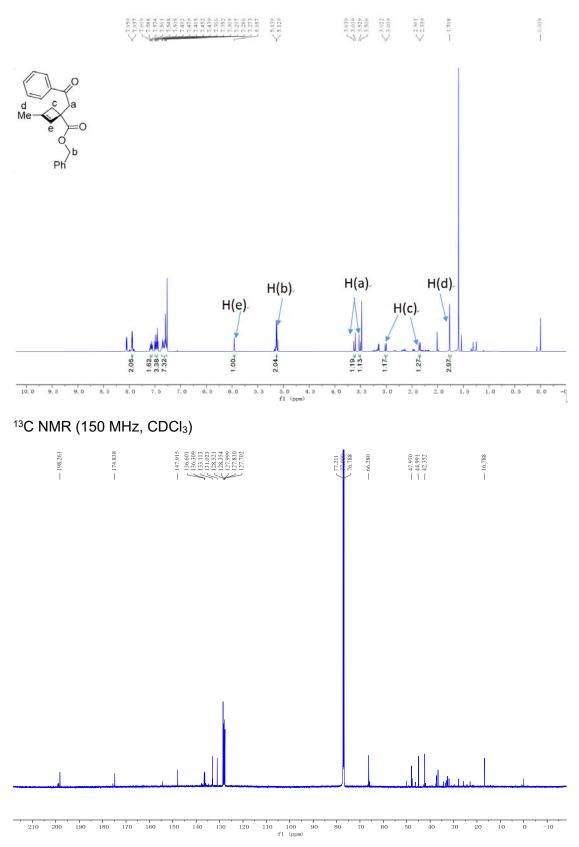

¹⁹F NMR (376 MHz, CDCl₃)

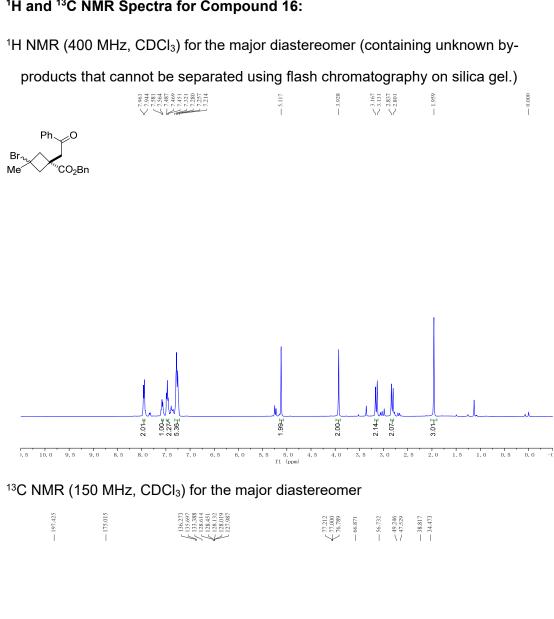

 $\leq \frac{-107.386}{-108.021}$ $\gtrsim \frac{-108.021}{-111.381}$ $\sim \frac{-111.381}{-112.016}$

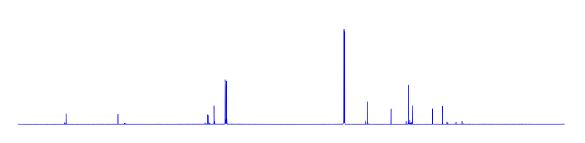


¹H and ¹³C NMR Spectra for Compound 13:

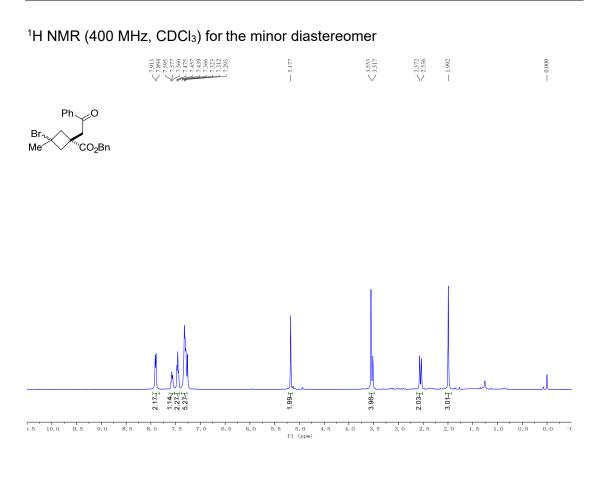
¹H NMR (400 MHz, CDCl₃)



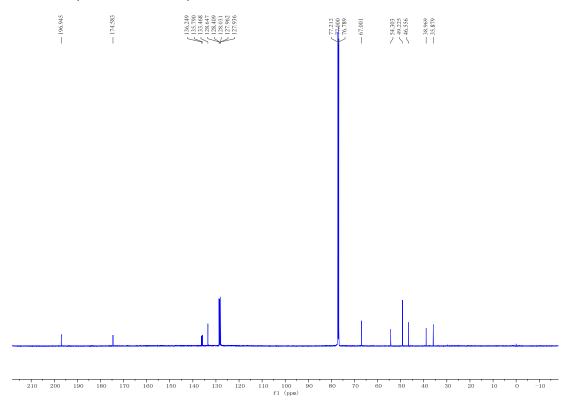



¹H and ¹³C NMR Spectra for Compound 3pa:

¹H NMR (600 MHz, CDCl₃): the desired **3pa** containing unknown by-products that cannot be separated using flash chromatography on silica gel.



¹H and ¹³C NMR Spectra for Compound 16:



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm) -10 10 0

 ^{13}C NMR (150 MHz, CDCl_3) for the minor diastereomer

