Supporting Information

Reversible Cl/Cl⁻ Redox in a Spinel Mn₃O₄ Electrode

Sean K. Sandstrom,^{#a} Qiuyao Li, ^{#b} Yiming Sui,^{#a} Mason Lyons,^c Chun-Wai Chang,^c Rui Zhang,^d Heng Jiang,^a Mingliang Yu,^a David Hoang,^a William F. Stickle,^c Huolin L. Xin,^{*d} Zhenxing Feng,^{*c} De-en Jiang^{*bf} and Xiulei Ji^{*a}

a. Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.

b. Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA.

c. School of Chemical, Biological, and Environmental Engineering, Corvallis, OR, 97331, USA.

d. Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.

e. Hewlett-Packard Co., Corvallis, OR, 97330, USA.

f. Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.

Emails: <u>david.ji@oregonstate.edu</u>, <u>de-en.jiang@vanderbilt.edu</u>, <u>zhenxing.feng@oregonstate.edu</u> <u>huolin.xin@uci.edu</u>

Figure S1. Material characterization of the as synthesized Mn_3O_4 . (a) XRD pattern of the Mn_3O_4 powder. (b) STEM image of a representative Mn_3O_4 particle and (c) the associated electron diffraction pattern. (d) TGA curve of the Mn_3O_4 powder obtained under argon atmosphere at a ramp rate of 10 °C/min. (e) STEM image and (f) an ideal spinel crystal structure of the as synthesized Mn_3O_4 powder.

Figure S2. Self-discharge performance of the Zn^{2+} -trapped Mn_3O_4 electrode after being charged in the 20 *m* ZnCl₂ + 5 *m* NH₄Cl WiSE. The red portion of the curve shows the self-discharge behavior while resting the cell for 12 hours. Cycling was done using a Mn_3O_4 free-standing film electrode at 100 mA/g. The Coulombic efficiency after idling the cell was 94.3%.

Figure S3. GCD profiles of the first, second, third, fifth, and tenth cycles of the Mn_3O_4 electrode without initially trapping Zn^{2+} ions (charging first and increasing the lower cutoff potential to 1.2 V) at a current rate of 50 mA/g.

Figure S4. GCD profiles of the Mn_3O_4 electrode obtained at 50 mA/g using 15 *m* TEACl as the aqueous electrolyte. Activated carbon was used as the counter electrode and Ag/AgCl was used as the reference electrode. Reference potentials were converted to being vs Zn²⁺/Zn for comparison.

Figure S5. CV curves of the Mn_3O_4 electrode in (a) 2 M ZnSO₄ and (b) 20 *m* ZnCl₂ + 5 *m* NH₄Cl electrolytes at a scan rate of 1 mV/s.

Figure S6. XRD patterns of the pristine, discharged, and charged Mn₃O₄ electrodes in the WiSE.

Figure S7. EDS line scanning profile of the Mn_3O_4 electrode after the first charge. The Mn, O, and Cl contents are distributed fairly uniform throughout the particle, whereas the Zn content is concentrated toward the outer 3 nm of the particle.

Figure S8. Normalized XANES of the Mn K-edge spectra of the pristine Mn_3O_4 electrode, the Mn_3O_4 electrode after the first discharge and the first charge in the 20 *m* ZnCl₂ + 5 *m* NH₄Cl WiSE, and the Mn_2O_3 , Mn_3O_4 , and Mn metal standards. The similar edge positions between the pristine, discharged, and charged samples highlight the lack of significant Mn redox after cycling the electrode.

Figure S9. Zoomed-in images of Cl inserted in Mn_3O_4 structure with Zn-trapped in (a) octahedral site, (b) tetrahedral site, and (c) pristine Mn_3O_4 structure without Zn-trapped. The formation of trichloride $[Cl_3]^-$ in ZnOh, T-shaped pentachloride $[Cl_5]^-$ in ZnTd, and dichloride in Mn_3O_4 with corresponding bond distances between Cl atoms are shown in the figure.

Figure S10. Possible optimized structures of Cl intercalation in (a) pristine Mn₃O₄, (b) ZnOh, and (c) ZnTd.

Figure S11. COHP analysis of Mn-Cl bond after Cl insertion in (a) ZnOh, (b) ZnTd, and (c) Mn₃O₄ models.

Table S1. Calculated Zn insertion energies of ZnOh, and ZnTd.

	ZnOh	ZnTd
Zn insertion energy (eV)	-0.86	-0.98

Table S2. Bader charge analysis of Mn, O, Zn, and Cl before and after Cl/Cl ⁻ insertion in the
pristine Mn ₃ O ₄ , the octahedral site Zn-trapped Mn ₃ O ₄ , and the tetrahedral site Zn-trapped
Mn_3O_4 .

Average Bader charge	Mn	0	Zn	Cl
Mn ₃ O ₄	1.57	-1.17	-	-
ZnOh	1.52	-1.21	1.16	-
ZnTd	1.51	-1.21	1.17	-
Mn ₃ O ₄ (after Cl insertion)	1.62	-1.06	-	-0.34
ZnOh (after Cl insertion)	1.56	-1.13	1.18	-0.27
ZnTd (after Cl insertion)	1.57	-1.14	1.18	-0.26