Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Chemodivergence in Pd-Catalyzed Desymmetrization of Allenes: Enantioselective [4+3] Cycloaddition, Desymmetric Allenylic Substitution and Enynylation

Pengfei Luo,^[a] Long Li,^[a] Xinfang Mao, Zheng Sun, Yingcheng Wang, Fangzhi Peng, and Zhihui Shao*

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China [a] These authors contributed equally.

E-mail: zhihui shao@hotmail.com

Table of Contents

1. General information	1
2. Substrate synthesis	1
3. Optimization of reaction conditions	5
4. General condition	13
5. Transformations of the products	15
6. Procedures of control experiments	17
7. Single crystal X-ray diffraction data	23
8. References	27
9. Spectral data of products	28
10. NMR spectra	57
11. HPLC spectra	128

1. General information

Unless otherwise noted, all reactions in standard conditions were carried out under an argon atmosphere. Solvents were dried by standard methods under argon atmosphere. 1 H NMR, 13 C NMR and 19 F NMR spectra were recorded on 400 MHz, 500 MHz, 600 MHz instruments using CDCl₃ or CD₃OD as solvent. Chemical shifts of 1 H NMR were recorded in parts per million (ppm, δ (*ppm*)) relative to tetramethylsilane (δ (*ppm*) = 0.00 ppm) with the solvent resonance as an internal standard (CDCl₃: δ (*ppm*) = 7.26 ppm, CD₃OD: δ (*ppm*) = 3.31 ppm). NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiple. High-resolution mass spectral analysis (HRMS) data were measured on a spectrometer by means of the ESI technique. The enantiomeric excess was determined by chiral HPLC with *n*-hexane and *i*-propanol as eluents. Optical rotations were measured on a polarimeter. Column chromatography was performed on silica gel (200–300 mesh).

2. Substrate synthesis

Synthesis of allenylic dicarbonates

The substrates of 1a-1k were synthesized according to modified procedure from Jan Deska and Ma et al.^[1,2]

Procedure for synthesizing 1a-1i

To an ice-cold solution of ethynylmagnesium bromide (0.5 M in THF, 250 mL, 125 mmol) a solution of 2,2-dimethyl-1,3-dioxan-5-one (13.0 g, 100 mmol, in 100 mL dry THF) was added dropwise at 0 °C over a period of one hour. After complete addition, the reaction mixture was carefully hydrolyzed with saturated aqueous NH₄Cl and ethyl acetate (200 mL) was added. The aqueous layer was extracted with ethyl acetate, the combined organic layers washed with sat. NaCl and dried over Na₂SO₄. After removal of the solvent in vacuo, the crude alcohol was dissolved in CH₂Cl₂ (10 mL), and triethylamine (16.7 mL, 120 mmol), DMAP (1.2 g, 10.0 mmol) and acetic anhydride (20 mL, 212 mmol) were added and the reaction mixture was stirred at rt overnight. After removal of triethylamine and excess acetic anhydride in vacuo, the residue was dissolved in ethyl acetate (200 mL), washed with 0.5 N HCl, saturated NaHCO₃ and brine and the organic layer was dried over Na₂SO₄. After concentration in vacuo, the crude acetate was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate = 80:20) yielding as pale white solid (82% yield).

AcO RMgBr ZnBr₂ Pd(PPh₃)₄
$$H_2SO_4$$
 CI O Me OCO_2Me OCO_2Me

ZnBr₂ (2.44 g, 4.4 mmol) was carefully dried with a heatgun in vacuo until a fine powder formed. After cooling to rt, under Ar-atmosphere, Pd(PPh₃)₄ (20 mg, 0.06 mmol) was added, catalyst and zinc salt were dissolved in dry THF (15 mL) and cooled to 0 °C. A solution of the corresponding Grignard reagent (4 mmol, 0.5-1M in THF) was added dropwise and stirring at 0 °C was continued for 20 min where upon a white precipate formed. In a second flask, 5-acetoxy-2,2-dimethyl-5-ethynyl-1,3-dioxane (396 mg, 2.0 mmol) was dissolved in dry THF (4 mL) and added to the solution of the

organozinc reagent at 0 °C. The reaction mixture was allowed to warm to rt overnight. After addition of saturated NH₄Cl (10 mL) and ethyl acetate (20 mL), the aqueous phase was extracted with ethyl acetate (20 mL) and the combined organic layers were dried over Na₂SO₄ and filtered through a small plug of silica. The solvents were removed in vacuo, the residue redissolved in methanol (10 mL) and cooled to 0 °C. A drop of conc. sulfuric acid was added and the reaction mixture was stirred for approx. 30 min at 0 °C (TLC-control). Saturated NaHCO₃ (5 mL) and ethyl acetate (30 mL) were added, the aqueous layer was extracted with ethyl acetate (2 x 10 mL) and the combined organic layers were dried over Na₂SO₄. After removal of the solvents in vacuo, column chromatography (SiO₂, cyclohexane/ethyl acetate = 70:30 to 40:60) delivered the pure allendiols (72-95% yield). To a three-neck flask were added allendiols (1.64 mmol) prepared above, CH₂Cl₂ (30 mL), and DMAP (251.3 mg, 2.06 mmol) sequentially. The resulting mixture was stirred at 0 °C for 10 min followed by the dropwise addition of a solution of methyl chloroformate (0.32 mL, 4.1 mmol) in CH₂Cl₂ (5 mL) within 10 min at 0 °C. The resulting mixture was stirred at this temperature for 10 min, removed from the cooling bath, allowed to warm up to rt gradually, and continued to react at rt. After 6.0 h, the reaction was complete as monitored by TLC and quenched with H₂O (30 mL). The organic layer was separated, washed with an aqueous solution of hydrochloric acid (1M, 2×30 mL) and brine (30 mL) sequentially, and dried over anhydrous Na₂SO₄. After filtration, evaporation of the solvent and chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1) afforded allenylic dicarbonates **1a-1i** (76-92% yield).

Procedure for synthesizing 1g, 1k

RMgBr CuBr • Me₂S P(OEt)₃
$$H_2$$
SO₄ CI O Me Me Me Me MeOH, 0 °C $DMAP$ (1.5 equiv) DCM , 0 °C to rt $R = alkyl$

In an oven-dried Schlenk-flask under Ar-atmosphere, CuBr•Me₂S (41 mg, 0.2 mmol) was dissolved in dry THF (10 mL). Triethylphosphite (67 mg, 0.4 mmol) was added at rt whereupon the solid copper salt slowly dissolved. After addition of 5-acetoxy-2,2-dimethyl-5-ethynyl-1,3-dioxane (396 mg, 2.0 mmol) the solution was

cooled to -78 °C and a solution of the corresponding Grignard-reagent (4 mmol, 0.5-1M in THF) was added dropwise over a period of 2 hours. The reaction mixture was allowed to warm up to rt overnight. After addition of saturated NH₄Cl (10 mL) and ethyl acetate (20 mL), the aqueous phase was extracted with ethyl acetate (20 mL) and the combined organic layers were dried over Na₂SO₄ and filtered through a small plug of silica. The solvents were removed in vacuo, the residue redissolved in methanol (10 mL) and cooled to 0 °C. A drop of conc. sulfuric acid was added and the reaction mixture was stirred for approx. 30 min at 0 °C (TLC-control). Saturated NaHCO₃ (5 mL) and ethyl acetate (30 mL) were added, the aqueous layer was extracted with ethyl acetate (2 x 10 mL) and the combined organic layers were dried over Na₂SO₄. After removal of the solvents in vacuo, column chromatography (SiO₂, cyclohexane/ethyl acetate 7/3 to 4/6) delivered the pure allendiols (57-71% yield). To a three-neck flask were added allendiols (1.64 mmol) prepared above, CH₂Cl₂ (30 mL), and DMAP (251.3 mg, 2.06 mmol) sequentially. The resulting mixture was stirred at 0 °C for 10 min followed by the dropwise addition of a solution of methyl chloroformate (0.32 mL, 4.1 mmol) in CH₂Cl₂ (5 mL) within 10 min at 0 °C. The resulting mixture was stirred at this temperature for 10 min, removed from the cooling bath, allowed to warm up to rt gradually, and continued to react at rt. After 6 h, the reaction was complete as monitored by TLC and quenched with H₂O (30 mL). The organic layer was separated, washed with an aqueous solution of hydrochloric acid (1M, 2×30 mL) and brine (30 mL) sequentially, and dried over anhydrous Na₂SO₄. After filtration, evaporation of the solvent and chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1) afforded allenylic dicarbonates 1g, 1k (81-87% yield).

3. Optimization of reaction conditions

Optimization of reaction conditions of allenylic dicarbonate 1a with 2

Table S1: Chiral ligand catalyst screening^a

on tury	licand	3a'	3a'		
entry	ligand	yield $(\%)^b$	ee (%) ^c	yield $(\%)^b$	ee (%) ^c
1	L1	0	-	0	-
2	L2	0	-	0	-
3	L3	0	-	0	-
4	L4	0	-	0	-
5	L5	67	0	0	-

6	L6	0	-	trace	-
7	L7	0	-	24	45
8	L8	0	-	0	-
9	L9	0	-	0	
10	L10	75	-55	0	-
11	L11	71	-69	0	-
12	L12	70	73	0	-
13	L13	0	-	0	-
14	L14	0	-	0	-
15	L15	0	-	0	-
16	L16	0	-	0	-
17^d	L17	0	-	0	-
18	L18	0	-	0	-
19	L19	0	-	0	-
20	L20	0	-	0	

^aReaction conditions: **1a** (0.1 mmol), **2a'** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), ligand (monophosphines 11.0 mol %, diphosphines 5.5 mol %), K_2CO_3 (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis. ^d**L17** (5.5 mol %) was used. Ts = 4-Methylbenzenesulfonyl.

Table S2: Base screening^a

anter:	haaa	3a'		4a'		
entry	base	yield (%) ^b	ee (%) ^c	yield (%) ^b	ee (%) ^c	
1	Li ₂ CO ₃	47	84	0	-	
2	Na_2CO_3	54	87	0	-	
3	K_2CO_3	70	73	0	-	
4	K_3PO_4	47	73	0	-	

^aReaction conditions: **1a** (0.1 mmol), **2a'** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L12** (5.5 mol %), base (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S3: Protective group and base screening^a

0.40 \$400.0	DC 1		3		4	
entry	entry PG	base	yield $(\%)^b$	ee (%) ^c	yield $(\%)^b$	ee (%) ^c
1	Ns	Na ₂ CO ₃	72	86	0	-
2	Ns	K_2CO_3	93	85	0	-
3	Mts	Li_2CO_3	82	90	0	-
4	Mts	Na_2CO_3	81	95	0	-
5	Mts	K_2CO_3	91	85	0	-

"Reaction conditions: **1a** (0.1 mmol), **2** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L12** (5.5 mol %), base (3.0 equiv) and THF (0.8 mL). "Yield of isolated product. "Determined by chiral HPLC analysis. Ns = 4-Nitrobenzenesulfonyl, Mts = 2,4,6-Trimethylbenzenesulfonyl. PG = Protective Group.

Table S4: Solvents screening^a

2.2.4	14	3a'		4a'	
entry	solvent	yield (%) ^b	ee (%) ^c	yield $(\%)^b$	ee (%) ^c
1	MeCN	0	-	trace	-
2	PhMe	0	-	42	66
3^d	PhMe	0	-	61	60
4	EtOAc	0	-	trace	-
5	MeOH	0	-	0	-
6	<i>n</i> -hexane	0	-	0	-
7	DCM	0	-	79	40
8	DCE	0	-	74	37

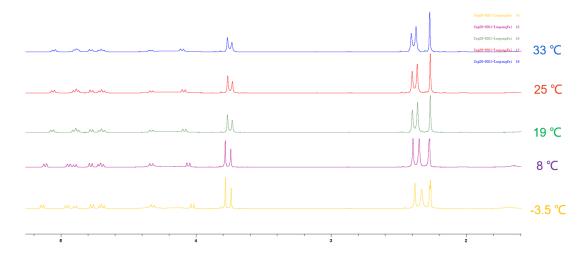

^aReaction conditions: **1a** (0.1 mmol), **2a'** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L7** (5.5 mol %), K₂CO₃ (3.0 equiv) and solvent (1.0 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis. ^d50 °C instead of rt.

Table S5: Screening of temperature and solvents^a

ontmi	T (0C)	golvent	3a		4a	
entry $T(^{\circ}C)$	solvent	yield $(\%)^b$	ee (%) ^c	yield $(\%)^b$	ee (%) ^c	
1	50	PhMe	0	-	74	83
2	50	o-Xylene	0	-	71	87
3	50	<i>m</i> -Xylene	0	-	76	86
4	50	<i>p</i> -Xylene	0	-	74	86
5	50	TMB	0	-	83	88
6	46	TMB	0	-	75	90
7	40	TMB	0	-	52	93

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L7** (5.5 mol %), K₂CO₃ (3.0 equiv) and solvent (1.0 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis. TMB = 1, 3, 5-Trimethylbenzene. T = Temperature.

Table S6: Variable-temperature 1H NMR experiments of product 4a (33 $^{\circ}C$ to -3.5 $^{\circ}C$)

The high-temperature NMR experiments for the standard product 3a were performed at 33 °C, which is cleaner than the corresponding spectra at -3.5 °C. For instance, the two peaks of the CH₃ group (at ~2.27 ppm) in ¹H NMR at -3.5 °C merged into one peak at high temperature. ^[3]

Optimization of reaction conditions of allenylic decarbonate 1a with 8 Optimal conditions for the use of o-phenylenediamine and allenylic dicarbonate^a

^aReaction conditions: **1a** (0.1 mmol), **8a''** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L12** (5.5 mol %), Na₂CO₃ (3.0 equiv) and THF (0.8 mL). isolated yields, the ee values were determined by chiral HPLC.

Table S7: Chiral ligand catalyst screening^a

4	15 4	9a'''		10a'''
entry	ligand -	yield (%) ^b	ee (%) ^c	yield (%) ^b
1	L1	70	0	0
2	L2	71	0	0
3	L3	75	0	0
4	L4	<10	67	0
5	L5	27	0	0
6	L6	trace	-	0
7	L7	trace	-	0
8	L8	trace	-	0
9	L9	<10	-	<10
10	L10	82	44	0
11	L11	80	66	0
12	L12	84	-53	0
13	L13	71	0	0
14	L14	0	-	0
15	L15	83	0	0
16	L16	68	0	0
17	L17	0	-	0
18	L18	0	-	0
19	L19	81	3	0
20	L20	83	40	0

^aReaction conditions: **1a** (0.1 mmol), **8a'''** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), ligand (monophosphines 11.0 mol %, diphosphines 5.5 mol %), K₂CO₃ (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S8: Base screening^a

entry	haaa	9a''	10a'''	
	base -	yield (%) ^b	ee (%) ^c	yield (%) ^b
1	-	0	-	0
2	Li_2CO_3	80	70	0
3	Na ₂ CO ₃	85	71	0
4	K_2CO_3	81	66	0
5	Ru_2CO_3	84	47	0
6	Cs_2CO_3	86	53	0

^aReaction conditions: **1a** (0.1 mmol), **8a'''** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L11** (5.5 mol %), base (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S9: Protective group screening^a

entry	PG	yield of 9 (%) ^b	ee of 9 (%) ^c	yield of 10 (%) ^b
1	PG1	85	71	0
2	PG2	82	58	0
3	PG3	82	73	0
4	PG4	87	76	0
5	PG5	86	75	0
6	PG6	91	75	0
7	PG7	87	80	0
8	PG8	82	86	0
9	PG9	94	88	0
10	PG10	84	85	0

^aReaction conditions: **1a** (0.1 mmol), **8** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L11** (5.5 mol %), Na₂CO₃ (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S10: Screening of reactant ratio^a

entry	1a/8a (mmol)	yield of 9a (%) ^b	ee of 9a (%) ^c	yield of 10 (%) ^b
1	0.20/0.10	92	84	0
2	0.15/0.10	92	87	0
3	0.13/0.10	94	88	0
4	0.10/0.10	85	83	0
5	0.10/0.15	86	84	0
6	0.10/0.20	88	88	0
7	0.10/0.25	87	90	0
8	0.10/0.30	88	88	0

^aReaction conditions: **1a**, **8a**, [Pd(allyl)Cl]₂ (2.5 mol %), **L11** (5.5 mol %), Na₂CO₃ (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S11: Temperature screening^a

entry	T (°C)	yield of $9a'$ (%) ^b	ee of 9a' (%)	yield of 10a (%) ^b
1	rt	10	-	38
2	60	-	-	85

^aReaction conditions: **1a** (0.1 mmol), **8a'''** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L9** (11 mol %), K_2CO_3 (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product.

4. General condition

General condition A: In an Ar-filled glovebox, dissolving the [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mol %), and **L12** (4.8 mg, 5.5 mol %) in THF (0.8 mL) was stirred for 15 min at rt. Subsequently, *o*-Phenylenediamine derivatives **2** (0.13 mmol, 1.3 equiv), **1** (0.1 mmol, 1 equiv), and Na₂CO₃ or Li₂CO₃ (3.0 equiv) were added. The reaction mixture was stirred outside the glove box and at rt for 15 hours. The solution was concentrated in vacuo and the crude product was purified by column chromatography on silica gel to afford the chiral product **3**.

General condition B: In an Ar-filled glovebox, dissolving the [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mol %), and **L7** (4.4 mg, 5.5 mol %) in TMB (1.0 mL) was stirred for 15 min at rt. Subsequently, *o*-Phenylenediamine derivatives **1** (0.1 mmol, 1 equiv), **2** (0.13 mmol, 1.3 equiv), and K₂CO₃ (3.0 equiv) were added. The reaction mixture was stirred outside the glove box and heated at 46 °C for 20 hours. The solution was concentrated in vacuo and the crude product was purified by column chromatography on silica gel to afford the chiral product **4**.

General condition C: In an Ar-filled glovebox, dissolving the [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mol %), and **L11** (5.6 mg, 5.5 mol %) in THF (0.8 mL) was stirred for 15 min at rt. Subsequently, *o*-aminophenol derivatives **8** and **1**, and Na₂CO₃ were added. The reaction mixture was stirred outside the glove box and at rt for 5 hours. The solution was concentrated in vacuo and the crude product was purified by column chromatography on silica gel to afford the chiral product **9**.

General condition D: In an Ar-filled glovebox, dissolving the [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mol %), and **L9** (4.8 mg, 11 mol %) in THF (1.0 mL) was stirred for 15 min at rt. Subsequently, **8** (0.13 mmol, 1.3 equiv), **1** (0.1 mmol, 1.0 equiv), and K₂CO₃ (3.0 equiv) were added, at 60 °C for 15 h. The reaction mixture was stirred outside the glove box. The solution was concentrated in vacuo and the crude product was purified by column chromatography on silica gel to afford the product **10**.

5. Transformations of the products

Transformations A: A dried Schlenk flask was charged with **12** (1.5 equiv), $[Cp*RhCl_2]_2$ (5 mol %), CsOAc (1.0 equiv) backfilled with argon for 3 times, a mixture of (R)-**3i** (43.6 mg, 0.1 mmol) in anhydrous MeOH/H₂O (1.05 mL) was added. The resulting mixture was stirred at -20 °C for 20 h. Upon completion, the reaction mixture was filtered through Celite[®] and the filtrate was evaporated under reduced pressure and purified by flash column chromatography (PE/EA = 3/1) to afford (R,E)-**13** (41.7 mg).

(R,E)-2-(1-cyclohexyl-2-(1-(mesitylsulfonyl)-1,2,4,5-tetrahydro-3H-benzo[b][1,4]d iazepin-3-ylidene)ethyl)-N-methoxybenzamide (13)

(Flash column chromatography eluent:petroleum ether/EtOAc = 3:1); yellow oily liquid, 41.7 mg, 71% yield, 82% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 8.37 (s, 1H), 7.36-7.33 (m, 1H), 7.24-7.15 (m, 3H), 6.85-6.83 (m, 3H), 6.49 (d, J = 7.8 Hz, 1H), 6.39 (t, J = 7.4 Hz, 1H), 6.30-6.28 (m, 1H), 5.57 (d, J = 10.0 Hz, 1H), 4.49-4.25 (m, 3H), 3.96 (d, J = 13.9 Hz, 1H), 3.87-3.85 (m, 4H), 3.58 (t, J = 10.0 Hz, 1H), 2.38 (s, 6H), 2.28 (s, 3H), 1.76-1.65 (m, 2H), 1.57 (b, 3H), 1.23-1.12 (m, 2H), 1.09-1.04 (m, 2H), 0.82-0.77 (m, 2H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 168.5, 146.9, 142.8, 142.1, 140.2, 134.6, 134.2, 132.9, 131.8, 131.7, 130.8, 130.4, 128.4, 128.1, 127.5, 125.8, 124.8, 118.2, 117.7, 64.5, 58.4, 47.0, 43.5, 43.2, 31.7, 31.1, 26.3, 26.2, 26.1, 22.8, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{34}H_{42}N_3O_4S]^+$ requires m/z 588.2891, found m/z 588.2895;

 $[\alpha]_{25}^{D} = 24.1 \ (c = 1.22, \text{CHCl}_3);$

HPLC (Daicel Chirapak OD-3, hexane/ i-PrOH = 80/20, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 16.4$ min (minor), $t_R = 19.5$ min (major).

Transformations B: In a 10 mL screw-cap tube was placed tri-substituted allenyl acetates (*S*)-4f (0.1 mmol, 1.0 equiv., 46.3 mg) in MeOH (1.5 mL) under an air atmosphere. To the solution was added K₂CO₃ (0.2 mmol, 2.0 equiv., 27.6 mg) at room temperature in one portion. The solution was reacted at room temperature and monitored by TLC. After 2 h, the reaction mixture was filtered, concentrated and purified by silica gel column chromatography (PE/EA=4/1) to afford the desired product (*S*)-14 (36.5 mg, 90% yield) as a colorless oil.

To a dry Schlenk tube were added AgOTs (1.4 mg, 0.0045 mmol) in a glove box, PPh₃AuCl (2.8 mg, 0.0045 mmol), and CHCl₃ (1 mL) under argon atmosphere sequentially. After being stirred at room temperature for 30 min, the resulting mixture was stirred for another 10 min at -30 °C, then the **14** (36.5 mg, 0.09 mmol) and CHCl₃ (1 mL) were added. The resulting mixture was stirred at -30 °C for 12 h. The solution was purified by silica gel with 10:1 petroleum ether / ethyl acetate to afford compound **15** as a yellow oily liquid (32.8 mg, 90% yield).

(*R*)-4-methyl-*N*-phenyl-*N*-((5-phenyl-2,5-dihydrofuran-3-yl)methyl)benzenesulfo namide (15)

(Flash column chromatography eluent:petroleum ether/EtOAc = 7:1); yellow oily liquid, 32.8 mg, 81% yield, 90% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.47 (d, J = 8.3 Hz, 2H), 7.33-7.30 (m, 3H), 7.26-7.24 (m, 2H), 7.22-7.19 (m, 3H), 7.08-7.06 (m, 2H), 6.90-6.87 (m, 2H), 5.62-5.60 (m, 1H), 5.53-5.52 (m, 1H), 4.80-4.75 (m, 1H), 4.69-4.64 (m, 1H), 4.44 (d, J = 14.6 Hz, 1H), 4.30 (d, J = 14.5 Hz, 1H), 2.43 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 143.8, 141.2, 138.7, 135.7, 134.7, 129.5, 129.1, 129.0, 128.5, 128.4, 128.0, 127.9, 127.8, 126.6, 88.1, 75.8, 47.7, 21.6;

HRMS (ESI) exact mass calcd. For $[C_{24}H_{23}NO_{3}SNa]^{+}$ requires m/z 428.1291, found m/z 428.1290;

$$[\alpha]_{25}^{D} = -13.5 \ (c = 0.61, \text{CHCl}_3);$$

HPLC (Daicel Chirapak AD-H, hexane/ i-PrOH = 75/25, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 6.2$ min (minor), $t_R = 7.1$ min (major).

6. Procedures of control experiments

Table S12: Pd-catalyzed asymmetric [3 + 4] cycloaddition at different reaction times^a

entry	time (h)	1a (yield) % ^b	(S)- 4a (yield, ee) % ^{b, c}	3a (yield, ee) % ^{b, c}
1	0.17	43	16, 76	12, 84
2	0.5	5	24, 64	51, 93
3	2	trace	-	66, 92
4	15	-	-	81, 93

^aReactions were performed with **1a** (0.1 mmol), **2a** (0.13 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L12** (5.5 mol %) and Na₂CO₃ (3.0 equiv) and THF (0.8 mL). ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S13: Pd-catalyzed asymmetric intramolecular allenylic substitution of racemic allene 4a at different reaction times^a

entry	time	4a (yield, ee) % b, c	3a (yield, ee) % b, c
1	1 h	32, -73	50, 86
2	6 h	22, -96	66, 90
3	13 h	8, -94	73, 88

Reactions were performed with *Racemic*-**4a** (0.1 mmol), [Pd(allyl)Cl]₂ (2.5 mol %), **L12** (5.5 mol %) and Na₂CO₃ (3.0 equiv) in 0.8 mL of THF at rt. ^bYield of isolated product. ^cDetermined by chiral HPLC analysis.

Table S14: Reactions with enantioenriched and racemic 4a.

In an Argon-filled glovebox, ligand **L21** (4.3 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (S)-4a (0.1 mmol) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 13 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the product (R)-3a (36.1 mg, 84%, 5% ee).

In an Argon-filled glovebox, ligand **L12** (4.8 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (*S*) or *racemic* or (*R*)-4a (0.1 mmol) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 13 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the product **3a** and recovered **4a**.

When the starting material was (S)-4a, afford the desired product (R)-3a (89% yield, 94% ee); When the starting material was racemic-4a, afford the desired product (R)-3a (73% yield, 88% ee) and recovered (R)-4a (8% yield, -94% ee); When the starting material was (R)-4a, afford the desired product (R)-3a (58% yield, 81% ee) and recovered (R)-4a (11% yield, -99% ee).

Intermediate 4a in the absence of metal ligands:

Table S15: Pd-catalyzed 10a reactions of use general condition C

In an Argon-filled glovebox, ligand **L11** (5.6 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, **10a** (0.1 mmol) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 15 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered **10a** (89% yield), not observed **9a'**.

Reversibility and racemization experiments of [3 + 4] cycloaddition products

In an Argon-filled glovebox, ligand **L12** (4.8 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (*R*)-3a (0.1 mmol, 95% ee) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 18 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered (*R*)-3a (40.4 mg, 94%, 68% ee).

In an Argon-filled glovebox, ligand **L12** (4.8 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube.

After the resulting mixture was stirred at rt for 15 min, (R)-3a (0.1 mmol, 95% ee) and 1a (0.1 equiv) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 18 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered (R)-3a (36.6 mg, 85%, 69% ee).

In an Argon-filled glovebox, ligand **L12** (4.8 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (R)-3a (0.1 mmol, 95% ee) and 2a (0.1 equiv) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 18 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered (R)-3a (37.5 mg, 87%, 94% ee).

In an Argon-filled glovebox, ligand **L12** (4.8 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, **1a** (0.1 mmol) and **2a** (1.3 equiv) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 33 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the product (*R*)-**3a** (36.2 mg, 84%, 95% ee).

In an Argon-filled glovebox, ligand **L11** (5.6 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (*R*)-**9b** (0.1 mmol, 92% ee) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 18 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered (*R*)-**9b** (51.7 mg, 96%, 83% ee).

In an Argon-filled glovebox, ligand **L11** (5.6 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, (*R*)-**9b** (0.1 mmol, 92% ee) and **8b** (0.1 equiv) and Na₂CO₃ (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at rt for 18 hours. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to recovered (*R*)-**9b** (47.9 mg, 89%, 90% ee).

Table S16: 1a and 8 are reacted using condition B

In an Argon-filled glovebox, ligand L7 (4.4 mg, 5.5 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and TMB (0.8 mL) were added to an oven-dried 10 mL screw-cap tube.

After the resulting mixture was stirred at rt for 15 min, 1a (0.1 mmol) and 8 (1.3 equiv) and K_2CO_3 (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at 46 °C for 20 hours. The reaction mixture is condensed under pressure reduction. The residue was purified by silica gel flash column chromatography and no 11 was detected.

Table S17: 1a and 2 are reacted using condition D

In an Argon-filled glovebox, ligand **L9** (4.4 mg, 11 mol %) and [Pd(allyl)Cl]₂ (0.9 mg, 2.5 mmol %) and THF (0.8 mL) were added to an oven-dried 10 mL screw-cap tube. After the resulting mixture was stirred at rt for 15 min, **1a** (0.1 mmol) and **2** (1.3 equiv) and K_2CO_3 (3.0 equiv) were added. The screw-cap tube was moved out of the glovebox and at 60 °C for 15 hours. The reaction mixture is condensed under pressure reduction. The residue was purified by silica gel flash column chromatography and no **16** was detected.

7. Single crystal X-ray diffraction data

X-ray crystallographic data for (R)-3n

$$\begin{array}{c} \text{Mts} & \text{Br} \\ \text{N} & \text{Br} \\ \text{T} & \text{NH} \end{array}$$

$$(R)\text{-3n} \qquad \qquad \text{X-ray of 3n}$$

(R)-3n. (CCDC NO: 2251580)

Identification code 4

Empirical formula C26 H24 Br2 N2 O2 S

Formula weight 588.35

Temperature 100.00 K
Wavelength 0.71073 A

Crystal system, space group Orthorhombic, P2(1)2(1)2(1)

Unit cell dimensions a = 5.8154(7) A alpha = 90 deg.

b = 17.400(2) A beta = 90 deg.

c = 23.776(3) A gamma = 90 deg.

Volume 2405.9(5) A^3

Z, Calculated density 4, 1.624 Mg/m³

Absorption coefficient 3.483 mm⁻¹

F(000) 1184

Crystal size 0.2 x 0.18 x 0.16 mm

Theta range for data collection 2.075 to 28.277 deg.

Limiting indices -7 <= h <= 7, -22 <= k <= 23, -31 <= l <= 31

Reflections collected / unique 5619 / 5619 [R(int) = 0.0477]

Completeness to theta = 25.242 98.9 %

Absorption correction Semi-empirical from equivalents

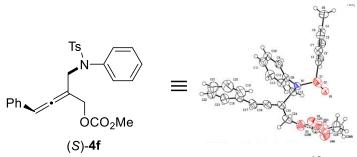
Max. and min. transmission 0.745686 and 0.450138

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5619 / 0 / 301

Goodness-of-fit on F² 1.039

Final R indices [I>2sigma(I)] R1 = 0.0472, wR2 = 0.1101


R indices (all data) R1 = 0.0661, wR2 = 0.1185

Absolute structure parameter 0.044(11)

Extinction coefficient n/a

Largest diff. peak and hole 0.877 and -0.611 e.A^-3

X-ray crystallographic data for (S)-4f

X-ray of 4f

(S)-4f. (CCDC NO: 2251582)

Identification code cu_20221205_Zh_YN_LPF_0m

Empirical formula C₂₆H₂₅NO₅S

Formula weight 463.53

Temperature/K 193.00

Crystal system orthorhombic

Space group $P2_12_12_1$

a/Å 6.04550(10)

b/Å 15.2328(3)

c/Å 25.3404(5)

 α / $^{\circ}$ 90

β/° 90

γ/° 90

Volume/ $Å^3$ 2333.59(8)

Z 4

 $\rho_{calc}g/cm^3 \hspace{1.5cm} 1.319$

 μ/mm^{-1} 1.546

F(000) 976.0

Crystal size/mm³ $0.15 \times 0.13 \times 0.11$

Radiation $CuK\alpha (\lambda = 1.54178)$

2Θ range for data collection/° 6.77 to 136.82

Index ranges $-7 \le h \le 7, -18 \le k \le 18, -30 \le 1 \le 30$

Reflections collected 23877

Independent reflections 4285 [$R_{int} = 0.0586$, $R_{sigma} = 0.0437$]

Data/restraints/parameters 4285/0/339

Goodness-of-fit on F^2 1.047

Final R indexes [I>= 2σ (I)] $R_1 = 0.0366$, $wR_2 = 0.0922$

Final R indexes [all data] $R_1 = 0.0406$, $wR_2 = 0.0954$

Largest diff. peak/hole / e Å-3 0.25/-0.21

Flack parameter 0.024(8)

X-ray crystallographic data for (R)-9a

$$CF_3$$
 $O=S$
 $O=S$
 (R) -9a

 X -ray of 9a

(R)-9a. (CCDC NO: 2251583)

Identification code 1

Empirical formula C25 H17 F6 N O3 S

Formula weight 525.46

Temperature 100.00 K

Wavelength 0.71073 A

Crystal system, space group Orthorhombic, P2(1)2(1)2(1)

Unit cell dimensions a = 8.0066(3) A alpha = 90 deg.

b = 14.4740(6) A beta = 90 deg.

c = 19.8606(8) A gamma = 90 deg.

Volume 2301.60(16) A^3

Z, Calculated density 4, 1.516 Mg/m³

Absorption coefficient 0.218 mm^-1

F(000) 1072

Crystal size $0.2 \times 0.18 \times 0.16 \text{ mm}$

Theta range for data collection 2.051 to 28.298 deg.

Limiting indices -10 <= h <= 9, -19 <= k <= 19, -26 <= l <= 23

Reflections collected / unique 19572 / 5707 [R(int) = 0.0279]

Completeness to theta = 25.242 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7457 and 0.6863

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5707 / 0 / 325

Goodness-of-fit on F² 1.039

Final R indices [I>2sigma(I)] R1 = 0.0298, wR2 = 0.0700

R indices (all data) R1 = 0.0324, wR2 = 0.0717

Absolute structure parameter 0.01(2)

Extinction coefficient n/a

Largest diff. peak and hole 0.246 and -0.304 e.A^-3

8. References

[1] C. Manzuna Sapu, J.-E. Bäckvall, J. Deska, Angew. Chem. Int. Ed. 2011, 50, 9731.

[2] S. Song, S. Ma, Chin. J. Chem. 2020, 38, 1233.

[3] D. Zhang, Y.-B. Shao, W. Xie, Y. Chen, W. Liu, H. Bao, F. He, X.-S. Xue, X. Yang, *ACS Catal.* 2022, **12**, 14609.

9. Spectral data of products

Spectral data of products 1 dimethyl (2-(2-phenylvinylidene)propane-1,3-diyl) bis(carbonate)

Yellow liquid, 74% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.22 (m, 5H), 6.43-6.42 (m, 1H), 4.84-4.75 (m, 4H), 3.75 (s, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 205.3, 155.4, 132.5, 128.7, 127.8, 127.3, 99.9, 98.2, 65.5, 54.9;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{17}O_6^+$ 293.1020; Found 293.1023.

dimethyl (2-(2-(p-tolyl)vinylidene)propane-1,3-diyl) bis(carbonate)

Yellow liquid, 92% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (400 MHz, CDCl₃) δ 7.10-7.02 (m, 4H), 6.32 (s, 1H), 4.75-4.66 (m, 4H), 3.67 (s, 6H), 2.24 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 205.2, 155.4, 137.7, 129.5, 129.4, 127.3, 99.7, 98.0, 65.7, 54.9, 21.2;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{19}O_6^+$ 307.1176; Found 307.1175.

2-(2-([1,1'-biphenyl]-4-yl)vinylidene)propane-1,3-diyl dimethyl bis(carbonate)

White solid, 76% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.54 (m, 4H), 7.45-7.42 (m, 2H), 7.36-7.34 (m, 3H), 6.48-6.47 (m, 1H), 4.86-4.78 (m, 4H), 3.78 (s, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 205.6, 155.5, 140.7, 140.6, 131.5, 128.8, 127.8, 127.4, 127.0, 100.0, 97.9, 65.6, 55.0;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{21}H_{21}O_6^+$ 369.1333; Found 369.1336.

2-(2-(4-methoxyphenyl)vinylidene)propane-1,3-diyl dimethyl bis(carbonate)

$$MeO$$
 OCO_2Me OCO_2Me

Yellow liquid, 79% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (600 MHz, CDCl₃) δ 7.22-7.19 (m, 2H), 6.86-6.84 (m, 2H), 6.40-6.39 (m, 1H), 4.82-4.75 (m, 4H), 3.79 (s, 3H), 3.76 (s, 6H);

¹³C **NMR** (150 MHz, CDCl₃) δ 205.0, 159.4, 155.5, 128.5, 124.7, 114.2, 99.7, 97.7, 65.8, 55.3, 54.9;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{19}O_7^+$ 323.1125; Found 323.1127.

2-(2-(4-chlorophenyl)vinylidene)propane-1,3-diyl dimethyl bis(carbonate)

Yellow liquid, 80% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (600 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 4.83-4.76 (m, 4H), 3.76 (s, 6H);

¹³C NMR (150 MHz, CDCl₃) δ 205.2, 155.4, 133.5, 131.1, 128.9, 128.5, 100.4, 97.4, 65.3, 55.0;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}ClO_6^+$ 327.0630; Found 327.0629.

dimethyl (2-(2-(m-tolyl)vinylidene)propane-1,3-diyl) bis(carbonate)

$$OCO_2Me$$

OCO $_2Me$

Yellow liquid, 79% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (500 MHz, CDCl₃) δ 7.22-7.18 (m, 1H), 7.09-7.04 (m, 3H), 6.40-6.39 (m, 1H), 4.84-4.76 (m, 4H), 3.77 (s, 6H), 2.33 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 205.5, 155.5, 138.3, 132.3, 128.7, 128.6, 128.0, 124.5, 99.7, 98.1, 65.7, 55.0, 21.3;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{19}O_6^+$ 307.1176; Found 307.1179.

2-(2-(3-fluorophenyl)vinylidene)propane-1,3-diyl dimethyl bis(carbonate)

$$OCO_2Me$$
 OCO_2Me

Yellow liquid, 76% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (600 MHz, CDCl₃) δ 7.28-7.26 (m, 1H), 7.06-6.92 (m, 3H), 6.41 (s, 1H), 4.80 (dd, J = 20.6, 12.1 Hz, 4H), 3.77 (s, 6H);

¹³C NMR (150 MHz, CDCl₃) δ 205.4, 163.1 (d, J_{C-F} = 246.0 Hz), 155.4, 135.0 (d, J_{C-F} = 7.7 Hz), 130.1 (d, J_{C-F} = 8.2 Hz), 123.1, 114.7 (d, J_{C-F} = 21.3 Hz), 113.9 (d, J_{C-F} = 22.5 Hz), 100.5, 97.5, 65.3, 55.0;

¹⁹**F NMR** (564 MHz, CDCl₃) δ -113.1;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}FO_6^+$ 311.0925; Found 311.0929.

dimethyl (2-(2-(o-tolyl)vinylidene)propane-1,3-diyl) bis(carbonate)

1h

Yellow liquid, 77% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (500 MHz, CDCl₃) δ 7.32-7.30 (m, 1H), 7.16-7.14 (m, 3H), 6.63-6.62 (m, 1H), 4.84-4.77 (m, 4H), 3.77 (s, 6H), 2.35 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 206.2, 155.5, 135.6, 130.8, 130.6, 128.0, 127.8, 126.3, 98.7, 95.5, 65.8, 55.0, 19.9;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{19}O_6^+$ 307.1176; Found 307.1177.

dimethyl (2-(2-(naphthalen-2-yl)vinylidene)propane-1,3-diyl) bis(carbonate)

White solid, 79% yield, flash column chromatography (SiO₂, 10:1 PE/EtOAc);

¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.76 (m, 3H), 7.67 (s, 1H), 7.48-7.42 (m, 3H), 6.61 (s, 1H), 4.84 (dd, J = 20.4, 12.3 Hz, 4H), 3.76 (s, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 205.8, 155.5, 133.5, 133.0, 130.0, 128.4, 127.9, 127.8, 126.6, 126.4, 126.1, 124.8, 100.1, 98.6, 65.6, 55.0;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{19}O_6^+$ 343.1176; Found 343.1175.

dimethyl (2-(non-1-en-1-ylidene)propane-1,3-diyl) bis(carbonate)

1g

Yellow liquid, 87% yield, flash column chromatography (SiO₂, 20:1 PE/EtOAc);

¹**H NMR** (500 MHz, CDCl₃) δ 5.41 (s, 1H), 4.68 (s, 4H), 3.79 (s, 6H), 2.06-2.03 (m, 2H), 1.41-1.28 (m, 10H), 0.89-0.87 (m, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 204.6, 155.5, 95.4, 94.6, 66.3, 54.8, 31.8, 29.0, 28.9, 28.8, 28.1, 22.6, 14.0;

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₂₇O₆⁺ 315.1802; Found 315.1802.

2-(2-cyclohexylvinylidene)propane-1,3-diyl dimethyl bis(carbonate)

1k

Yellow liquid, 81% yield, flash column chromatography (SiO₂, 20:1 PE/EtOAc);

¹**H NMR** (400 MHz, CDCl₃) δ 5.42-5.40 (m, 1H), 4.68 (m, 4H), 3.78 (s, 6H), 2.04-2.02 (m, 1H), 1.76-1.62 (m, 5H), 1.29-1.04 (m, 5H);

¹³C NMR (100 MHz, CDCl₃) δ 203.4, 155.4, 100.4, 96.4, 66.2, 54.6, 36.7, 32.6, 25.8, 25.7;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{23}O_6^+$ 299.1489; Found 299.1487.

Spectral data of products 3

(R)-1-(mesitylsulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3a)

3a, 81%, 95% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 34.8 mg, 81% yield, 95% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.23-7.21 (m, 2H), 7.18-7.14 (m, 3H), 7.07-7.03 (m, 1H), 6.93 (s, 2H), 6.67-6.65 (m, 1H), 6.51-6.47 (m, 1H), 6.44-6.42 (m, 1H), 6.20 (s, 1H), 4.70 (s, 2H), 4.21-4.08 (m, 3H), 2.46 (s, 6H), 2.32 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.5, 146.3, 142.4, 140.2, 134.6, 133.9, 131.9, 130.3, 128.9, 128.7, 127.2, 127.0, 125.2, 118.6, 118.6, 102.9, 96.5, 53.1, 47.1, 22.9, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{26}N_2O_2SNa]^+$ requires m/z 453.1607, found m/z 453.1609;

 $[\alpha]_{25}^{D} = -23.11 \ (c = 0.53, \text{CHCl}_3);$

HPLC (Daicel Chirapak AD-H, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 25.1$ min (minor), $t_R = 30.4$ min (major).

(R)-1-(mesitylsulfonyl)-3-(2-(p-tolyl)vinylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3b)

3b, 81%, 94% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 36.0 mg, 81% yield, 94% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.06-7.03 (m, 5H), 6.93 (s, 2H), 6.67-6.65 (m, 1H), 6.51-6.43 (m, 2H), 6.16 (s, 1H), 4.68 (s, 2H), 4.17-4.06 (m, 3H), 2.46 (s, 6H), 2.31 (s, 3H), 2.29 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.3, 146.4, 142.4, 140.2, 137.1, 134.6, 131.9, 130.9, 130.3, 129.4, 128.8, 126.9, 125.2, 118.6, 118.5, 102.8, 96.3, 53.2, 47.1, 22.9, 21.2, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{28}N_2O_2SNa]^+$ requires m/z 467.1764, found m/z 467.1765;

 $[\alpha]_{25}^{D} = -25.14 (c = 0.26, CHCl₃);$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 80/20, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 8.5$ min (minor), $t_R = 12.5$ min (major).

(R)-3-(2-([1,1'-biphenyl]-4-yl)vinylidene)-1-(mesitylsulfonyl)-2,3,4,5-tetrahydro-1 H-benzo[b][1,4]diazepine (3c)

3c, 84%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 42.6 mg, 84% yield, 93% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.56-7.54 (m, 2H), 7.47-7.45 (m, 2H), 7.42-7.38 (m, 2H), 7.33-7.29 (m, 1H), 7.23-7.21 (m, 2H), 6.07-7.02 (m, 1H), 6.93(s, 2H), 6.66-6.64 (m, 1H), 6.51-6.42 (m, 2H), 6.23 (s, 1H), 4.71 (s, 2H), 4.22-4.08 (m, 3H), 2.47 (s, 6H), 2.31 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.7, 146.4, 142.5, 140.7, 140.2, 140.1, 134.6, 133.0, 131.9, 130.3, 128.9, 128.8, 127.5, 127.4, 127.3, 126.9, 125.3, 118.7, 118.6, 103.1, 96.2, 53.2, 47.1, 23.0, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{32}H_{30}N_2O_2SNa]^+$ requires m/z 529.1920, found m/z 529.1919;

 $[\alpha]_{25}^{D} = -94.17 (c = 1.06, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 60/40, flow rate = 1.5 mL/min, T = 25 °C, 254 nm): t_R =5.4 min (major), t_R = 11.3 min (minor).

(R)-3-(2-(4-chlorophenyl)vinylidene)-1-(mesitylsulfonyl)-2,3,4,5-tetrahydro-1H-b enzo[b][1,4]diazepine (3d)

3d, 86%, 92% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 40.0 mg, 86% yield, 92% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.19-7.17 (m, 2H), 7.09-7.02 (m, 3H), 6.93 (s, 2H), 6.67-6.65 (m, 1H), 6.51-6.47 (m, 1H), 6.40-6.38 (m, 1H), 6.15 (s, 1H), 4.67 (s, 2H), 4.22-4.06 (m, 3H), 2.46 (s, 6H), 2.31 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.5, 146.4, 142.5, 140.2, 134.5, 132.8, 132.5, 131.9, 130.2, 128.9, 128.8, 128.2, 125.4, 118.8, 103.5, 95.6, 53.0, 47.1, 22.9, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{25}ClN_2O_2SNa]^+$ requires m/z 487.1217, found m/z 487.1219;

 $[\alpha]_{25}^{D} = -73.51 \ (c = 0.87, \text{CHCl}_3);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 6.7$ min (major), $t_R = 7.6$ min (minor).

(R)-1-(mesitylsulfonyl)-3-(2-(m-tolyl)vinylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3e)

3e, 84%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 37.4 mg, 84% yield, 93% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.13-7.09 (m, 1H), 7.06-7.02 (m, 1H), 6.98-6.93 (m, 5H), 6.66-6.63 (m, 1H), 6.50-6.43 (m, 2H), 6.16 (s, 1H), 4.75-4.64 (m, 2H), 4.16-4.08 (m, 3H), 2.46 (s, 6H), 2.31 (s, 3H), 2.24 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.7, 146.4, 142.4, 140.2, 138.3, 134.6, 133.7, 131.9, 130.4, 129.0, 128.6, 128.1, 127.5, 125.0, 124.2, 118.6, 118.5, 102.7, 96.5, 53.3, 47.0, 22.9, 21.3, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{28}N_2O_2SNa]^+$ requires m/z 467.1764, found m/z 467.1766;

 $[\alpha]_{25}^{D} = -38.47 (c = 0.83, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 10.8$ min (minor), $t_R = 16.6$ min (major).

(R)-3-(2-(3-fluorophenyl)vinylidene)-1-(mesitylsulfonyl)-2,3,4,5-tetrahydro-1H-be nzo[b][1,4]diazepine (3f)

3f, 83%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 37.3 mg, 83% yield, 93% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.20-7.18 (m, 1H), 7.07-7.03 (m, 1H), 6.97-6.94 (m, 3H), 6.87-6.84 (m, 2H), 6.68-6.66 (m, 1H), 6.52-6.48 (m, 1H), 6.43-6.40 (m, 1H), 6.17 (s, 1H), 4.69 (s, 2H), 4.21-4.09 (m, 3H), 2.46 (s, 6H), 2.32 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.5, 163.1 (d, J_{C-F} = 245.6 Hz), 146.2, 142.5, 140.2, 136.5, 136.4 (d, J_{C-F} = 7.8 Hz), 131.9, 130.2, 130.0 (d, J_{C-F} = 8.4 Hz), 128.9, 125.3, 122.7 (d, J_{C-F} = 2.7 Hz), 118.8, 118.7, 114.1 (d, J_{C-F} = 21.5 Hz), 113.5 (d, J_{C-F} = 22.2 Hz), 103.5, 95.9, 95.8, 52.9, 47.0, 22.9, 21.0;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.3;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{25}FN_2O_2SNa]^+$ requires m/z 471.1513, found m/z 471.1514;

 $[\alpha]_{25}^{D} = -16.37 \ (c = 0.39, \text{CHCl}_3);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 65/35, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 7.5$ min (minor), $t_R = 9.7$ min (major).

(R)-1-(mesitylsulfonyl)-3-(2-(o-tolyl)vinylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3g)

3g, 89%, 91% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 39.6 mg, 89% yield, 91% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.16-7.13 (m, 1H), 7.10-7.01 (m, 4H), 6.93 (s, 2H), 6.64-6.62 (m, 1H), 6.50-6.43 (m, 2H), 6.38 (s, 1H), 4.76-4.63 (m, 2H), 4.18-4.13 (m, 3H), 2.46 (s, 6H), 2.31 (s, 3H), 2.28 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 202.2, 146.3, 142.4, 140.2, 135.3, 134.6, 132.0, 131.9, 130.6, 130.3, 128.9, 127.7, 127.2, 126.2, 125.1, 118.6, 118.5, 101.7, 93.9, 53.2, 47.1, 23.0, 21.0, 19.9;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{28}N_2O_2SNa]^+$ requires m/z 467.1764, found m/z 467.1762;

 $[\alpha]_{25}^{D} = -35.67 (c = 0.67, CHCl₃);$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): t_R =11.9 min (major), t_R = 15.2 min (minor).

(R)-1-(mesitylsulfonyl)-3-(2-(naphthalen-2-yl)vinylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3h)

3h, 87%, 94% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 41.8 mg, 87% yield, 94% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.75-7.65 (m, 3H), 7.57 (s, 1H), 7.44-7.38 (m, 2H), 7.29-7.26 (m, 1H), 7.10-7.06 (m, 1H), 6.93 (s, 2H), 6.67 (d, J = 8.1 Hz, 1H), 6.53-6.49 (m, 1H), 6.45-6.42 (m, 1H), 6.36 (s, 1H), 4.74 (s, 2H), 4.24-4.10 (m, 3H), 2.47 (s, 6H), 2.31 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 202.1, 146.4, 142.5, 140.2, 134.6, 133.6, 132.8, 131.9, 131.4, 130.3, 129.0, 128.3, 127.8, 127.7, 126.2, 125.9, 125.8, 125.1, 124.8, 118.7, 118.6, 103.2, 96.9, 53.2, 47.1, 23.0, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{30}H_{28}N_2O_2SNa]^+$ requires m/z 503.1764, found m/z 503.1765;

 $[\alpha]_{25}^{D} = -62.22 \ (c = 0.89, \text{CHCl}_3);$

HPLC (Daicel Chirapak AD-H, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): t_R = 9.6 min (minor), t_R = 11.9 min (major).

(*R*)-3-(2-cyclohexylvinylidene)-1-(mesitylsulfonyl)-2,3,4,5-tetrahydro-1*H*-benzo[*b*][1,4]diazepine (3i)

3i, 85%, 83% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 15:1); colorless oily liquid, 37.1 mg, 85% yield, 83% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.01-6.97 (m, 1H), 6.91 (s, 2H), 6.61-6.59 (m, 1H), 6.49-6.43 (m, 2H), 5.17-5.16 (m, 1H), 4.54 (s, 2H), 4.11-3.89 (m, 3H), 2.44 (s, 6H), 2.30 (s, 3H), 1.95-1.91 (m, 1H), 1.65-1.56 (m, 5H), 1.25-0.94 (m, 5H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 199.4, 146.5, 142.2, 140.2, 134.5, 131.8, 130.4, 128.7, 125.1, 118.6, 118.3, 99.5, 99.4, 53.7, 47.4, 37.2, 32.9, 32.8, 26.1, 25.9, 22.9, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{32}N_2O_2SNa]^+$ requires m/z 459.2077, found m/z 459.2079;

 $[\alpha]_{25}^{D} = -51.36 (c = 1.02, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 80/20, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 6.0$ min (minor), $t_R = 6.6$ min (major).

(R)-1-(mesitylsulfonyl)-3-(non-1-en-1-ylidene)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine (3j)

3j, 86%, 72% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 20:1); colorless oily liquid, 39.0 mg, 86% yield, 72% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.01-6.97 (m, 1H), 6.91 (s, 2H), 6.616.59 (m, 1H), 6.51-6.43 (m, 2H), 5.19-5.16 (m, 1H), 4.54 (s, 2H), 4.10-3.89 (m, 3H), 2.45 (s, 6H), 2.30 (s, 3H), 1.94 (q, J = 13.9, 6.8 Hz, 2H), 1.30-1.22 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) 200.1, 146.4, 142.2, 140.2, 134.6, 131.8, 130.4, 128.7, 125.2, 118.5, 118.3, 98.6, 93.4, 53.5, 47.4, 31.9, 29.1, 29.0, 28.9, 28.6, 22.9, 22.7, 21.0, 14.1;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{36}N_2O_2SNa]^+$ requires m/z 475.2390, found m/z 475.2387;

 $[\alpha]_{25}^{D} = -40.92 (c = 1.09, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 85:15, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 6.3$ min (minor), $t_R = 7.0$ min (major).

(R)-1-(mesitylsulfonyl)-7,8-dimethyl-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1 H-benzo[b][1,4]diazepine (3k)

3k, 80%, 90% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 36.7 mg, 80% yield, 90% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.25-7.21 (m, 2H), 7.17-7.15 (m, 3H), 6.94 (s, 2H), 6.48 (s, 1H), 6.22 (s, 1H), 6.16 (s, 1H), 4.63-4.54 (m, 2H), 4.16-3.95 (m, 3H), 2.47 (s, 6H), 2.32 (s, 3H), 2.13 (s, 3H), 1.90 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.5, 143.8, 142.3, 140.3, 137.2, 134.6, 134.0, 131.8, 130.8, 128.6, 127.3, 127.2, 127.1, 123.7, 120.3, 103.1, 96.1, 52.9, 47.5, 23.0, 21.0, 19.4, 18.4;

HRMS (ESI) exact mass calcd. For $[C_{28}H_{30}N_2O_2SNa]^+$ requires m/z 481.1920, found m/z 481.1920;

 $[\alpha]_{25}^{D} = -62.99 (c = 1.34, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 10.1$ min (minor), $t_R = 15.2$ min (major).

(*R*)-7,8-difluoro-1-(mesitylsulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1*H* -benzo[*b*][1,4]diazepine (3l)

31, 80%, 92% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 37.4 mg, 80% yield, 92% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.27-7.24 (m, 2H), 7.20-7.15 (m, 3H), 6.97 (s, 2H), 6.45 (dd, J = 11.7, 7.6 Hz, 1H), 6.29-6.25 (m, 1H), 6.21 (s, 1H), 4.64 (s, 2H), 4.14-4.03 (m, 3H), 2.48 (s, 6H), 2.33 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.6, 150.1 (dd, J_{C-F} = 248.4, 13.7 Hz), 143.8, 143.5 (d, J_{C-F} = 8.4 Hz), 143.0, 140.2, 133.7, 133.6, 132.1, 128.7, 127.4, 127.0, 118.7 (dd, J_{C-F} = 18.3, 2.2 Hz), 106.3 (d, J_{C-F} = 20.4 Hz), 102.3, 96.8, 53.1, 46.9, 22.9, 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -136.6, -149.3;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{24}F_{2}N_{2}O_{2}SNa]^{+}$ requires m/z 489.1419, found m/z 489.1420;

 $[\alpha]_{25}^{D} = -29.03 \ (c = 0.73, \text{CHCl}_3);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 5.6$ min (minor), $t_R = 6.9$ min (major).

(R)-7,8-dichloro-1-(mesitylsulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1 H-benzo[b][1,4]diazepine (3m)

3m, 85%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 42.4 mg, 85% yield, 93% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.27-7.14 (m, 5H), 6.99 (s, 2H), 6.74 (s, 1H), 6.47 (s, 1H), 6.22 (s, 1H), 4.65 (s, 2H), 4.24-4.06 (m, 3H), 2.49 (s, 6H), 2.34 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 201.6, 145.7, 143.1, 140.2, 133.7, 133.5, 132.2, 132.1, 131.5, 128.7, 128.6, 127.5, 127.0, 126.4, 124.4, 120.3, 118.9, 102.0, 97.0, 53.0, 46.6, 23.0, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{24}Cl_2N_2O_2SNa]^+$ requires m/z 521.0828, found m/z 521.0829;

 $[\alpha]_{25}^{D} = -34.21 \ (c = 0.67, \text{CHCl}_3);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70:30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 4.7$ min (minor), $t_R = 5.9$ min (major).

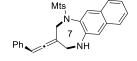
(*R*)-7,8-dibromo-1-(mesitylsulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1 *H*-benzo[*b*][1,4]diazepine (3n)

3n, 85%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 50.0 mg, 85% yield, 93% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.25-7.24 (m, 2H), 7.20-7.17 (m, 1H), 7.14-7.13 (m, 2H), 6.98 (s, 2H), 6.90 (s, 1H), 6.56 (s, 1H), 6.22 (s, 1H), 4.64 (s, 2H), 4.26 (s, 1H), 4.17-4.05 (m, 2H), 2.48 (s, 6H), 2.33 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 201.6, 146.3, 143.1, 140.3, 134.6, 133.6, 133.5, 132.1, 128.7, 127.5, 127.0, 125.2, 124.3, 122.1, 110.9, 102.0, 97.0, 53.0, 46.6, 23.0, 21.0;


HRMS (ESI) exact mass calcd. For $[C_{26}H_{24}Br_2N_2O_2SNa]^+$ requires m/z 608.9817, found m/z 608.9815;

 $[\alpha]_{25}^{D} = -84.10 (c = 1.33, CHCl₃);$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 5.0$ min (minor), $t_R = 6.6$ min (major). Absolute configuration is confirmed by X-ray.

Melting range:176.4-177.3 °C.

(R)-1-(mesitylsulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-tetrahydro-1H-naphtho[2, 3-b][1,4]diazepine (30)

3o, 71%, 93% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 34.1 mg, 71% yield, 93% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.56 (d, J = 8.3 Hz, 1H), 7.37-7.34 (m, 2H), 7.19-7.16 (m, 1H), 7.09-7.01 (m, 7H), 6.95 (s, 2H), 6.17 (s, 1H), 4.70-4.61 (m, 2H), 4.30 (s, 1H), 4.15-4.05 (m, 2H), 2.47 (s, 6H), 2.33 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 202.0, 144.5, 142.6, 140.3, 134.3, 133.9, 133.7, 132.0, 129.2, 128.6, 128.6, 128.5, 128.1, 127.6, 127.2, 127.0, 126.9, 125.5, 123.2, 113.8, 102.5, 96.3, 53.0, 47.9, 23.0, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{30}H_{28}N_2O_2SNa]^+$ requires m/z 503.1764, found m/z 503.1763;

$$[\alpha]_{25}^{D} = -48.37 (c = 0.89, CHCl3);$$

HPLC (Daicel Chirapak OZ-3, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 7.5$ min (minor), $t_R = 9.7$ min (major).

Spectral data of products 4

(S)-2-(((N-(2-aminophenyl)-2,4,6-trimethylphenyl)sulfonamido)methyl)-4-phenyl buta-2,3-dien-1-yl methyl carbonate (4a)

4a, 75%, 90% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); yellow oily liquid, 30.3 mg, 75% yield, 90% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.18-7.07 (m, 4H), 6.91-6.87 (m, 3H), 6.79-6.57 (m, 3H), 6.50-6.39 (m, 1H), 6.07 (m, 1H), 5.11-4.68 (m, 3H), 4.35-4.06 (m, 3H), 3.77-3.73 (m, 3H), 2.40-2.36 (m, 6H), 2.27 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 206.2, 205.9, 155.5, 155.4, 146.9, 146.5, 142.6, 142.6, 140.3, 132.8, 132.6, 132.5, 132.3, 132.1, 131.2, 129.9, 129.6, 129.5, 128.5, 128.4, 127.4, 127.3, 127.2, 123.4, 123.1, 118.8, 118.5, 117.3, 117.2, 99.8, 99.7, 97.0, 65.9, 65.7, 55.0, 51.5, 49.4, 23.5, 23.4, 21.0;

HRMS (ESI) exact mass calcd. For $[C_{28}H_{30}N_2O_5SNa]^+$ requires m/z 529.1768, found m/z 529.1767;

$$[\alpha]_{25}^{D} = -127.8 (c = 1.31, CHCl3);$$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 7.2$ min (major), $t_R = 8.9$ min (minor).

(S)-2-(((N-(2-amino-4,5-dimethylphenyl)-2,4,6-trimethylphenyl)sulfonamido)met hyl)-4-phenylbuta-2,3-dien-1-yl methyl carbonate (4b)

S42

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); yellow oily liquid, 39.1 mg, 73% yield, 85% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.14-7.05 (m, 3H), 6.88-6.86 (m, 3H), 6.71-6.70 (m, 1H), 6.57-6.51 (m, 1H), 6.44-6.19 (m, 1H), 6.12-6.06 (m, 1H), 5.05-4.68 (m, 3H), 4.58-4.33 (m, 1H), 4.05-4.03 (m, 2H), 3.76-3.71 (m, 3H), 2.43-2.36 (m, 6H), 2.26 (s, 3H), 2.15-2.13 (m, 3H), 2.01-1.67 (m, 3H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 206.0, 205.9, 155.5, 155.4, 144.3, 143.7, 142.5, 142.4, 140.3, 138.0, 137.8, 133.0, 132.8, 132.5, 131.9, 130.3, 128.4, 128.2, 127.3, 127.2, 126.9, 126.6, 121.0, 118.8, 118.6, 100.0, 97.1, 65.9, 65.7, 54.9, 51.0, 49.0, 23.5, 23.4, 20.9, 19.6, 18.5, 18.2;

HRMS (ESI) exact mass calcd. For $[C_{30}H_{34}N_2O_5SNa]^+$ requires m/z 557.2081, found m/z 557.2083;

 $[\alpha]_{25}^{D} = -37.20 (c = 0.97, CHCl₃);$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 70/30, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 9.5 \text{ min (major)}$, $t_R = 13.5 \text{ min (minor)}$.

(S)-2-(((N-(2-amino-4,5-difluorophenyl)-2,4,6-trimethylphenyl)sulfonamido)meth yl)-4-phenylbuta-2,3-dien-1-yl methyl carbonate (4c)

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); yellow oily liquid, 39.6 mg, 73% yield, 90% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.26-7.16 (m, 3H), 6.97-6.90 (m, 3H), 6.80 (s, 1H), 6.62-6.53 (m, 1H), 6.42-6.31 (m, 1H), 6.16-6.10 (m, 1H), 5.01-4.60 (m, 3H), 4.28-3.98 (m, 3H), 3.77-3.73 (m, 3H),2.43-2.40 (m, 6H), 2.28 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 206.1, 206.0, 155.5, 151.8, 151.7, 149.8, 149.7, 144.2, 143.7, 143.1, 140.2, 132.4, 132.2, 131.8, 131.7, 128.5, 127.7, 127.1, 127.0, 119.6, 119.5, 118.4, 104.8, 104.6, 99.4, 97.4, 65.8, 65.6, 54.9, 51.3, 49.5, 23.4, 23.4, 20.9;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -135.0, -135.1, -135.2, -149.2, -149.3, -149.5, -149.6; **HRMS** (ESI) exact mass calcd. For [C₂₈H₂₈F₂N₂O₅SNa]⁺ requires m/z 565.1579, found m/z 565.1577;

 $[\alpha]_{25}^{D} = -57.68 (c = 0.78, CHCl₃);$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 80/20, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 12.3$ min (major), $t_R = 16.0$ min (minor).

(S)-2-(((N-(2-aminophenyl)-2,4,6-trimethylphenyl)sulfonamido)methyl)-4-<math>(p-tolyl) buta-2,3-dien-1-yl methyl carbonate (4d)

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); yellow oily liquid, 41.1 mg, 79% yield, 90% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.08 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.86 (s, 2H), 6.81-6.58 (m, 4H), 6.51-6.42 (m, 1H), 6.09-6.00 (m, 1H), 5.06-4.66 (m, 3H), 4.33-4.06 (m, 3H), 3.76-3.72 (m, 3H), 2.40-2.36 (m, 6H), 2.28-2.26 (m, 6H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 206.1, 205.8, 155.5, 155.4, 146.9, 146.5, 142.5, 140.3, 137.3, 137.1, 132.6, 132.5, 132.0, 131.2, 130.1, 129.8, 129.6, 129.5, 129.2, 129.1, 127.1, 123.5, 123.2, 118.7, 118.5, 117.3, 117.1, 99.6, 99.5, 96.9, 66.0, 65.8, 54.9, 51.5, 49.5, 23.5, 23.3, 21.2, 20.9;

HRMS (ESI) exact mass calcd. For $[C_{29}H_{32}N_2O_5SNa]^+$ requires m/z 543.1924, found m/z 543.1924;

 $[\alpha]_{25}^{D} = -64.84 (c = 0.86, CHCl₃);$

HPLC (Daicel Chirapak AS-H, hexane/ i-PrOH = 80/20, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 10.6$ min (minor), $t_R = 16.1$ min (major).

(S)-2-(((N-(2-aminophenyl)-2,4,6-trimethylphenyl)sulfonamido)methyl)-4-cyclohe xylbuta-2,3-dien-1-yl methyl carbonate (4e)

4e, 73%, 88% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); yellow oily liquid, 37.4 mg, 73% yield, 88% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.03-7.01 (m, 1H), 6.87 (s, 2H), 6.68-6.49 (m, 3H), 5.05-4.48 (m, 4H), 4.23-3.90 (m, 3H), 3.79-3.77 (m, 3H), 2.41-2.35 (m, 6H), 2.27 (s, 3H), 1.67-0.60 (m, 11H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 204.3, 155.6, 147.1, 146.6, 142.4, 140.2, 132.9, 132.7, 131.9, 131.6, 130.1, 129.3, 123.6, 123.2, 118.2, 116.9, 99.4, 96.0, 66.6, 54.7, 52.1, 49.8, 36.9, 32.7, 32.5, 32.3, 25.8, 23.4, 23.3, 20.9;

HRMS (ESI) exact mass calcd. For $[C_{28}H_{36}N_{2}O_{5}SNa]^{+}$ requires m/z 535.2237, found m/z 535.2237;

 $[\alpha]_{25}^{D} = -29.44 (c = 0.84, CHCl₃);$

HPLC (Daicel Chirapak AD-H, hexane/ i-PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 36.7$ min (minor), $t_R = 47.7$ min (major).

(S)-methyl(2-(((4-methyl-N-phenylphenyl)sulfonamido)methyl)-4-phenylbuta-2,3 -dien-1-yl) carbonate (4f)

(Flash column chromatography eluent:petroleum ether/EtOAc = 8:1); white solid, 34.8 mg, 75% yield, 90% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.46 (d, J = 8.3 Hz, 2H), 7.30-7.21 (m, 5H), 7.13-7.05 (m, 5H), 6.76-6.74 (m, 2H), 6.12-6.11 (m, 1H), 4.79-4.78 (m, 2H), 4.51-4.48 (m, 1H), 4.21-4.18 (m, 1H), 3.73 (s, 3H), 2.40 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 205.4, 155.4, 143.6, 138.6, 134.9, 132.5, 129.5, 129.1, 128.8, 128.4, 128.0, 127.8, 127.4, 127.3, 127.1, 99.6, 97.6, 65.4, 54.9, 50.8, 21.5;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{25}NO_{5}SNa]^{+}$ requires m/z 486.1346, found m/z 486.1345;

 $[\alpha]_{25}^{D} = -19.25 \ (c = 0.86, \text{CHCl}_3);$

HPLC (Daicel Chirapak OD-H, hexane/ i-PrOH = 75/25, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 9.1$ min (major), $t_R = 10.6$ min (minor). Absolute configuration is confirmed by X-ray.

Melting range: 79.6-80.3 °C.

Spectral data of products 9

(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-3-(2-phenylvinylidene)-2,3,4,5-te trahydrobenzo[b][1,4]oxazepine (9a)

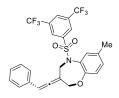
9a, 87%, 90% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 45.7 mg, 87% yield, 90% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 7.97 (s, 2H), 7.62-7.59 (m, 1H), 7.39-7.35 (m, 1H), 7.28-7.20 (m, 4H), 7.01-6.95 (m, 3H), 6.31 (s, 1H), 4.84 (d, J = 14.4 Hz, 1H), 4.35 (d, J = 12.3 Hz, 1H), 4.22-4.14 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.5, 155.7, 141.7, 132.4 (d, $J_{C-F} = 3.0$ Hz), 132.0, 131.1, 130.8, 128.8, 128.1 (d, $J_{C-F} = 3.1$ Hz), 127.9, 127.1, 126.1 (t, $J_{C-F} = 3.4$ Hz), 125.3, 123.9 (d, $J_{C-F} = 273.5$ Hz), 122.7, 98.8, 96.3, 72.6, 52.2;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;


HRMS (ESI) exact mass calcd. For $[C_{25}H_{17}F_6NO_3SNa]^+$ requires m/z 548.0726, found m/z 548.0725;

 $[\alpha]_{25}^{D} = 231.88 (c = 1.53, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 4.5$ min (minor), $t_R = 5.0$ min (major). Absolute configuration is confirmed by X-ray.

Melting range: 144.5-144.7 °C.

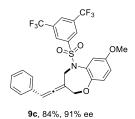
(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-3-(2-phenylvinylidene)-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine(9b)

9b, 80%, 92% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 43.1 mg, 80% yield, 92% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.99 (s, 2H), 7.40-7.39 (m, 1H), 7.26-7.14 (m, 4H), 7.01-6.98 (m, 2H), 6.84 (d, J = 8.2 Hz, 1H), 6.29 (s, 1H), 4.81 (d, J = 14.4 Hz, 1H), 4.31 (d, J = 12.3 Hz, 1H), 4.19-4.09 (m, 2H), 2.41 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.5, 153.4, 141.9, 135.2, 132.6 (q, J_{C-F} = 34.4 Hz), 132.5, 132.2, 131.3, 130.8, 128.7, 128.1 (d, J_{C-F} = 3.1 Hz), 127.8, 127.1, 126.0 (t, J_{C-F} = 3.7 Hz), 124.0 (d, J_{C-F} = 273.2 Hz), 122.3, 98.9, 96.1, 72.7, 52.2, 20.8;


¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{19}F_{6}NO_{3}SNa]^{+}$ requires m/z 562.0882, found m/z 562.0880;

 $[\alpha]_{25}^{D} = 130.92 (c = 1.01, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 12.0$ min (minor), $t_R = 12.8$ min (major).

(*R*)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methoxy-3-(2-phenylvinyliden e)-2,3,4,5-tetrahydrobenzo[*b*][1,4]oxazepine (9c)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 46.6 mg, 84% yield, 91% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 8.00 (s, 2H), 7.27-7.21 (m, 3H), 7.13 (d, J = 2.8 Hz, 1H), 7.01-6.99 (m, 2H), 6.92-6.86 (m, 2H), 6.29 (s, 1H), 4.80 (d, J = 14.2 Hz, 1H), 4.29 (d, J = 12.3 Hz, 1H), 4.20-4.16 (m, 1H), 4.10-4.07 (m, 1H), 3.86 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) 204.5, 156.6, 149.3, 141.6, 132.6 (q, J_{C-F} = 34.2 Hz), 132.4, 131.8, 128.8, 128.1 (d, J_{C-F} = 3.1 Hz), 127.9, 127.1, 126.1 (t, J_{C-F} = 3.6 Hz), 124.0 (q, J_{C-F} = 273.1 Hz), 123.1, 116.7, 116.2, 98.9, 96.1, 72.8, 55.9, 52.3;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{19}F_{6}NO_{4}SNa]^{+}$ requires m/z 578.0831, found m/z 578.0831;

 $[\alpha]_{25}^{D} = 142.48 (c = 1.03, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 4.8 \text{ min (minor)}$, $t_R = 5.1 \text{ min (major)}$.

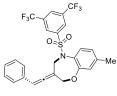
(*R*)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-chloro-3-(2-phenylvinylidene)-2,3,4,5-tetrahydrobenzo[*b*][1,4]oxazepine (9d)

9d, 95%, 82% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 53.2 mg, 95% yield, 82% ee;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 8.02 (s, 2H), 7.61 (d, J = 2.5 Hz, 1H), 7.35-7.33 (m, 1H), 7.27-7.20 (m, 3H), 6.98-6.97 (m, 2H), 6.91 (d, J = 8.6 Hz, 1H), 6.31 (s, 1H), 4.78 (d, J = 14.3 Hz, 1H), 4.34 (d, J = 12.3 Hz, 1H), 4.22-4.14 (m, 2H); 13**C NMR** (125 MHz, CDCl₃) δ (ppm) 204.9, 154.1, 141.6, 132.8 (d, J_{C-F} = 34.1 Hz), 132.1 (d, J_{C-F} = 2.5 Hz), 131.8, 130.7, 130.0, 128.8, 128.0, 127.1, 126.3 (t, J_{C-F} = 3.2

¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.9;


Hz), 125.8 (q, $J_{C-F} = 272.6$ Hz), 123.7, 98.4, 96.6, 72.8, 52.2;

HRMS (ESI) exact mass calcd. For $[C_{25}H_{16}ClF_6NO_3SNa]^+$ requires m/z 582.0336, found m/z 582.0334;

 $[\alpha]_{25}^{D} = 98.21 (c = 1.03, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 5.3$ min (minor), $t_R = 6.2$ min (major).

(*R*)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-8-methyl-3-(2-phenylvinylidene)-2,3,4,5-tetrahydrobenzo[*b*][1,4]oxazepine (9e)

9e, 82%, 89% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 44.2 mg, 82% yield, 89% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.98 (s, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 3H), 7.07-7.01 (m, 3H), 6.76 (s, 1H), 6.30 (s, 1H), 4.83 (d, J = 14.3 Hz, 1H), 4.32 (d, J = 12.3 Hz, 1H), 4.18-4.12 (m, 2H), 2.36 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.4, 155.5, 141.8 (d, $J_{C-F} = 29.8$ Hz), 132.5, 132.3 (q, $J_{C-F} = 33.9$ Hz), 131.5, 128.8, 128.2, 128.1, 127.8, 127.1, 126.0 (d, $J_{C-F} = 7.7$ Hz), 124.0 (d, $J_{C-F} = 274.7$ Hz), 123.0, 99.0, 96.1, 72.6, 52.2, 21.1;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{19}F_{6}NO_{3}SNa]^{+}$ requires m/z 562.0882, found m/z 562.0884;

 $[\alpha]_{25}^{D} = 95.17 (c = 1.23, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ *i*-PrOH = 95/5, flow rate = 0.7 mL/min, T = 25 °C, 254 nm): $t_R = 7.0$ min (minor), $t_R = 7.5$ min (major).

(*R*)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-3-(2-(p-tolyl)vinylidene)-2,3,4,5-tetrahydrobenzo[*b*][1,4]oxazepine (9f)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 44.9 mg, 81% yield, 92% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.99 (s, 2H), 7.40-7.39 (m, 1H), 7.17-7.14 (m, 1H), 7.04 (d, J = 7.9 Hz, 2H), 6.89 (d, J = 8.1 Hz, 2H), 6.83 (d, J = 8.2 Hz, 1H), 6.27 (s, 1H), 4.80 (d, J = 14.3 Hz, 1H), 4.29 (d, J = 12.2 Hz, 1H), 4.17-4.07 (m, 2H), 2.41 (s, 3H), 2.31 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.4, 153.4, 141.8, 137.8, 135.2, 132.6 (q, J_{C-F} = 34.6 Hz), 132.2, 131.3, 130.8, 129.5, 129.4, 128.2 (d, J_{C-F} = 3.2 Hz), 127.0, 126.0 (d, J_{C-F} = 3.6 Hz), 124.0 (d, J_{C-F} = 273.5 Hz), 122.3, 98.8, 95.9, 72.8, 52.3, 21.2, 20.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{21}F_6NO_3SNa]^+$ requires m/z 576.1039, found m/z 576.1041;

 $[\alpha]_{25}^{D} = 138.43 (c = 1.65, CHCl₃);$

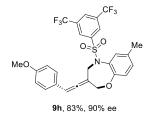
HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 4.6$ min (minor), $t_R = 4.9$ min (major).

(R)-3-(2-([1,1'-biphenyl]-4-yl)vinylidene)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine (9g)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 53.6 mg, 87% yield, 90% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 8.00 (s, 2H), 7.55 (d, J = 7.7 Hz, 2H), 7.48-7.33 (m, 6H), 7.16 (d, J = 8.1 Hz, 1H), 7.07 (d, J = 7.4 Hz, 2H), 6.85 (d, J = 8.0 Hz, 1H), 6.34 (s, 1H), 4.83 (d, J = 14.3 Hz, 1H), 4.32 (d, J = 12.2 Hz, 1H), 4.19-4.11 (m, 2H), 2.42 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.7, 153.4, 141.9, 140.8 (d, J_{C-F} = 26.7 Hz), 135.3, 132.3 (q, J_{C-F} = 34.1 Hz), 132.2, 131.5, 131.4, 130.8, 128.9, 128.2, 127.5, 127.4, 127.0, 126.0 (q, J_{C-F} = 3.3 Hz), 124.0 (d, J_{C-F} = 273.6 Hz), 122.3, 99.1, 95.8, 72.7, 52.3, 20.8;


¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{32}H_{23}F_6NO_3SNa]^+$ requires m/z 638.1195, found m/z 638.1192;

 $[\alpha]_{25}^{D} = 160.44 (c = 1.69, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 19.1 \text{ min (minor)}$, $t_R = 22.3 \text{ min (major)}$.

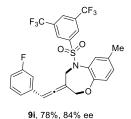
(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-3-(2-(4-methoxyphenyl)vinyliden e)-7-methyl-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine (9h)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 47.3 mg, 83% yield, 90% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.99 (s, 2H), 7.39 (d, J = 1.6 Hz, 1H), 7.16-7.14 (m, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.2 Hz, 1H), 6.78-6.76 (m, 2H),

6.25 (s, 1H), 4.78 (d, J = 14.2 Hz, 1H), 4.29 (d, J = 12.2 Hz, 1H), 4.17-4.08 (m, 2H), 3.78 (s, 3H), 2.41 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ (ppm) 204.2, 159.4, 153.4, 141.9, 135.1, 132.5 (q, J_{C-F} = 34.1 Hz), 132.1, 131.3, 130.8, 128.3, 128.1 (d, J_{C-F} = 3.3 Hz), 125.9 (q, J_{C-F} = 3.3 Hz), 125.3 (q, J_{C-F} = 273.4 Hz), 124.6, 122.3, 114.3, 98.8, 95.6, 72.9, 55.3, 52.4, 20.7;


¹⁹**F NMR** (564 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{21}F_6NO_4SNa]^+$ requires m/z 592.0988, found m/z 592.0990;

 $[\alpha]_{25}^{D} = 187.22 (c = 1.67, CHCl₃);$

HPLC (Daicel Chirapak IB-3, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 11.7$ min (minor), $t_R = 12.8$ min (major).

(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-3-(2-(3-fluorophenyl)vinylidene)-7-methyl-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine (9i)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 43.4 mg, 78% yield, 84% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 7.99 (s, 2H), 7.40 (s, 1H), 7.22-7.16 (m, 2H), 6.91-6.81 (m, 3H), 6.60 (d, J = 9.7 Hz, 1H), 6.26 (s, 1H), 4.80 (d, J = 14.2 Hz, 1H), 4.32 (d, J = 12.2 Hz, 1H), 4.19-4.10 (m, 2H), 2.41 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.6, 164.3 (d, J_{C-F} = 246.1 Hz), 153.2, 141.8, 135.5, 134.9 (d, J_{C-F} = 7.7 Hz), 132.3 (q, J_{C-F} = 34.4 Hz), 132.1, 131.5, 130.6, 130.2 (d, J_{C-F} = 8.4 Hz), 128.1, 126.0 (t, J_{C-F} = 2.7 Hz), 123.9 (q, J_{C-F} = 274.1 Hz), 123.0, 122.2, 114.9 (d, J_{C-F} = 21.5 Hz), 113.6 (d, J_{C-F} = 22.3 Hz), 99.4, 95.4, 72.4, 52.0, 20.7;

¹⁹**F NMR** (376 MHz, CDCl₃) -62.9, -112.9;

HRMS (ESI) exact mass calcd. For $[C_{26}H_{18}F_{7}NO_{3}SNa]^{+}$ requires m/z 580.0788, found m/z 580.0787;

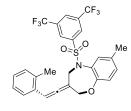
 $[\alpha]_{25}^{D} = 92.36 (c = 1.27, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ *i*-PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 4.8 \text{ min (minor)}, t_R = 5.0 \text{ min (major)}.$

(*R*)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-3-(2-(m-tolyl)vinyliden e)-2,3,4,5-tetrahydrobenzo[*b*][1,4]oxazepine (9j)

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 47.6 mg, 86% yield, 90% ee;

¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.99 (s, 2H), 7.40-7.39 (m, 1H), 7.16-7.11 (m, 2H), 7.02 (d, J = 7.5 Hz, 1H), 6.84-6.80 (m, 3H), 6.26 (s, 1H), 4.82 (d, J = 14.3 Hz, 1H), 4.31 (d, J = 12.3 Hz, 1H), 4.18-4.09 (m, 2H), 2.41 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 204.5, 153.4, 141.8, 138.4, 135.2, 132.3, 132.2 (q, J_{C-F} = 34.6 Hz), 132.1, 131.4, 130.7, 128.7, 128.6, 128.1 (d, J_{C-F} = 3.1 Hz), 127.7, 126.0 (t, J_{C-F} = 3.6 Hz), 124.3, 123.7 (q, J_{C-F} = 273.2 Hz), 122.2, 98.7, 96.2, 72.6, 52.3, 21.2, 20.8;


¹⁹**F NMR** (470 MHz, CDCl₃) -62.9;

HRMS (ESI) exact mass calcd. For $(C_{27}H_{21}F_6NO_3SN_a)^+$ requires m/z 576.1039, found m/z 576.1040;

 $[\alpha]_{25}^{D} = 113.44 (c = 1.43, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ *i*-PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 6.3 \text{ min (minor)}$, $t_R = 6.9 \text{ min (major)}$.

(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-3-(2-(o-tolyl)vinylidene)-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine (9k)

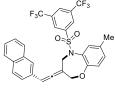
9k, 82%, 87% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 45.4 mg, 82% yield, 87% ee;

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.99 (s, 2H), 7.39 (s, 1H), 7.15-7.11 (m, 3H), 7.05-7.03 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.51 (s,

1H), 4.86 (d, J = 14.5 Hz, 1H), 4.31 (d, J = 12.3 Hz, 1H), 4.14-4.06 (m, 2H), 2.40 (s, 3H), 2.31 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 204.9, 153.6, 141.9, 135.6, 135.2, 132.2, 131.9, 131.3, 130.8, 130.7 (d, $J_{C-F} = 2.3$ Hz), 128.2, 127.8, 127.5, 126.2, 126.0 (t, $J_{C-F} = 3.5$ Hz), 124.0 (d, $J_{C-F} = 274.5$ Hz), 122.2, 97.9, 93.4, 72.8, 52.4, 20.8, 19.7;


¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{27}H_{21}F_6NO_3SNa]^+$ requires m/z 576.1039, found m/z 576.1040;

 $[\alpha]_{25}^{D} = 131.29 (c = 1.68, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 15.1$ min (minor), $t_R = 16.0$ min (major).

(R)-5-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-7-methyl-3-(2-(naphthalen-2-yl)v inylidene)-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepine (9l)

9I. 95%, 91% ee

(Flash column chromatography eluent:petroleum ether/EtOAc = 12:1); white solid, 56.1 mg, 95% yield, 91% ee;

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 8.02 (s, 2H), 7.77-7.72 (m, 2H), 7.65 (d, J = 8.6 Hz, 1H), 7.53 (s, 1H), 7.46-7.41 (m, 3H), 7.19-7.17 (m, 1H), 7.01-6.99 (m, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.47 (s, 1H), 4.86 (d, J = 14.4 Hz, 1H), 4.35 (d, J = 12.3 Hz, 1H), 4.23-4.14 (m, 2H), 2.43 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 205.0, 153.4, 141.9, 135.3, 133.5, 132.9, 132.3 (q, $J_{C-F} = 34.1$ Hz), 132.2, 131.4, 130.8, 129.9, 128.4, 128.2 (d, $J_{C-F} = 3.2$ Hz), 127.8, 127.7, 126.5, 126.2, 126.0 (t, $J_{C-F} = 3.6$ Hz), 124.4, 124.0 (d, $J_{C-F} = 273.5$ Hz), 122.3, 99.2, 96.5, 72.7, 52.3, 20.8;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9;

HRMS (ESI) exact mass calcd. For $[C_{30}H_{21}F_6NO_3SNa]^+$ requires m/z 612.1039, found m/z 612.1042;

 $[\alpha]_{25}^{D} = 169.74 (c = 1.49, CHCl₃);$

HPLC (Daicel Chirapak ID, hexane/ i-PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, 254 nm): $t_R = 14.1$ min (minor), $t_R = 15.8$ min (major).

Spectral data of products 10

N-(2-hydroxyphenyl)-N-(2-methylene-4-phenylbut-3-yn-1-yl)benzenesulfonamide (10a)

(Flash column chromatography eluent:petroleum ether/EtOAc = 10:1); yellow oily liquid, 33.1 mg, 85% yield;

¹**H NMR** (400 MHz, CD₃OD) δ (ppm) 7.71(d, J = 7.8 Hz, 2H), 7.60-7.56 (m, 1H), 7.48-7.44 (m, 4H), 7.36 (s, 3H), 7.21-7.12 (m, 2H), 6.76-6.73 (m, 2H), 5.41 (d, J = 11.5 Hz, 2H), 4.66 (s, 1H), 4.46 (s, 2H);

¹³C NMR (100 MHz, CD₃OD) δ (ppm) 154.8, 139.9, 132.7, 132.4, 131.3, 129.5, 128.4, 128.2, 128.1, 127.9, 127.3, 124.3, 122.9, 122.8, 118.8, 116.0, 90.4, 87.5, 54.3;

HRMS (ESI) exact mass calcd. For $[C_{23}H_{19}NO_3SNa]^+$ requires m/z 412.0978, found m/z 412.0976.

N-(2-hydroxyphenyl)-N-(4-(4-methoxyphenyl)-2-methylenebut-3-yn-1-yl)benzene sulfonamide (10b)

(Flash column chromatography eluent:petroleum ether/EtOAc = 10:1); yellow oily liquid, 30.2 mg, 72% yield;

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.70-7.68 (m, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.48-7.43 (m, 4H), 7.20-7.17 (m, 1H), 7.03-7.01 (m, 1H), 6.88-6.85 (m, 2H), 6.74 (s, 1H), 6.71-6.67 (m, 1H), 6.43-6.41 (m, 1H), 5.41 (s, 1H), 5.24 (d, J = 0.8 Hz, 1H), 5.06-3.96 (m, 2H), 4.50 (b, 2H), 3.82 (s, 3H);

¹³C NMR (125 MHz, CDCl₃) δ (ppm) 160.0, 155.2, 137.2, 133.4, 133.3, 130.3, 129.0, 128.1, 127.9, 126.4, 125.3, 124.1, 120.4, 117.5, 114.4, 114.1, 91.9, 86.0, 57.4, 55.3; **HRMS** (ESI) exact mass calcd. For [C₂₄H₂₂NO₄S]⁺ requires m/z 420.1264, found m/z 420.1265.

2,4,6-trimethyl-N-(2-methylene-4-phenylbut-3-yn-1-yl)-N-phenylbenzenesulfona mide (10c)

(Flash column chromatography eluent:petroleum ether/EtOAc = 10:1); yellow oily liquid, 25.3 mg, 61% yield;

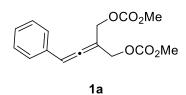
¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42-7.39 (m, 2H), 7.33-7.31 (m, 3H), 7.26-7.20 (m, 5H), 6.83 (s, 2H), 5.43 (s, 1H), 5.32 (s, 1H), 4.46 (s, 2H), 2.47 (s, 6H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 142.6, 140.6, 138.6, 132.6, 131.8, 131.7, 129.8, 129.0, 128.4, 128.3, 128.1, 126.9, 125.0, 122.9, 90.8, 87.9, 55.7, 23.1, 21.0; **EXAMPLE 18.1** (4.20.1400.5) δ (ppm) 14.1 Feet G. H. NO GHz (120.1400.5) δ (ppm) 140.0 (ppm) 140.0

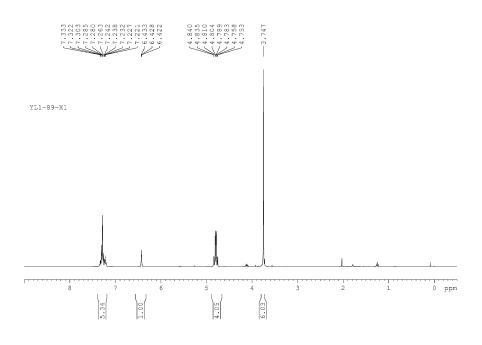
HRMS (ESI) exact mass calcd. For $[C_{26}H_{25}NO_{2}S]^{+}$ requires m/z 438.1498, found m/z 438.1499.

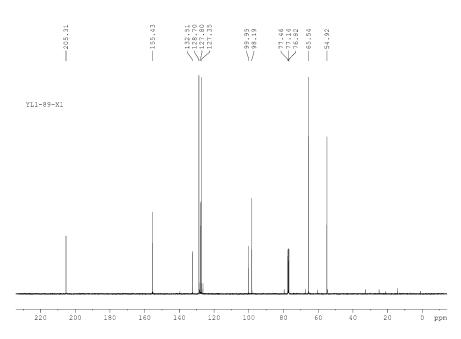
N-(2-(tert-butyl)phenyl)-2,4,6-trimethyl-*N*-(2-methyleneundec-3-yn-1-yl)benzene sulfonamide (10d)

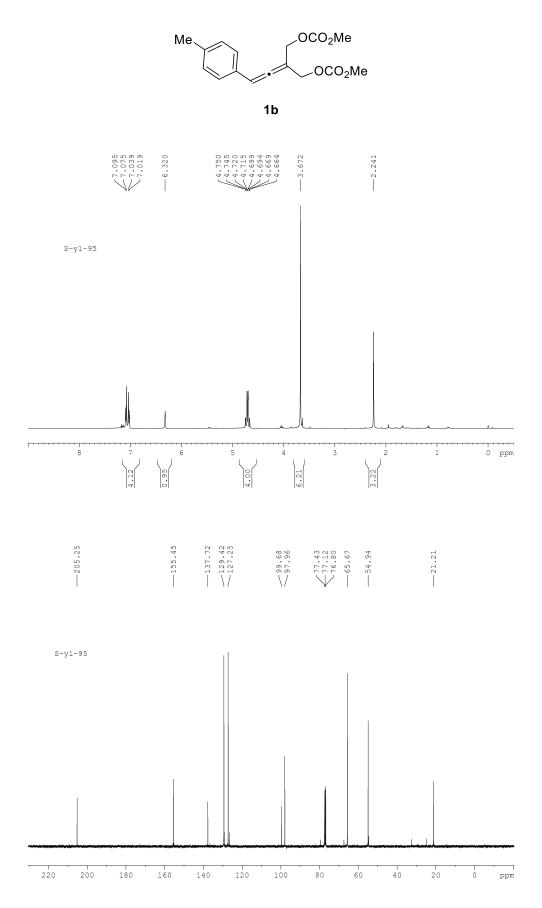
(Flash column chromatography eluent:petroleum ether/EtOAc = 10:1); yellow oily liquid, 37.7 mg, 83% yield;

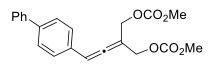
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.54-7.52 (m, 1H), 7.23-7.21 (m, 1H), 6.91-6.89 (m, 3H), 6.72-6.70 (m, 1H), 5.30 (s, 1H), 5.13 (s, 1H), 4.44 (d, J = 13.3 Hz, 1H), 4.29 (d,

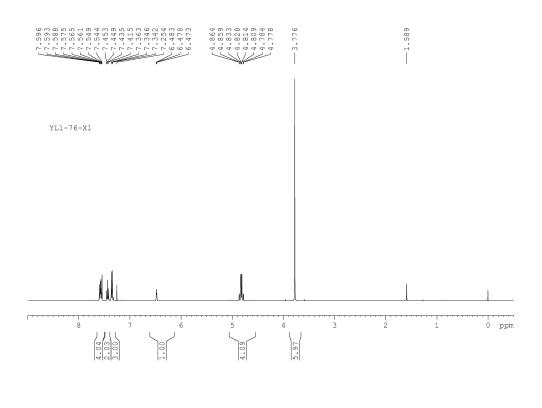

J = 13.3 Hz, 1H), 2.28 (s, 3H), 2.25 (s, 6H), 2.09 (t, J = 7.0 Hz, 2H), 1.48-1.47 (m, 9H), 1.39-1.25 (m, 10H), 0.90-0.87 (m, 3H);

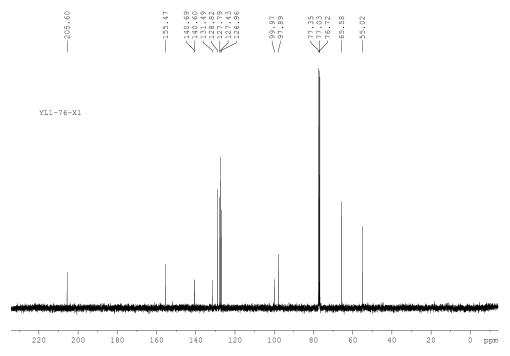

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 150.8, 141.8, 140.2, 135.4, 133.9, 132.3, 132.2, 132.1, 130.9, 128.1, 126.7, 126.4, 125.5, 125.3, 92.7, 80.2, 58.3, 37.1, 32.9, 31.7, 28.9, 28.8, 28.4, 24.2, 22.6, 20.9, 19.3, 14.1;

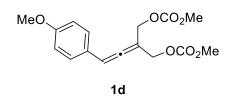

HRMS (ESI) exact mass calcd. For $[C_{31}H_{44}NO_2S]^+$ requires m/z 494.3087, found m/z 494.3089.

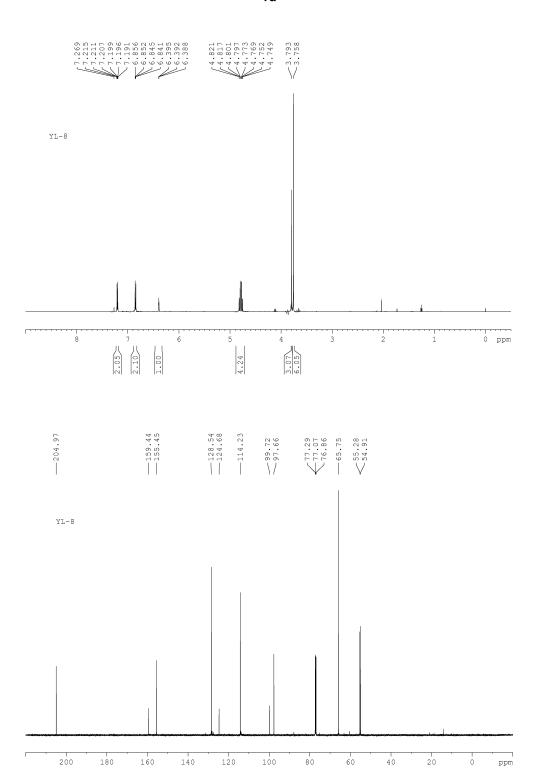

10. NMR spectra

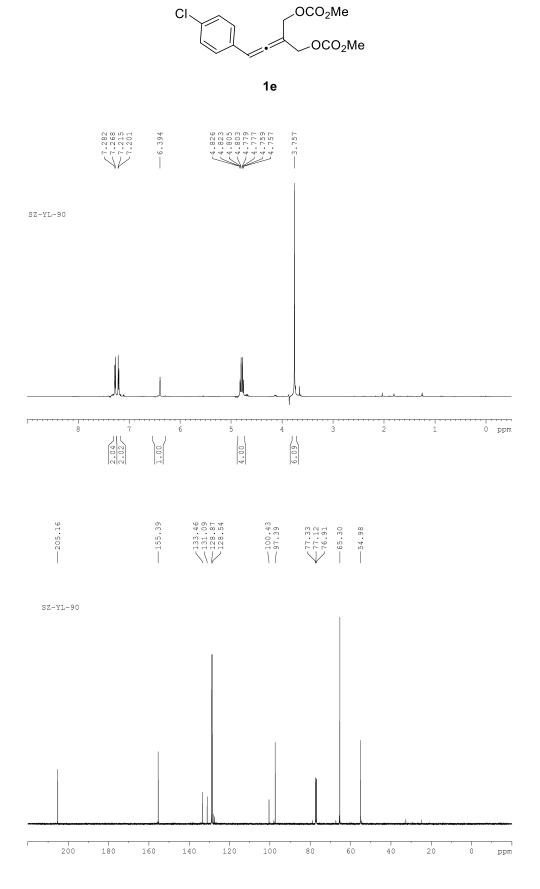

NMR spectra of 1

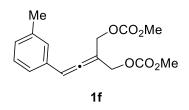


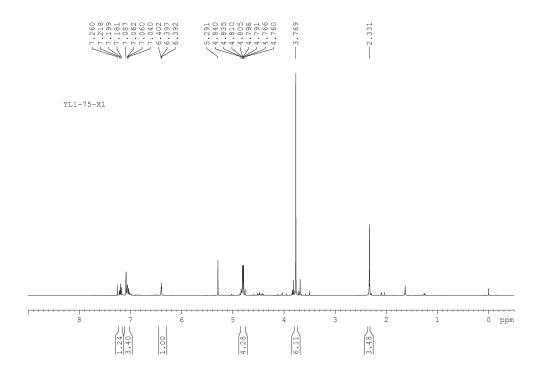


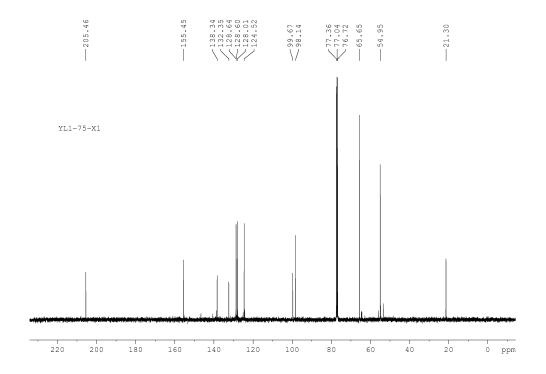


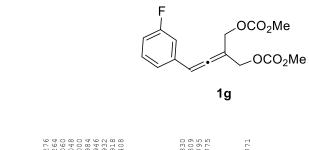


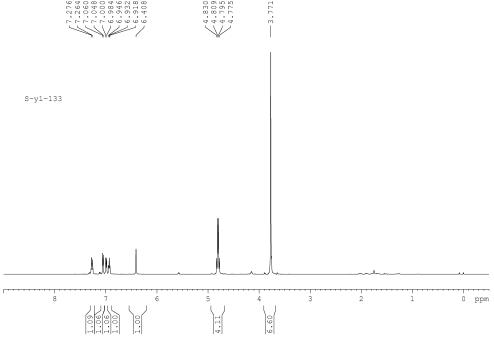

1c

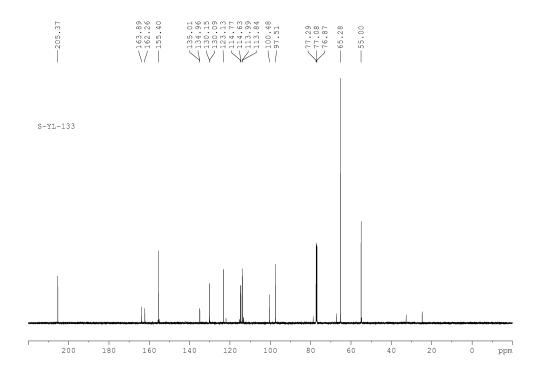


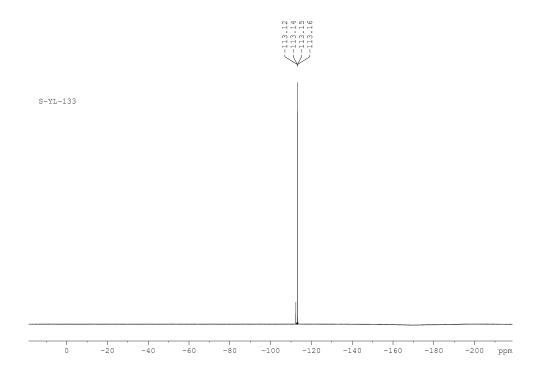


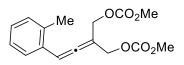


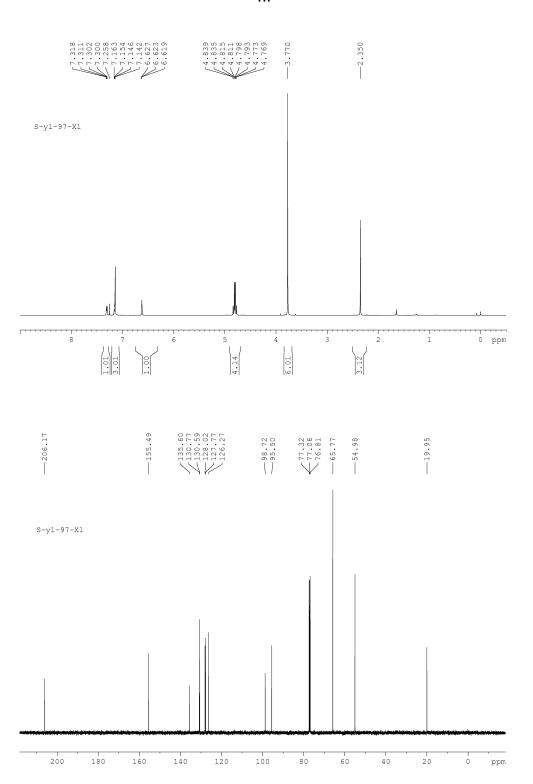


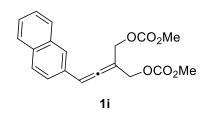


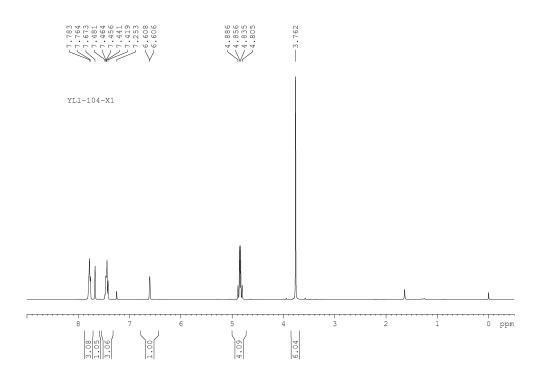


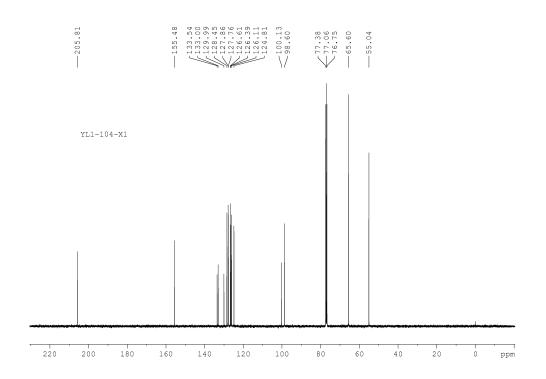


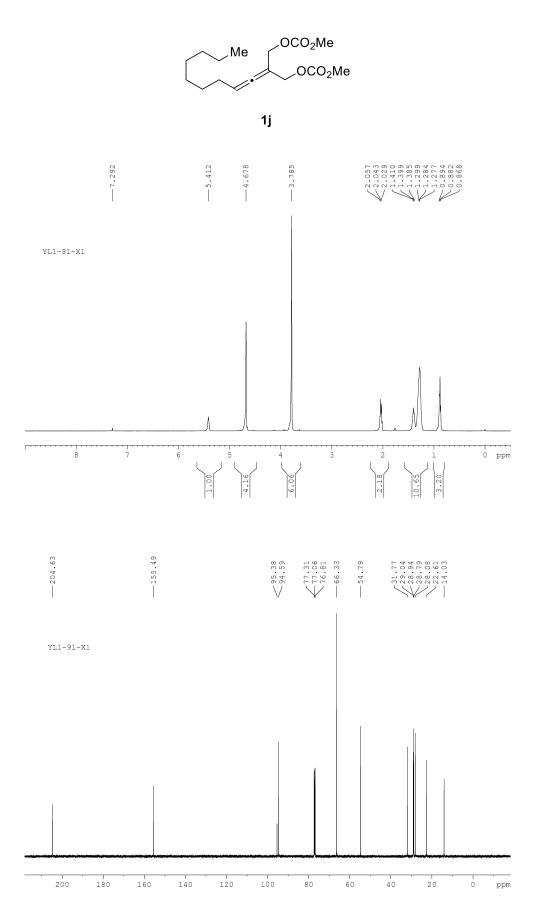


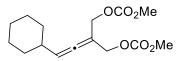


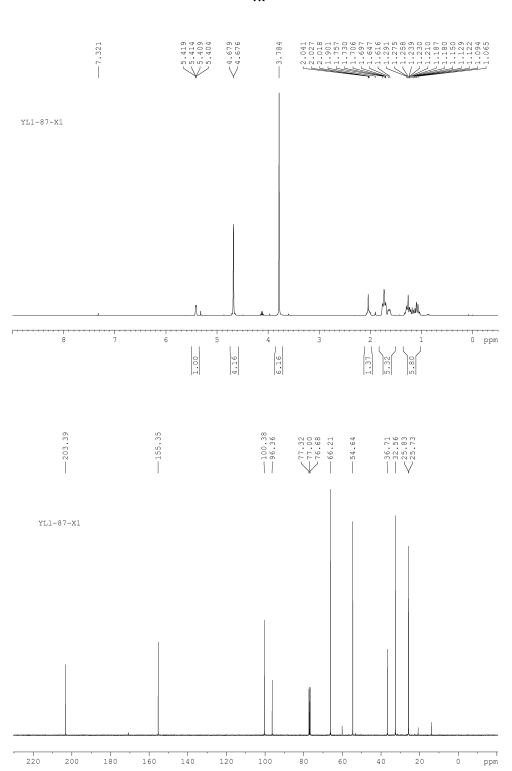


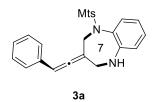


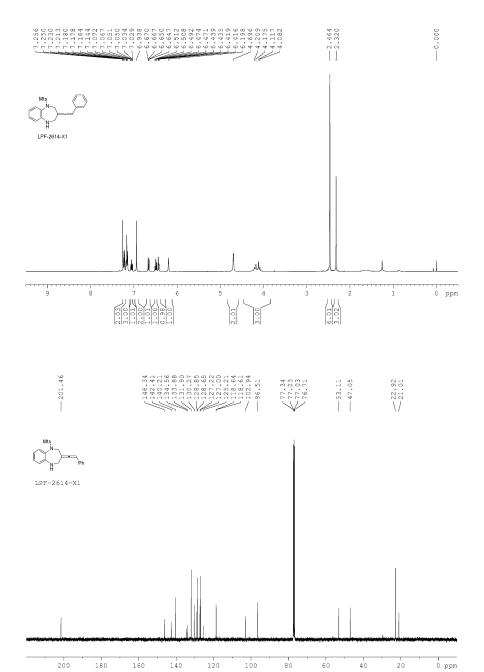


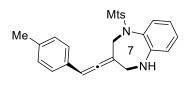

1h

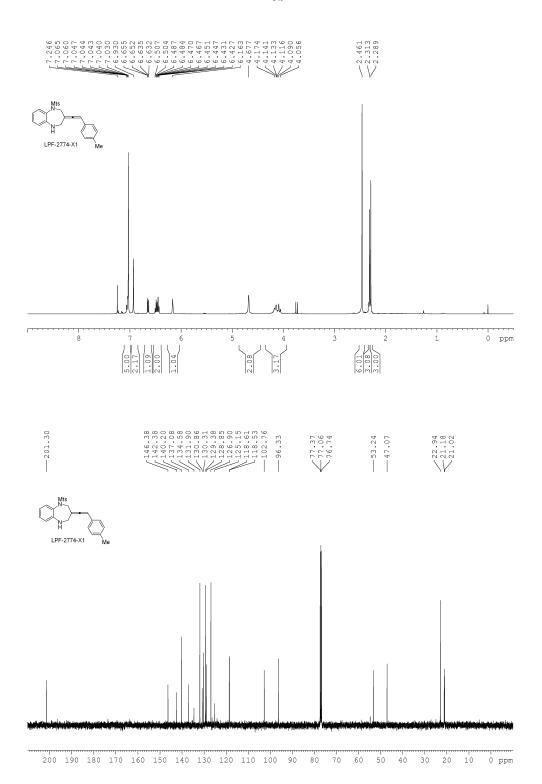


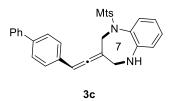


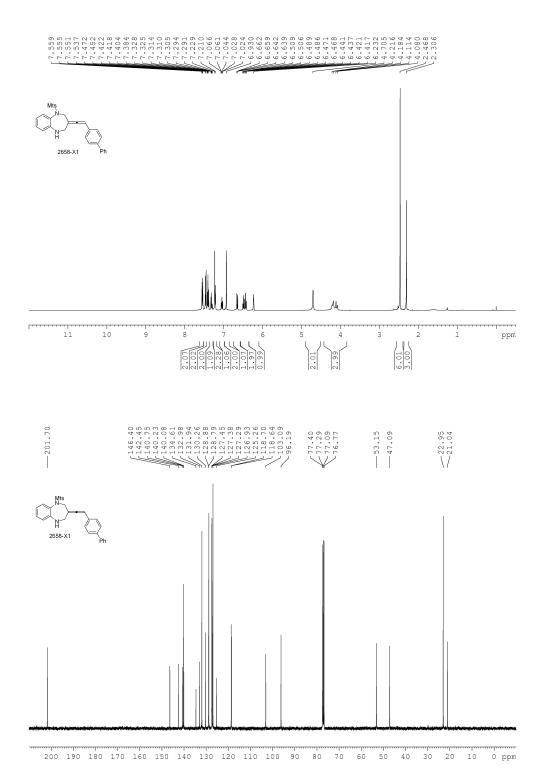


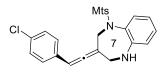



1k

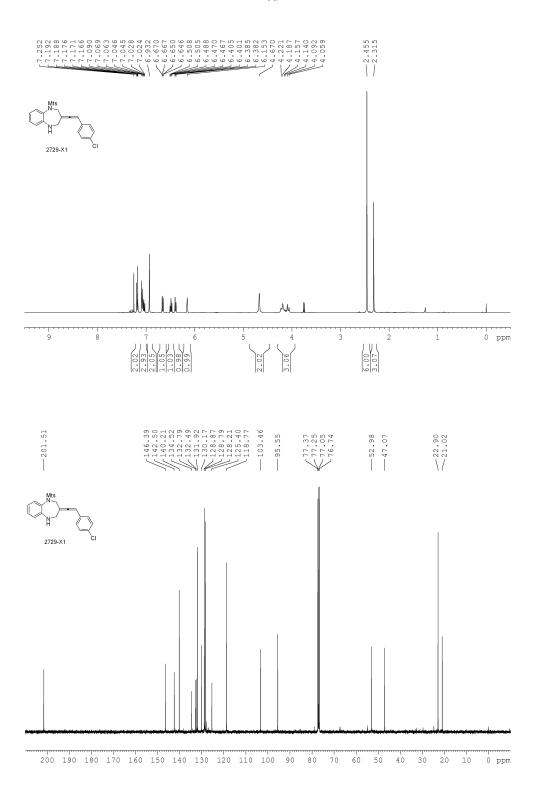

NMR spectra of 3

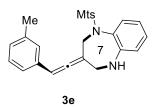


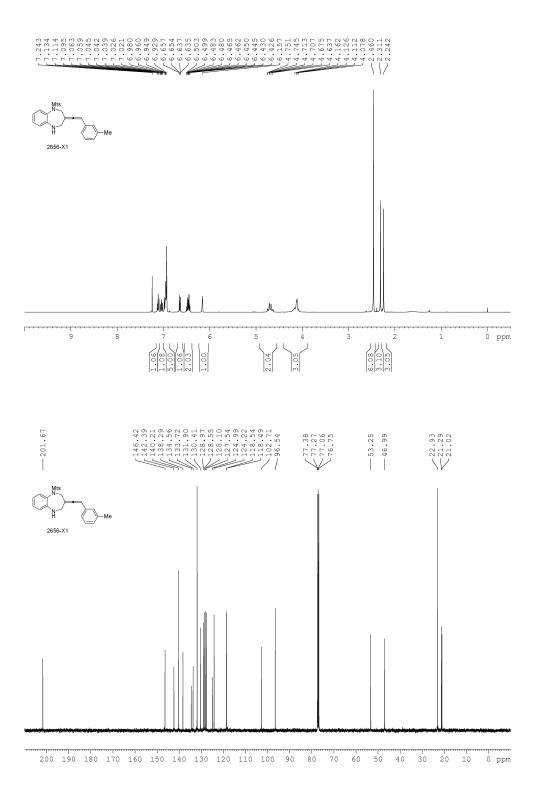


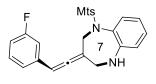


3b

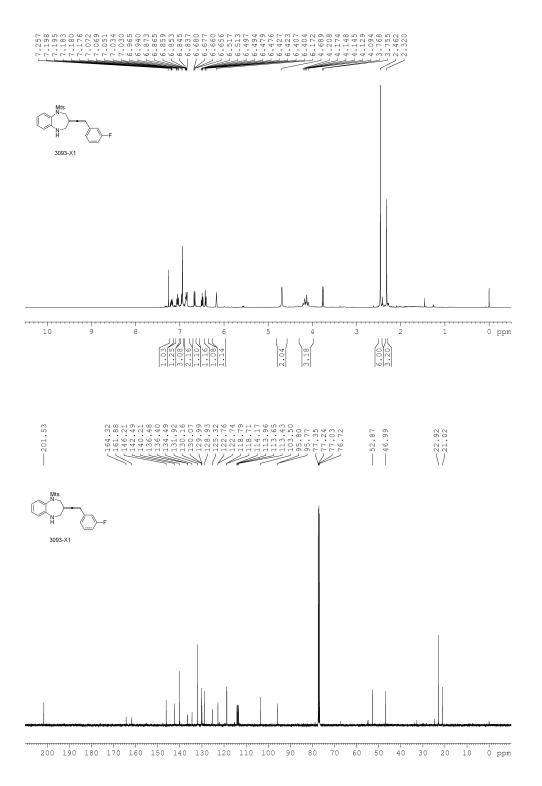


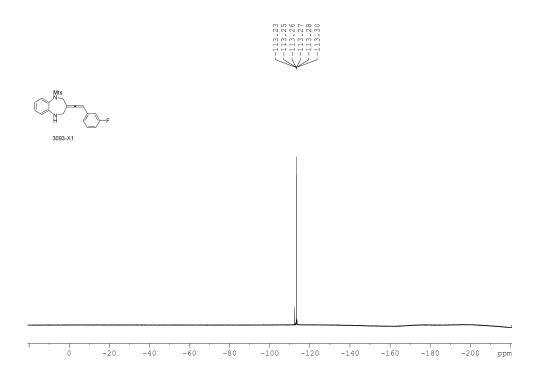


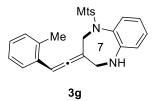


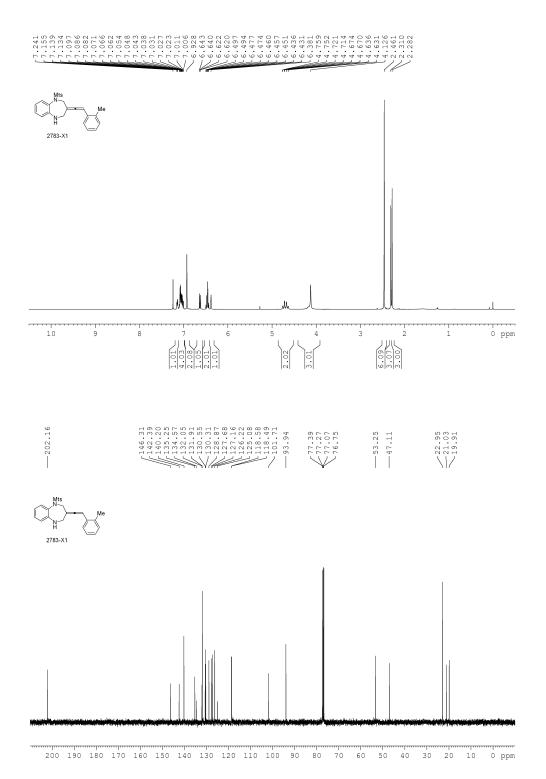


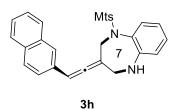
3d

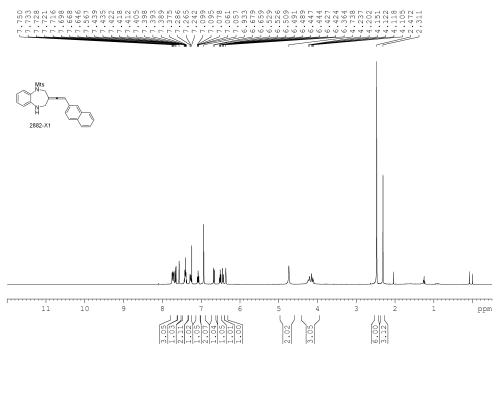


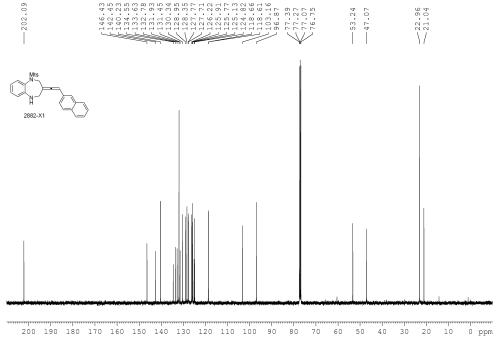


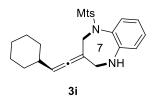


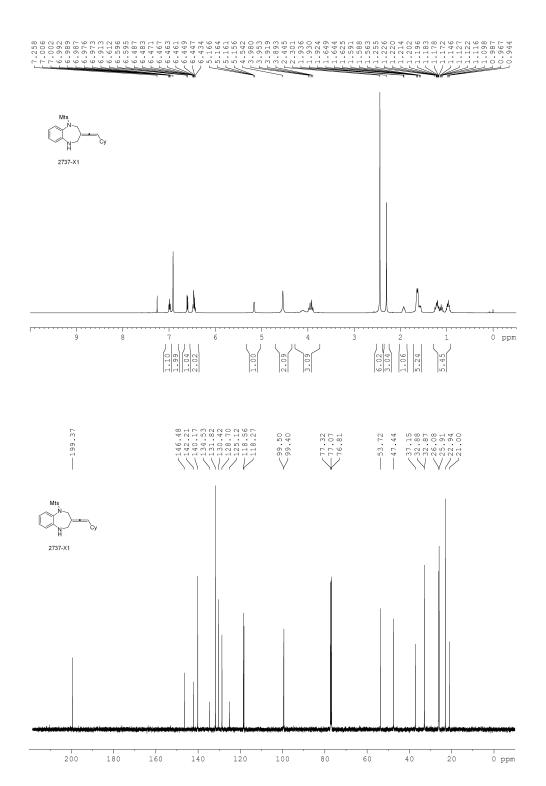


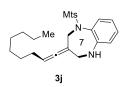

3f

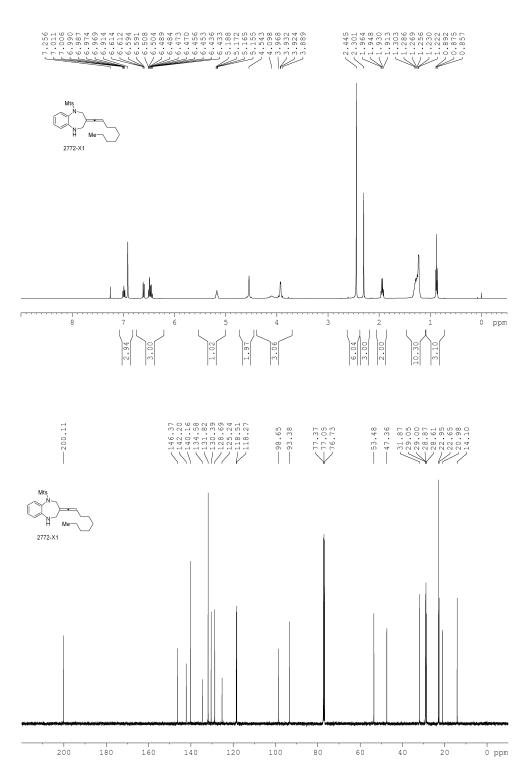


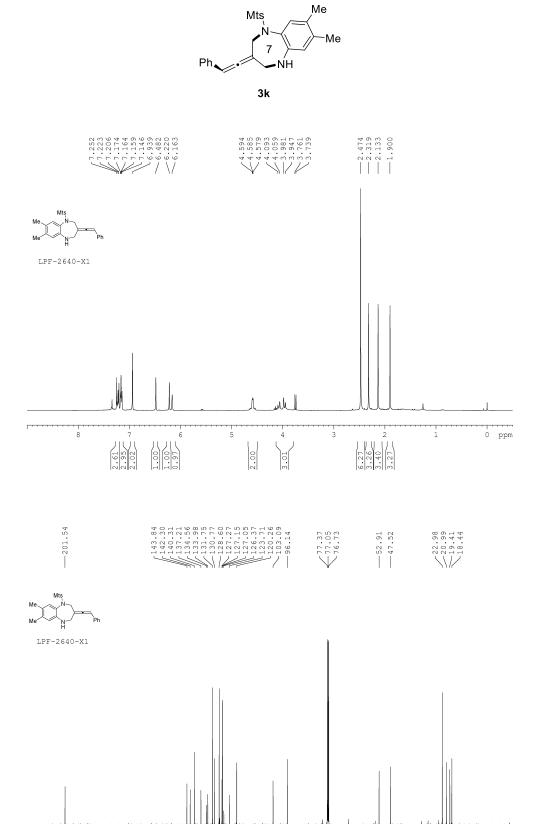


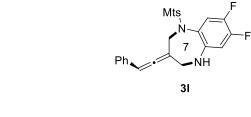


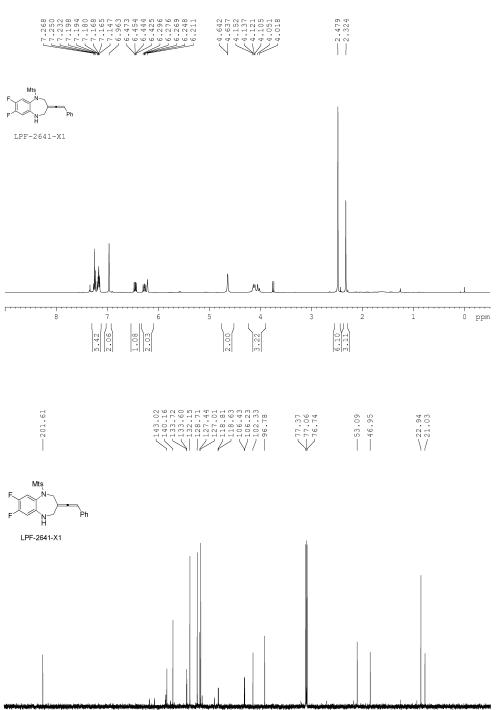




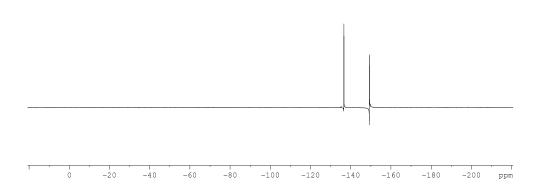


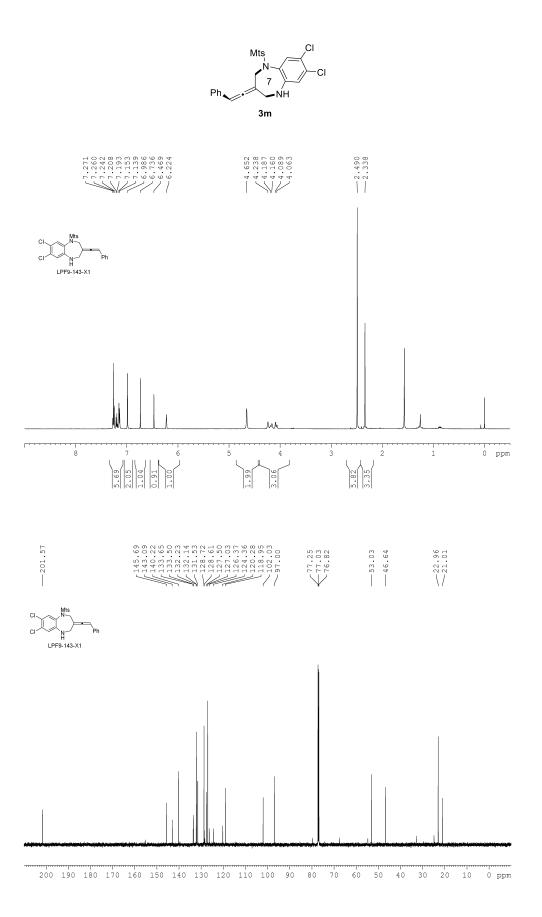


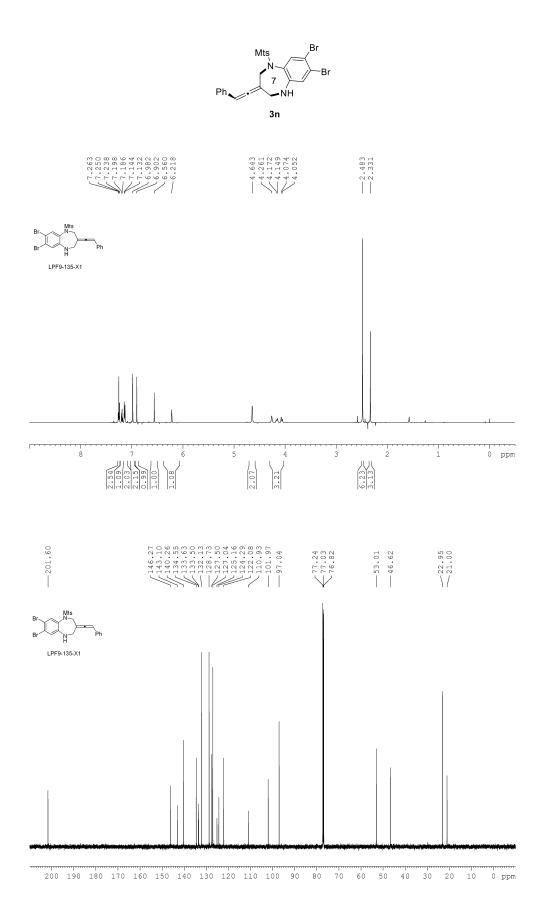


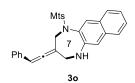


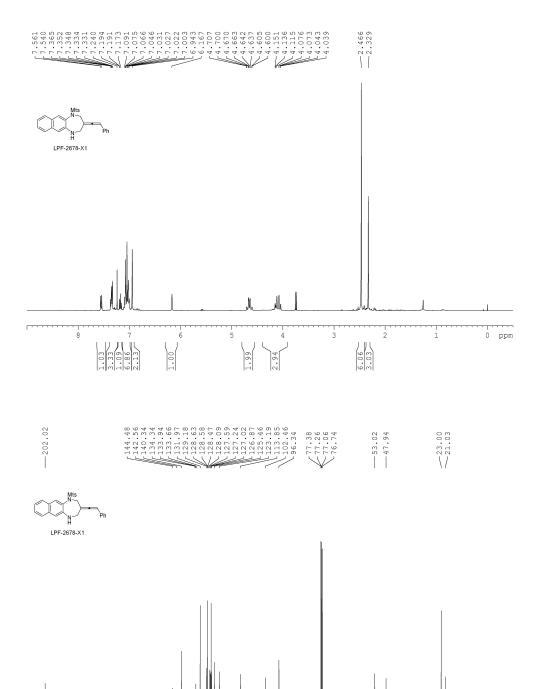
0 ppm

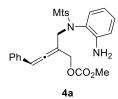


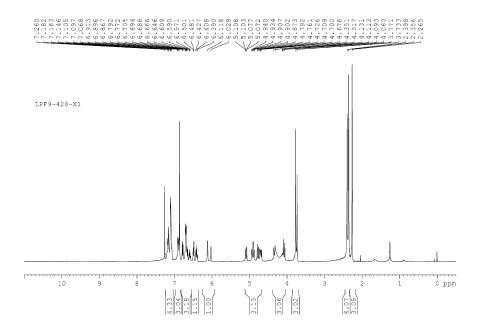


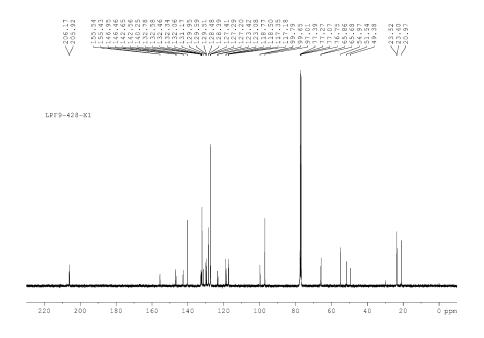

0 ppm

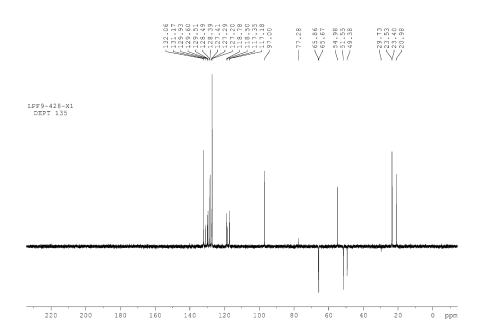


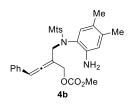


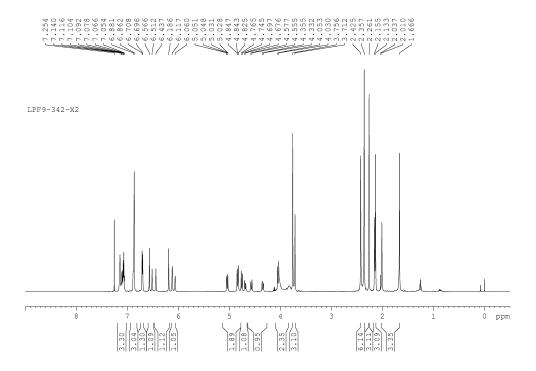


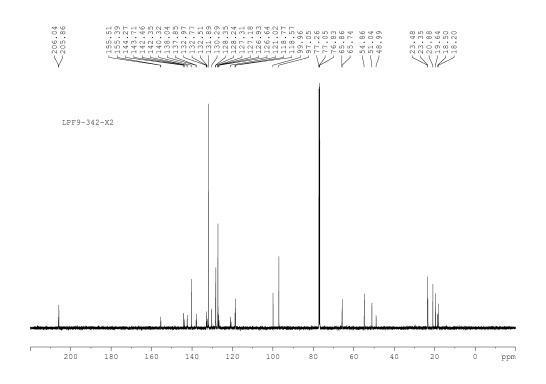


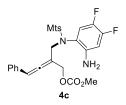


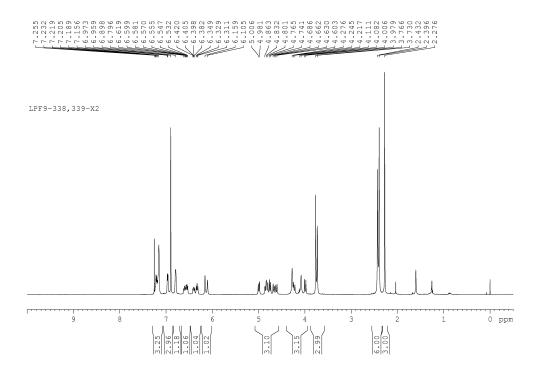

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

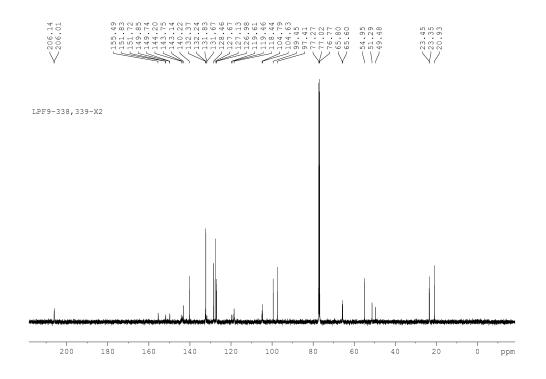

NMR spectra of 4

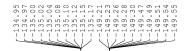


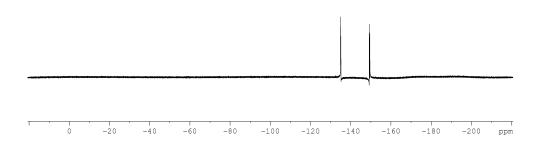


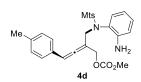


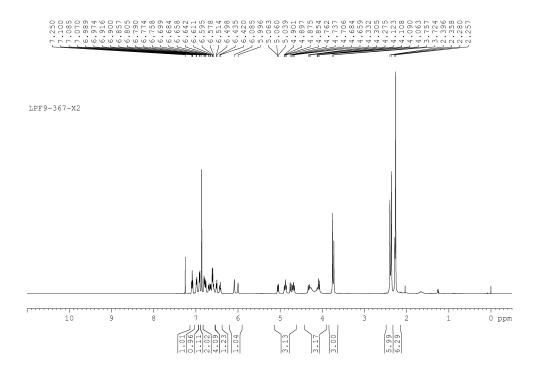


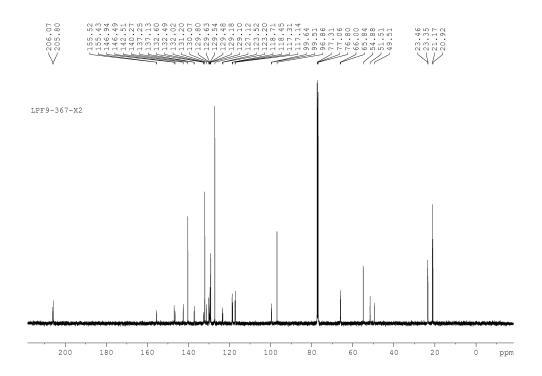


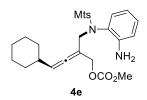


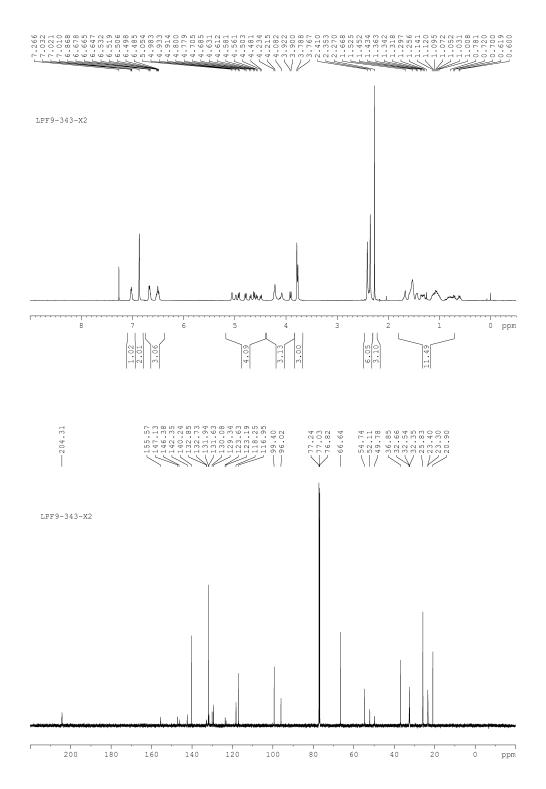


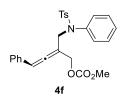


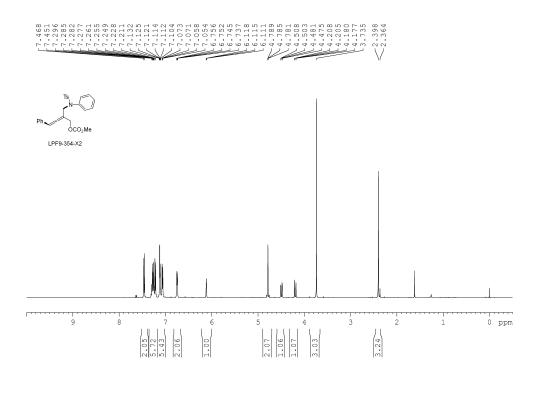


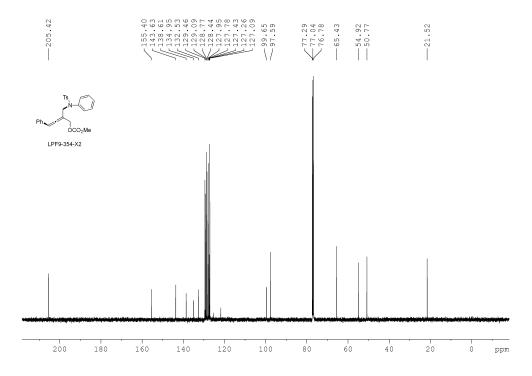


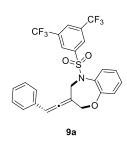

LPF9-338,339-X2

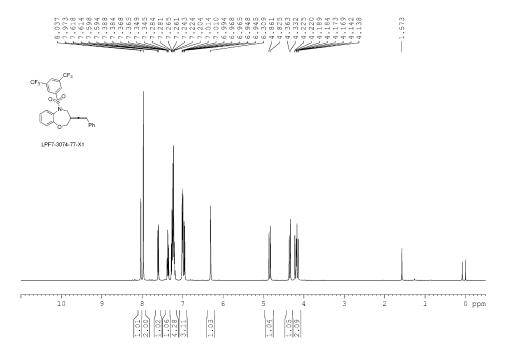


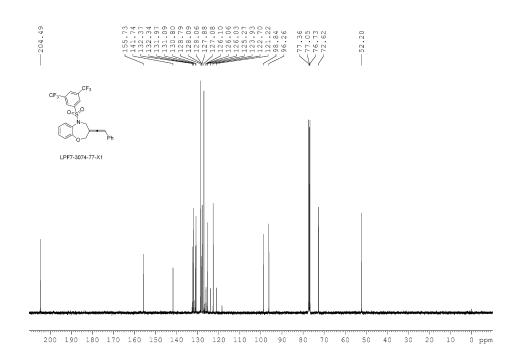


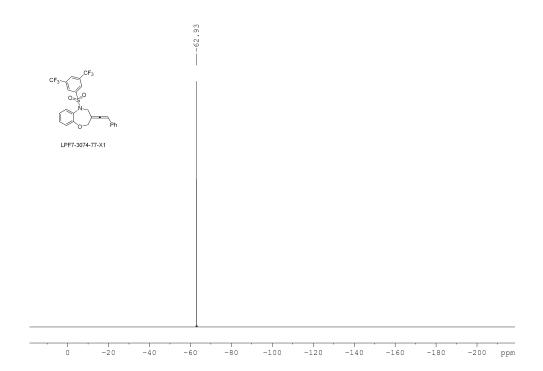


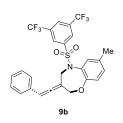


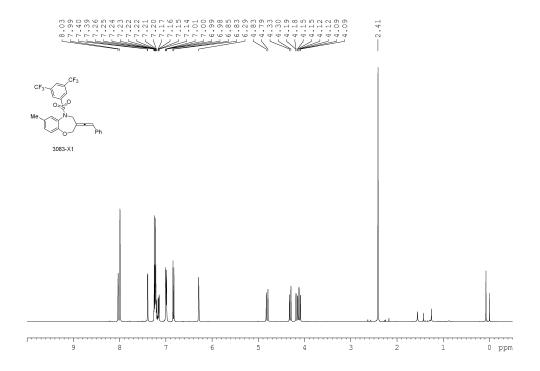


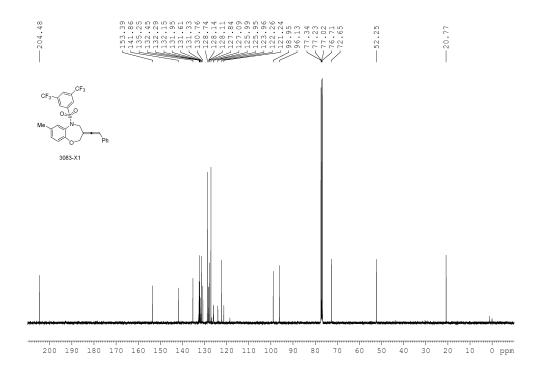


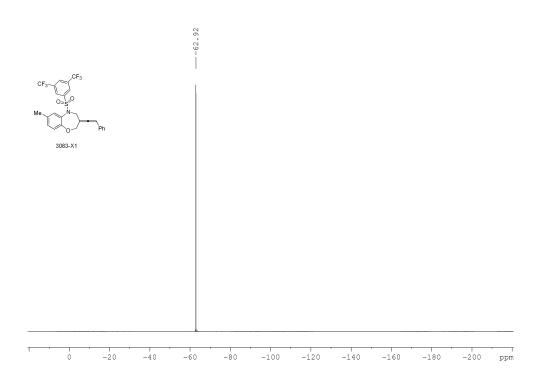


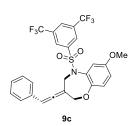


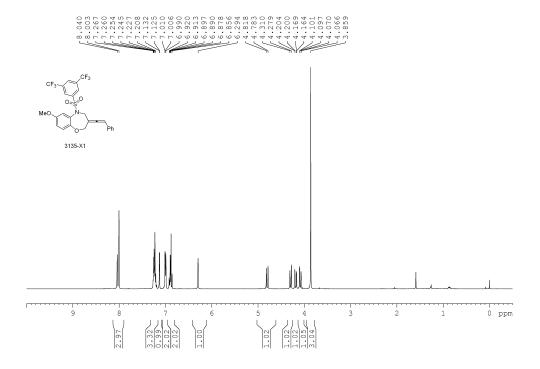

NMR spectra of 9

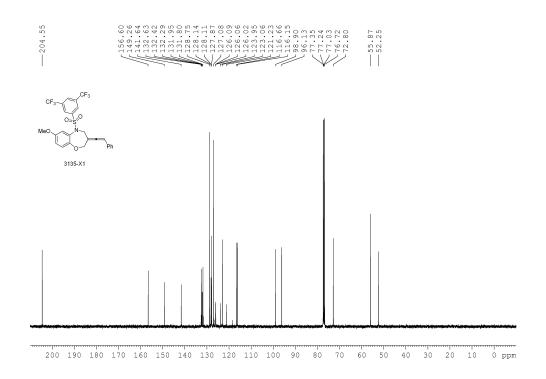


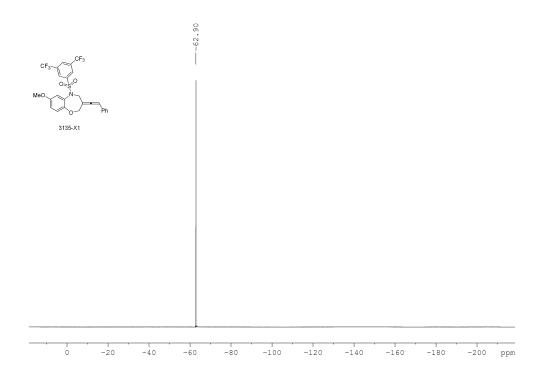


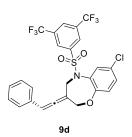


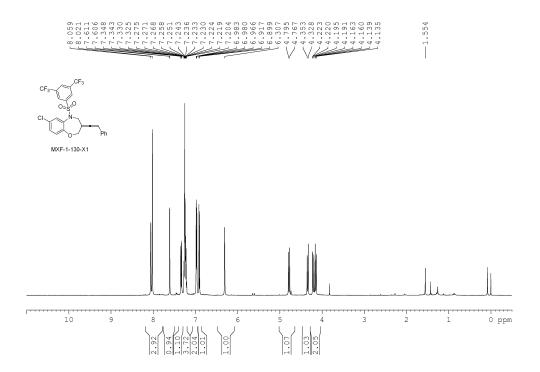


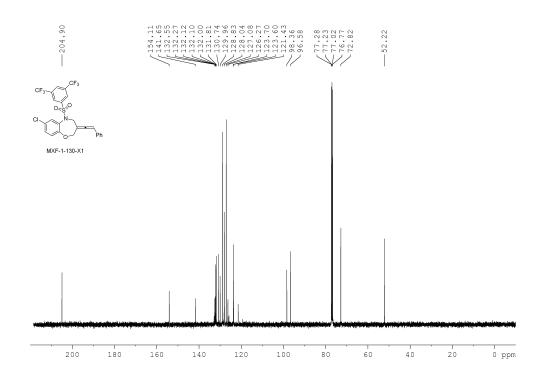


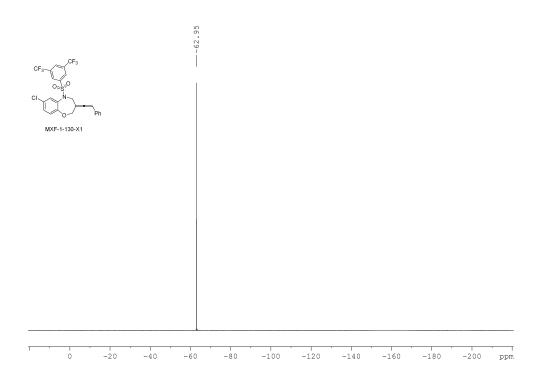


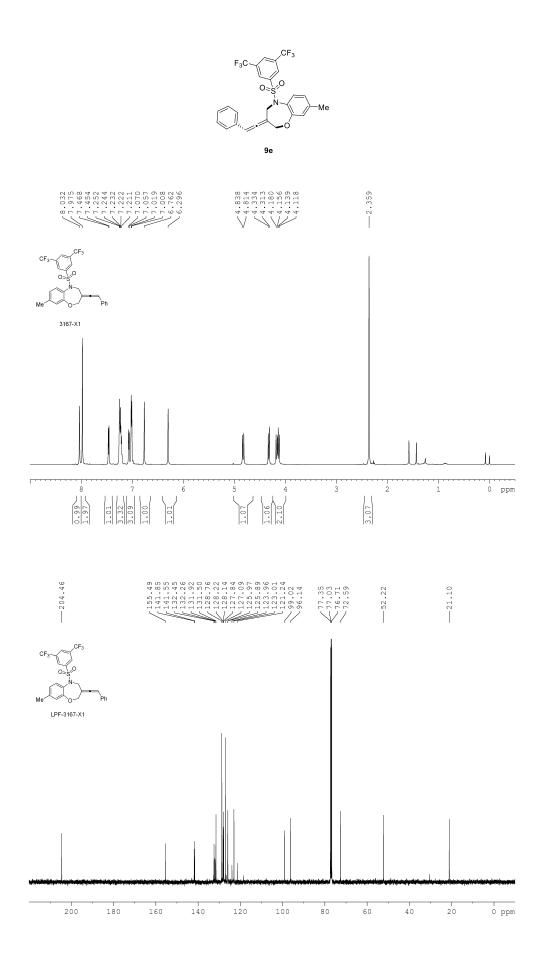


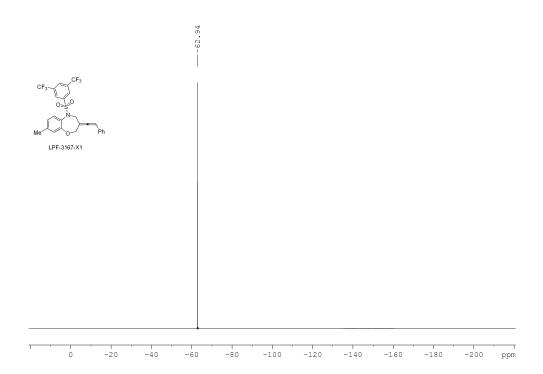


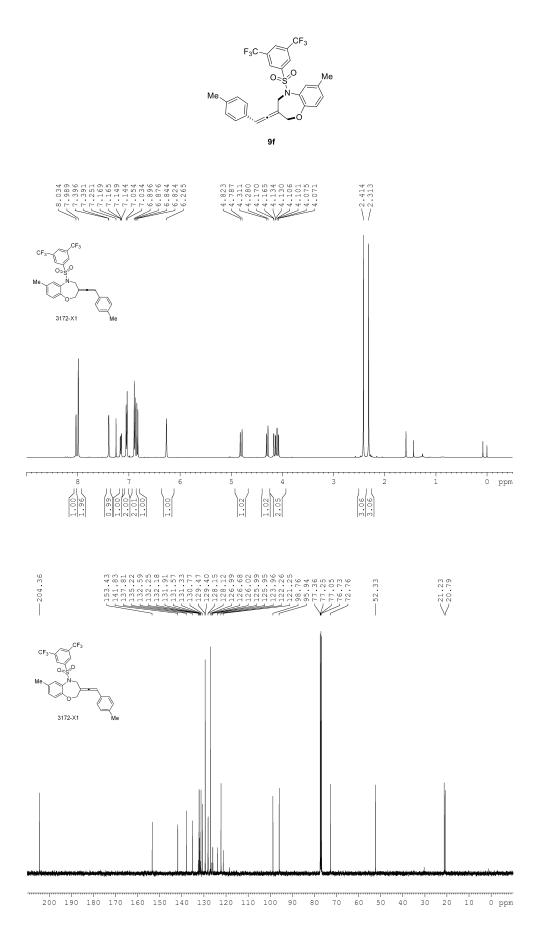


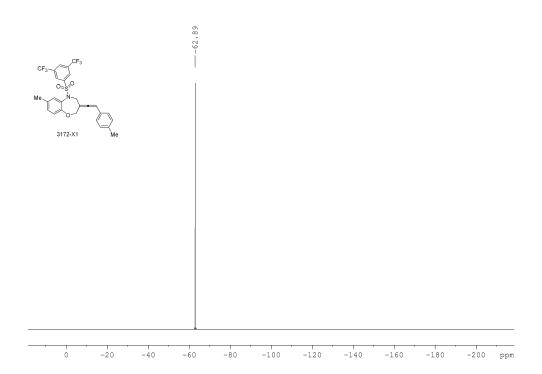


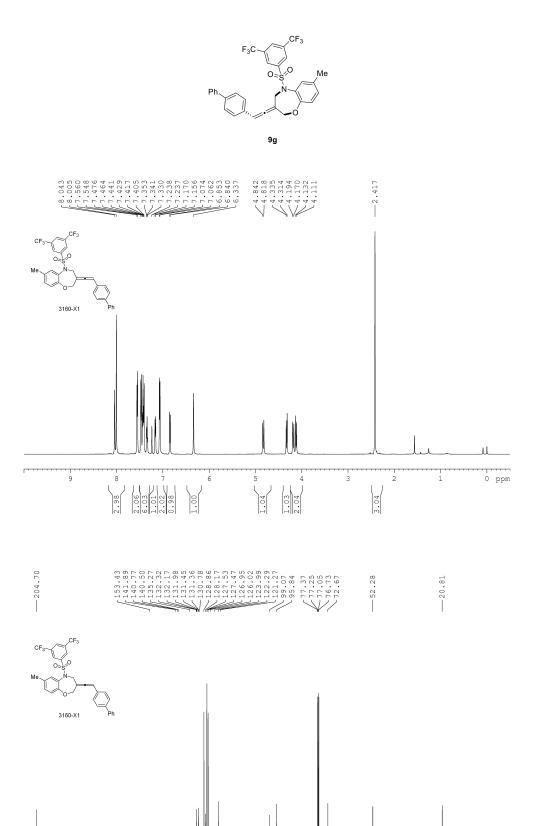


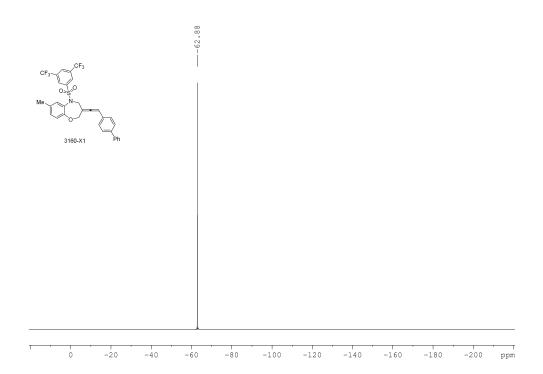


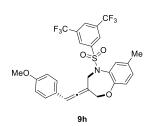


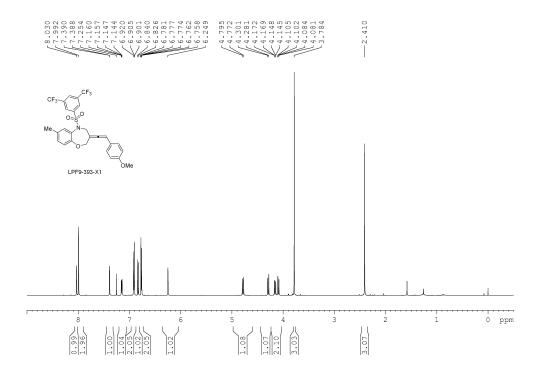


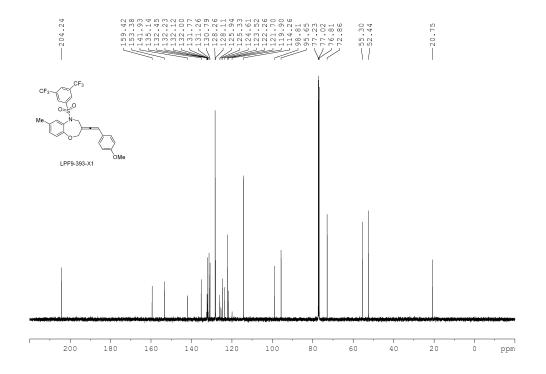


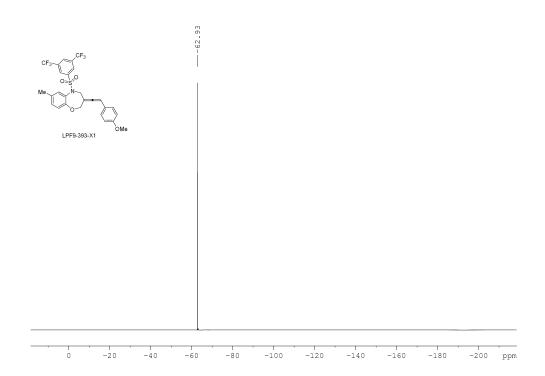


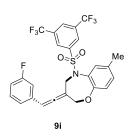


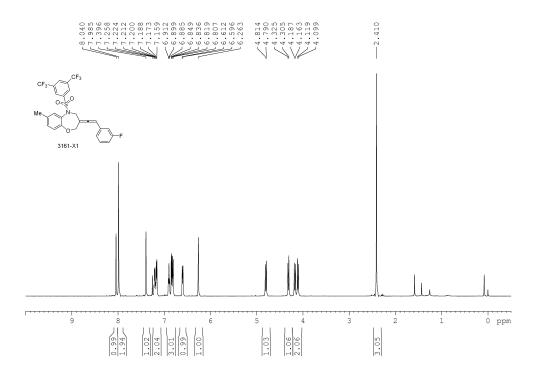


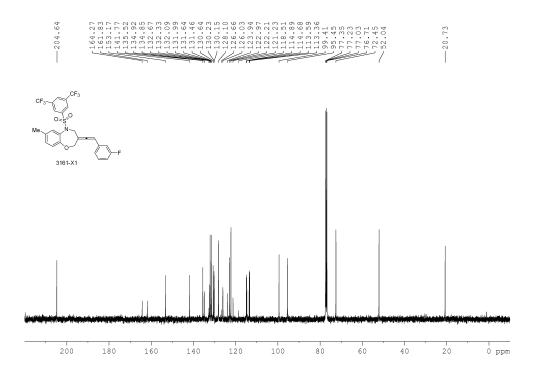


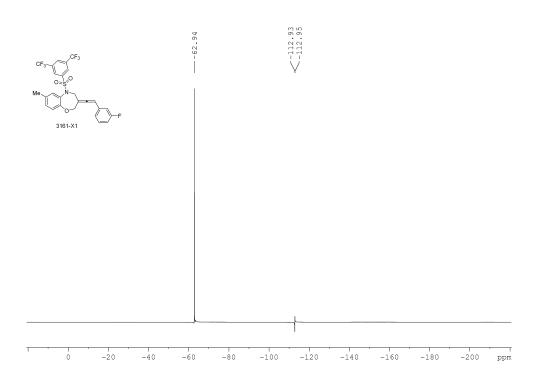

60

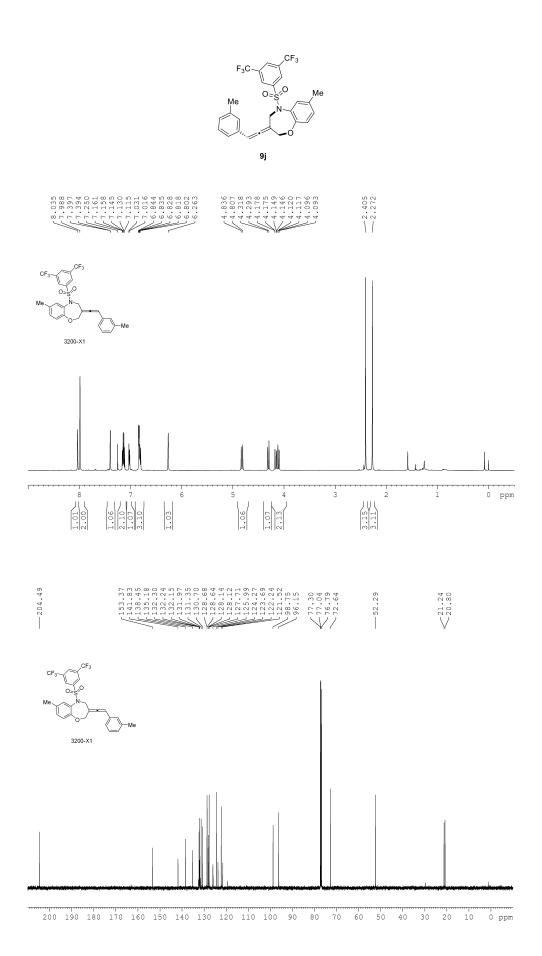

200 190 180 170 160 150 140 130 120 110 100 90 80 70

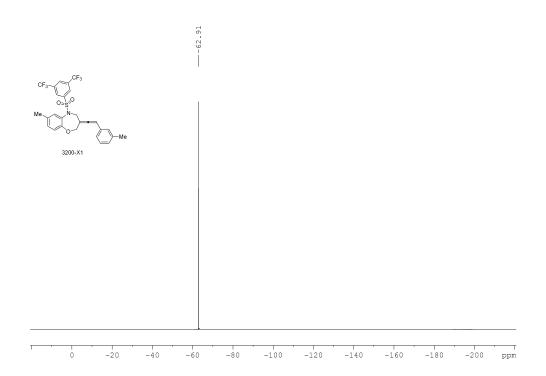


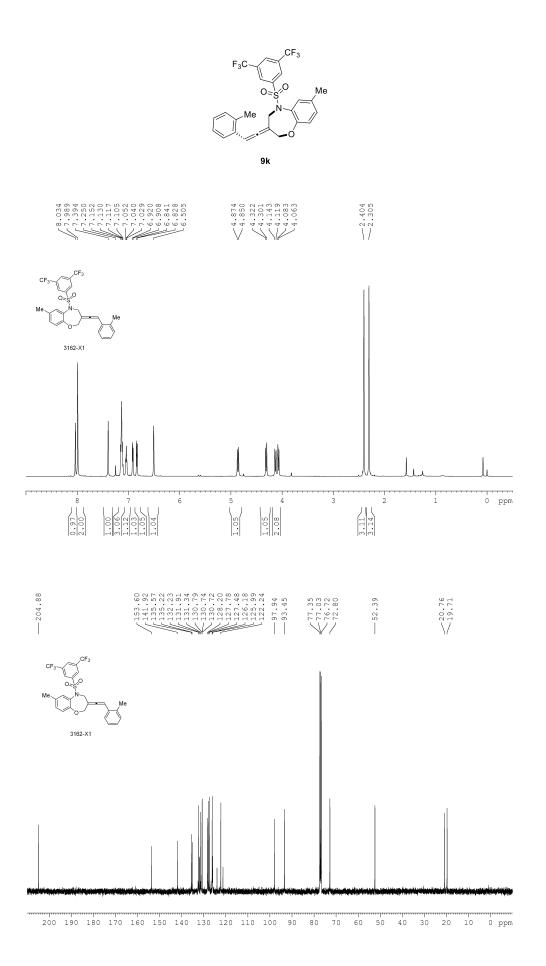


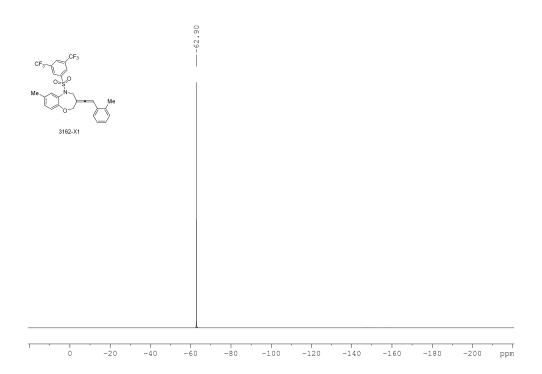


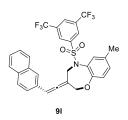


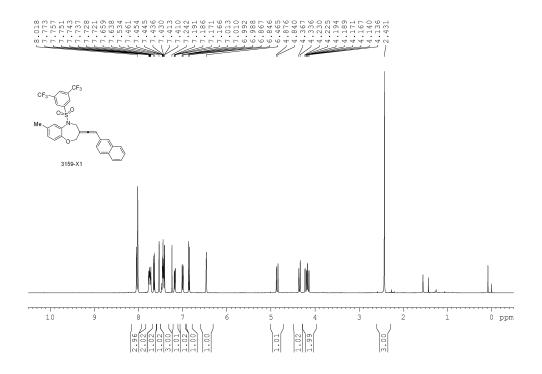


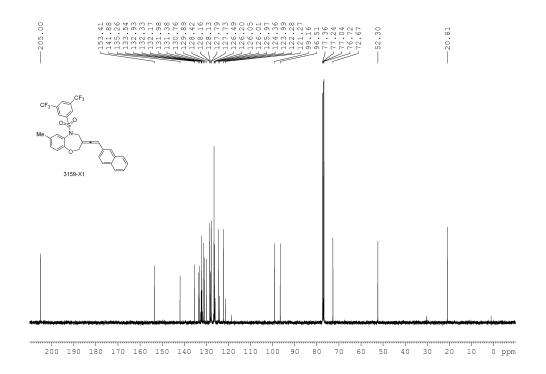


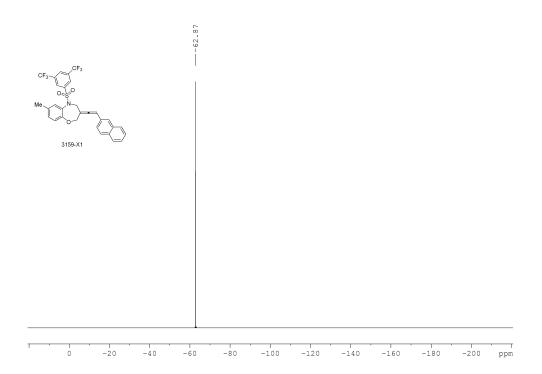


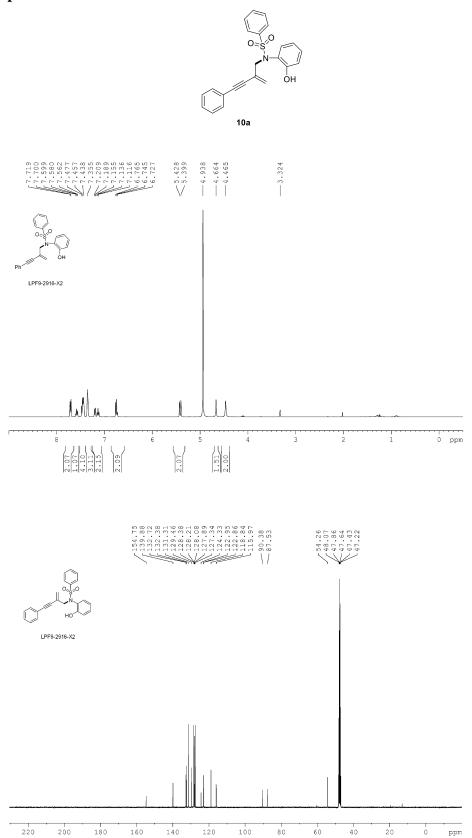


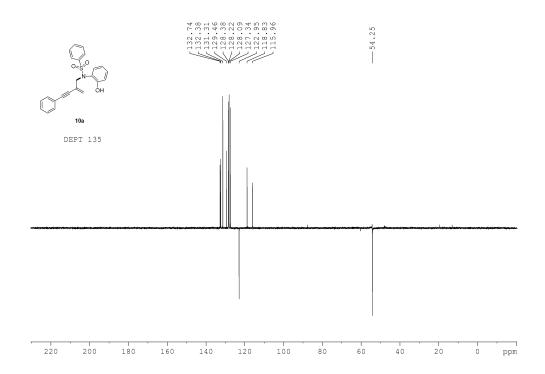


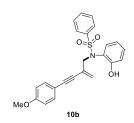


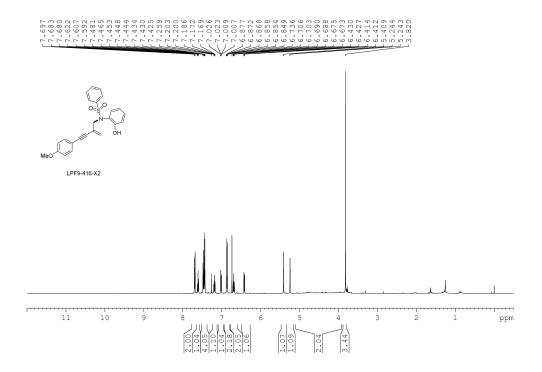


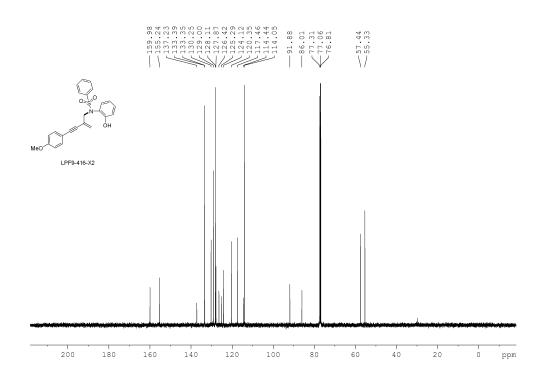


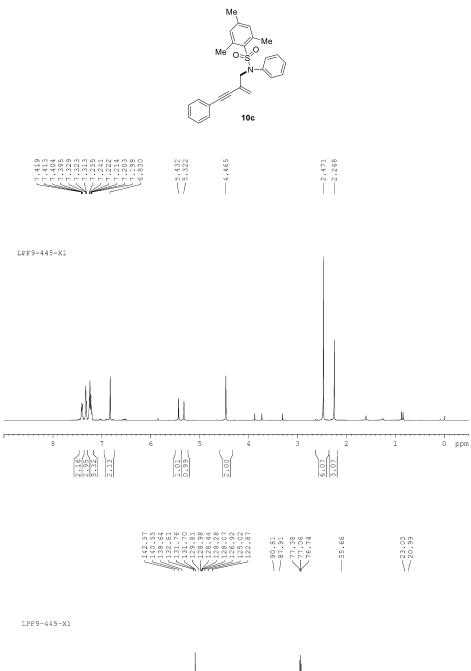


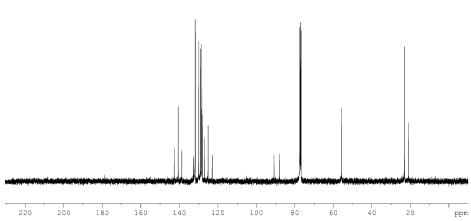


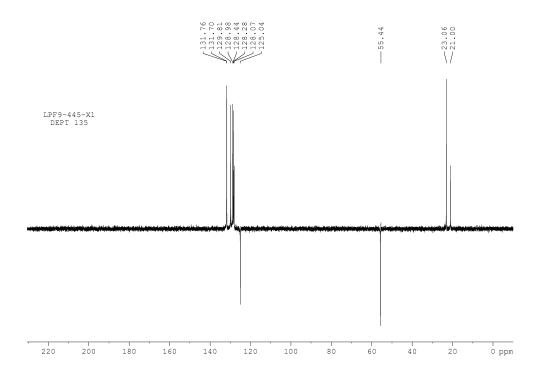


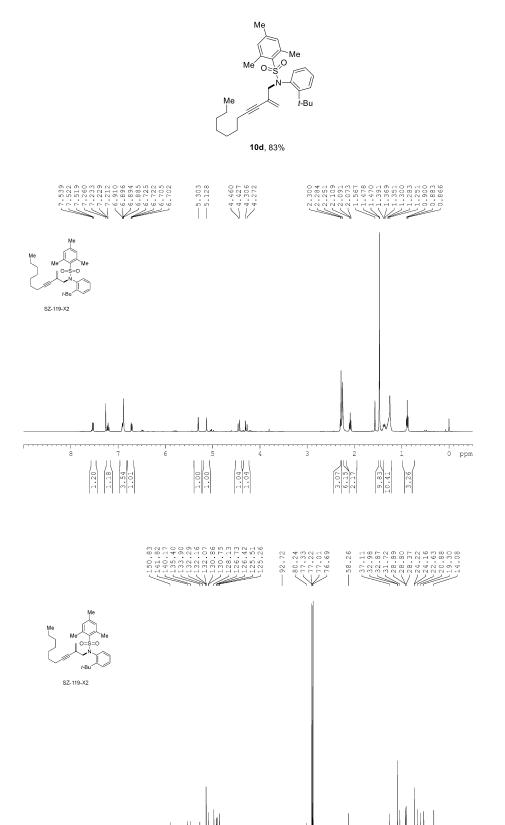


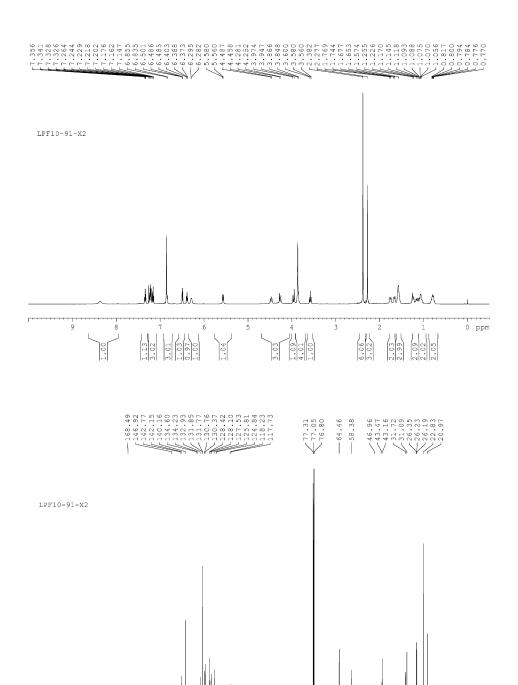

NMR spectra of 10

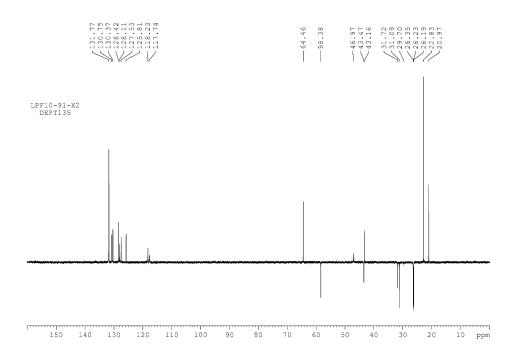


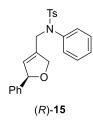


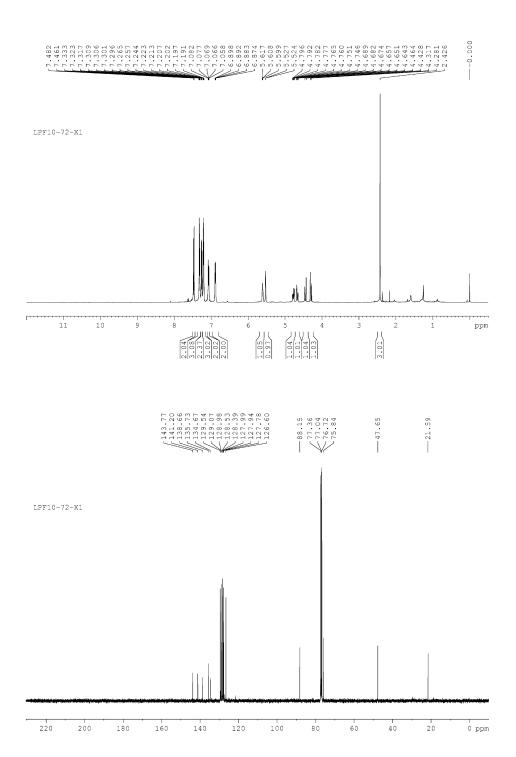


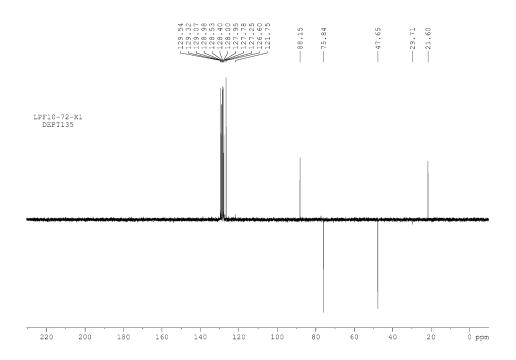




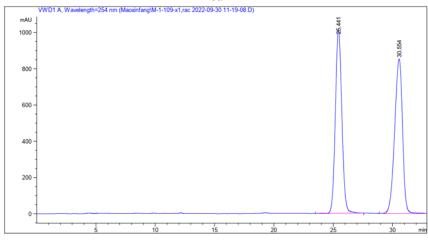


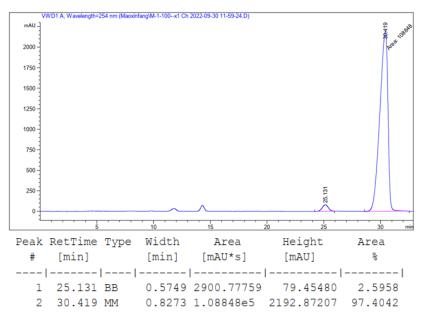

NMR spectra of 13

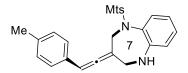



210 200 190 180 170 160 150 140 130 120 110 100 90

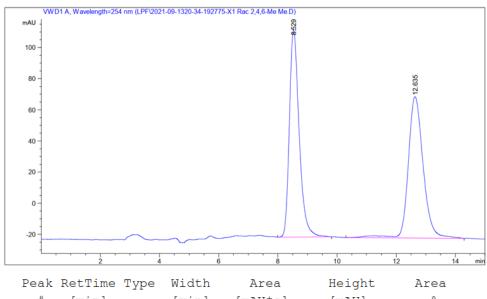
NMR spectra of 15

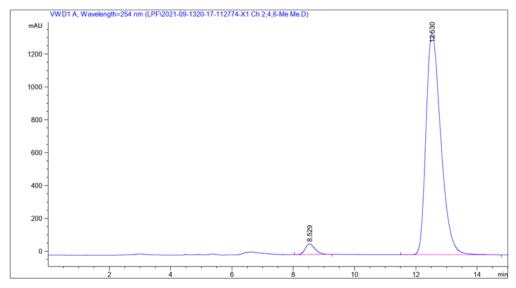


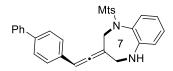

11. HPLC spectra


HPLC spectra of 3

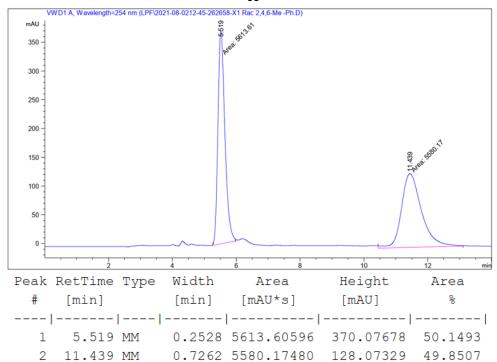
3a

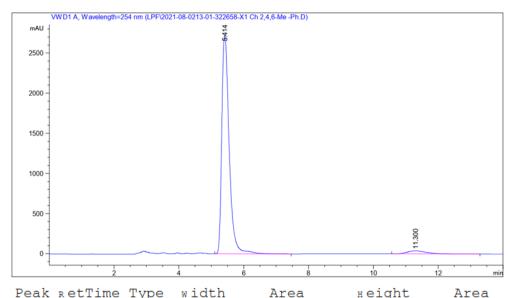



Peak	RetTime	Туре	e Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
			-			
1	25.441	VB F	0.5935	3.86090e4	1013.44830	49.5690
2	30.554	BB	0.7243	3.92803e4	852.95270	50.4310

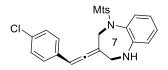


3b

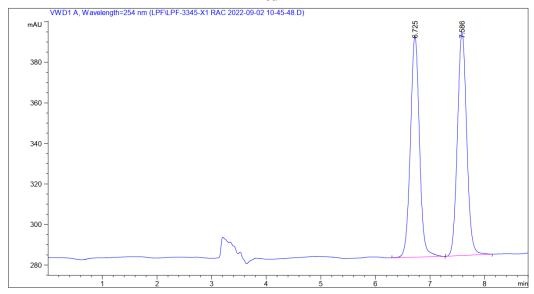


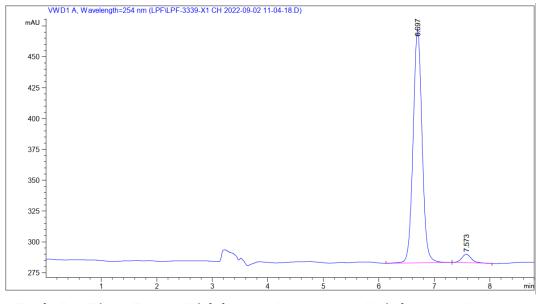


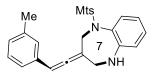
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	8.529	BB	0.3410	1434.49182	64.61596	3.0780
2	12.530	BB	0.5145	4.51694e4	1349.35278	96.9220

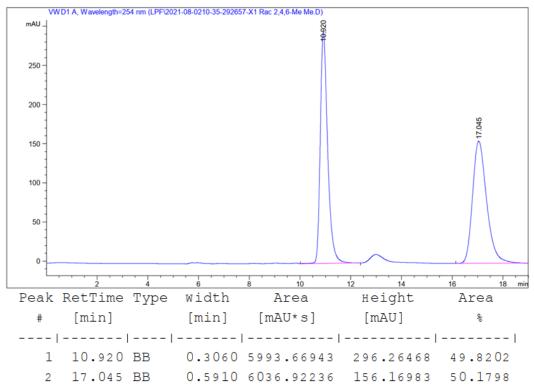


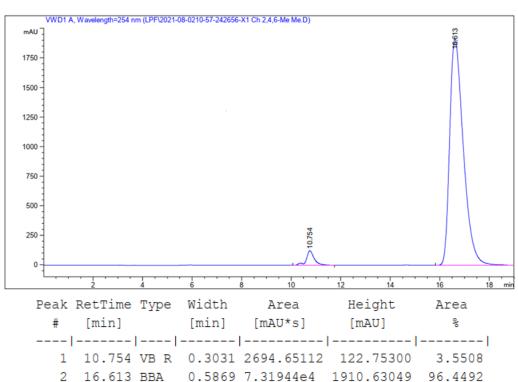
3с

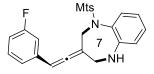


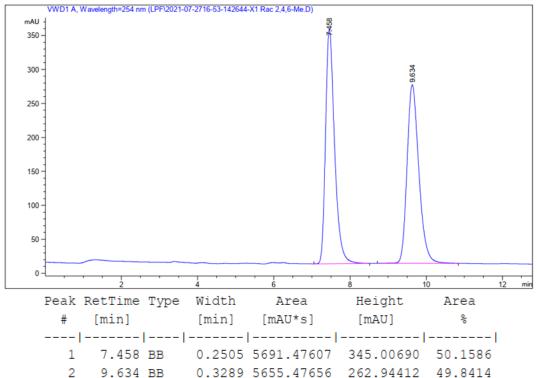

10011	K C C I I I I I C	- 1 1 0	" I doll	111 00	" craire	11100
#	[min]		[min]	[mAu * s]	[mAu]	<u>s</u>
1						_I
1	5.414	ВВ	0.2432	4.32033e4	2721.83691	96.4589
2	11.300	вV к	0.6364	1586.05066	38.27554	3.5411

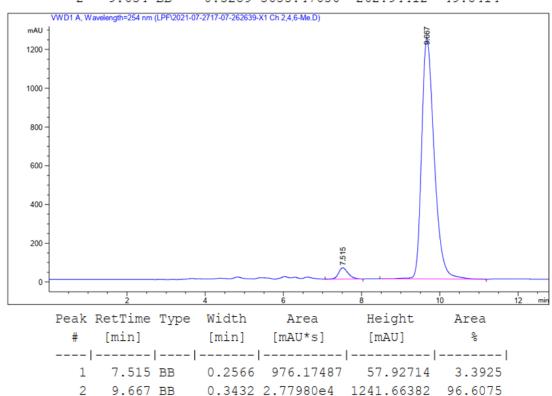

3d

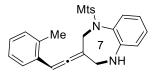

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
		-				
1	6.725	BB	0.1771	1253.70667	109.08978	49.0479
2	7.586	BB	0.1829	1302.37878	110.17856	50.9521

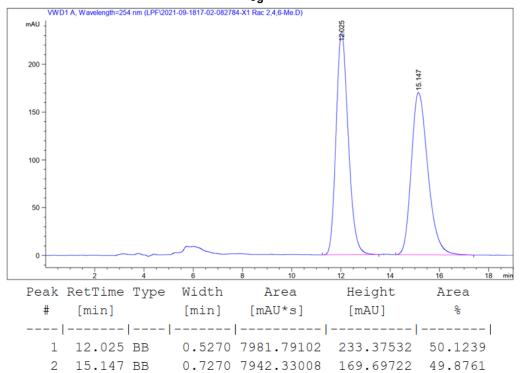


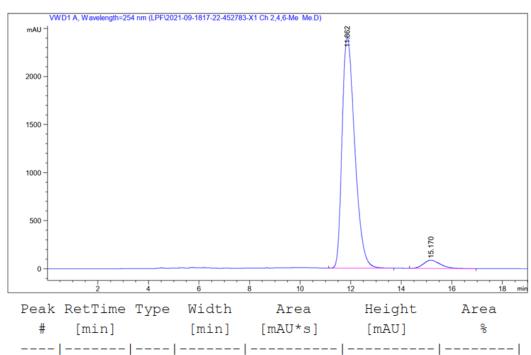

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	양	
		-					
1	6.697	BB	0.1732	2120.05249	188.45082	96.2423	
2	7.573	BB	0.1871	82.77594	6.79612	3.7577	

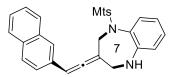

3e



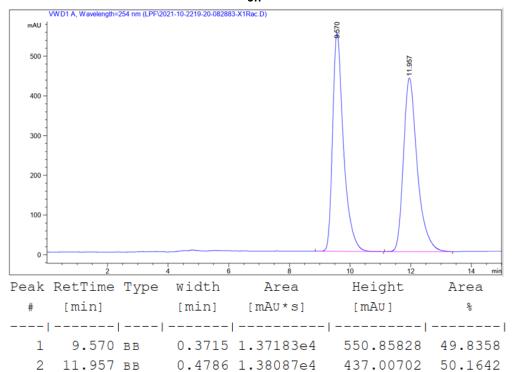


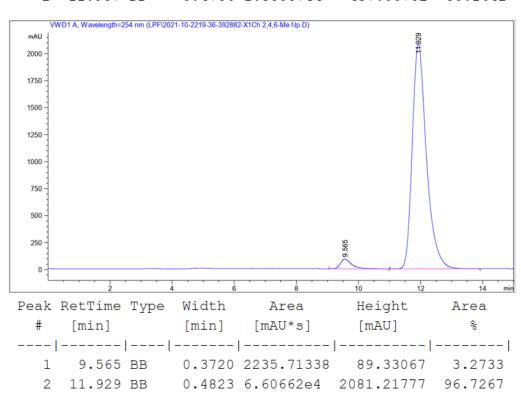

3f



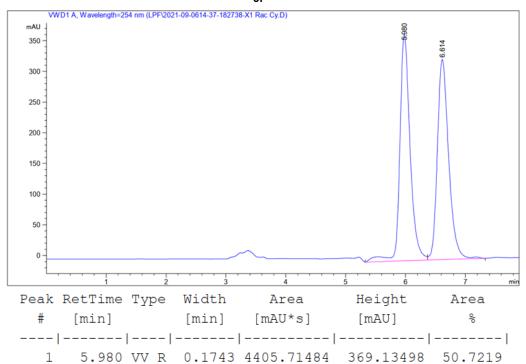


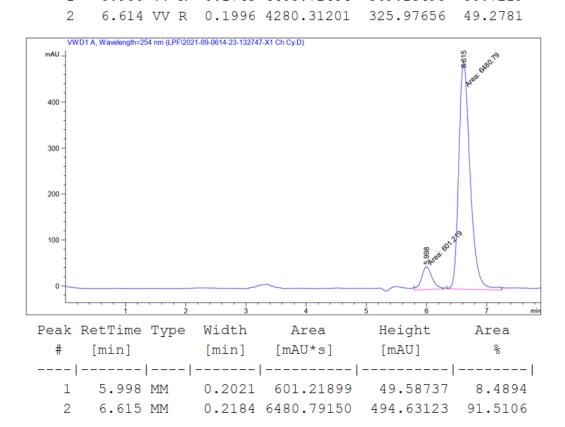
3g

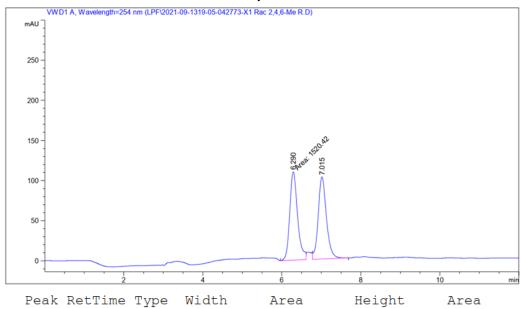




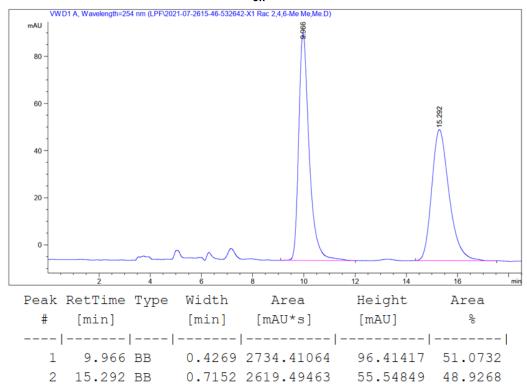
1 11.862 BB 0.5407 8.35248e4 2401.84180 95.5438 2 15.170 BB 0.7054 3895.65356 85.21037 4.4562

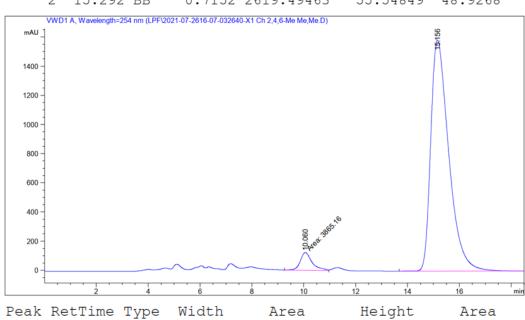


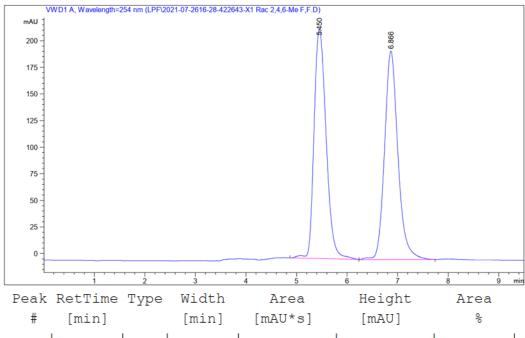

3h



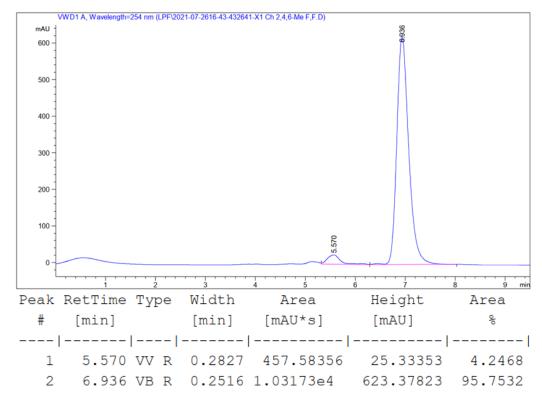
3i

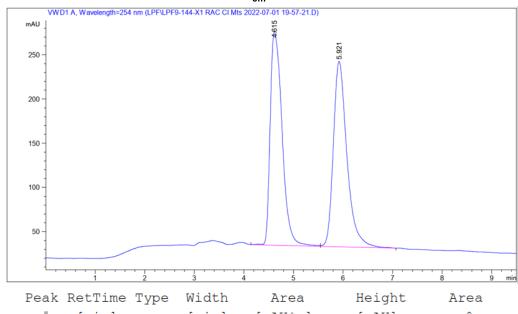



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	6.290	MF	0.2301	1520.42053	110.11102	50.6877
2	7.015	VB	0.2186	1479.16589	102.35013	49.3123

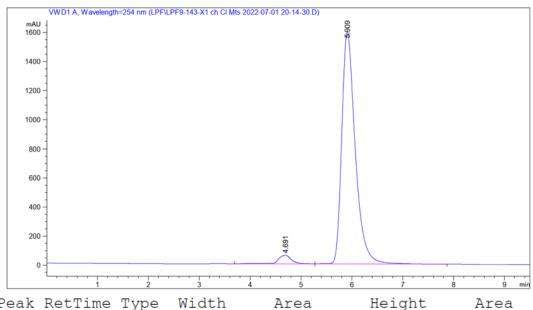

#	[min]		[min]	[mAU*s]	[mAU]	્ર
1	6.324	BV	0.1718	4387.98486	388.44748	14.2375
2	6.999	VB	0.2102	2.64319e4	1925.04089	85.7625

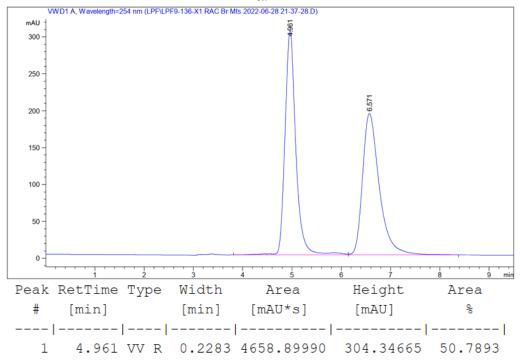
3k

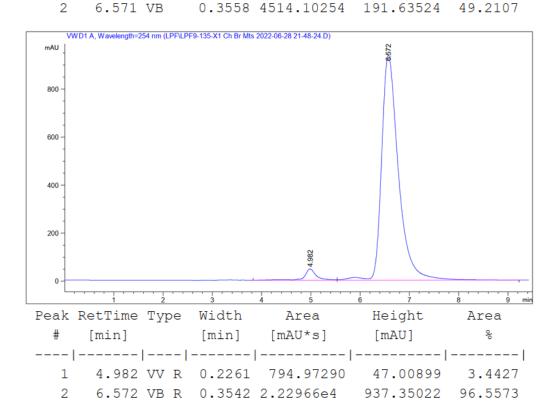


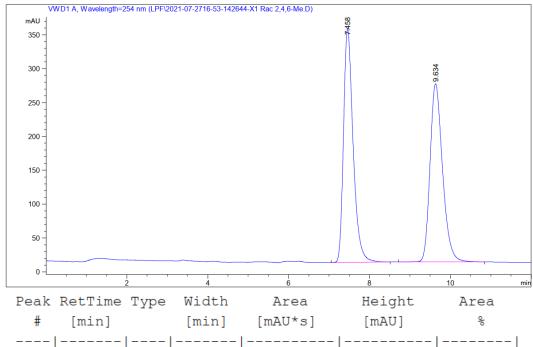


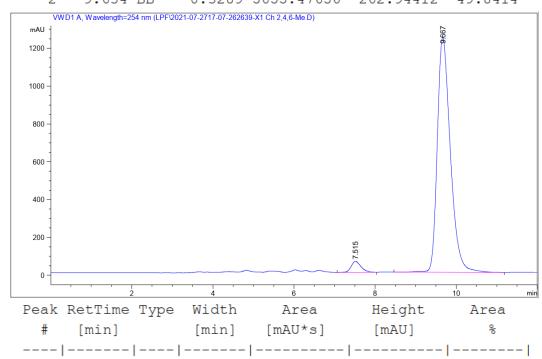
Leak	Meciline	Type	WIGCII	ALea	Height	ALEa	
#	[min]		[min]	[mAU*s]	[mAU]	용	
1	10.060	MF	0.5281	3865.15723	121.97577	4.8182	
2	15.156	BB	0.7412	7.63555e4	1584.41638	95.1818	




[min] [min] [mAU*s] [mAU] %
----|-----|-----|-----|------|
1 5.450 VB R 0.2616 3583.56494 215.46179 49.8099
2 6.866 VB R 0.2791 3610.91577 195.83600 50.1901




[min] [min] [mAU*s] [mAU] %
----|-----|-----|------|------|
1 4.615 VV R 0.2657 4009.13647 241.49821 50.0804
2 5.921 VB 0.2885 3996.27075 209.58128 49.9196



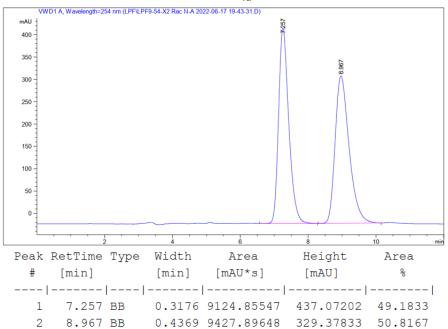
3о

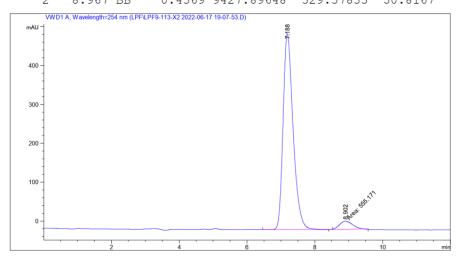
[min] [min] [mAU*s] [mAU] %
----|-----|-----|-----|------|
1 7.458 BB 0.2505 5691.47607 345.00690 50.1586
2 9.634 BB 0.3289 5655.47656 262.94412 49.8414

0.2566 976.17487

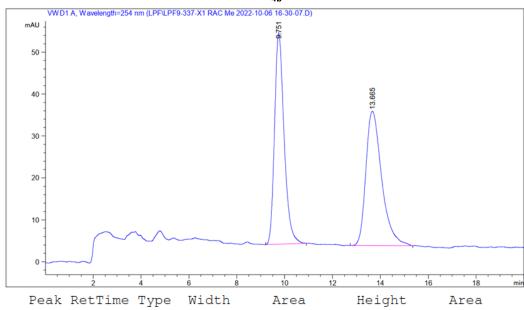
57.92714

0.3432 2.77980e4 1241.66382 96.6075

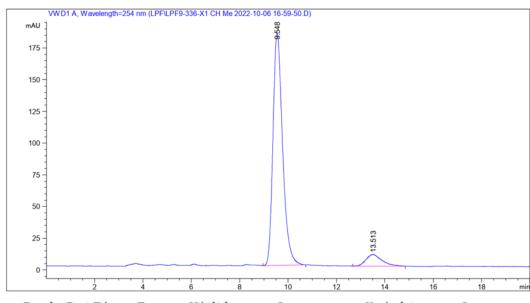

3.3925

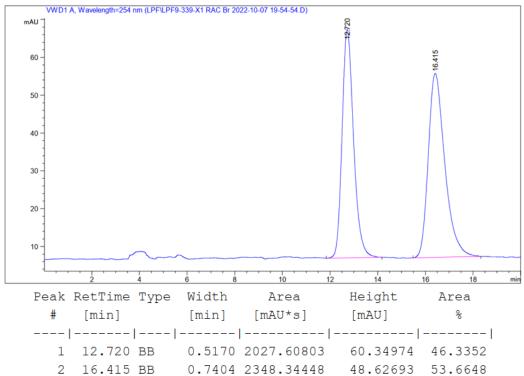

7.515 BB

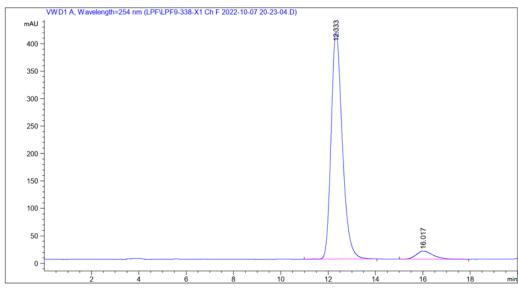
9.667 BB

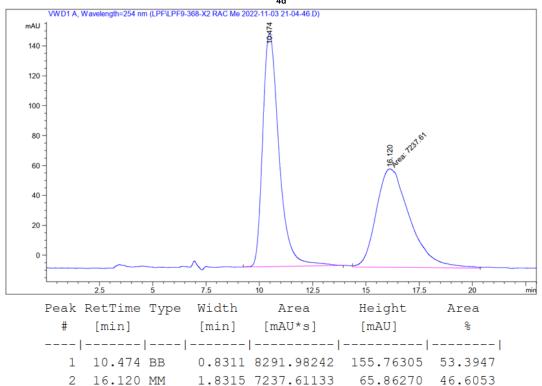

1

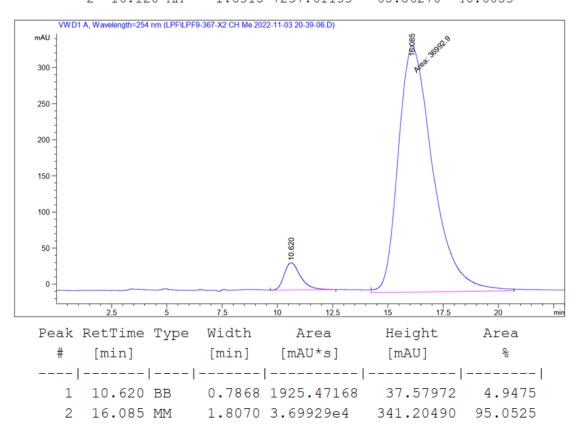
4a

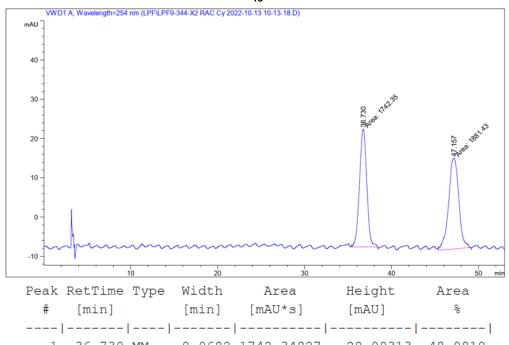


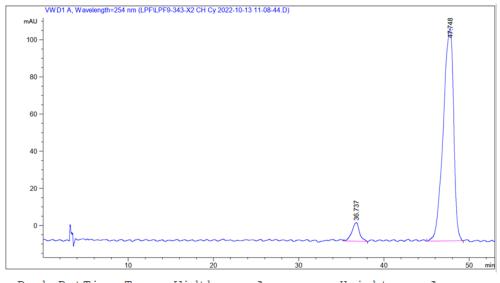


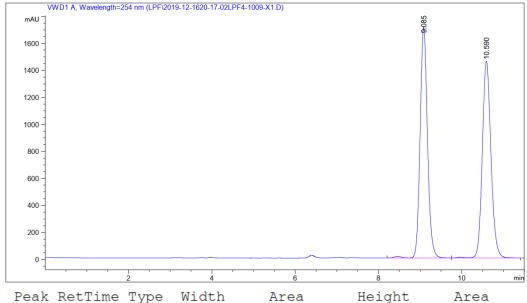

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	용	
1	7.188	BV	0.3125	1.03275e4	503.14160	94.8986	
2	8.902	MM	0.4392	555.17096	21.06831	5.1014	

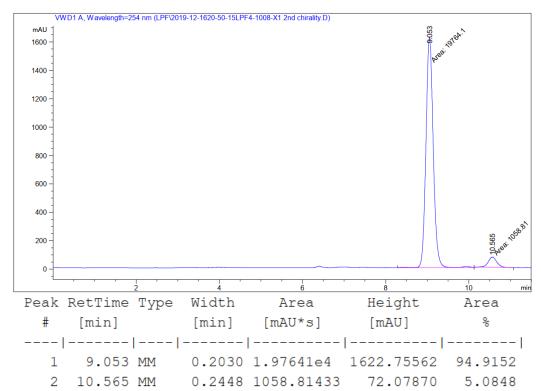

[min] [min] [mAU*s] [mAU] %
----|-----|-----|-----|-----|
1 9.751 BB 0.4245 1399.94214 50.48568 48.7418
2 13.665 BB 0.7023 1472.21765 32.02613 51.2582



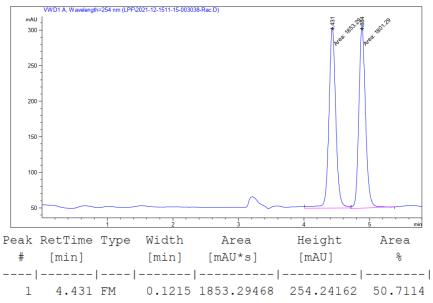


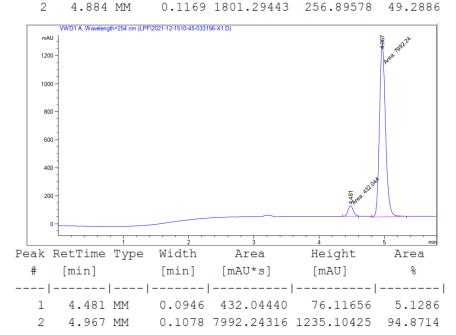

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
I		-					
1	12.333	BB	0.5025	1.36032e4	414.88126	94.9208	
2	16.017	BB	0.7274	727.90375	14.75849	5.0792	

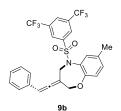


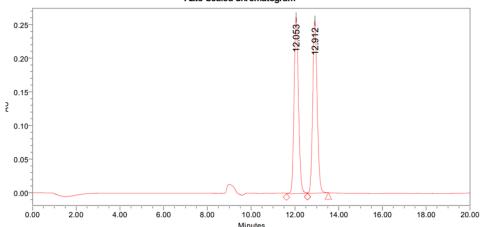


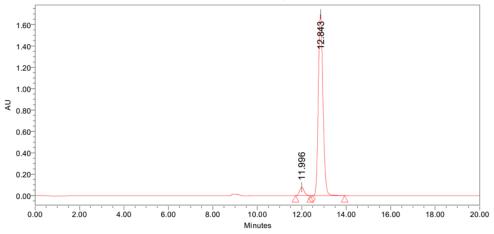
0.9682 1742.34827 1 36.730 MM 29.99313 48.0810 1.3575 1881.42603 2 47.157 MM 23.09932 51.9190

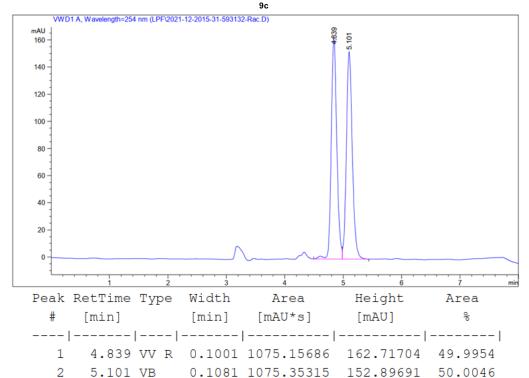


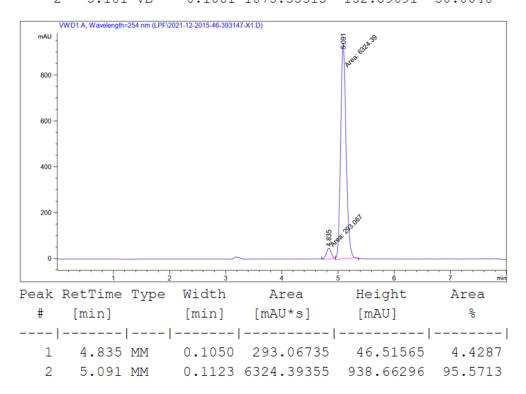

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] ----|------|-----| 9.93844 1 36.737 BB 0.8925 606.13983 5.8849 2 47.748 BB 1.2213 9693.84863 114.32286 94.1151

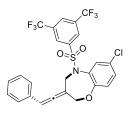


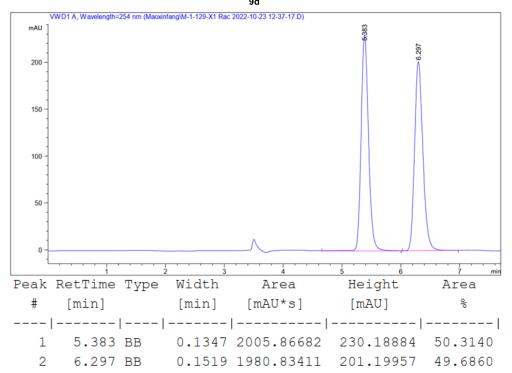

9a

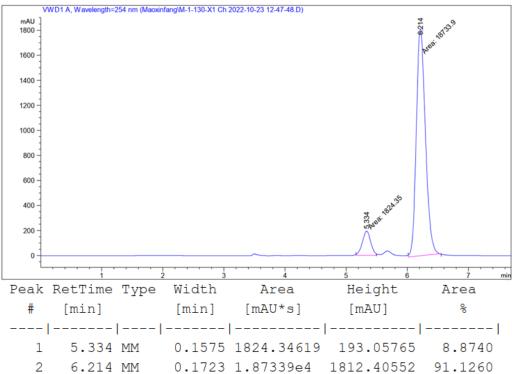

Auto-Scaled Chromatogram

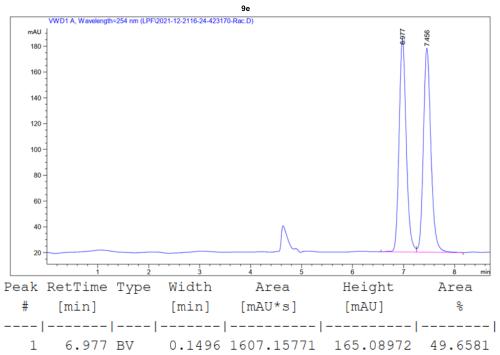

Peak Results

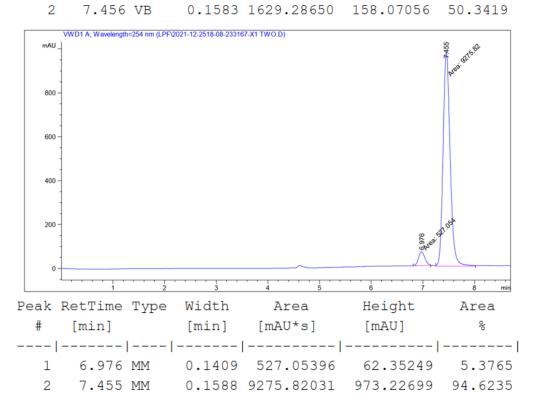

	Name	RT	Area	Height	% Area	Peak Width (sec)
1		12.053	3679966	262041	50.18	30.00
2		12.912	3653694	256223	49.82	30.00

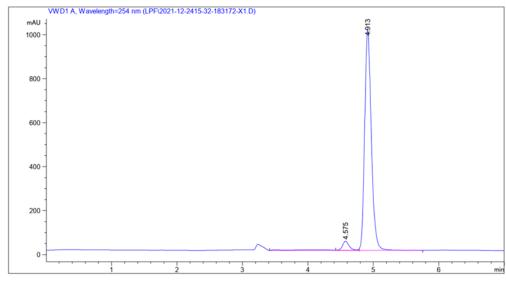

Auto-Scaled Chromatogram

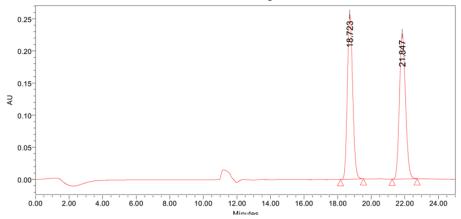



	Name	RT	Area	Height	% Area	Peak Width (sec)
1		11.996	1105519	78805	4.26	30.00
2		12.843	24816484	1699008	95.74	30.00



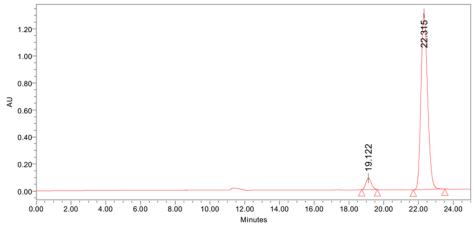


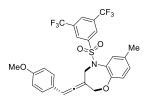



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.625	MM	0.1163	1501.47388	215.16077	49.6940
2	4.983	MM	0.1211	1519.96387	209.26945	50.3060

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	용
			-				
1	4.575	VV	E	0.1076	289.37299	40.89060	3.8588
2	4.913	VV	R	0.1075	7209.61621	1002.60059	96.1412

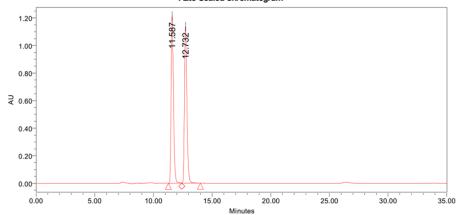
9g


Auto-Scaled Chromatogram


Peak Results

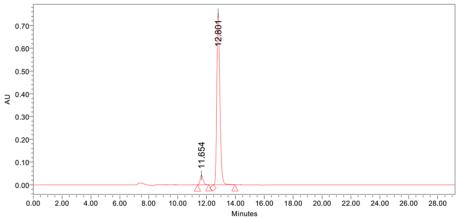
	Name	RT	Area	Height	% Area	Peak Width (sec)
1		18.723	5722919	256949	50.04	30.00
2		21.847	5714336	226318	49.96	30.00

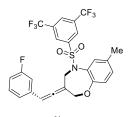
Auto-Scaled Chromatogram

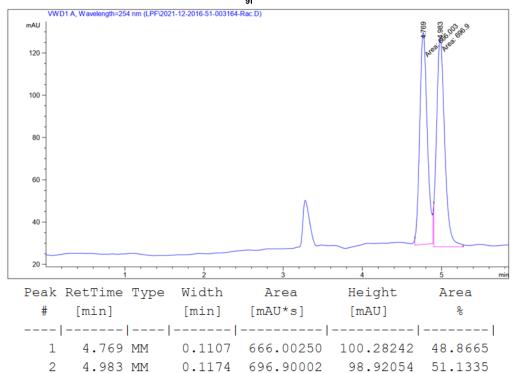


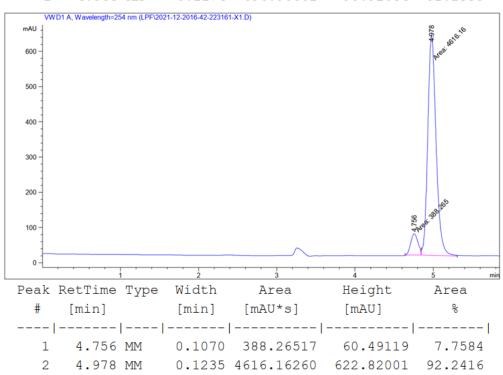
	Name	RT	Area	Height	% Area	Peak Width (sec)
1		19.122	1903027	84607	5.19	30.00
2		22.315	34742560	1303980	94.81	30.00

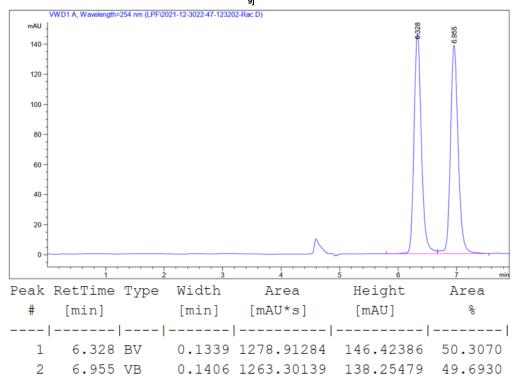
9h

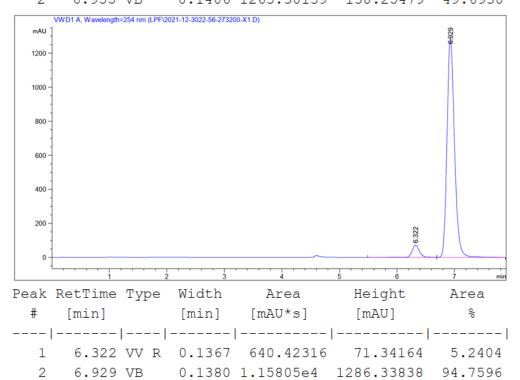

Auto-Scaled Chromatogram

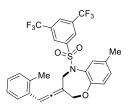

Peak Results

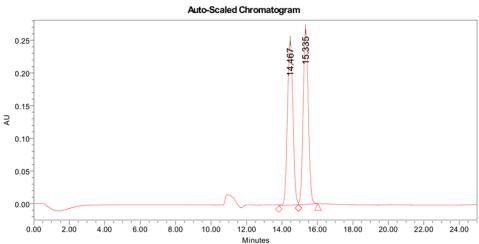

	Name	RT	Area	Height	% Area	Peak Width (sec)
1		11.587	16696297	1214710	49.86	30.00
2		12.732	16791455	1138425	50.14	30.00

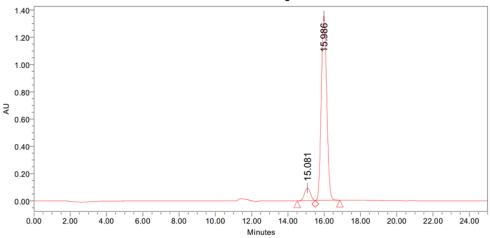

Auto-Scaled Chromatogram

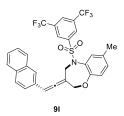



	Name	RT	Area	Height	% Area	Peak Width (sec)
1		11.654	577413	42080	4.93	30.00
2		12.801	11136586	754047	95.07	30.00

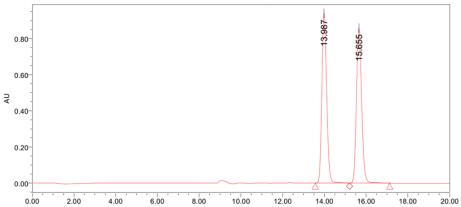




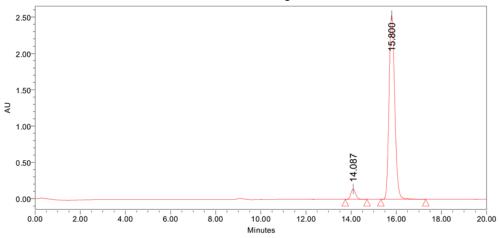

9k

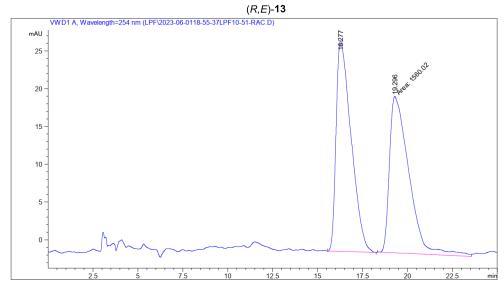

Peak Results

	Name	RT	Area	Height	% Area	Peak Width (sec)			
1		14.467	5427895	251067	50.10	30.00			
2		15.335	5405150	267660	49.90	30.00			

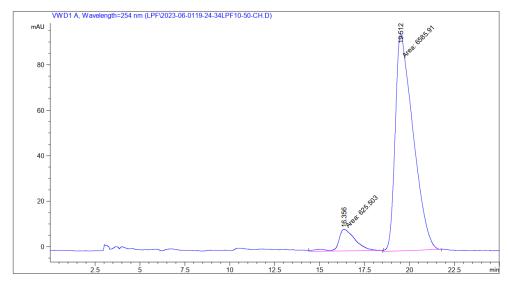

Auto-Scaled Chromatogram

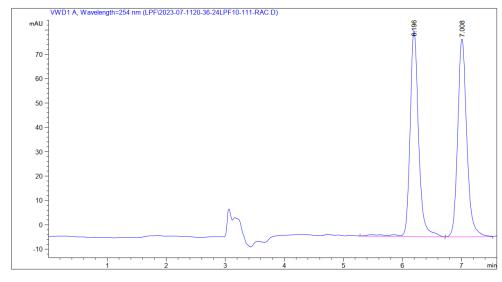
	Name	RT	Area	Height	% Area	Peak Width (sec)
1		15.081	2091211	92624	6.80	30.00
2		15.986	28672914	1353476	93.20	30.00

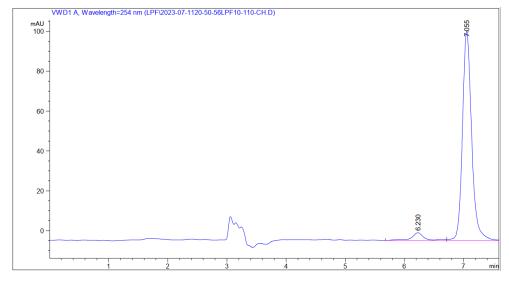

Auto-Scaled Chromatogram


Peak Results

	Name	RT	Area	Height	% Area	Peak Width (sec)
1		13.987	14983032	941678	49.92	30.00
2		15.655	15030228	859736	50.08	30.00


Auto-Scaled Chromatogram


	Name	e RT	Area	Height	% Area	Peak Width (sec)
		14.087	2131628	143106	4.57	30.00
2	2	15.800	44464551	2531056	95.43	30.00


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	엉
						I
1	16.277	BB	0.8636	1612.15063	27.88209	50.8218
2	19.296	MM	1.2573	1560.01599	20.67946	49.1782

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	96	
1	16.356	MM	1.0986	625.50269	9.48952	8.6738	
2	19.512	MM	1.1508	6585.91455	95.38136	91.3262	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	୧
1	6.196	VB R	0.1529	853.60492	84.47184	49.5763
2	7.008	BV	0.1627	868.19446	81.20306	50.4237

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.230	BV R	0.2232	62.24430	3.90099	5.1968	
2	7.055	VV	0.1639	1135.50537	105.23139	94.8032	