

Supporting Information: Sample Efficient

Reinforcement Learning with Active

Learning for Molecular Design

Michael Dodds1 , Jeff Guo1 , Thomas Löhr1 , Alessandro Tibo1 , Ola Engkvist1, Jon

Paul Janet1

1: Molecular AI, Discovery Sciences, R&D, AstraZeneca, 431 50 Gothenburg,

Sweden

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2024

Contents

Supporting Text .. 4

Supporting Text 1 Hardware.. 4

Supporting Text 2. Retrospective REINVENT Analysis .. 4

Supporting Text 3. Machine Learning Models ... 4

Supporting Text 4. Training Window Size ... 6

Supporting Tables ... 8

Supporting Table 1. Experimental Parameters for RL-AL Optimisation............................. 8

Supporting Table 2. SM Predictive Error Dependent on Training Data. 10

Supporting Table 3. Grid Search for RL-AL Parameters. ... 11

Supporting Table 4. SMARTS Patterns Compromising Custom Alerts. 13

Supporting Table 5 RDKit Descriptors .. 15

Supporting Figures .. 17

Supporting Figure 1. Reinforcement Learning and Virtual Screen Hit Efficiency 17

Supporting Figure 2. Multi-parameter Score for RL, RL-AL, and VS. 18

Supporting Figure 3. Compound Score and Distribution with Training Epochs. 19

Supporting Figure 4. Predictive Accuracy on Retrospective Data. 20

Supporting Figure 5. Effect of Gaussian Noise on Run Productivity. 21

Supporting Figure 6. Confidence Adapted Weights. .. 22

Supporting Figure 7. Acquisition Strategies for RL-AL. .. 23

Supporting Figure 8 Training Pool Manipulation. ... 24

Supporting Figure 9. Molecular Featurisation for RL-AL. ... 25

Supporting Figure 10. UMAP of Hits for Optimised Conditions. 26

Supporting Figure 11. Generation without Experience Replay and Diversity Filters 27

Supporting Figure 12. Example structures generated by MPO-based and optimized RL-AL

interventions.. 28

Supporting Figure 13. Visualization of ROCs overlays and docked poses from RL-AL ... 29

Supporting Figure 14 Model Error with Retrospective RL. .. 30

Supporting Figure 15. Model and Fingerprint Cross-validation. 32

Supporting Figure 16. Hyperparameter stability comparison.. 33

Supporting Figure 17. Sampling Size Dependent MPO Convergence. 34

References .. 35

Supporting Text

Supporting Text 1 Hardware

Time comparison experiments were run on the following hardware & software specifications:

• Intel(R) Xeon(R) W-2225 CPU @ 4.10GHz

• Nvidia GeForce RTX 3080 Ti

• Linux Distro: CentOS Linux release 7.9.2009 (Core)

• RDKit version 2020.03.3.0

• scikit-learn version 0.21.3

• TensorFlow version 1.15.2

Supporting Text 2. Retrospective REINVENT Analysis

A total of 64 000 labelled compounds were amassed over 500 epochs (denoted as 𝑒) using

the REINVENT framework in conjunction with AutoDock-Vina, thereby constituting dataset 𝐷

encompassing elements 𝑒0, 𝑒1, 𝑒2, … , 𝑒500. For each epoch, executed in chronological

sequence, a machine learning model was trained on the 𝑚 most recently acquired

compounds, with 𝑚 being either 100, 1 000, or 5 000.

We assessed the look-forward predictive accuracy of various methods, including Support

Vector Regression (SVR), ChemProp, and Random Forest, on the retrospective dataset

(refer to Supporting Figure 3) by Root Mean Square Error (RMSE). Model hyperparameters

were optimised by grid search and five-fold cross-validation error on 100, 1 000, and 5 000

compounds sampled from retrospective dataset 𝐷 ∪ (𝑒280…𝑒300).

Supporting Text 3. Machine Learning Models

Gradient Boosted Decision Trees For this task we use XGBoost’s1 implementation of the

boosted trees regressor. XGboost sequentially constructs trees which optimise the loss

function, here derived as an average of the previous trees prediction accuracy (MSE), plus a

regularization term based on tree complexity. This leads to the production of a ‘forest’ of

weak learners which intuitively place increased importance on features with a high prediction

error for previous trees.

K-Nearest Neighbours 2 (KNN). We allow selection of scikit-learn’s implementation of KNN.

KNN’s calculates the Euclidean distance between points and predicts a label value based on

the labels for the top K most similar points. In the case of regression, the mean value.

Support Vector Machines 3. A support vector regression algorithm using a radial basis

function kernel was implemented using scikit-learn. SVR’s operate by finding a boundary of

separation between classes of datapoints which maximises the “margin”, the distance

between the boundary and the datapoints. Data can be transformed into high dimensionality

space using the kernel trick, computed as the inner product between two data points in the

transformed space. In the case of RBF this relationship decays with distance (gamma) and

provides a means to evaluating the non-linear similarity between two points. The parameters

C, regularisation parameter, and gamma, the kernel coefficient for the radial basis function

were optimised using five-fold cross-validation with accuracy measured as MSE.

Gaussian Process 4 A gaussian process using a radial basis function kernel was

implemented using scikit-learn5. A gaussian process is another kernel-based method, which

utilises the covariance of training data to compute a joint-probability distribution of functions

which can be sampled for the most probable value at a given point. The construction of a

joint-probability distribution allows for direct quantification of model uncertainty in any given

prediction. Kernel methods scale quadratically with data size due to computation of matrix

inversions. A radial bias function kernel was used to compute the absolute distance between

inputs. Target values were scaled using scikit-learn’s internal method, normalize_y which

removed then mean and then scaled to unit variance. The length scale and regularization

strength were computed using scikit-learn’s internal optimiser function, LMBFGS, to search

for kernel parameters that maximise the log-marginal likelihood.

Graph Neural Network. We employed ChemProp's 6 implementation of a Graph Neural

Network for molecular property prediction. The model uses bond-centered convolutions to

learn a vector representation of the molecule graph that maximizes the predictive accuracy

of a feed-forward neural network. Global features derived from RDKit's physchem library

were concatenated prior to training. We used ChemProp’s internal optimisation function, to

select the best hyperparameters based on the retrospective dataset. Which optimizes the

following parameters: batch size, feed forward network hidden layer size and number, depth.

Uniform Manifold Approximation and Projection. We employ a non-linear dimensionality

reduction technique from the UMAP-learn python library7 that seeks to represent the

geometric structure of data in a lower-dimensionality space. As a first step UMAP constructs

a high-dimensional graph representation. It computes the space between each point in this

space using the K nearest neighbours’ algorithm. Subsequently there is a construction of a

fuzzy simplicial complex, a type of weighted graph, which captures both the local and global

structure of the data. The graph is then optimised using stochastic gradient descent to

minimise the differences between high dimensional and low dimensional representations,

measured by cross-entropy. The result of which is an embedding which can be used for the

projection of linear and non-linear data into two-dimensions.

Supporting Text 4. Training Window Size

We consider the impact of retaining various numbers of observations in the training pool via

a sliding window scheme where the model is retrained on m most recently acquired oracle

labels. The molecules generated in each epoch are from the same distribution, with the most

recent epochs being most similar and historical epochs being less relevant for future epochs.

This effect can be dramatic as the RL process directly optimizes the oracle score, meaning

that the balance between low- and high-scoring molecules shifts substantially, for example

from a hit rate in the first 10 000 oracles of 0.02 and 0.07% (for ROCs and docking

respectively) to a hit rate of 0.23 and 0.2% in between 20 000 - 30 000 oracle calls in the

Motivating Example (Section 2). By retaining a smaller set of relevant training data, we

accelerate surrogate training times at the expense of potentially lower coverage. We

experiment with training window sizes of 100, 1 000, 5 000 and 10 000 molecules. We also

explored an alternative AL paradigm, adaptive subsampling 8, which attempt to improve

model generalizability and accuracy by iteratively constructing a 1 000-compound training

set based on model confidence in 10 steps (Supporting Figure 8).

Using the smallest training window sizes resulted in less accurate surrogate models, with the

model with a 100-molecule window achieving a look-ahead MAE of 0.065±0.008 vs

0.051±0.005 for the baseline case with 1 000 which translates into identifying only 113±37

hit scaffolds vs 147±13 for the run with 1 000. However, the returns are rapidly diminishing,

with a training pool of 1 000 being sufficient to generate 82% of the hit scaffolds compared to

a training pool of 10 000 and no significant benefit observed from keeping all molecules

(144±13 for 10 000 vs 143±13 for keeping all) hit scaffolds found. In contrast, training times

for 100, 1 000 and 10 000 compounds are approximately 0.5, 1.7 and 25.5 seconds

(Methods for hardware information), reducing the real-world efficiency of models with larger

training batches. In terms of diversity, there is no clear impact of varying surrogate model

training window size with all approaches being comparable.

Supporting Tables

Supporting Table 1. Experimental Parameters for RL-AL Optimisation.

In the table we show each experimental condition that was modified during the optimisation

of the RL-AL parameters. In the RL-AL Experiments selection, the ‘default’ config is

highlighted in bold, and each row represents an experiment in which a single parameter was

altered relative to the default. Double asterisked experiments indicate that they were

performed for both oracles, ADV and ROCS.

 RL Baseline ** RL-AL Naive ** Gaussian Noise **
RL-AL

Experiments

Surrogate Model Random Forest Random Forest Random Forest Random Forest

Representation Physchem Physchem Physchem Physchem & ECFP

Acquisition

Function
UCB UCB UCB

Greedy & UCB &

Random

Confidence

Scaling
1 1 1 0, 1

Drop Duplicates FALSE TRUE FALSE TRUE

Gaussian Noise 0 0 0.0 - 0.2 * 0

SM Pred. Weights N/A 1 N/A 0.0, 0.25, 0.75 & 1.0

Training Pool Size None 1000 1000
100, 1 000, 5 000,

10 000 & inf

Num. Loops 1 1 1 1, 2, 4 & 8

N_batch 128 256 128 256, 1024, 2048

N_acquired 128 128 128 32, 64, 128

MPO Acquisition FALSE FALSE FALSE True & False

Supporting Table 2. SM Predictive Error Dependent on Training Data.

Using the RL-AL system established in the main text, we measure the predictive accuracy of

the surrogate model for different quantities of training data by calculating the RMSE of

predicted values to true values over an RL-AL run lasting 30,000 oracle calls.

Experiment RMSE Std. Dev.

Training Pool 100 0.0645 0.0083

Training Pool 1 000 0.0514 0.0053

Training Pool 5 000 0.0459 0.0045

Training Pool 10 000 0.0446 0.0049

Training Pool 30 000 0.0443 0.0053

Supporting Table 3. Grid Search for RL-AL Parameters.

This table shows a grid search over three conditions in RL-AL, 𝑁𝑏𝑎𝑡𝑐ℎ, 𝑁𝑎𝑐𝑞 and 𝑁𝑙𝑜𝑜𝑝𝑠,

plotted in the other columns are the mean and standard deviation, for the cumulative number

of favourable scaffolds, hits and the average Tanimoto score for the pairwise distribution of

all hits for all runs.

Parameters

Fav.

Scaffolds Hits Tanimoto

N.

Batch

N.

Acq.

N.

Loops Mean

Std.

Dev. Mean

Std.

Dev. Mean

Std.

Dev.

256 32 8 390 36 9974 1694 0.23 0.02

256 32 4 413 183 9298 2611 0.243 0.015

256 32 2 211 64 8409 1157 0.263 0.027

256 32 1 582 252 11204 2727 0.255 0.022

256 64 8 703 65 8943 571 0.23 0.018

256 64 4 445 118 7918 527 0.22 0.009

256 64 2 626 170 8715 1005 0.257 0.016

256 64 1 624 101 9755 806 0.224 0.026

256 128 16 148 20 780 172 0.196 0.009

256 128 8 149 13 839 89 0.201 0.012

256 128 4 150 17 860 129 0.195 0.005

256 128 2 142 18 749 114 0.197 0.012

256 128 1 142 23 716 138 0.199 0.016

256 128 1 146 13 849 186 0.213 0.017

256 128 1 156 8 928 170 0.191 0.003

256 128 1 146 13 849 186 0.213 0.017

512 32 8 303 72 7526 732 0.268 0.031

512 32 4 690 31 11153 3139 0.264 0.009

512 32 2 521 17 10988 1130 0.267 0.009

512 32 1 393 102 10457 1889 0.247 0.033

512 64 8 703 142 13324 1448 0.277 0.026

512 64 4 625 127 11996 664 0.253 0.017

512 64 2 699 106 11594 672 0.251 0.018

512 64 1 685 49 12141 689 0.264 0.025

512 128 16 329 41 4430 1087 0.204 0.016

512 128 8 359 19 4300 157 0.234 0.011

512 128 4 361 55 4178 389 0.203 0.008

512 128 2 371 49 3933 498 0.221 0.012

512 128 1 333 40 3481 405 0.224 0.02

1024 32 8 623 201 12156 2516 0.259 0.036

1024 32 4 437 267 10704 2280 0.271 0.016

1024 32 2 520 179 10011 3511 0.295 0.013

1024 32 1 406 185 9876 2868 0.275 0.022

1024 64 8 676 44 13207 816 0.248 0.022

1024 64 4 496 98 10953 2102 0.239 0.02

1024 64 2 668 244 13868 832 0.263 0.009

1024 64 1 796 229 13010 2301 0.247 0.025

1024 128 16 609 62 9597 764 0.271 0.023

1024 128 8 507 44 9760 458 0.263 0.018

1024 128 4 502 100 8869 2014 0.246 0.022

1024 128 2 557 33 8864 750 0.247 0.032

1024 128 1 522 67 8774 700 0.256 0.01

1024 128 1 358 54 6207 496 0.228 0.02

2048 32 8 376 221 10664 2380 0.26 0.014

2048 32 4 649 546 11810 3459 0.261 0.023

2048 32 2 470 156 11096 3188 0.297 0.019

2048 32 1 432 163 10751 2260 0.261 0.018

2048 64 8 486 167 12618 2918 0.235 0.016

2048 64 4 673 66 14237 280 0.271 0.011

2048 64 2 715 97 14570 722 0.267 0.007

2048 64 1 656 144 13878 1338 0.261 0.022

2048 128 8 647 87 12809 791 0.284 0.008

2048 128 4 595 51 12761 658 0.282 0.003

2048 128 2 572 69 11305 1121 0.275 0.017

2048 128 1 537 67 10771 1323 0.252 0.032

Supporting Table 4. SMARTS Patterns Compromising Custom Alerts.

SMILES arbitrary target specification is a language-based method for specifying structural

motifs in compounds. Here we use it to identify and penalise compounds containing

undesirable structural patterns. These patterns were identified as being commonly exploited

by REINVENT or being unsuitable for pharmacological agents, the list below was provided

by Janet, Jon Paul.

SMARTS Pattern Description

[*;r7] Contains 7 Member Ring

[*;r8] Contains 8 Member Ring

[*;r9] Contains 9 Member Ring

[*;r10] Contains 10 Member Ring

[*;r11] Contains 11 Member Ring

[*;r12] Contains 12 Member Ring

[*;r13] Contains 13 Member Ring

[*;r14] Contains 14 Member Ring

[*;r15] Contains 15 Member Ring

[*;r16] Contains 16 Member Ring

[*;r17] Contains 17 Member Ring

[#8][#8] Contains Peroxide

[#6;+] Positive Charged Carbon

[#16][#16] Contains Disulfide

[#7;!n][S;!$(S(=O)=O)] Nitrogen Bonded Sulphur not in Sulphonyl

[#7;!n][#7;!n] Nitrogen to Nitrogen Single Bond

C#C Alkyne

C=N Imine

C(=[O,S])[O,S] Carboxylic or Sulfonic Acid

Supporting Table 5 RDKit Descriptors

A full list of the short names for the RDKit physiochemical descriptors library. Descriptors

were used to enumerate compound features from SMILES strings. Features which were

invariant across all sampled SMILES were dropped prior to model training.

0 MaxAbsEStateIndex 52 PEOE_VSA2 104 FractionCSP3 156 fr_azo

1 MaxEStateIndex 53 PEOE_VSA3 105 HeavyAtomCount 157 fr_barbitur

2 MinAbsEStateIndex 54 PEOE_VSA4 106 NHOHCount 158 fr_benzene

3 MinEStateIndex 55 PEOE_VSA5 107 NOCount 159 fr_benzodiazepine

4 qed 56 PEOE_VSA6 108 NumAliphaticCarbocycles 160 fr_bicyclic

5 MolWt 57 PEOE_VSA7 109 NumAliphaticHeterocycles 161 fr_diazo

6 HeavyAtomMolWt 58 PEOE_VSA8 110 NumAliphaticRings 162 fr_dihydropyridine

7 ExactMolWt 59 PEOE_VSA9 111 NumAromaticCarbocycles 163 fr_epoxide

8 NumValenceElectrons 60 SMR_VSA1 112 NumAromaticHeterocycles 164 fr_ester

9 NumRadicalElectrons 61 SMR_VSA10 113 NumAromaticRings 165 fr_ether

10 MaxPartialCharge 62 SMR_VSA2 114 NumHAcceptors 166 fr_furan

11 MinPartialCharge 63 SMR_VSA3 115 NumHDonors 167 fr_guanido

12 MaxAbsPartialCharge 64 SMR_VSA4 116 NumHeteroatoms 168 fr_halogen

13 MinAbsPartialCharge 65 SMR_VSA5 117 NumRotatableBonds 169 fr_hdrzine

14 FpDensityMorgan1 66 SMR_VSA6 118 NumSaturatedCarbocycles 170 fr_hdrzone

15 FpDensityMorgan2 67 SMR_VSA7 119 NumSaturatedHeterocycles 171 fr_imidazole

16 FpDensityMorgan3 68 SMR_VSA8 120 NumSaturatedRings 172 fr_imide

17 BCUT2D_MWHI 69 SMR_VSA9 121 RingCount 173 fr_isocyan

18 BCUT2D_MWLOW 70 SlogP_VSA1 122 MolLogP 174 fr_isothiocyan

19 BCUT2D_CHGHI 71 SlogP_VSA10 123 MolMR 175 fr_ketone

20 BCUT2D_CHGLO 72 SlogP_VSA11 124 fr_Al_COO 176 fr_ketone_Topliss

21 BCUT2D_LOGPHI 73 SlogP_VSA12 125 fr_Al_OH 177 fr_lactam

22 BCUT2D_LOGPLOW 74 SlogP_VSA2 126 fr_Al_OH_noTert 178 fr_lactone

23 BCUT2D_MRHI 75 SlogP_VSA3 127 fr_ArN 179 fr_methoxy

24 BCUT2D_MRLOW 76 SlogP_VSA4 128 fr_Ar_COO 180 fr_morpholine

25 AvgIpc 77 SlogP_VSA5 129 fr_Ar_N 181 fr_nitrile

26 BalabanJ 78 SlogP_VSA6 130 fr_Ar_NH 182 fr_nitro

27 BertzCT 79 SlogP_VSA7 131 fr_Ar_OH 183 fr_nitro_arom

28 Chi0 80 SlogP_VSA8 132 fr_COO 184 fr_nitro_arom_nonortho

29 Chi0n 81 SlogP_VSA9 133 fr_COO2 185 fr_nitroso

30 Chi0v 82 TPSA 134 fr_C_O 186 fr_oxazole

31 Chi1 83 EState_VSA1 135 fr_C_O_noCOO 187 fr_oxime

32 Chi1n 84 EState_VSA10 136 fr_C_S 188 fr_para_hydroxylation

33 Chi1v 85 EState_VSA11 137 fr_HOCCN 189 fr_phenol

34 Chi2n 86 EState_VSA2 138 fr_Imine 190 fr_phenol_noOrthoHbond

35 Chi2v 87 EState_VSA3 139 fr_NH0 191 fr_phos_acid

36 Chi3n 88 EState_VSA4 140 fr_NH1 192 fr_phos_ester

37 Chi3v 89 EState_VSA5 141 fr_NH2 193 fr_piperdine

38 Chi4n 90 EState_VSA6 142 fr_N_O 194 fr_piperzine

39 Chi4v 91 EState_VSA7 143 fr_Ndealkylation1 195 fr_priamide

40 HallKierAlpha 92 EState_VSA8 144 fr_Ndealkylation2 196 fr_prisulfonamd

41 Ipc 93 EState_VSA9 145 fr_Nhpyrrole 197 fr_pyridine

42 Kappa1 94 VSA_EState1 146 fr_SH 198 fr_quatN

43 Kappa2 95 VSA_EState10 147 fr_aldehyde 199 fr_sulfide

44 Kappa3 96 VSA_EState2 148 fr_alkyl_carbamate 200 fr_sulfonamd

45 LabuteASA 97 VSA_EState3 149 fr_alkyl_halide 201 fr_sulfone

46 PEOE_VSA1 98 VSA_EState4 150 fr_allylic_oxid 202 fr_term_acetylene

47 PEOE_VSA10 99 VSA_EState5 151 fr_amide 203 fr_tetrazole

48 PEOE_VSA11 100 VSA_EState6 152 fr_amidine 204 fr_thiazole

49 PEOE_VSA12 101 VSA_EState7 153 fr_aniline 205 fr_thiocyan

50 PEOE_VSA13 102 VSA_EState8 154 fr_aryl_methyl 206 fr_thiophene

51 PEOE_VSA14 103 VSA_EState9 155 fr_azide 207 fr_unbrch_alkane

52

208 fr_urea

Supporting Figures

Supporting Figure 1. Reinforcement Learning and Virtual Screen Hit Efficiency

Line plot of reinforcement learning and virtual screening, with and without active learning

intervention with number of hit scaffolds (Y axis) plotted against the number of calls to the

oracle, AutoDock Vina (X axis). Mean of three trials shown as solid lines, with a single

standard deviation shown as shaded outline.

Supporting Figure 2. Multi-parameter Score for RL, RL-AL, and VS.

The MPO score was computed for all compounds with an oracle score greater than the

native ligand. For all three sets of conditions (RL, RL-AL, and VS) the distribution of MPO

scores shows similar medians, however the quartiles for the VS case indicate a greater

variance in the distribution of scores. As the compounds for the VS come from REINVENT’s

prior, this indicates that compounds exist which are hits but also have unfavourable features,

based on the selected score components. The presence of hits with unfavourable MPO

scores is reduced in the RL and RL-AL. This figure was cropped for clarity, 7/6/18 datapoints

for RL/RL-AL/VS were excluded, these datapoints were all given an MPO Score of 0 due to

the custom alert component in the scoring function penalising specific structural motifs

present in the compounds.

Supporting Figure 3. Compound Score and Distribution with Training Epochs.

As the RL agent learns to optimise for high affinity binders there is an observable shift in the

distribution of docking scores (A) and chemistry, displayed as UMAP (B), visualised here

over 1000 epochs of reinforcement learning. UMAP produced using ECFP4 fingerprints,

trained on 100,000 compounds sampled from the REINVENT prior and used to predict

distribution of: 30 random compounds sampled from 100 epochs over 1000 epochs of

REINVENT optimising for a design task with ADV.

Supporting Figure 4. Predictive Accuracy on Retrospective Data.

 A Random Forest model was trained on 300 epochs (38 400 compounds) of data from

REINVENT. The predictive accuracy of the model (RMSE) was subsequently computed for

the next 200 epochs of data (25 600 compounds). There is a decaying predictive accuracy

as the run progresses indicating that future data is less represented in previous epochs.

Supporting Figure 5. Effect of Gaussian Noise on Run Productivity.

Zero-centred Gaussian Noise is introduced into the oracle labels before computing the loss

function. A clear effect is observed, with increasing quantities of noise delaying convergence

to optimal solutions, as shown by the reduced number of hits in the high noise conditions

(0.1, 0.2). The lowest quantity of Gaussian Noise (0.0) represents the baseline RL case.

Upper figure ROCS Tanimoto Combo. Lower figure AutoDock-Vina docking score.

Supporting Figure 6. Confidence Adapted Weights.

We modify the RL-AL baseline, such that predicted values are given a weight 0, 1, based on

whether the model confidence is above or below the threshold value respectively. The

weight defines the importance of a datapoint in calculating the RL loss function. A datapoint

with a weight of 0 will not be used for computing the loss function, whereas a weight of 1

corresponds to a full update to the loss function. The lower confidence threshold improves

RL-AL performance, indicating that predictions with a high uncertainty are antagonistic to hit

finding.

Supporting Figure 7. Acquisition Strategies for RL-AL.

This figure compares two acquisition strategies, UCB (Upper Confidence Bound) and

Greedy, for selecting compounds based on predicted labels. In contrast to the naïve case,

which uses predicted scores for REINVENT policy updates, this case applies the insights

from Figure 3.a., where predicted scores have no impact on RL policy updates/ UCB shows

a marginally higher mean hit efficiency compared to the Greedy acquisition strategy, but the

difference between them falls within one standard deviation, indicating that the performance

of the two strategies is comparable.

Supporting Figure 8 Training Pool Manipulation.

Top figure shows mean hits found across three replicates, with standard deviation shown in

shaded region. Bottom figure shows the pairwise Tanimoto similarity distribution,

cumulatively across three replicates. Each figure shows 6 different conditions, indicated by

colour.

Supporting Figure 9. Molecular Featurisation for RL-AL.

In this intervention we compare two different molecular representations for model training

and prediction. Both ECFP and Physchem descriptors were implemented using RDKit. We

see a low intervention difference between ECFP and Physiochemical descriptors, with

physiochemical descriptors moderately outperforming ECFP at 30,000 oracle calls.

Supporting Figure 10. UMAP of Hits for Optimised Conditions.

For ADV and ROCS, in the RL-Baseline, RL-AL Optimised, and RL-AL Optimised MPO

cases (RL-AL MPO) we plot the predicted distribution of unique hit scaffolds. To predict the

distribution, we use a UMAP model trained on 100 000 scaffolds generated from

REINVENT’s prior. Each UMAP represents a single replicate, to reduce figure over-

crowding.

Supporting Figure 11. Generation without Experience Replay and Diversity Filters

(A, B) Line plots showing hits identified over 30 000 oracle calls to a ROCS oracle with

REINVENT under three conditions: RL-AL Optimised (purple), No DF (Yellow), and No DF or

ER (Light blue), mean hits (across three replicates) shown as line with single standard

deviation indicated by shading.(C) Pairwise Tanimoto distance frequency as a cumulative

plot for all hit compounds generated across all conditions plotted on a log Y scale.

Supporting Figure 12. Example structures generated by MPO-based and optimized

RL-AL interventions.

10 molecules selected at random from the top 100 scoring ideas based on the true oracle

score, either ROCs (A&B) or ADV (C&D), for RL-AL with optimized parameters (A&C) or

RL-AL with MPO-based scoring (B&D)

Supporting Figure 13. Visualization of ROCs overlays and docked poses from RL-AL

Top: Docked poses in the RXRα pocket based on PDB ID:7B88 in ball-and-stick

representation for the two molecules with highest docking score (A: -11.93 kcal/mol and B: -

11.65 kcal/mol) from ideas that also satisfy QED≥0.6 as identified by RL-AL over three

repeats. The RXRα protein is shown in cartoon view, with the binding pocket shaded and the

native ligand (S99) indicated with a cyan stick representation, binding residues shown in

stick representations from the top in clockwise order: ARG316 (Blue), PHE313 (green),

PHE346 (green), PHE439 (green), ILE268 (green) and ALA327 (green). Bottom: ROCs

overlays in a stick representation for the two molecules with highest ROCS scores (A: 0.83

and B:0.8) from ideas that also satisfy QED≥0.6, as identified by RL-AL over three repeats.

The representation is shown overlaid with a S85 query represented as a grey shape, with

the SC-558 reference ligand in green. Colour atoms for the donor (red) and accepter (blue)

illustrated with spherical meshes. In all cases, 2D depictions of the generated molecules are

provided as insets.

.

Supporting Figure 14 Model Error with Retrospective RL.

For each model, the training pool consisted of the previous 100, 1 000, or 5 000 compounds

generated by the RL run. Surrogate predictions were not used to update the agent, but were

used to compute the model error (RMSE) on the next epoch. With 5 000 compounds

ChemProp is the superior model, with the lowest predictive error. With 100 and 1 000

compounds Random Forest had better than and equal to performance with ChemProp. SVR

never performed better than RF regardless of training data.

Supporting Figure 15. Model and Fingerprint Cross-validation.

Best hyperparameters were selected by grid-search on 1 000 compounds sampled from

eight equally spaced epochs: 100, 200, 300, 400, 500, 600, 700, 800 subsets of data.

Supporting Figure 16. Hyperparameter stability comparison.

Three classic machine learning models were trained using five-fold cross-validation on 8

subsets of data (1000 compounds) taken from equally spaced points during a REINVENT

run. Each line represents a set of hyperparameters that produced the lowest RMSE on any

one of the subsets of data.

Supporting Figure 17. Sampling Size Dependent MPO Convergence.

We use Monte-Carlo sampling to estimate the transformed distribution of values for all non-

deterministic score components for 100 compounds generated by REINVENT. We use the

sampled values for the non-deterministic score components to compute the geometric mean

of all score components, providing a final transformed distribution. This figure shows the

relationship between sample size and the true value, defined as
𝐸̃(𝑀𝑃𝑂)−𝐸̃(𝑀𝑃𝑂)640000

𝐸̃(𝑀𝑃𝑂)640000
, where 𝐸̃

represents the expected value of the distribution of the 𝑀𝑃𝑂.

References

1 Chen, T. et al. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 1-4 (2015).
2 Fix, E. & Hodges, J. L. Discriminatory Analysis. Nonparametric Discrimination: Consistency

Properties. International Statistical Review / Revue Internationale de Statistique 57, 238-247
(1989). https://doi.org:10.2307/1403797

3 Vapnik, V. The nature of statistical learning theory. (Springer science & business media,
1999).

4 Rasmussen, C. E. in Advanced Lectures on Machine Learning: ML Summer Schools 2003,
Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised
Lectures (eds Olivier Bousquet, Ulrike von Luxburg, & Gunnar Rätsch) 63-71 (Springer
Berlin Heidelberg, 2004).

5 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning
research 12, 2825-2830 (2011).

6 Yang, K. et al. Analyzing Learned Molecular Representations for Property Prediction. Journal
of Chemical Information and Modeling 59, 3370-3388 (2019).
https://doi.org:10.1021/acs.jcim.9b00237

7 McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).

8 Wen Y, L. Z., Xiang Y, Reker D. Improving Molecular Machine Learning Through Adaptive
Subsampling with Active Learning. ChemRxiv (2023). https://doi.org:10.26434/chemrxiv-
2023-h8905

