The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization

Yonglan Liu ${ }^{\text {a }}$, Mingzhen Zhang ${ }^{\mathrm{b}}$, Hyunbum Jang ${ }^{\mathrm{b}}$ and Ruth Nussinov ${ }^{\mathrm{b}, \mathrm{c}^{*}}$

${ }^{\text {a}}$ Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A.
${ }^{\mathrm{b}}$ Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A.
${ }^{\text {c D Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel }}$ Aviv University, Tel Aviv 69978, Israel

Author for correspondence:

Tel: 301-846-5579

E-mail: NussinoR@mail.nih.gov

The authors declare no potential conflicts of interest.

Fig. S1. (a) Domains of mTOR. It consists of the N-terminal HEAT repeats (residues 16-1345) including N-HEAT and M-HEAT, and the C-terminal FAT (residues 1382-1982) and the kinase (residues 1983-2549) domains. The kinase domain has three inserted domains, the FKBP12-rapamycin-binding (FRB, residues 2021-2118), Lst8 binding element (LBE, residues 2258-2296), and FAT C-terminal (FATC, residues 2517-2549) domains. The FRB and LBE domains are repsonsible for the binding of rapamycin-FKBP12 and mLST8, respectively. (b) The cryo-EM structures of mTORC1 (left, PDB ID: 5FLC) and mTORC2 (right, PDB ID: 6ZWM).

Fig. S2. Structural details of the mTOR kinase domain with highlights of (a) the ka1-helix, (b) the k $\alpha 2$-helix, the k $\alpha 2 \mathrm{~b}$-helix, and the k $\beta 0$-strand, (c) the A-loop, the k $\alpha 9 \mathrm{~b}$-helix, and the LBE and FATC domains, and (d) the k $\alpha 3$-helix, the k $\alpha 9$-helix, the k $\alpha 9$ b-helix, and the k $\alpha 10$-helix.

Fig. S3. Binding poses between mTOR and mLST8 of mTORC1 (left), and mTORC2 (right). These conformations are extracted from the crystal structures.

Fig. S4. Time-dependent (a) distances of FRB-LBE ($d_{F R B-L B E}$), and (b) angles of FRB-ATP-LBE ($\theta_{\text {FRB-ATP-LBE }}$). $d_{F R B-L B E}$ is the distance between the $\mathrm{C} \alpha$ atom of residue M2039 in the FRB domain and the $\mathrm{C} \alpha$ atom of residue M 2277 in the LBE domain. $\theta_{\text {FRB-ATP-LBE }}$ is the angle between the vector from the phosphorus atom of the γ-phosphate of ATP to the $\mathrm{C} \alpha$ atom of residue M2039 in the FRB domain and the vector from the phosphorus atom of the γ-phosphate of ATP to the $\mathrm{C} \alpha$ atom of residue M2277 in the LBE domain. $d_{F R B-L B E}$ and $\theta_{F R B-A T P-L E B}$ in the crystal structure of $\Delta \mathrm{NmTOR} / \mathrm{mLST8}\left(\sim 31 \AA\right.$ and $\sim 67^{\circ}$, blue dash lines) are marked out in (a) and (b), respectively. $d_{\text {FRB-LBE }}$ and $\theta_{\text {FRB-ATP-LEB }}$ that the simulated systems of $\triangle \mathrm{NmTOR}^{\mathrm{WT}} / \mathrm{mLST} 8\left(\sim 23 \AA\right.$ and $\sim 52^{\circ}$, hotpink dash lines) and $\Delta \mathrm{NmTOR}{ }^{\Delta \mathrm{NRD}} / \mathrm{mLST} 8\left(\sim 36 \AA\right.$ and $\sim 73^{\circ}$, gray dash lines) populate are also highlighted in (a) and (b), respectively.

Fig. S5. Snapshots to present the binding of a mTORC1 substrate (S6K1) and the FRB domain of mTOR in $\Delta \mathrm{NmTOR}^{\mathrm{WT}} / \mathrm{mLST} 8$ and $\Delta \mathrm{NmTOR}^{\Delta \mathrm{NRD} / \mathrm{mLST} 8 \text {. The binding poses between the }}$ substrate and FRB is through aligning the crystal structure of the FRB/S6K1 complex (PDB ID: $5 \mathrm{WBH})$ to the final configurations of the mTOR FRB domain.

Fig. S6. A snapshot representing the interaction between NRD (residues 2430-2450) and the FRB helix (residues 2022-2040), and the probability of the salt bridges (E2032-R2443, E2033-R2443, and E2033-R2440) formed between some positive charged residues in NRD and negative charged residues (E2032 and E2033) in the FRB helix for the $\Delta \mathrm{NmTOR}^{\mathrm{WT}} / \mathrm{mLST} 8$ system. Data in the probability were extracted from the last 500-ns trajectories.

Fig. S7. (a) Statistics of mTOR-activating mutations in the kinase domain with frequency ≥ 10.
(b) These mutations are mapped to the structure of the mTOR kinase domain. The statistical data in (a) was extracted from the combination of the TCGA, GENIE, and COSMIC databases. Helices $\mathrm{k} \alpha 3, \mathrm{k} \alpha 9, \mathrm{k} \alpha 9 \mathrm{~b}$, and $\mathrm{k} \alpha 10$, as well as the L 2427 residue, are marked out.

Table S1. Details of simulation systems.

system name	components	mTOR mutation	No. of parallel trajectories	simulation time
$\Delta \mathrm{NmTOR}^{\text {WT }} / \mathrm{mLST} 8$	$\Delta \mathrm{NmTOR}, \mathrm{mLST}$, ATP, $2 \mathrm{Mg}^{2+}$	1	3	1500 ns
$\Delta \mathrm{NmTOR}^{\text {UNRD }} / \mathrm{mLST} 8$	$\Delta \mathrm{NmTOR}, \mathrm{mLST}$, ATP, $2 \mathrm{Mg}^{2+}$	2430-2450 deletion	3	1500 ns
$\Delta \mathrm{NmTOR}{ }^{\text {L2427R }} / \mathrm{mLST} 8$	$\Delta \mathrm{NmTOR}, \mathrm{mLST}, \mathrm{ATP}, 2 \mathrm{Mg}^{2+}$	L2427R mutation	3	1500 ns

