Supporting Information

The first polyanion substitution-driven centrosymmetric-tononcentrosymmetric structural transformation realizing excellent nonlinear optical supramolecule $[Cd_4P_2][CdBr_4]$

Zhi-Xin Qiu^a, Zhe-Xiong Zheng^a, Xiao-Ming Jiang^{a,b}, Bin-Wen Liu^{a,b*} & Guo-Cong Guo^{a,b*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

E-mails: <u>bwliu@fjirsm.ac.cn</u> (B.-W. Liu), <u>gcguo@fjirsm.ac.cn</u> (G.-C. Guo)

Contents

Figures and Tables

Fig. S1 EDS of 1 (a) and 2 (b).	3
Fig. S2 The powder XRD patterns of 1 (a) and 2 (b).	3
Fig. S3. Band gap of 1	3
Fig. S4 The SHG responses of 2 at broadband wavelength 1064 to 1700 nm.	4
Fig. S5 Effective NLO coefficient for 2.	4
Table S1. Crystallographic data and structure refinement parameters for 1 and 2	5
Table S2. Fractional atomic coordinates for 1 and 2	5
Table S3. Bond Lengths for 1 and 2	6
Table S4 . Calculation of dipole moment for tetrahedrons and net dipole moment for a unit	
cell	6
Table S5. The LIDTs of compound 2 and AGS.	7

Fig. S2 The powder XRD patterns of 1 (a) and 2 (b).

Fig. S3 Band gap of 1.

Fig. S4 The SHG responses of 2 at broadband wavelength 1064 to 1700 nm.

Fig. S5 Effective NLO coefficient for 2.

Empirical formula	$[Cd_5P_2][SmCl_6]Cl(1)$	$[Cd_4P_2][CdBr_4](2)$
CCDC	2235035	2235036
Fw	1022.50	943.58
Temperature (K)	293(2)	293(2)
Space group	<i>P</i> -3	$Pna2_1$
<i>a</i> (Å)	13.350(4)	12.1965(8)
<i>b</i> (Å)	13.350(4)	13.6691(10)
<i>c</i> (Å)	7.308(4)	7.7077(7)
$V(Å^3)$	1128.0(9)	1284.99(17)
Z	3	4
D_{calcd} (g·cm ⁻³)	4.516	4.877
$\mu (\mathrm{mm}^{-1})$	12.199	20.769
GOF on F^2	1.005	0.999
$R_1^a (I > 2\sigma(I))$	0.0611	0.0451
$wR_2^b (I > 2\sigma(I))$	0.1643	0.1320
R_1^a (all data)	0.0786	0.0479
wR_2^b (all data)	0.1810	0.1338
$\Delta ho_{ m max}/\Delta ho_{ m min}~({ m e}~{ m \AA}^{-3})$	2.38/-2.27	2.21/-1.47

 Table S1. Crystallographic data and structure refinement parameters for 1 and 2.

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR = (\Sigma (w(F_{o}{}^{2} - F_{c}{}^{2})^{2}) / \Sigma (w(F_{o}{}^{2})^{2}))^{1/2}.$

Table S2. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

		1			
Atom	x	У	Ζ	Ueq	
Sm1	3333	6667	647(3)	24.4(5)	
Sm1B	3333	6667	9648(18)	25(3)	
Sm2	0	0	610(3)	27.7(7)	
C13	4998(3)	3294(3)	1713(5)	32.8(9)	
Cl4	3378(4)	4785(4)	1751(6)	48.8(11)	
C15	1801(4)	1709(4)	1742(6)	47.7(11)	
C16	3333	6667	4412(15)	97(4)	
Cl7	0	0	4410(20)	101(8)	
Cd8	160.6(12)	3400.0(12)	377.9(16)	53.1(5)	
Cd9	5000	0	5000	77.6(9)	
Cd10	3336.0(18)	1645.3(13)	4902(2)	75.0(7)	
P11	60(3)	3363(3)	3699(5)	21.3(8)	
	2				
Atom	x	У	Z	Ueq	
Cd1	7768.6(17)	7500.1(13)	9879(3)	36.3(5)	
Cd2	7480.7(13)	9134.4(19)	5069(4)	48.9(6)	
Cd3	5095(2)	5464.1(17)	8023(3)	48.2(6)	
Cd4	9501.3(17)	5023.7(17)	6538(3)	45.5(6)	

Cd5	9927(2)	2413.5(16)	8939(4)	45.8(7)
Br6	9983.2(18)	7725(2)	10001(4)	40.1(6)
Br7	7282(2)	9280.0(18)	9179(4)	36.6(6)
Br8	7491.2(17)	6277(2)	7411(4)	37.2(6)
Br9	7492.7(19)	6862(2)	2943(4)	40.9(7)
P10	9458(4)	9158(4)	5089(8)	24.0(11)
P11	9433(5)	4133(4)	9370(8)	25.8(12)

Table S3. Bond Lengths for 1 and 2.

		1	
Bond	Length/Å	Bond	Length/Å
Sm1–Cl3×3	2.798(4)	Sm2–Cl7	2.775(1)
Sm1–Cl4×3	2.668(4)	P11-Cd8	2.430(4)
Sm1B-Cl3×3	2.417(6)	P11-Cd9	2.430(4)
Sm1B-Cl4×3	2.971(8)	P11-Cd9	2.422(3)
Sm2–Cl5×3	2.908(5)	P11-Cd10	2.420(3)
Sm2–Cl5×3	2.487(5)	P11-Cd10	2.421(3)
		2	
Bond	Length/Å	Bond	Length/Å
Cd1–Br6	2.720(3)	Cd5-Br6	3.043(4)
Cd1–Br7	2.562(3)	P10-Cd3	2.454(6)
Cd1–Br8	2.555(3)	P10-Cd3	2.446(7)
Cd1–Br9	2.540(4)	P10-Cd5	2.441(6)
Cd3–Br6	2.910(4)	P11-Cd2	2.407(6)
Cd4–Br7	3.012(4)	P11-Cd4	2.444(6)
Cd4–Br8	3.066(3)		

Table S4. Calculation of dipole moment for tetrahedrons and net dipole moment for a unit cell.

Polar unit –		Dipole moment (Debye)	
	x-component	y-component	z-component
CdBr ₄	± 14.46	± 1.78	$(-0.47) \times 4$
P10Cd ₄	± 9.9	± 0.10	$(2.20) \times 4$
P11Cd ₄	± 8.99	±2.73	(4.93) ×4
Net dipole moment	0	0	26.64
(a unit cell)	0	U	20.04

Table S5.	The LIDTs of	f compound :	2 and AGS.
-----------	--------------	--------------	-------------------

Compounds	Damage energy (mJ)	Spot area (cm ²)	$\tau_{\rm p} ({\rm ns})$	Damage threshold [MW·cm ⁻²]
2	4.0	0.05	10	33.3
AGS	1.2	0.05	10	10.0