Supporting Information

Access to Pyrrolines and Fused Diaziridines by Selective Radical Addition to Homoallylic Diazirines

Zhigang Ma, ${ }^{[a] \#}$ Xinxin Wu, ${ }^{[a] \#}$ Haotian Li, ${ }^{[a]}$ Zhu Cao, ${ }^{[b]}$ and Chen Zhu* ${ }^{* a, b]}$

Content

1. General experimental details 3
2. Reaction parameters survey and general procedures 3
2.1 For radical-mediated trifluoromethylation (Fig 2) 3
2.2 For radical-mediated difluoroalkylation (Fig 3) 4
2.3 For radical-mediated sulfonylation (Fig 3) 5
2.4 For radical-mediated hydrogenation (Fig 3) 6
2.5 For radical-mediated phosphinoylation (Fig 4) 6
2.6 For radical-mediated reductive cyclization (Fig 5) 7
3. Preparation of starting materials 7
3.1 General method A 7
3.2 General method B 8
4. Product transformations 9
5. Mechanistic studies 11
5.1 Identification of intermediates (Fig 7) 11
5.2 Cyclic voltammogram experiment 12
5.3 DFT calculations 13
6. References 14
7. Characterization of starting materials and products 14
8. NMR Spectra 35

1. General experimental details

All reactions were maintained under a nitrogen atmosphere unless otherwise stated. Commercially available reagents were used without further purification. DMF was distilled from NaH under reduced pressure, and THF was distilled from sodium. Infrared (FT-IR) spectra were recorded on a BRUKER VERTEX 70, $v_{\max }$ in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR spectra were recorded on a BRUKER AVANCE III HD (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta 7.26\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a BRUKER AVANCE III HD (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.16\right) .{ }^{19} \mathrm{~F}$-NMR spectra were recorded on a BRUKER AVANCE III HD (376 MHz) spectrometer, ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were recorded on a BRUKER AVANCE III HD (162 MHz) spectrometer. High resolution mass spectrometry (HRMS) was measured with a GCT Premier ${ }^{\text {TM }}$ and BRUKER micrOTF-Q III. Melting points were measured using INESA WRR and values are uncorrected.

2. Reaction parameters survey and general procedures

2.1 For radical-mediated trifluoromethylation (Fig 2)

Entry	Base	Solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Yield $^{[\mathrm{ab}]}$
1	CsF	MeCN	0	71%
2	CsF	THF	0	9%
3	CsF	DCM	0	trace
4	CsF	MeOH	0	nr
5	CsF	acetone	0	trace
6	CsF	EA	0	15%
7	CsF	DMF	0	40%
8	CsF	MeCN	-10	62%
$10^{[\mathrm{b}]}$	CsF	MeCN	0	70%
11	KF	MeCN	rt	52%

12	CsF	MeCN	0	trace $^{[\mathrm{d}]}$
13	CsF	MeCN	0	$27 \%{ }^{[\mathrm{e}]}$

Table S1. Reaction conditions: 1a $(0.2 \mathrm{mmol}), \mathrm{TMSCF}_{3}(0.6 \mathrm{mmol})$, (diacetoxyiodo)benzene (PIDA, 0.3 mmol) and base (0.3 mmol) in dry solvent (2.0 mL) were stirred vigorously (1300 rpm) under Ar atmosphere at indicated temperature for 1 h . [a] Yields of isolated product are given. [b] 3.0 mLMeCN . [c] Reaction for 12 h . [d] With 0.2 mmol of TMSCF_{3}. [e] With 0.4 mmol of TMSCF_{3}.

General procedure for the synthesis of 2

To a suspension of diazirine $\mathbf{1}(0.2 \mathrm{mmol})$, CsF (1.5 equiv., 45.6 mg) and PIDA (1.5 equiv., 96.6 mg) in dry acetonitrile (2.0 mL) was added $\mathrm{TMSCF}_{3}(3.0$ equiv, 88.6 uL) dropwise at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred vigorously (1200 rpm) for 1 h at the same temperature, the reaction was quenched with water. The aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents in vacuo, pyrroline $\mathbf{2}$ was isolated by flash column chromatography on silica gel.

2.2 For radical-mediated difluoroalkylation (Fig 3)

Entry	$[\mathrm{Ir}]$	Base	Additive	Solvent	Yield $^{[\mathrm{a}]}$
$1^{[\mathrm{b}]}$	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	-	DIPEA	MeCN	13%
$2^{[\mathrm{b}]}$	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	-	HE	MeCN	33%
$3^{[\mathrm{b}]}$	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	HE	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10: 1)$	20%
4	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	HE	MeCN	48%
5	$\left[\mathrm{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	HE	MeCN	60%
6	Eosin Y	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	HE	MeCN	trace
7	Eosin Y-Na 2	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	HE	MeCN	trace
8	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	HE	MeCN	41%
9	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	HE	MeCN	34%
10	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	HE	MeCN	24%

Table S2. Reaction conditions: 1a (0.2 mmol), ethyl bromodifluoroacetate (0.4 mmol), PC (2 $\mathrm{mol} \%)$, additive $(0.4 \mathrm{mmol})$ and base $(0.4 \mathrm{mmol})$ in dry solvent $(2.0 \mathrm{~mL})$ under Ar atmosphere were irradiated under $5 \mathrm{~W} \times 2$ blue LEDs for 12 h . [a] Yields of isolated products are given. [b] 1 mol \% PC was used.

 Entry				
	[Ir]	Base	Solvent	Yield ${ }^{[b]}$
1	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (10:1)	58\%
2	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	71\%
3	$\left[\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	67\%
4	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	MeCN	63\%
5	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	2,6-Lutidine	MeCN	76\%

Table S3. Reaction conditions: $\mathbf{1 i}(0.2 \mathrm{mmol})$, ethyl bromodifluoroacetate (0.4 mmol), PC ($2 \mathrm{~mol} \%$), Hantzsch ester (0.4 mmol) and base (0.4 mmol) in dry solvent $(2.0 \mathrm{~mL})$ under Ar atmosphere were irradiated under $5 \mathrm{~W} \times 2$ blue LEDs for 12 h . [b] Yields of isolated product are given.

General procedure for the synthesis of 3a-3f

To a $4-\mathrm{mL}$ oven-dried reaction vial was charged with $\mathbf{1}(0.2 \mathrm{mmol}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(2$ mol \%) and Hantzsch ester (HE, 2 equiv.). The reaction vial was back-flushed with argon three times. Then dry $\mathrm{MeCN}(2.0 \mathrm{~mL})$, alkylbromide (2 equiv.) and 2,6-lutidine (2 equiv.) was added to the reaction vial via syringe. The reaction mixture was vigorously stirred at rt for 12 h under the irradiation with $5 \mathrm{~W} \times 2$ blue LEDs (approximately 5 cm away from the light sources). After removal of solvents in vacuo, pyrroline $\mathbf{3}$ was isolated by flash column chromatography on silica gel.

2.3 For radical-mediated sulfonylation (Fig 3)

Ph Entry	N	$\mathrm{Cl} \quad \xrightarrow[\text { solvent, blue LEDs }]{\substack{\text { fac-Ir(ppy) })_{3} \\ \text { base, additive }}}$		
	Base	Additive	Solvent	Yield ${ }^{[a]}$
1	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	HE	MeCN	31%
2	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	DIPEA	MeCN	45\%
3	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	DIPEA	MeCN	44\%
4	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	DIPEA	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (10:1)	79\%
5	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	DABCO	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (10:1)	trace
6	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	Quinuclidine	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10: 1)$	trace

Table S4. Reaction conditions: 1a (0.2 mmol), $\mathrm{TsCl}(0.4 \mathrm{mmol}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(2 \mathrm{~mol} \%)$, additive $(0.4 \mathrm{mmol})$ and base $(0.4 \mathrm{mmol})$ in solvent $(2.0 \mathrm{~mL})$ under Ar atmosphere were irradiated under 5 $\mathrm{W} \times 2$ blue LEDs for 12 h . [a] Yields of isolated products are given.

General procedure for the synthesis of $\mathbf{3 g - 3 m}$

To a $4-\mathrm{mL}$ reaction vial was charged with $1(0.2 \mathrm{mmol}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(2 \mathrm{~mol} \%)$, sulfonyl chloride (2 equiv.) and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (2 equiv.). The reaction vial was back-flushed with argon three times. Then $\mathrm{MeCN}(2.0 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and DIPEA (2 equiv.) were added to the reaction vial via syringe. The reaction mixture was vigorously stirred at rt for 12 h under the irradiation with $5 \mathrm{~W} \times 2$ blue LEDs (approximately 5 cm away from the light sources). After removal of solvents in vacuo, pyrroline $\mathbf{3}$ was isolated by flash column chromatography on silica gel.

2.4 For radical-mediated hydrogenation (Fig 3)

Reaction conditions: 1a (0.2 mmol), PhSiH_{3} or $\mathrm{PhSiD}_{3}(0.4 \mathrm{mmol}), \mathrm{Fe}(\mathrm{acac})_{3}(0.06 \mathrm{mmol})$ and EtOH (0.4 mmol) in THF (2.0 mL) under air at $60^{\circ} \mathrm{C}$.

General procedure for the synthesis of $\mathbf{3 n}$ and 30

To a $4-\mathrm{mL}$ oven-dried reaction vial was charged with $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{PhSiH}_{3}$ or PhSiD_{3} (2 equiv.), $\mathrm{Fe}(\mathrm{acac})_{3}$ (3 equiv.), EtOH (2 equiv.) and THF (2.0 mL). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ under air. After removal of solvents in vacuo, pyrroline 3 was isolated by flash column chromatography on silica gel.

2.5 For radical-mediated phosphinoylation (Fig 4)

		$\stackrel{\mathrm{O}}{\mathrm{Ph}_{2} \mathrm{P} \mathrm{H}}$		 4a	
Entry	[Ag$](\mathrm{mol} \%)$	Solvent	T (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield ${ }^{[a]}$
1	$\mathrm{AgNO}_{3}(100)$	MeCN	50	1	66\%
2	AgNO_{3} (20)	MeCN	50	6	64\%
3	$\mathrm{AgOAc}(20)$	MeCN	50	72	11\%
4	AgTFA (20)	MeCN	50	72	23\%
5	AgOTf (20)	MeCN	50	72	44\%
6	AgBF_{4} (20)	MeCN	50	72	40\%
7	AgSbF_{6} (20)	MeCN	50	72	38\%
8	$\mathrm{Ag}_{2} \mathrm{O}$ (10)	MeCN	50	72	trace
9	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(10)$	MeCN	50	72	trace
10	AgNO_{3} (20)	DMF	50	6	57\%
11	AgNO_{3} (20)	DCE	50	6	61\%

12	$\mathrm{AgNO}_{3}(20)$	PhCF_{3}	50	6	71%
13	$\mathrm{AgNO}_{3}(20)$	EA	50	6	69%
14	$\mathrm{AgNO}_{3}(20)$	DMSO	50	24	trace
15	$\mathrm{AgNO}_{3}(20)$	EA	40	4	72%
16	$\mathrm{AgNO}_{3}(20)$	EA	30	4	75%
17	$\mathrm{AgNO}_{3}(10)$	EA	30	5	79%
18	$\mathrm{AgNO}_{3}(5)$	EA	30	52	53%

Table S5. Reaction conditions: 1ad (0.2 mmol), diphenylphosphine oxide (0.4 mmol) and silver catalyst in dry solvent (2.0 mL) under Ar atmosphere were stirred at indicated temperature. [a] Yields of isolated products are given.

General procedure for the synthesis of 4

To a 4-mL oven-dried reaction vial was charged with $\mathbf{1}(0.2 \mathrm{mmol})$, diarylphosphine oxide (2 equiv.), and $\mathrm{AgNO}_{3}(10 \mathrm{~mol} \%)$. The reaction vial was back-flushed with argon three times. Then dry EtOAc (2.0 mL) was added to the reaction vial via syringe, and the reaction mixture was stirred vigorously at $30^{\circ} \mathrm{C}$. After removal of solvents in vacuo, fused diaziridine $\mathbf{4}$ was isolated by flash column chromatography on silica gel.

2.6 For radical-mediated reductive cyclization (Fig 5)

Reaction conditions: $\mathbf{1}(0.2 \mathrm{mmol})$, fac- $\operatorname{Ir}(\mathrm{ppy})_{3}(0.004 \mathrm{mmol})$ and Hantzsch ester $(0.4 \mathrm{mmol})$ in dry DCM (4.0 mL) under Ar irradiated with $5 \mathrm{~W} \times 2$ blue LEDs at rt for 4 h . Yields of isolated products are given.

General procedure for the synthesis of 5

To a $8-\mathrm{mL}$ reaction vial was charged with $\mathbf{1}(0.2 \mathrm{mmol}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(2 \mathrm{~mol} \%)$, and Hantzsch ester (2 equiv.). The reaction vial was back-flushed with argon three times. Then DCM (4.0 mL) was added to the reaction vial via syringe. The reaction mixture was vigorously stirred at rt for 4 h under the irradiation of $5 \mathrm{~W} \times 2$ blue LEDs (approximately 5 cm away from the light sources). After removal of solvents in vacuo, fused diaziridine $\mathbf{5}$ was isolated by flash column chromatography on silica gel.

3. Preparation of starting materials

3.1 General method A

According to the reference, ${ }^{[1]}$ to a flask containing corresponding acetone (10 mmol , 1.0 equiv.) was added $\mathrm{NH}_{3}\left(7 \mathrm{M}\right.$ in MeOH , 15 equiv., 21.4 mL) at $-10^{\circ} \mathrm{C}$. The flask was sealed and the mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 4.5 h . Then a solution of hydroxylamine- O-sulfonic acid ($\mathrm{H}_{2} \mathrm{NOSO}_{3} \mathrm{H}, 1.3$ equiv., 1.47 g) in anhydrous MeOH $(7.4 \mathrm{~mL})$ was added dropwise at $-10^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h in a sealed flask. Subsequently, the reaction mixture was allowed to warm to room temperature and stirred for $16 \mathrm{~h} . \mathrm{NH}_{3}$ was removed by gently blowing Ar through the suspension. The precipitate was removed by filtration through celite silica gel and the precipitate was washed with several portions of anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$. The organic phase was treated with $\mathrm{Et}_{3} \mathrm{~N}$ (7.4 equiv., 10.3 mL) and cooled to $0^{\circ} \mathrm{C} . \mathrm{I}_{2}$ was then added in small portions until a dark brown color persisted in the solution. And the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for another 1 h to complete the oxidation of the diaziridine intermediate. The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was washed with brine. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica to afford the corresponding diazirine.

Substrate $\mathbf{1 a - 1 d}, \mathbf{1 h}$-1af were synthesized according to this method.

3.2 General method B

According to the references, ${ }^{[2]}$ to a flask containing 4-oxooct-7-enoic acid (10 mmol , 1.00 equiv.) was added $\mathrm{NH}_{3}\left(7 \mathrm{M}\right.$ in $\mathrm{MeOH}, 15$ equiv., 21.4 mL) at $-10^{\circ} \mathrm{C}$. The flask was sealed and the mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 4.5 h . Then a solution of hydroxylamine- O-sulfonic acid $\left(\mathrm{H}_{2} \mathrm{NOSO}_{3} \mathrm{H}, 1.3\right.$ equiv., 1.47 g$)$ in anhydrous MeOH (7.4 mL) was added dropwise at $-10^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h in a sealed flask. Subsequently, the reaction mixture was allowed to warm to room temperature and stirred for $16 \mathrm{~h} . \mathrm{NH}_{3}$ was removed by gently blowing Ar through the suspension. The precipitate was removed by filtration through celite silica gel and the precipitate was washed with several portions of anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$. The organic phase was treated with $\mathrm{Et}_{3} \mathrm{~N}$ (7.4 equiv., 10.3 mL) and cooled to $0^{\circ} \mathrm{C} . \mathrm{I}_{2}$ was then added in small portions until a dark brown color persisted in the solution. And the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for another 1 h to complete the oxidation of the diaziridine intermediate. The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was washed with 1 M HCl and then brine. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was
removed in vacuo. The residue was purified by flash column chromatography on silica gel to afford 3-(3-(but-3-en-1-yl)-3H-diazirin-3-yl)propanoic acid.

Next, to a flask containing the above 3-(3-(but-3-en-1-yl)-3H-diazirin-3yl)propanoic acid (1.0 equiv.), DMAP ($10 \mathrm{~mol} \%$), alcohol or amine (1.5 equiv.), DCM (0.5 M) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 1.5 equiv.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred vigorously at room temperature overnight. The solution was then diluted with DCM and the mixture was washed with water. The aqueous phase was extracted with DCM, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the corresponding diazirine.

Substrates $\mathbf{1 e - 1 g}$ were synthesized according to this method.

4. Product transformations

To a solution of $\mathbf{2 n}(0.2 \mathrm{mmol}, 48.3 \mathrm{mg})$ in $\mathrm{DCM}(2.0 \mathrm{~mL})$ was added dropwise DIBAL-H ($0.8 \mathrm{mmol}, 4.0$ equiv., $0.53 \mathrm{~mL}, 1.5 \mathrm{M}$ in toluene) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . The reaction was then quenched by adding a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and diluted with Roche salt aqueous solution. The aqueous phase was extracted with DCM and combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. After removal of the solvent in vacuo, compound $\mathbf{6}$ was isolated by flash column chromatography on silica gel.

To a screw-cap vial equipped with a magnetic stirring bar were added $\mathbf{2 n}(0.2 \mathrm{mmol}$, 48.3 mg), m-CPBA ($0.3 \mathrm{mmol}, 60.9 \mathrm{mg}, 1.5$ equiv.), $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.3 \mathrm{mmol}, 42.6 \mathrm{mg}, 1.5$ equiv.) and DCM (2.0 mL). The mixture was stirred at rt for 2 h . The reaction was then diluted with water, extracted with DCM, and combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The solvent was removed in vacuo, and the crude product was purified by flash column chromatography on silica gel to generate product 7 .

To a screw-cap vial equipped with a magnetic stirring bar were added $\mathbf{2 a}(0.1 \mathrm{mmol}$, 25.5 mg), N-hydroxybenzimidoyl chloride ($0.15 \mathrm{mmol}, 23.3 \mathrm{mg}, 1.5$ equiv.), $\mathrm{E}_{3} \mathrm{~N}(0.2$ $\mathrm{mmol}, 28.0 \mu \mathrm{~L}, 2.0$ equiv.) and $\mathrm{DCM}(2.0 \mathrm{~mL})$. The mixture was stirred at rt for 3 h . The solvent was removed in vacuo, and the crude product was purified by flash column chromatography on silica gel to give product $\mathbf{8}$.

To a solution of $2 \mathbf{n}(0.15 \mathrm{mmol}, 48.3 \mathrm{mg})$ in THF (5.0 mL) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere, $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ ($0.45 \mathrm{mmol}, 56.8 \mu \mathrm{~L}, 3.0$ equiv.) was added followed by the dropwise addition of allyl magnesium bromide ($0.6 \mathrm{mmol}, 3.0$ equiv., $0.45 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h and then quenched by adding a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. After removal of the solvent in vacuo, compound $\mathbf{9}$ was isolated by flash column chromatography on silica gel.

To a screw-cap vial equipped with a magnetic stirring bar were added $\mathbf{5 a}(0.2 \mathrm{mmol}$, $43.3 \mathrm{mg}), \mathrm{E}_{3} \mathrm{~N}(0.6 \mathrm{mmol}, 41.6 \mu \mathrm{~L}, 3.0$ equiv. $), \mathrm{AcCl}(0.6 \mathrm{mmol}, 21.3 \mu \mathrm{~L}, 3.0$ equiv. $)$, and DCM (2.0 mL). The reaction mixture was stirred at rt for 3 h . The reaction was then diluted with water, extracted with DCM, and combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The solvent was removed in vacuo, and the crude product was purified by flash column chromatography on silica gel to give product $\mathbf{1 0}$.

5. Mechanistic studies

5.1 Identification of intermediates (Fig 7)

Fig. S1. Identification of intermediate.
Substrate 1v was treated under standard conditions. After stirred under $0{ }^{\circ} \mathrm{C}$ for 5 min , the reaction mixture was used for the HRMS detection directly. Intermediate d-v calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}{ }^{+}\right]$242.1025, found 242.1036.

Fig. S2. HRMS of d-v.
Intermediate 5a-g was isolated in the following reaction (standard conditions in Fig. 5).

5a-g, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.29-7.25 (m, 2H), 7.20-7.16 (m, $3 \mathrm{H}), 5.52-5.38(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.71(\mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.1$, $129.9,128.5,128.1,126.1,125.9,57.3,38.1,36.0,30.9,27.8,17.8$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2931, 1453, 1133, 965, 747, 698. HRMS [EI] calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}]^{+} 216.1621$, found 216.1630 .

Fig. S3. HRMS of 5a-g.

5.2 Cyclic voltammogram experiment

All voltammograms were taken at room temperature using a mesh platinum (Pt) counter electrode, a glassy carbon working electrode, and a saturated calomel (SCE) reference electrode. The conditions of the experiments were the following: an acetonitrile solution of 0.1 M tetrabutylammonium tetrafluoroborate $\left(\mathrm{Bu}_{4} \mathrm{NBF}_{4}\right)$ and $0.01 \mathrm{M} \mathrm{1ac}$, a scan rate of $0.1 \mathrm{~V} / \mathrm{s}$, and a negative initial scan direction. The reported potentials were averages over segments, and were taken at half-height of the cathodic peaks ($\mathrm{Ep} / 2$) of 1ac, since all reductions were nonreversible.

Fig. S4. cyclic voltammogram experiment.
We can conclude from the cyclic voltammogram experiment that $\mathrm{E}_{\mathrm{p} / 2}$ of $\mathbf{1 a c}$ is -2.06 V vs. SCE.

5.3 DFT calculations

Computational methods

All theoretical calculations were performed with Gaussian 09. Geometry optimizations and frequency computations were calculated by B3LYP functional together with the $6-31 \mathrm{G}(\mathrm{d})$ basis set.

Fig. S5. LUMO and HOMO analysis of diazirine substrate

DFT-calculated Cartesian Coordinates.
1a'
C $\quad-0.03150400 \quad 0.07909300 \quad-0.66827500$

H	-0.24006000	-0.86786400	-1.17950800
H	-0.10042600	0.86890400	-1.42975900
C	-1.10734800	0.31265500	0.41814700
H	-0.88173000	1.25038900	0.94724100
H	-1.05210600	-0.49041900	1.16312600
C	-2.49580300	0.38621100	-0.15644400
H	-2.67160600	1.19145300	-0.87257400
C	-3.49140800	-0.45222400	0.13259300
H	-4.47435500	-0.35233100	-0.31998100
H	-3.36230400	-1.27080700	0.83811500
C	1.37997700	0.04965300	-0.11845000
N	1.78686000	-1.16215600	0.63546500
N	2.24124500	-1.09137700	-0.50960400
C	2.05968200	1.35258600	0.22913200
H	2.17628100	1.98003500	-0.66377300
H	1.47576500	1.92191600	0.96267800
H	3.05223500	1.17560700	0.65319700

6. References

1. Pan, S., Jang, S.-Y., Wang, D., Liew, S. S., Li, Z., Lee, J.-S. \& Yao, S. Q. A suite of "Minimalist" photo-crosslinkers for live-cell imaging and chemical proteomics: case study with BRD4 inhibitors. Angew. Chem. Int. Ed. 2017, 56, 11816-11821.
2. (a) Kambe, T., Correia, B. E., Niphakis, M. J. \& Cravatt, B. F. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 136, 10777-10782 (2014); (b) Kleiner, P., Heydenreuter, W., Stahl, M., Korotkov, V. S. \& Siebe, S. A. A Whole proteome inventory of background photocrosslinker binding. Angew. Chem. Int. Ed. 2017, 56, 1396-1401.

7. Characterization of starting materials and products

7.1. Starting materials

1a, colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.24 (m, $2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,137.1,128.5,128.3$, 126.2, 115.4, 35.0, 32.4, 30.0, 28.5, 28.0. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2923,2855,2360,1583,1497$, 1453, 995, 914, 739, 697. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$223.1206, found 223.1204 .

1b, colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.69(\mathrm{~m}$, $1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 15 \mathrm{H}), 1.09-1.07(\mathrm{~m}$,

2H), $0.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.2,115.2,32.9,32.4$, 31.9, 29.5, 29.5, 29.4, 29.3, 29.2, 28.6, 28.0, 23.8, 22.7, 14.1. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2924$, 2854, 2360, 2341, 1584, 1465, 993, 913, 721. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 237.2325, found 237.2335.

1c, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ 7.16-7.11 (m, $4 \mathrm{H}), 5.79-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 2.84$ (dd, $J=14.8$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.8,8.0 \mathrm{~Hz}$, 2 H), 1.87-1.81 (m, 2H), 1.62-1.57 (m, 2H); ${ }^{13}$ C NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,137.0,126.5,124.3,115.4,42.5,34.2,31.4,30.3,27.8$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2937, 2849, 2360, 2342, 1642, 1577, 1483, 1459, 996, 913, 742. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$235.1206, found 235.1205.

1d, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74-5.64$ (m, $1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.77-1.71$ (m, 2H), 1.61-1.44 (m, 5H), 1.42 (s, 9H), $0.97-0.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6$, 136.9, 115.4, 79.5, 38.8, 30.6, 30.2, 28.4, 27.6, 27.1. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2977,2933,2855$, 1689, 1419, 1365, 1239, 1154, 1011, 914. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 302.1839$, found 302.1831.

1e, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.67$ $(\mathrm{m}, 1 \mathrm{H}), 5.04-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48$ (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,136.8,115.5,51.8,32.2,28.3,28.2$, 27.9, 27.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2953,2361,2342,1738,1584,1437,1362,1314,1257$, 1197, 1172, 995, 915. HRMS [ESI] calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$205.0947, found 205.0949.

1f, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.29-7.15 (m, 7H), 7.00-6.96 (m, 2H), 5.79-5.69 (m, 1H), 5.06-4.98 (m, 2H), 2.35 (t, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.57-1.53$ (m, 2H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9$, 150.2, 148.3, 136.8, 128.0, 127.8, 126.7, 125.7, 120.8, 120.7, 115.6, 42.7, 32.2, 30.8, 28.7, 28.2, 27.9, 27.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2954,2363,2343,1757,1505,1204,1170,1136$, 1017, 914, 763, 700. HRMS [ESI] calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 385.1886$, found 385.1885.

$\mathbf{1 g}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.73-5.63(\mathrm{~m}, 1 \mathrm{H})$, 5.00-4.94 (m, 2H), 3.25 (s, 3H), 2.46-2.42 (m, 5H), 1.83-1.77 $(\mathrm{m}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,145.0,136.8,135.9,129.9,127.3,115.4,33.0,32.2$,
30.7, 27.8, 27.7, 21.5. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2926, 2361, 2342, 1698, 1354, 1160, 1085, 989, 917, 813, 713, 665. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 358.1196$, found 358.1210 .

1h, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H})$, $5.75-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 2 \mathrm{H}), 1.86-1.80(\mathrm{~m}$, 2H), 1.53-1.49 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,135.4,129.4,128.6$, 126.9, 115.4, 40.1, 31.7, 29.1, 27.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2916,2360,1642,1583,1496$, 1454, 1437, 995, 913, 730, 698. HRMS [ESI] calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$209.1049, found 209.1058.

1i, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.31-7.15 (m, $5 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}$, 4H), 1.67 (s, 3H), 1.54-1.50 (m, 2H); ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.2,140.8,128.5,128.2,126.1,110.5,34.9,31.6,31.2,30.0,28.6,22.4$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2921, 2857, 2361, 2341, 1650, 1580, 1497, 1453, 889, 739, 697. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$237.1362, found 237.1364.

1j, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25$ (m, $2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.76$ (m, 2H), 1.66 (s, 3H), 1.61-1.53 (m, 2H), $1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 144.3,142.2,128.3,128.3,125.7,110.4,35.7,32.7,31.6,31.2,30.9,28.6$, 23.5, 22.4. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2934,2858,1650,1582,1496,1453,1375,888,744,698$. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 265.1675$, found 265.1683.

$\mathbf{1 k}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.27 (m, $2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}$, 2 H), 1.94 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.79-1.69 (m, 4H), 1.55-1.19 (m, $2 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,140.8,128.5,128.2,126.1,109.3,35.8,35.0,31.3,30.0,29.9$, 29.8, 28.6, 22.4, 13.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2955,2928,2859,2361,2342,1646,1582,1454$, 889, 739, 697. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 257.2012$, found 257.2017.

11, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{t}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1,135.3,124.4,109.2,34.0,27.8,26.0$, 25.9, 25.8, 22.9, 22.1, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2927,2859,1604,1448,1384,919,886$, 851, 803. HRMS [ESI] calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{KN}_{2}[\mathrm{M}+\mathrm{K}]^{+} 229.1102$, found 229.1092.

1m, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.25 (m, 5 H$)$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}$, $2 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.1,140.6,128.4$,
127.5, 126.0, 112.9, 33.2, 29.7, 25.7, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2924,2859,2360,1628$, $1575,1494,1444,1385,1028,897,777,700$. HRMS [ESI] calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}$ [M+Na] ${ }^{+}$209.1049, found 209.1058.

1n, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H})$, 6.87-6.84 (m, 2H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,146.3,133.0,127.1,113.7,111.3,55.2$, 33.2, 29.7, 25.7, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2952, 2837, 2361, 2342, 1608, 1511, 1456, 1287, 1246, 1179, 1033, 891, 834, 810. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 239.1155$, found 239.1153.

1o, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34-7.28 (m, 2H), 7.03-6.97 (m, 2H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.31(\mathrm{~m}$, $2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.9 \mathrm{~Hz}\right), 146.1,136.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\left.{ }_{\mathrm{F}}=7.9 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 112.9,33.1,29.8,25.6,19.8 ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.0(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2925,1602$, 1509, 1452, 1229, 1161, 898, 838. HRMS [EI] calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FN}_{2}[\mathrm{M}]^{+}$204.1057, found 204.1059.

1p, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.31-7.27 (m, 4H), $5.28(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.52-1.48 (m, 2H), $1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0$, 139.0, 133.3, 128.5, 127.3, 113.5, 33.1, 29.6, 25.6, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right) 2949,2924,2360,2342,1492,1096,1012,899,834,736$. HRMS [EI] calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2}[M]^{+} 220.0762$, found 220.0769.

1q, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.31-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.66(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,137.6,137.3$, 129.0, 125.8, 112.0, 31.6, 29.5, 29.4, 25.9, 21.1, 8.2. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2970, 2923, 2360, 2342, 1626, 1576, 1514, 1457, 894, 824, 734. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$237.1362, found 237.1370.

1r, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.28(\mathrm{~m}, 1 \mathrm{H})$, 7.94-7.90 (m, 1H), 7.52-7.45 (m, 2H), $7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H})$, 0.98 (s, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,147.3,132.7$, $132.1,126.4,125.6,125.3,125.0,125.0,122.2,115.9,103.0,55.5$, 33.0, 32.9, 25.7, 19.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2938, 2839, 1585, 1462, 1236, 1088, 903, 819, 765. HRMS [EI] calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ [M] 266.1419, found 266.1423.

1s, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.97$ (s, 1H), $2.35(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.6, 140.3, 127.4, 124.3, 123.3, 111.4, 33.5, 29.7, 25.6, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2924,1619,1440,1227,884,829,695$. HRMS [EI] calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{M}]^{+}$192.0716, found 192.0724.

1t, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.21-2.17 (m, 2H), 1.63-1.59 (m, 2H), $1.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,138.6,138.1,126.3,110.6,108.1,33.2,29.0$, 25.7, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2925,1637,1450,1165,1070,1025,887$, 872, 790, 734. HRMS [ESI] calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{KN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{K}]^{+} 215.0581$, found 215.0586.

1u, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39-5.39(\mathrm{~m}, 1 \mathrm{H})$, 1.97-1.96 (m, 2H), 1.84-1.77 (m, 4H), 1.62-1.50 (m, 4H), 1.44-1.40 $(\mathrm{m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2,121.5$, 32.7, 32.1, 28.2, 25.9, 25.2, 22.9, 22.4, 19.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2925$, 2857, 2836, 1590, 1448, 1439, 1384, 919, 801. HRMS [EI] calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}[M]^{+}$ 164.1308 , found 164.1311 .

1v, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.24(\mathrm{~m}, 3 \mathrm{H})$, 6.96-6.93 (m, 2H), 5.84-5.74 (m, 1H), 5.07-4.99 (m, 2H), 2.09-1.98 (m, 4H); ${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,136.8,128.3,127.4$, 125.6, 115.5, 29.6, 29.0, 28.1. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2928,1596,1498,1450,991,912,749$, 694. HRMS [EI] calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}[\mathrm{M}]^{+} 172.0995$, found 172.0996.

1w, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.76-5.66 $(\mathrm{m}, 1 \mathrm{H}), 5.00-4.92(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.32(\mathrm{~m}$, $4 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,115.0,33.1,32.6,32.3,28.7,25.9,23.1$, 22.3, 13.8. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2956,2861,1711,1457,1252,1115,911,746$. HRMS [ESI] calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$167.1543, found 167.1549.

$\mathbf{1 x}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.78-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H})$, 2.43 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 140.7, 137.8, 128.4, 128.2, 126.1, 115.1, 35.0, 33.0, 32.2, 29.9, 28.6, 23.0. FT-IR: v $\left(\mathrm{cm}^{-1}\right) 2934,2860,1583,1454,992,912,736,697$. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 237.1362$, found 237.1365 .

$\mathbf{1 y}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.12$7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 1 \mathrm{H})$, 5.02-4.95 (m, 2H), 2.40-2.36 (m, 2H), 2.02-1.96 (m, 2 H), 1.69-1.65 (m, 2H), 1.39-1.35 (m, 2H), 1.23-1.15 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=242.6 \mathrm{~Hz}\right), 137.7,136.3(\mathrm{~d}$, $\left.J_{\text {C-F }}=3.3 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.1 \mathrm{~Hz}\right), 115.1,35.0,33.0,32.2$, 29.1, 28.4, 23.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.1$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2930, 1509 , 1222, 1158, 913, 825. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$233.1449, found 233.1450.

$\mathbf{1 z}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28$ (m, 2H), 7.24-7.20 $(\mathrm{m}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H})$, 1.06 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,135.5$, $130.2,124.4,122.4,122.3,119.5,118.7,115.3,83.4,33.9,28.2$, 25.7, 19.9, 19.4. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2979, 1728, 1452, 1369, 1253, 1154, 1082, 766, 743. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$322.1526, found 322.1516.

1aa, white solid, mp. $75-76{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}$, $2 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.06$ (s, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,134.2,131.9$, 127.2, 123.5, 121.4, 118.8, 116.7, 115.8, 83.9, 33.8, 28.1, 25.6, 19.8, 19.3. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2983,1722,1449,1372,1258,1151$, 1091, 1053, 857, 800, 766, 644. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 400.0631 , found 400.0639 .

1ab, light brown oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19-7.11 (m, 2H), 2.64 (s, 3H), 2.56-2.52 (m, 2H), 1.80-1.76 (m, 2H), $1.65(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.5,135.1,131.6,127.8,125.6,124.7,122.9$, 119.2, 116.2, 83.0, 34.0, 28.1, 25.7, 22.1, 19.8, 19.4. FT-IR: v $\left(\mathrm{cm}^{-1}\right) 2977,2930,1741,1343,1252,1220,1153,1045,1028$, 789, 756. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 336.1682$, found 336.1694.

1ac, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.44-7.41 (m, $2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.68-1.64 (m, 2H), $1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.6,130.2,128.3,123.0,121.9,89.8,88.9,33.3,31.7,25.5,19.9$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2922,1609,1489,1443,1069,900,754,690$. HRMS [EI] calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$ [M] 210.1157, found 210.1160.

1ad, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39(\mathrm{~s}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.08$ $(\mathrm{s}, 21 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.5$, 122.3, 106.6, 91.0, 33.2, 31.7, 25.5, 19.9, 18.6, 11.2. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2943,2866,2143$, 1462, 1385, 996, 901, 881, 675, 659. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{KN}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$ 329.1810, found 329.1809.

1ae, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.46-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.28(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}$, $5 \mathrm{H}), 1.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,129.5,128.4,128.2$, 126.1, 125.9, 35.0, 33.0, 29.9, 28.5, 26.8, 17.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2919,2855,1582,1496$, 1453, 965, 746, 697. HRMS [EI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}$ [M] 214.1470, found 214.1471.

1af, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.50-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.32(\mathrm{~m}$, $1 \mathrm{H}), 2.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}$, $2 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,130.5$, 129.2, 128.4, 128.2, 125.7, 35.9, 34.4, 34.3, 27.0, 25.6, 19.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2924$, 2853, 1602, 1496, 1452, 968, 745, 698. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 237.1362, found 237.1355.

1ag, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30-7.26 (m, 2H), 7.21-7.13 (m, 3H), 5.01-4.97 (m, 1H), 2.42-2.38 (m, $2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.42-$ 1.38 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,132.6,128.5,128.2,126.1,122.7$, 35.1, 33.1, 30.0, 28.7, 25.7, 22.4, 17.6. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2916,2855,1584,1454,747$, 697. HRMS [EI] calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$ [M] 228.1626, found 228.1621.

1ah, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,126.6,34.2,33.1,32.7,32.6,28.2,27.2,26.7,25.8,19.8$.
FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2919,2849,1590,1447,1384,1220,965,845$. HRMS [EI] calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2}$ [M] 178.1470, found 178.1472.

7.2. Products

2a, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.31-7.27 (m, 2H), 7.21-7.18 (m, 3H), 4.20-4.17 (m, 1H), 2.95-2.91 (m, 2H), 2.77-2.64 (m, 3H), 2.61-2.43 (m, 2H), 2.24-2.16 (m, 1H), 2.10$2.02(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,141.0,128.4,128.2,126.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.2 \mathrm{~Hz}\right), 126.1,66.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right)$, $40.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.8 \mathrm{~Hz}\right), 38.0,35.2,32.6,29.2 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-64.0$
(s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2945,2360,2342,1644,1377,1249,1130,1088,1020,840,750$, 699, 648. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 256.1308$, found 256.1318 .

2b, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.19-4.12(\mathrm{~m}, 1 \mathrm{H})$, 2.79-2.68 (m, 1H), 2.62-2.44 (m, 2H), 2.35-2.30 (m, 2H), 2.24-2.16 $(\mathrm{m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 14 \mathrm{H})$, $0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.6,126.4$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.4 \mathrm{~Hz}\right), 66.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 40.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.9 \mathrm{~Hz}\right), 37.5,33.8,31.9$, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 26.4, 22.7, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-64.0 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2925,2855,2360,2342,1644,1377,1249,1136,1090,841,649$. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}$ [M+H] ${ }^{+}$292.2247, found 292.2235.

2c, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.20(\mathrm{~m}$, 2 H), 7.18-7.15 (m, 2H), 4.23-4.16 (m, 1H), 3.48-3.40 (m, 1H), 3.24-3.17 (m, 2H), 3.11-3.04 (m, 2H), 2.84-2.70 (m, 1H), 2.66$2.47(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.9,142.1,142.1$, $126.5,126.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.3 \mathrm{~Hz}\right), 124.4,66.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right)$, 43.3, 40.1 (q, $\left.J_{\mathrm{C}-\mathrm{F}}=26.9 \mathrm{~Hz}\right), 36.8,36.8,35.9,29.3$; ${ }^{\mathbf{1}} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -64.0 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2946,2361,2342,1637,1377,1249,1136,1089,743,648$. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$268.1308, found 268.1295.

2d, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.19-4.13$ (m, $3 \mathrm{H}), 2.78-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.02 (m, 1H), 1.81-1.77 (m, 2H), 1.60-1.47 (m, 3H), 1.44 (s, 9 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.0,154.7,126.3$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.4 \mathrm{~Hz}\right), 79.5,66.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 43.6,40.5$, $40.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=27.0 \mathrm{~Hz}\right), 35.4,29.3,29.2,28.9,28.4 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -64.0 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2976,2934,2361,2342,1688,1423,1366,1250,1165,1138$, 1090, 1012. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 357.1760$, found 357.1760 .

2e, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.21-4.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.48(\mathrm{~m}, 7 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.02 (m, 1H), 1.65-1.56 (m, 1H); ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.1,173.3,126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.2 \mathrm{~Hz}\right), 66.4(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 51.6,40.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.9 \mathrm{~Hz}\right), 38.1,30.3,29.1,28.3 ;{ }^{19} \mathbf{F} \mathbf{~ N M R}(376$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-64.1$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2955,1736,1249,1130,1097,1019,840$, 644. HRMS [ESI] calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$238.1049, found 238.1044.

2f, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.15(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.21-4.18 (m, 1H), 2.98-2.85 (m, 2H), 2.77$2.50(\mathrm{~m}, 5 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,171.6$,
$150.3,148.5,148.2,128.0,127.8,126.7,126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.3 \mathrm{~Hz}\right), 125.7,120.7,66.4$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 42.7,40.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.9 \mathrm{~Hz}\right), 38.3,30.8,30.7,29.2,28.2 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.0(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2970,2360,2342,1756,1505,1250$, 1205, 1170, 1133, 1017, 840, 764, 700. HRMS [ESI] calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 440.1808 , found 440.1800 .

2g, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.31$ ($\mathrm{s}, 3 \mathrm{H}$), 3.13-2.95 (m, 2H), 2.65-2.41 (m, 8H), 2.19-2.10 (m, $1 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.1,172.5,144.7,136.2,129.7,127.6$, $126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.3 \mathrm{~Hz}\right), 66.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 40.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.8 \mathrm{~Hz}\right), 38.2,33.0$, 32.7, 29.1, 27.9, 21.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.0$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2952$, 2361, 2342, 1699, 1354, 1249, 1160, 1131, 1085, 814, 711, 665. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$413.1117, found 413.1114.

$\mathbf{2 h}$ ', colorless oil (Note: The isolated imine $\mathbf{2 h}$ was unstable, and underwent spontaneous oxidation under air during work-up to furnish $\mathbf{2 h}^{\prime}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.21-8.19 (m, 2H), 7.62-7.58 (m, 1H), 7.49-7.45 (m, 2H), 4.60-4.52 (m, 1H), 3.15$3.06(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,174.2,135.1,133.7,130.5,128.4,126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.2 \mathrm{~Hz}\right)$, $68.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 39.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=27.6 \mathrm{~Hz}\right), 36.3,28.3 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-64.0(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2953,1659,1249,1144,1130,1089,917,702,644$. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NNaO}[\mathrm{M}+\mathrm{H}]^{+} 278.0763$, found 278.0770.

2i, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30-7.26 (m, 2 H), 7.21-7.17 (m, 3H), $2.91(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.61(\mathrm{~m}$, $2 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H})$, 1.78-1.72 (m, 1H), $1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,141.0,128.4,128.3,126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.3 \mathrm{~Hz}\right), 126.1,72.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right)$, $44.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.0 \mathrm{~Hz}\right), 37.8,35.1,34.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right), 32.7,26.8$; ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-60.5(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2969,2938,1645,1364,1258,1151,1089$, 1044, 748, 698, 652. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 270.1464$, found 270.1463 .

2j, colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 2.63 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.58-2.44 (m, $3 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H})$, 1.70-1.57 (m, 4H), $1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,142.3,128.3,128.3,126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.3 \mathrm{~Hz}\right), 125.7,72.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right)$, $44.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.9 \mathrm{~Hz}\right), 37.3,35.6,34.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right), 33.5,31.1,26.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 1.3 Hz), 26.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.5(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2936,2860$, 1644, 1454, 1364, 1258, 1150, 1090, 839, 747, 698, 652. HRMS [ESI] calcd for

$\mathbf{2 k}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.29-7.26 (m, 2H), 7.22-7.16 (m, 3H), 2.97-2.85 (m, 2H), 2.65 (t, J=7.8 Hz, $2 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.21-$ $1.10(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,141.0,128.4,128.2,126.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.6 \mathrm{~Hz}\right), 126.1,75.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $1.5 \mathrm{~Hz}), 42.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.6 \mathrm{~Hz}\right), 40.3,38.3,35.0,32.7,31.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right), 25.7$, 23.0, 14.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.0 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2957, 2932, 2863, 2361, 2342, 1648, 1456, 1366, 1256, 1143, 1109, 748, 698, 654. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 312.1934$, found 312.1937.

21, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.64-5.62(\mathrm{~m}, 1 \mathrm{H})$, 2.60-2.40 (m, 4H), 2.06-1.96 (m, 9H), 1.68-1.50 (m, 4H); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,139.7,126.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.9 \mathrm{~Hz}\right), 120.9$, $78.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 41.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 38.8,32.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.4\right.$
 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2929,1650,1433,1363,1258,1130,1111$. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 246.1464$, found 246.1463.

$\mathbf{2 m}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.34-7.30 (m, 2H), 7.26-7.21 (m, 1H), 2.76-2.63 (m, 3H), 2.58-2.40 $(\mathrm{m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,146.3,128.3,126.9,125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277.0 \mathrm{~Hz}\right), 125.6,77.8(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 45.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.6 \mathrm{~Hz}\right), 39.2,34.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right), 19.8 ;{ }^{19} \mathbf{F} \mathbf{N M R}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.4$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2952,2361,2342,1652,1432,1365$, 1257, 1120, 1077, 1030, 762, 702. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$242.1151, found 242.1149.

2n, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.57-$ $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,158.3,138.3,126.7,125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=277.0 \mathrm{~Hz}), 113.5,77.355 .2,45.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 39.2,34.9(\mathrm{q}$, $J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}$), $19.8 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.4 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2956,2361,2342,1652,1510,1365,1244,1179,1120,1033$,
830, 653. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 272.1257$, found 272.1254.

20, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.39 (m, 2H), 7.04-6.98 (m, 2H), 2.72-2.50 (m, 4H), 2.46-2.39 (m, 1H), 2.29-2.22 $(\mathrm{m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,161.7(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=244.0 \mathrm{~Hz}\right), 141.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 127.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right)$, $125.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277.0 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 77.3,45.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=25.7 \mathrm{~Hz}), 39.2,35.1,19.8 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.4$ (s, 3F), -116.1 (s, 1F). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2950,2361,1651,1508,1366,1258,1224,1120$, 1097, 834. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$260.1057, found 260.1061.

2p, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.27-2.19 (m, 1H), $2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5$, 144.7, 132.7, 128.4, 127.1, $125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277.0 \mathrm{~Hz}\right), 77.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $1.4 \mathrm{~Hz}), 45.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.8 \mathrm{~Hz}\right), 39.2,35.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.2 \mathrm{~Hz}\right), 19.8$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.3 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2954,2361$, $2342,1650,1492,1257,1120,1103,1014,829$. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$276.0761, found 276.0766.

2q, colorless oil, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.37(\mathrm{~m}, 4 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.2,143.8,136.4,128.9,125.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $277.1 \mathrm{~Hz}), 125.4,45.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}\right), 37.1,34.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.4\right.$ Hz), 27.0, 20.9, 10.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.2$ (s). FTIR: $v\left(\mathrm{~cm}^{-1}\right) 2975,2361,2342,1650,1364,1257,1118,812,650$. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$270.1464, found 270.1460 .

2r, white solid, mp. $96-97^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38$ (dd, $J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.46 (m, 2H), 6.73 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.10(\mathrm{~m}$, $1 \mathrm{H}), 2.95-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}$, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,155.0,135.1,130.4,126.8$, 126.3 (q, $J_{\mathrm{C}-\mathrm{F}}=277.4 \mathrm{~Hz}$), 126.3, 124.6, 124.5, 123.9, 123.4, 102.7, $78.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 55.4,43.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.2 \mathrm{~Hz}\right), 40.1,34.4\left(\mathrm{q}, J_{\mathrm{C}}\right.$ $\mathrm{F}=1.4 \mathrm{~Hz}), 19.7 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.5(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2988,2901$, 2361, 2342, 1521, 1066, 669. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$322.1413, found 322.1414.

2s, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.21-7.19 (m, 1 H), 6.96-6.93 (m, 2H), 2.91-2.65 (m, 4H), 2.44-2.40 (m, 2H), 2.09 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,149.7,126.6,125.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $276.8 \mathrm{~Hz}), 124.3,122.8,76.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 46.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.8\right.$ $\mathrm{Hz}), 39.7,35.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 19.5 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-60.5$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2924,2342,1619,1440,1385,1227,884,852,829,695$.

2t, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.55(\mathrm{~m}, 3 \mathrm{H})$, 2.27-2.19 (m, 2H), $2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0$, $143.3,138.2,130.1,125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.6 \mathrm{~Hz}\right), 109.0,73.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $1.8 \mathrm{~Hz}), 44.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.8 \mathrm{~Hz}\right), 39.3,34.3,19.6 ;{ }^{19} \mathbf{F} \mathbf{N M R}(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-60.4$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2954,1649,1365,1258,1126,1070,874,792$. HRMS [ESI] calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 232.0944$, found 232.0945 .

2u, light yellow oil, ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.59-2.45 (m, 3H), 2.16-2.09 (m, 1H), 2.01-1.97 (m, 4H), 1.84-1.59 (m, 4H), 1.41-1.29 (m, $4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,127.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=280.6 \mathrm{~Hz}\right)$, $48.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=22.9 \mathrm{~Hz}\right), 40.3,38.8,27.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 24.6,23.6$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 22.6,19.5 ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.7(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) 2934, 2862, 1452, 1378, 1182, 1129, 1089, 1073, 732. HRMS [ESI] calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 220.1308$, found 220.1304.

2v, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.82(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.36 (m, 3H), 4.45-4.38 (m, 1H), 3.15-3.07 (m, 1H), 2.98-2.86 (m, 2H), 2.43-2.35 (m, 1H), 2.27-2.12 (m, 1H), 1.80-1.70 (m, 1H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.7, 134.0, 130.8, 128.5, 127.7, $126.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.2 \mathrm{~Hz}\right), 67.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 40.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.9 \mathrm{~Hz}\right), 35.4,29.3$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.0$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2947, 2360, 1616, 1379, 1343, 1249, 1135, 1090, 1012, 761, 692, 647. HRMS [ESI] calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 228.0995$, found 228.0986 .
$\mathbf{2 w}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3.70-3.58 (m,
 $1 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.91$ (m, $1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,126.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right), 52.6$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 41.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.6 \mathrm{~Hz}\right), 40.7,28.8,28.5$, 27.1, 22.5, 18.4, 13.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.1$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2958$, 2933, 1660, 1374, 1249, 1142, 1037. HRMS [ESI] calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 222.1464 , found 222.1462 .

2x, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.25$ (m, $2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.69-2.55 (m, 1H), 2.49-2.45 (m, 2H), 2.15-1.98 (m, $3 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,141.7,128.4,128.3,126.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right), 125.9$, $52.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 42.1,41.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.6 \mathrm{~Hz}\right), 32.5,29.2,27.1,18.4 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.1$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2932,1659,1374,1250,1137,1039$,

749, 699. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$270.1464, found 270.1469 .

$\mathbf{2 y}$, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.16-7.13 $(\mathrm{m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.43$ (m, 2H), 2.16$2.02(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.8,161.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=242.1 \mathrm{~Hz}\right), 137.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.1 \mathrm{~Hz}), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 126.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right)$, $52.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 42.0,41.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=26.6 \mathrm{~Hz}\right), 31.5,29.3,27.1,18.4 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.1 (s), -117.6 (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2930, 1742, 1510, 1221, 1139, 1016, 824. HRMS [ESI] calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$288.1370, found 288.1372 .

2z, colorless oil, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.67(\mathrm{~m}, 1 \mathrm{H})$, $7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2$, 151.7, 141.4, 135.3, 129.3, 124.6 (q, $J_{\mathrm{C}-\mathrm{F}}=283.2 \mathrm{~Hz}$), 123.5, 121.8, $116.2,82.4,82.2,68.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=28.0 \mathrm{~Hz}\right), 40.4,28.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 28.2,19.6 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.2$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2927,1709,1483,1253,1164$, 1126, 868, 752. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1628$, found 355.1641 .

2aa, white solid, mp. 104-105 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 1 \mathrm{H})$, 2.82-2.74 (m, 1H), 2.60-2.53 (m, 1H), 2.45-2.38 (m, 1H), 2.08 ($\mathrm{s}, 3 \mathrm{H}$), $1.55(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 175.0, 151.4 , $140.7,137.4,132.1,125.1,124.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=288.3 \mathrm{~Hz}\right), 117.7,115.8,82.6,82.2,68.9$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=29.2 \mathrm{~Hz}\right), 40.4,28.1,28.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 19.6 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-70.2$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2951,1361,1248,1161,1136,1121,891,840,755,700$, 688, 661. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 433.0733$, found 433.0744.

2ab, white solid, mp. 110-111 ${ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H})$, 2.52-2.44 (m, 1H), 2.39-2.34 (m, 4H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 173.9, 153.7, 141.2, 137.7, 131.3, 128.9, $125.3,124.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=287.1 \mathrm{~Hz}\right), 119.0,83.3,82.0,71.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=29.1 \mathrm{~Hz}\right), 40.4,28.2$, $27.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 19.7,19.6 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-70.6$ (s). FT-IR: v $\left(\mathrm{cm}^{-1}\right)$ 2926, 1712, 1464, 1370, 1250, 1156, 1126, 878. HRMS [ESI] calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 391.1604$, found 391.1613.

3a, colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.95-2.82 (m, 2H), 2.60-2.51 (m, 4H), 2.46-2.35 (m, 2H), $1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,164.3\left(\mathrm{t}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 141.2$, $128.4,128.2,126.0,115.9\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=248.8 \mathrm{~Hz}\right), 77.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 62.6,44.9\left(\mathrm{t}, J_{\mathrm{C}}\right.$ $\left.{ }_{\mathrm{F}}=21.4 \mathrm{~Hz}\right), 37.6,35.2,34.9,32.5,27.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 13.9 ;{ }^{19} \mathbf{F} \mathbf{~ N M R}(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-100.8(\mathrm{~d}, J=263.2 \mathrm{~Hz}, 1 \mathrm{~F}),-102.2(\mathrm{~d}, J=262.8 \mathrm{~Hz}, 1 \mathrm{~F})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2966, 2933, 1766, 1644, 1179, 1148, 1058, 750, 700. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 324.1770$, found 324.1766 .

3b, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52$ (s, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26-7.14 (m, 4H), $7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.74$ $(\mathrm{m}, 2 \mathrm{H}), 2.63-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7$, $162.4\left(\mathrm{t}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=28.2\right.$ $\mathrm{Hz}), 141.1,136.6,129.2,128.4,128.2,126.0,125.2,120.0,117.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=252.4 \mathrm{~Hz}\right)$, $72.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 43.9\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 37.5,36.2,35.2,32.5,27.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3\right.$ Hz); ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-98.3(\mathrm{~d}, J=259.1 \mathrm{~Hz}),-102.3(\mathrm{~d}, J=259.1 \mathrm{~Hz})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2929, 2361, 1698, 1602, 1542, 1498, 1447, 1238, 1180, 1149, 1039, 751, 692. HRMS [ESI] calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{NaO}$ [M+Na] ${ }^{+}$393.1749, found 393.1749.

3c, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 8 \mathrm{H})$, 2.92-2.88 (m, 2H), 2.63-2.33 (m, 6H), 2.04-1.96 (m, $1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,162.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=29.0 \mathrm{~Hz}\right), 141.1$, $128.4,128.2,126.0,119.0\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=252.5 \mathrm{~Hz}\right), 73.2,66.7,46.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=5.8 \mathrm{~Hz}\right), 44.2$ $\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 43.4,37.7,35.2,34.9,32.7,27.5 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-95.6(\mathrm{~d}, J=275.6 \mathrm{~Hz}),-96.7(\mathrm{~d}, J=275.6 \mathrm{~Hz})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2964$, 2927, 2859 , 1667, 1442, 1180, 1116, 1021, 752, 700. HRMS [ESI] calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 365.2035 , found 365.2038 .

3d, yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}$, 2 H), 7.21-7.17 (m, 3H), 2.94-2.90 (m, 2H), 2.66-2.62 (m, $2 \mathrm{H}), 2.60-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}$, 1H), 1.85-1.79 (m, 1H), 1.30 (d, $\left.J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.8,140.9,128.4,128.3,126.1,73.1,40.2\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=19.9 \mathrm{~Hz}\right), 37.9,35.0,34.7,32.6$, $27.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) ;{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-81.1(\mathrm{t}, J=9.6 \mathrm{~Hz}, 3 \mathrm{~F}),-110.1-$ -113.5 (m, 2F), -124.7--124.8 (m, 2F), -125.7--125.8 (m, 2F). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2970$, 2361, 1646, 1351, 1218, 1132, 879, 737, 699. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{9} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 420.1368$, found 420.1371 .

3e, yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.27 (m, 3H), 4.12 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.56(\mathrm{~m}, 4 \mathrm{H})$, 2.36-2.29 (m, 1H), 2.12-1.95 (m, 6H), $1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,173.6,131.7,128.1$, $128.0,123.1,91.5,84.0,73.2,60.4,39.0,36.9,36.8,30.8,19.9$, 14.2. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2979,2930,1730,1644,1375,1288,1177,1025,757,692$. HRMS [ESI] calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$284.1645, found 284.1644.

3f, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.78-2.68 (m, 3H), 2.62-2.54 (m, 1H), 2.33-2.26 (m, 1H), 2.09-1.87 (m, 6H), 1.06-1.05 $(\mathrm{m}, 21 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,120.0,108.5,85.5$, $73.0,39.0,37.6,19.7,18.6,13.7,11.1$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2942,2865$, 2162, 1647, 1462, 996, 882, 675, 661. HRMS [ESI] calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+} 339.2227$, found 339.2231.

3g, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28-7.25 $(\mathrm{m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (dd, $J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=14.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.42(\mathrm{~m}, 7 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.2,144.7,141.0,136.8,129.8,128.4,128.2,128.1$, 126.1, 66.9, 61.4, 38.1, 35.1, 32.3, 28.7, 21.6. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2923, 2361, 2342, 1598 , 1313, 1301, 1288, 1143, 1086, 816, 755, 700. HRMS [ESI] calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 364.1342$, found 364.1352 .

3h, white solid, mp. $64-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $87.75-7.67$ (m, 4H), 7.28-7.24 (m, 2H), 7.18$7.15(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 4 \mathrm{H})$, 2.46-2.38 (m, 1H), 1.83-1.76 (m, 1H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.0,140.8,140.4,132.4,129.3,128.6,128.4,128.2,126.1,74.0,65.0,38.2,35.0$, 33.2, 32.3, 27.7. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2968,2923,1572,1306,1274,1142,1083,1065,789$, 722, 701. HRMS [ESI] calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 442.0447$, found 442.0437.

3i, colorless oil, ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.69$ (m, 1 H), 7.64-7.56 (m, 2H), 7.22-7.19 (m, 2H), 7.14-7.09 $(\mathrm{m}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.39$ (s, 3H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,140.9,136.3,135.0,134.1,129.9,129.2$, 128.7, 128.3, 128.2, 126.9, 126.0, 124.3, 124.1, 74.2, 64.5, 38.3, 34.9, 33.4, 32.3, 27.4. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2921,1308,1273,1154,1115,828,804,771,759$. HRMS [ESI] calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$392.1679, found 392.1665.

$\mathbf{3 j}$, colorless oil, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.73-7.70 $(\mathrm{m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.40-4.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=14.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=$ $14.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.44(\mathrm{~m}, 4 \mathrm{H})$, 2.30-2.21 (m, 1H), 1.82-1.73 (m, 1H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,140.9$, $140.8,134.1,134.0,128.4,128.2,127.9,126.1,67.1,62.8,38.1,35.1,32.3,28.7$; FTIR: $v\left(\mathrm{~cm}^{-1}\right)$ 2923, 2361, 2341, 1638, 1402, 1312, 1227, 1139, 1015, 725, 700. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 334.0930$, found 334.0922.

$\mathbf{3 k}$, yellow solid, mp. 68-69 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.16 (m, 3H), $3.45(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,156.3,149.5,140.7,138.3$, $136.8,128.4,128.2,126.1,124.5,73.9,65.7,38.1,35.0,33.5,32.3,27.8$. FT-IR: $v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) $2966,2929,1571,1449,1318,1276,1144,1107,790,699$. HRMS [ESI] calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 377.1085$, found 377.1088.

31, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26$ (m, 2H), 7.21-7.17 (m, 3H), 3.33 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 4 \mathrm{H})$, 2.54-2.48 (m, 1H), 2.43-2.35 (m, 1H), 1.84-1.77 (m, 1H), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.3, 140.9, 128.4, 128.2, 126.1, 73.6, 62.8, 38.1, 35.1, 33.5, 32.5, 32.1, 27.8, 5.2, 4.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2921, 1309, 1275, 1115, 828, 772, 759, 700. HRMS [ESI] calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$328.1342, found 328.1340.

3m, colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-$ 7.48 (m, 3H), 7.42-7.36 (m, 3H), 7.26-7.15 (m, 3H), 7.10 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 4 \mathrm{H})$, 2.46-2.38 (m, 1H), 1.83-1.76 (m, 1H), $1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.3,142.2,140.9,132.4,131.0,129.0,128.4,128.3,128.1,127.7,126.0,73.7,64.5$, 38.2, 35.1, 33.5, 32.4, 28.0. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2921, 1273, 1178, 1115, 827, 758. HRMS [ESI] calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 368.1679$, found 368.1682.

3n, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 2 \mathrm{H})$, 2.65-2.61 (m, 2H), 2.57-2.37 (m, 2H), 2.11-2.02 (m, 1H), 1.41$1.31(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,141.4$, 128.4, 128.2, 125.9, 67.7, 37.7, 35.4, 32.7, 30.6, 22.0. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2960,2926,2361$, 2342, 1642, 1454, 1077, 749, 699. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$188.1434,

3o, yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30-7.26 (m, $2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 2 \mathrm{H})$, 2.64-2.60 (m, 2H), 2.52-2.39 (m, 2H), 2.09-2.04 (m, 1H), 1.41$1.32(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{dt}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2$, $141.4,128.4,128.2,125.9,67.6,37.7,35.4,32.7,30.6,21.7\left(\mathrm{t}, J_{C-D}=19.2 \mathrm{~Hz}\right)$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2957, 2929, 2360, 1641, 1496, 1454, 1134, 1077, 748, 698. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{DN}[\mathrm{M}+\mathrm{H}]^{+}$189.1497, found 189.1503.

4a, white solid, mp. $110-111{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.09-8.04 (m, 2H), 7.96-7.91 (m, 2H), 7.55-7.38 (m, 6H), 7.22$7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}$, $1 \mathrm{H}), 2.58-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.55(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,133.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=127.7 \mathrm{~Hz}\right)$, $133.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=124.9 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 131.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.3,128.2,127.9$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 125.8,78.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 68.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 33.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=3.4 \mathrm{~Hz}), 32.4,31.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 26.4,25.6,11.4 ;{ }^{31} \mathbf{P} \mathbf{~ N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 28.7$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2970, 2924, 1439, 1208, 1118, 971, 725, 697. HRMS [ESI] calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{NaOP}[\mathrm{M}+\mathrm{Na}]^{+} 439.1910$, found 439.1908.

4b, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.99-7.91 (m, 4H), 7.55-7.40 (m, 6H), 7.23-7.20 (m, 2H), 7.15-7.11 $(\mathrm{m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.34-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.64-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=131.2 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=121.2\right.$ $\mathrm{Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 131.6$, $128.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.2,128.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 128.0,125.5,74.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $8.6 \mathrm{~Hz}), 66.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 35.5,34.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 32.4,28.7,26.9,17.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.4$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2930,1438$, 1211, 1122, 1108, 907, 725, 695. HRMS [ESI] calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{NaOP}[\mathrm{M}+\mathrm{Na}]^{+}$ 439.1910, found 439.1924.

4c, white solid, mp. 163-164 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.09-8.07 (m, 2H), 8.00-7.95 (m, 2H), 7.52-7.42 (m, 6H), 7.22$7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.51(\mathrm{~m}$, $2 \mathrm{H}), 2.48-2.31(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H})$, $0.99-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,133.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=122.1 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $130.0 \mathrm{~Hz}), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right), 128.3,128.2,128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6\right.$
$\mathrm{Hz}), 125.8,77.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 73.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 33.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 32.4$, $32.0,31.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 25.7,20.6,20.2 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.9(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2952,2915,2866,1437,1206,1125,1069,1015,728,699,624$. HRMS [ESI] calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+} 431.2247$, found 431.2245.

4d, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.05(\mathrm{~m}, 2 \mathrm{H})$, 7.94-7.89 (m, 2H), 7.56-7.39 (m, 6H), 7.22-7.18 (m, 2H), 7.14-7.07 $(\mathrm{m}, 3 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.33-2.27 (m, 1H), 1.83-1.74(m, 1H), 1.65-1.59 (m, 1H), 1.41-1.31 $(\mathrm{m}, 1 \mathrm{H}), 0.61(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.1,133.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=131.2 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=121.6 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right)$, $132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{P}=11.6 \mathrm{~Hz}), 128.3,128.2,128.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 125.8,78.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 61.6$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 33.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 32.5,31.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 27.9,16.9 ;{ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.1$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2971, 2929, 1735, 1438, 1207, 1122, 962, 726, 696. HRMS [ESI] calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 425.1753$, found 425.1757.

4e, white solid, mp. $145-146{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.99-7.94 $(\mathrm{m}, 2 \mathrm{H}), 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.37(\mathrm{~m}, 6 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.70(\mathrm{~m}, 5 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.14(\mathrm{~m}, 6 \mathrm{H}), 1.02-0.81(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=120.9 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $=131.8 \mathrm{~Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.0 \mathrm{~Hz}\right), 131.5(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 73.6(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 68.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 35.1,33.4,33.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.7 \mathrm{~Hz}\right), 30.4,25.6$, 22.9, 22.7, $18.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.6$ (s). FT-IR: v $\left(\mathrm{cm}^{-1}\right) 2950,2929,1438,1212,1115,962,908,725,694,660$. HRMS [ESI] calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{NaOP}[\mathrm{M}+\mathrm{Na}]^{+} 389.1753$, found 389.1752 .

4f, white solid, mp. $139-140{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H})$, 7.41-7.36 (m, 2H), 2.26-2.20 (m, 2H), 1.75 (s, 3H), 1.70-1.51 (m, 4H), 1.43-1.18 (m, 6H), 1.11-1.02 (m, 2H), 0.97-0.91 (m, 1H), 0.72-0.66 (m, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=131.1 \mathrm{~Hz}\right), 132.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=121.8 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right)$, $131.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{p}=12.9 \mathrm{~Hz}), 75.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 72.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 37.3,36.0,32.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 3.7 Hz), $32.6,30.6,30.2,23.2,22.9,18.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.9 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 30.2$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2926, 2849, 1437, 1209, 1124, 1030, 930, 729, 698, 654. HRMS [ESI] calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+} 381.2090$, found 381.2094.

$\mathbf{4 g}$, white solid, mp. 109-110 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (dd, $J=10.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}$, 2H), 7.28-7.25 (m, 2H), 7.22-7.18 (m, 4H), 7.13-7.09 (m, 3H), 2.94-2.86 (m, 1H), 2.74-2.68 (m, 1H), 2.58-2.39 (m, 3H), 2.37 ($\mathrm{s}, 3 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.96-$ $0.85(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 142.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 141.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 141.3,132.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.5\right.$ $\mathrm{Hz}), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=127.9 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=129.3 \mathrm{~Hz}\right)$, $129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}\right), 128.3,128.1,125.7,77.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $8.6 \mathrm{~Hz}), 77.2,68.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 33.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 32.5,31.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6\right.$ Hz), 26.5, 25.7, $21.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 11.4 ;{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.2(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2958,2919,2855,1456,1199,1121,1105,1033,972,806,713,702$, 661, 627. HRMS [ESI] calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+} 445.2403$, found 445.2401 .

4h, white solid, mp. $122-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) δ 7.99-7.94 (m, 2H), 7.86-7.81 (m, 2H), 7.23-7.19 (m, 2H), 7.14-7.10 (m, 3H), 6.99-6.91 (m, 4H), 3.82 ($\mathrm{s}, 3 \mathrm{H}$), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.58-$ $2.36(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.29(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4,162.1,141.3,133.8$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 128.4,128.2$, $125.8,125.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=137.8 \mathrm{~Hz}\right), 124.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=129.0 \mathrm{~Hz}\right), 114.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right)$, $113.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.8 \mathrm{~Hz}\right), 77.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 68.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 55.2,33.7(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 32.5,31.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 26.5,25.8,11.5 ;{ }^{31} \mathbf{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 29.0(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2960,2934,1595,1500,1292,1247,1124,1106$, 1022, 980, 833, 799, 702. HRMS [ESI] calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 477.2302$, found 477.2295 .

4i, white solid, mp. $147-148{ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.65 (d, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 5 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}$, $1 \mathrm{H}), 2.58-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.29-2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.86(\mathrm{~m}, 2 \mathrm{H})$, $0.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3$, $138.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.3 \mathrm{~Hz}\right), 137.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.4 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{P}=129.1 \mathrm{~Hz}), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=120.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right)$, $133.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 128.4,128.2$, $125.7,78.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.6 \mathrm{~Hz}\right), 68.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 33.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 32.5,31.5$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 26.6,25.6,21.3,21.2,11.5 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.8(\mathrm{~s})$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2955,2921,1455,1216,1124,1012,875,855,695$. HRMS [ESI] calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{NaOP}[\mathrm{M}+\mathrm{Na}]^{+} 495.2536$, found 495.2538.

5a, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.30-7.26 (m, $2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=\mathrm{Hz}, 2 \mathrm{H})$, 2.23-2.15 (m, 2H), 2.00-1.92 (m, 1H), 1.80-1.68 (m, 2H), 1.62$1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,128.5,128.2,126.1,67.8,66.6$, 37.5, 31.7, 29.7, 26.4, 25.7, 11.9. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 3207,2961,2931,1454,1379,1269$, 967, 747, 701. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$217.1699, found 217.1707.

5b, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.17 (m, 3H), 2.78 (t, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-1.98$ (m, 3H), 1.88$1.80(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,128.5,128.2$, 126.1, 67.9, 63.7, 37.7, 33.2, 31.8, 29.0, 26.0, 25.2. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$217.1699, found 217.1703.

5c, colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30-7.26 (m, $2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 2 \mathrm{H})$, 2.17-2.12 (m, 1H), 1.88-1.64 (m, 3H), 1.60-1.48 (m, 5H), 1.29$1.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,128.4,128.2,125.6,65.0,64.9$, 36.1, 32.3, 31.7, 29.3, 27.0, 21.6. FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2928, 2859, 1453, 747, 698. HRMS [ESI] calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$239.1519, found 239.1512 .

6, $\mathrm{dr}=1.2$: 1 , colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.42(\mathrm{~m}$, 2 H , two isomers), $7.35-7.30$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.25-7.21$ ($\mathrm{m}, 1 \mathrm{H}$, two isomers), 3.52-3.43 (m, 0.45H) \& 3.25-3.16 (m, 0.55H) (two isomers), 2.77-2.56 (m, 2H, two isomers), 2.33-2.26 (m, 0.67H) \& 2.20-2.11 (m, 1.66H) \& 1.84-1.76 (m, 0.67H) (two isomers), 2.02-1.97 (m, 1 H , two isomers), 1.45-1.35 (m, 1H) (two isomers), $1.18\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, two isomers); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4 \& 145.1$ (two isomers), $128.2 \& 128.1$ (two isomers), 126.7 \& 126.6 (two isomers), $125.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277.0 \mathrm{~Hz}\right) \& 125.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.9 \mathrm{~Hz}\right)$ (two isomers), $125.9 \& 125.7$ (two isomers), 65.0 (q, $J_{\mathrm{C}-\mathrm{F}}=1.3 \mathrm{~Hz}$) \& 64.9 (q, $J_{\mathrm{C}-\mathrm{F}}=$ 1.4 Hz (two isomers), 53.0 \& 52.5 (two isomers), 46.9 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=25.3 \mathrm{~Hz}$) \& 44.5 (q, $J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}$) (two isomers), $39.4 \& 39.0$ (two isomers), $32.5 \& 32.4$ (two isomers), $22.3 \& 22.2$ (two isomers); ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.2$ (s) \& -60.3 (s) (two isomers). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2962, 1364, 1119, 1031, 764, 701, 648. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$244.1308, found 244.1304.

7, $\mathrm{dr}=4.4: 1$, white solid, mp. $66-67^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.40$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.32-7.18 (m, 3 H , two isomers), 2.95-2.61 (m, 1.63 H) \& 2.55-2.41 (m, 0.37 H) (two isomers), 2.39$2.19(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 2.12-1.90 (m, 0.37H) \& 1.80-1.66 (m, 1.63H) (two isomers), $1.59(\mathrm{~s}, 0.55 \mathrm{H}) \& 1.46(\mathrm{~s}, 2.45 \mathrm{H})$ (two isomers); ${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7$ \& 138.6 (two isomers), $128.5 \& 128.3$ (two isomers), $127.9 \& 127.3$ (two isomers), $126.7 \& 126.0$ (two isomers), $125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276.2 \mathrm{~Hz}\right) \& 125.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277.1 \mathrm{~Hz}\right)$
(two isomers), $88.8 \& 87.2$ (two isomers), $72.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right) \& 71.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.9\right.$ Hz) (two isomers), $43.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=27.0 \mathrm{~Hz}\right) \& 30.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=41.1 \mathrm{~Hz}\right)$ (two isomers), $30.1 \& 29.7$ (two isomers), $30.1 \& 29.6$ (two isomers), $18.8 \& 18.7$ (two isomers); ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.9$ (s) \& -60.5 (s) (two isomers). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2984, 1723, 1449, 1259, 1241, 1151, 1124, 1054, 856, 800, 698, 649. HRMS [ESI] calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 258.1100$, found 258.1099 .

8, $\mathrm{dr}=1.3: 1$, white solid, $\mathrm{mp} .64-65^{\circ} \mathrm{C}$. Major isomer: $\mathbf{~}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, 2 H), 7.22-7.16 (m, 3H), 3.84-3.79 (m, 1H), 2.89-2.80 (m, 2H), 2.53$2.35(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,141.6,130.9,128.9$, $128.4,128.3,127.8,126.3,125.9,125.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right), 109.3$, $58.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 42.4,38.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=27.1 \mathrm{~Hz}\right), 35.9,29.9,28.8 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.7$ (s). FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2950,1393,1248,1160,1136,1120,906$, 755, 700, 688. HRMS [ESI] calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$397.1498, found 397.1505 .

9, dr $=5.8: 1$, light yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-$ 7.32 (m, 2H, two isomers), 7.26-7.22 (m, 2 H , two isomers), 7.18-7.13 $(\mathrm{m}, 1 \mathrm{H}$, two isomers), 5.88-5.70 (m, 1 H , two isomers), $5.06-4.85(\mathrm{~m}$, 2 H , two isomers), 2.65-2.44 (m, 2 H , two isomers), 2.29-2.12 (m, 2 H , two isomers), $1.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.70 \mathrm{H}) \& 1.74-1.67(\mathrm{~m}, 0.30 \mathrm{H})$ (two isomers), $1.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.57 \mathrm{H}) \& 1.50-1.43(\mathrm{~m}, 0.35 \mathrm{H})$ (two isomers), 1.15 $(\mathrm{s}, 2.56 \mathrm{H}) \& 0.97(\mathrm{~s}, 0.44 \mathrm{H})$ (two isomers); ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8 \&$ 146.8 (two isomers), $135.6 \& 135.1$ (two isomers), 128.0 (two isomers), 126.5 (two isomers), 125.8 (q, $J_{\mathrm{C}-\mathrm{F}}=277.1 \mathrm{~Hz}$) (two isomers), 125.9 (two isomers), $117.9 \& 117.3$ (two isomers), $64.9 \& 64.9$ (two isomers), 61.6 (two isomers), $48.3 \& 47.9$ (two isomers), 47.1 (q, $J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}$) (two isomers), $38.6 \& 38.4$ (two isomers), $37.2 \&$ 36.6 (two isomers), 28.9 \& 28.8 (two isomers); ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.1$ (s) \& -60.1 (s) (two isomers). FT-IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2962, 1361, 1258, 1118, 1078, 914, 702. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}$ [M+H] ${ }^{+}$284.1621, found 284.1612.

10, light yellow solid, mp. 66-67 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.30-7.26 (m, 2H), 7.21-7.17 (m, 3H), 4.61-4.57 (m, 1H), 2.91 $(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, 2.16-1.98 (m, 2H), 1.91-1.86 (m, 1H), 1.68-1.58 (m, 1H), 1.54-1.46 (m, 1H), 1.34-1.26 $(\mathrm{m}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,151.0,141.3$, $128.3,128.3,126.0,47.2,39.2,32.3,23.0,21.8,21.4,19.5,10.2$. FT-IR: $v\left(\mathrm{~cm}^{-1}\right) 2930$, 1722, 1656, 1371, 1344, 1259, 1210, 1151, 800. HRMS [ESI] calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}$281.1624, found 281.1621.

8. NMR Spectra

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCC13
3 Temperature	294.9
4 Number of Scans	2
5 Spectrometer Frequency	
6 400. 13	
	$1 H$

1b

$1 b$

[^0]

 $$
11 \text { || || }
$$

1c

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.2
4 Number of Scans	80
5 Spectrometer Frequency	
600.62	
6 Nucleus	13 C

1h

$\underbrace{\circ}$

$1 i$
-144.216
-140.750

$\mathcal{L}_{128.464}^{128.241}$
$\mathcal{L}_{126.132}$
-110.498

[^1]

1j

 $\underbrace{\text { non }}$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	80
5 Spectrometer Frequency	
6 Nucleus	$13 C$

1j

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298．2
4 Number of Scans	2
5 Spectrometer	
6 Furequency	400.13
	Nucleus

1k

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	
6 100． 62	
6 Nucleus	13 C

1k

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	100.62
6 Nucleus	$13 C$

11

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} 9$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	
600.62	
6 Nucleus	13 C

1m

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CuCl3
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	295.5	
4 Number of Scans	2	
5 Spectroneter Frequency	376.52	
6 Nucleus	19F	

\qquad

Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	298. 1	
4 Number of Scans	80	
5 Spectrometer Frequency	100.62	
6 Nucleus	${ }_{13 C}$	

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	80
5 Spectroneter	
6 Frequency	100.62
6 Nucleus	13 C

19

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

戸

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer Frequency	400. 13
6 Nucleus	1 H

Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	298.1	
4 Number of Scans	80	
5 Spectrometer Frequency	100. 61	
6 Nucleus	13 C	

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	
600.62	
6 Nucleus	$13 C$

it

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	293.1
4 Number of Scans	80
5 Spectrometer Frequency	
6 100. 62	
6 Nucleus	13 C

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	22
5 Spectroneter Frequency 400. 13	
6 Nucleus	

$\int||||||\mid$

1x

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCC1
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	
6 100. 62	
	13 C Nucleus

Parameter	Value
1 Origin	Bruker
2ioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	80
5 Spectroneter Frequency	
600.62	
6	13 C Nucleus

ハin

$1 z$

[^2]

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298. 2
4 Number of Scans	20
5 Spectroneter	
6 Frequency	100.61
	$13 C$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.5
4 Number of Scans	80
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer	
6 Furequency	100.62
	13 C Nus eus

1ad

$1 \mid$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCl3
3 Temperature	295.7
4 Number of Scans	2
5 Spectrometer Frequency	
6 400. 15	
6	Nucleus

//
1

$1 a e$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.1
4 Number of Scans	80
5 Spectrometer	
6 Frequency	100.62
6 Nucleus	13 C

1ae

[^3]

Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	298.1	
4 Number of Scans	2	
5 Spectrometer Frequency	400. 13	
6 Nucleus	1 H	

1ah

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.0
4 Number of Scans	80
5 Spectrometer Frequency	
6 Nuc. 62	
6	$13 C$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2.2
5 Spectrometer Frequency 376.52	
6 Sucleus	19F

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	1024
5 Spectroneter Frequency	100. 61
6 Nucleus	13 C

210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{fl}(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10

$$
\begin{aligned}
& \text { oi } \\
& \text { 范 } \\
& \text { i } \\
& \text { in }
\end{aligned}
$$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.2
4 Number of Scans	2
5 Spectrometer Frequency 376.52	
6 Nucleus	19F

c

等気

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Tenperature	298.0
4 Number of Scans	1024
5 Spectroneter Frequency	100.62
6 Nucleus	$13 C$

[^4]

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	1024
5 Spectrometer	
6 Furequency	100.61
	13 C

Parameter	Value
1 Origin	Bruker
2 BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.5
4 Number of Scans	1024
5 Spectroneter Frequency	100.61
6 Nucleus	13 C

2g

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.8
4 Number of Scans	16
5 Spectrometer Frequency	
676.52	
6 Nucleus	19 F

ラ

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.2
4 Number of Scans	2
5 Spectrometer Frequency	
6 400.15	
6 Nucleus	1H

$\begin{gathered} \underset{~ N}{N} \\ \stackrel{2}{\circ} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \text { đ̈ } \\ & \stackrel{\text { I }}{さ} \end{aligned}$
er	Value
	Bruker BioSpin GmbH CDC13
	298.2
	1024
Frequency	100. 61
	${ }^{13 C}$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.3
4 Number of Scans	2
5 Spectroneter Frequency 376.52	
6 Nucleus	19 F

$$
\begin{aligned}
& \infty \\
& \text { \% } \\
& \text { ti }
\end{aligned}
$$

$$
\begin{aligned}
& 5 \text { Spectrometer Frequency } 376.5 \\
& 6 \text { Nucleus }
\end{aligned}
$$

$\int\left|\int\right|$

2j

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	1024
5 Spectrometer Frequency	
600.61	
6 Nucleus	$13 C$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer Frequency	
6 376. 52	
6 Nucleus	19F

$\begin{array}{ll}4 \text { Number of Scans } & 2 \\ 4 & 2 \\ 5 \text { Spectrometer } & \text { Frequency } \\ 600.15 \\ 6 \text { Nucleus } & 14\end{array}$

$$
15
$$

2k
$\int 1 / \int 11 / 1+$

2k

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.6
4 Number of Scans	2
5 Spectroneter Frequency 376.52	
6 Nucleus	19 F

$$
\begin{aligned}
& \infty \\
& \text { on } \\
& 0 \\
& \text { in } \\
& i
\end{aligned}
$$

21

2 m

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	296.2	
4 Number of Scans	2	
5 Spectrometer Frequency	376. 52	
6 Nucleus	19 F	

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	295.6
4 Number of Scans	2
5 Spectrometer Frequency	400. 15
6 Nucleus	1 H

20

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.4
4 Number of Scans	2
5 Spectroneter Frequency	
6 4u0.13	
6 Nucleus	1H

2p

2q

	$\begin{aligned} & \frac{ \pm}{4} \\ & \frac{I}{1} \end{aligned}$	
Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	298.2	
4 Number of Scans	1024	
5 Spectroneter Frequency	100.61	
6 Nucleus	13 C	

2q

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	296.7	
4 Number of Scans	2	
5 Spectrometer Frequency 3	376. 52	
6 Nucleus	19 F	

$2 q$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.7
4 Number of Scans	16
5 Spectrometer Frequency 376.52	
6 Nucleus	19 F

-

Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	297. 1	
4 Number of Scans	2	
5 Spectrometer Frequency 400. 15		
6 Nucleus	1 H	

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	297.1
4 Number of Scans	2
5 Spectroneter Frequency 376.52	
6 Nucleus	19 F

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.0
4 Number of Scans	2048
5 Spectrometer	
6 Frequency	100.62
	$13 C$

$$
\begin{gathered}
\text { ® } \\
\text { oi } \\
\text { i }
\end{gathered}
$$

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	295.6	
4 Number of Scans	2	
5 Spectrometer Frequency	376.52	
6 Nucleus	19F	

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	301.1
4 Number of Scans	16
5 Spectrometer Frequency 376.50	
6 Nucleus	19 F

2w

PCCles

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	297. 1	
4 Number of Scans	2	
5 Spectrometer Frequency	376. 52	
6 Nucleus	19F	

8
6
6

2x

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	296.9	
4 Number of Scans	16	
5 Spectroneter Frequency 3	376. 52	
6 Nucleus	19 F	

\bar{n}
0
i
4 Number of Scans

$2 z$

2aa

1

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCL3
3 Temperature	297.4
4 Number of Scans	1024
5 Spectrometer	
6 Frequency	100.62
6 Nucleus	$13 C$

2aa

 $\begin{array}{ll}1 \text { Origin } & \text { CDCLI } \\ 2 \text { Solvent } & \text { CDioSpin GmbH } \\ 3 \text { Temperature } & 296.1 \\ 4 \text { Number of Scans } & 2 \\ 5 \text { spectroneter Frequency } & 400.15 \\ 6 \text { Nucleus } & 1 \mathrm{H}\end{array}$ स2

Parameter		Value
1 Origin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	296.1	
4 Number of Scans	2	
5 Spectrometer Frequency	376. 52	
6 Nucleus	19F	

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCl3
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer Frequency	400.15
6 6 Nucleus	1H

$\int\left|\int\right|||\mid$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	1024
5 Spectrometer Frequency 100.62	
6 Nucleus	13 C

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectroneter Frequency	376.52
6 Nucleus	19F

\qquad

$\int 111$

				$\frac{T}{8}$		新安 											-	$\begin{aligned} & \text { H} \\ & \stackrel{y}{c} \end{aligned}$				
0.5	10.0	9. 5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	${ }^{1} .0$	$\stackrel{1}{4.5}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.
											(ppm)											

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCC13
3 Temperature	295.9
4 Number of Scans	2
5 Spectrometer Frequency	
6 400. 15	
	$1 H$

$\int 111$

3c

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	1024
5 Spectrometer Frequency	100.61
6 Nucleus	13 C

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCL3
3 Temperature	298.2
4 Number of Scans	1024
5 Spectrometer	
6 Frequency	100.62
6 Nucleus	$13 C$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.9
4 Number of Scans	2
5 Spectrometer Frequency	400.15
6 Nucleus	1H

3e

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.3
4 Number of Scans	80
5 Spectroneter Frequency	
6 100. 62	
6 Nucleus	13 C

3e

Parameter		Value
10 rigin	Bruker	BioSpin GmbH
2 Solvent	CDC13	
3 Temperature	298.2	
4 Number of Scans	2	
5 Spectrometer Frequency 4	400. 13	
6 Nucleus	1 H	

 \qquad

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer	
6 Frequency	400.13
6	$1 H$

3j

1 1 il|
81111

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	40
5 Spectrometer Frequency	
6 100. 62	
6 Nucleus	13 C

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer	
Frequency	400.13
6 Sucleus	1H

Parameter	Value
1 1 rigin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.1
4 Number of Scans	80
5 Spectrometer Frequency	
6 Nucleus	13 C

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.3
4 Number of Scans	2
5 Spectroneter Frequency 1	161.97
6 Nucleus 3	31 P

\qquad

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	296. 9
4 Number of Scans	2
5 Spectrometer Frequency	161.98
6 Nucleus	31 P

4b

ob 엉
 Ph2

																		$\begin{aligned} & T \\ & \stackrel{T}{\top} \stackrel{\leftrightarrow}{-} \end{aligned}$	次宁业 58			
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	． 5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	
	1.0			8.5		7.					fl （ppm）											

, /1/ /1/ 1

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Spectrometer Frequency	400.13
6 Nucleus	lH

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.3
4 Number of Scans	80
5 Spectroneter Frequency	
600.62	
6 Nucleus	13 C

4e

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	295.1
4 Number of Scans	2
5 Spectroneter Frequency	161. 98
6 Nucleus	31 P

$\left.\int 1 /\right)_{1 / 1}^{1}$

$4 f$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.0
4 Number of Scans	80
5 Spectrometer	
6 Frequency	100.62
6 Nucleus	13 C

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	295.8
4 Number of Scans	2
5 Spectrometer Frequency	161.98
6 Nucleus	31 P

Parameter	Value
1 Origin	Bruker
BioSpin	GmbH
2 Solvent	CDC13
3 Temperature	295.3
4 Number of Scans	80
5 Spectrometer	
6 Frequency	100.62
6 Nucleus	$13 C$

$\begin{array}{ll}\text { 2 Solvent } & \text { CDC13 } \\ 3 \text { Temperature } & 295.3 \\ 4 \text { Number of Scans } & 80\end{array}$
$\begin{array}{ll}5 \text { Spectrometer Frequency } & 100.6 \\ 6 & 13 \mathrm{C}\end{array}$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.1
4 Number of Scans	2
5 Spectrometer Frequency	161.98
6 Sucleus	31P

\qquad

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	295.4
4 Number of Scans	2
5 Spectroneter Frequency	
6161.97	
6	31 Nucleus

on
ín
I

4h

Uill
, /ll/, /, 1

41

5a

1 H

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	298.2
4 Number of Scans	2
5 Sectrometer Frequency	400.13
6 Nucleus	$1 H$

$\int|1| 1 \mid$

5b

$$
\begin{aligned}
& \\
& \text { 5b }
\end{aligned}
$$

(1)

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDCl3
3 Temperature	297.6
4 Number of Scans	1024
5 Spectrometer Frequency	100.62
6 S Nucleus	$13 C$

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	297.1
4 Number of Scans	2
5 Spectrometer	
6 Frequency	
6 Nucleus	19 F

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	297.6
4 Nubber of Scans	1024
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

$\begin{array}{ll}\text { 2 Solvent } & \text { CDC13 } \\ 3 \text { Temperature } & 297.6 \\ 4 \text { Number of Scans } & 1024\end{array}$
5 Spectrometer Frequency 100.62
6 Nucleus

7

(1)

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.1
4 Number of Scans	2
5 Spectrometer Frequency	400.15
6 Sucleus	1H

$\int|/| /$

$\begin{array}{ll}5 \text { spectroneter Frequency } 400.1 \\ 6 \text { Nucleus } & 1 H\end{array}$

Parameter	Value
10 rigin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	296.8
4 Number of Scans	1024
5 Spectrometer Frequency	100.62
6 Nucleus	13 C

6 Nucleus

Parameter	Value
1 Origin	Bruker
BioSpin GmbH	
2 Solvent	CDC13
3 Temperature	296.1
4 Number of Scans	2.
5 Spectrometer Frequency	
676.52	
6 Sucleus	$19 F$

Ph

5a-g

[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^3]:

[^4]:

