
 S1

Supporting Information

Transfer Learning for a Foundational Chemistry Model

Emma King-Smith*

Correspondence to: esk34@cam.ac.uk

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2023

 S2

Table of Contents

Materials and Methods.. page S3
Code Availability.. page S3
A Non-Expert's Guide to Transfer Learning (CliffsNotes Version).............................. page S3
Table S1.. page S4
Table S2.. page S5
Table S3.. page S6
Figure S1... page S7
Figure S2... page S8
Figure S3... page S9
Figure S4... page S10
Figure S5... page S11
Figure S6... page S12
Figure S7... page S13
Figure S8... page S14
Figure S9... page S15
Figure S10... page S16
Figure S11... page S17
Figure S12... page S18
Figure S13... page S19
User's Guide.. page S20-S44

 S3

Materials and Methods:
Training and testing of the deep neural networks was performed on a server with 16-core dual threaded
AMD Ryzen 95950X processors running CUDA 11.4. Dataset cleanup of the Suzuki dataset, Buchwald-
Hartwig dataset, toxicity datasets, and olfaction datasets was carried out on a 2020 MacBook Air M1
(MacOS Big Sur 11.2.3) with PyCharm IDE (2021.1.1 Community Edition).

Code Availability:
The base model latent space parameters and finetuned model parameters are available on the GitHub
repository (https://github.com/emmaking-smith/Modular_Latent_Space/tree/master). Cleaned, open-
source datasets and all code have also been made available. Access to the Cambridge Crystallographic
Data Centre's (CCDC) Cambridge Structural Database (CSD) Python API and data can be accessed by
entering a private access agreement with CCDC.

A Non-Expert's Guide to Transfer Learning (CliffsNotes Version):
Transfer learning is the process whereby the information gathered from one source (pretraining dataset)
is used to "jump start" the learning from a second source (finetuning dataset). Typically, the finetuning
dataset is the desired prediction target. If the finetuning dataset is small and data augmentation through
other sources or experimental design is not possible or cost prohibitive, transfer learning is a potential
solution. It allows the user to use a bigger model with the bigger pretraining dataset, which may lend itself
to better results on the finetuning dataset task (finetuning task). Transfer learning may also be thought of
as a way pointing the model in the correct direction.

Practically, the transfer learning is as follows. A machine learning model is trained on the pretraining
dataset to predict a pretraining task. The final layer, used to formulate the pretraining task predictions, is
removed and replaced with a new layer that will be used to predict the finetuning dataset task. The
previous neural network layers retain the information learned from the pretraining dataset task. From here,
the user may opt to "freeze" the pretrained layers or to re-train the whole system. Freezing the layers
allows for small datasets to be used with deep neural networks. Re-training the whole system may be
more beneficial if both datasets are sufficiently large and sufficiently distinct from one another (Figure
S1).

 S4

Model Test Set MSE
Small MPNN 3.17
Large MPNN 2.93

Table S1: Mean Squared Error (MSE) of total loss (bond distance loss + bond angles loss) on crystal
structure data for a variety of message passing neural networks (MPNNs). Test set consisted of unseen
molecules.

 S5

Compound True Toxicity
(log(mol kg-1))

Crystal-Tox Predicted
Toxicity

(log(mol kg-1))

Oloren
ChemEngine

Predicted Toxicity
(log(mol kg-1))

water –0.70 1.53 1.98
sucrose 1.06 1.01 1.48
glucose 0.84 1.25 1.77

monosodium glutamate 1.00 1.66 2.10
THC 2.39 2.88 2.53
CBD 2.51 2.62 2.41

aconitine 6.90 3.84 3.38
epibatidine 7.43 2.88 2.93

MDMA 3.08 2.59 2.55
cocaine 3.50 2.09 2.67

LSD 4.29 2.65 2.89
heroin 4.23 2.80 3.19

Table S2: Predicted and true toxicity values of each compound in the non-drug test set for the best
Crystal-Tox and Oloren ChemEngine models.

 S6

Model Split MAE
Halide Set 0 Halide Set 1 Halide Set 2 Halide Set 3

Random Forest 23.6 23.9 22.2 31.0
Gaussian Process 27.3 25.2 21.7 30.9

Adaboost 24.6 23.9 18.7 31.6
Yield-BERT 27.3 25.2 21.7 30.9
GraphRXN 9.5 41.6 30.9 18.7

Crystal-Yield 26.7 14.8 16.3 27.5

 Base 0 Base 1 Base 2

Random Forest 32.0 32.4 19.9
Gaussian Process 31.0 34.3 24.8

Adaboost 27.2 29.5 19.9
Yield-BERT 23.3 27.4 22.1
GraphRXN 12.8 27.1 13.8

Crystal-Yield 13.9 13.0 13.4

 Ligand 0 Ligand 1 Ligand 2 Ligand 3

Random Forest 27.4 29.0 27.6 29.8
Gaussian Process 39.8 32.2 29.2 30.6

Adaboost 26.8 29.9 25.9 27.2
Yield-BERT 20.4 24.0 25.8 27.0
GraphRXN 9.7 17.6 12.7 15.2

Crystal-Yield 24.5 23.4 10.4 14.5
Crystal-Yielda 17.1 12.2 6.5 10.8

 Additive Set 0 Additive Set 1 Additive Set 2 Additive Set 3

Random Forest 34.0 31.3 26.7 29.4
Gaussian Process 32.7 29.0 24.5 27.9

Adaboost 29.0 27.3 26.7 27.5
Yield-BERT 25.2 22.9 22.8 25.3
GraphRXN 16.7 15.2 22.8 15.4

Crystal-Yield 15.6 16.6 17.2 15.5

Table S3: The mean absolute error (MAE) for each fold in the Buchwald-Hartwig yield prediction. For
halides and additives, several were left out at a single time to allow for equal training-testing splits for all
validations. Bolded entries indicate the best model for each fold. aCrystal-Yield with output block
increased from ~260K parameters to ~1 million parameters. GraphRXN had ~2 million parameters.

 S7

Figure S1: Graphical representation of the process of transfer learning. The neural network may be frozen
(no more training occurs) if the finetuning dataset size cannot accommodate the depth of the whole system.

pretraining
dataset

molecule

Neural Network

. . .

“digitized”
molecule

via
latent space

pretraining
dataset

task

Pretraining Output Layer

Pretraining

finetuning
dataset

molecule

Neural Network

. . .

“digitized”
molecule

via
latent space

finetuning
dataset

task

Finetuning Output Layer Swap Final
Layer

Finetuning

retains pretraining
knowledge

needs training

 S8

Figure S2: Ranking of elements in our cleaned CCDC dataset.

C N O F S Cl P B S Cl P B Si Br Cu I Fe Zn Co

Os Re Au Rh K W Na Al Pt Ag Li Sn Pd Se Mo Mn Ru Cd Ni

V Cr Ti Pb Eu Ir As U Ga Ge Mg Sb Tb Gd Zr Te Hg Dy Nd

Tl Rb Sc Nb Ta Ho Cs Sr Yb Ce Ba Er Y Pr Bi Sm In La Ca

Lu Hf Tm Th Be Tc Np Pu

most common elements in dataset

least common elements in dataset

 S9

Figure S3: Distribution of LD50 values and molecular sizes for the toxicity finetuning tasks. Dark blue
bars indicate training set distribution, light blue bars indicate the TDC testing set distribution, and teal
bars indicate the non-pharmaceutical testing set distribution.

Toxicity LD50 Value Distributions

LD50 Value

P
er

ce
nt

ag
e

> 10 11-100 101-500 501-1000 1001-2000 2001-4000 4001-6000 6001-8000 8001-10000 10000+

Toxicity Molecule Size Distributions

Number of Heavy Atoms

0-10 11-20 21-30 31-40 41-50 51-60 60+

P
er

ce
nt

ag
e

= Training Set

= TDC Test Set

= Non-Pharma Test Set

 S10

Figure S4: Representative scopes of reaction yield datasets. (A) Top 5 boronic acids and aryl halides in
the USPTO Suzuki coupling dataset. (B) All halides, bases, ligands, and additives used in Buchwald-
Hartwig coupling dataset.

OH
B

OH

OH
B

OH

Me

OH
B

OH
N

OH
B

OH

N MeO

B
OH

OH

NMe

O
Me

Br

NH2Br
OTs

Br

O
BrN

NMe

O

PhO

Br
N

H2N

H

A

B

Cl Br

CF3

I
OMe

Cl

OMe

Br

OMe

I

Et

Cl

Et

Br

Et

I ClN BrN IN

Cl
N

Br
N

I
N

None

CF3CF3
P N P NMe2

N

NMe2

Me2N
NMe2

NMe2

Et

P2Et

Me2N NMe2

N
t-Bu

BTMG

N
Me

N

N

MTBD

XPhos t-BuXPhos t-BuBrettPhos AddBrettPhos

ON

Ph

ON

CO2Et
Me

O N

CO2Et
Me

O
N Ph

O
N Ph

O
N Me

ON

N Ph

Me
N

O

O
N

ON

MeMe

ON

CO2Me CO2Et

O N

O
N

CO2Et

Me

CO2Et
O

N
O

N

ON

CO2Et
MeO

O N

Ph
Me

O
N

NBn2

O NO

O NF

F

O
N

NBn2

ON

N Me

O N

CO2Me

S

CO2Me

None

Boronic Acids:

Aryl Halides:

Aryl Halides: Bases:

Ligands:

Additives:

 S11

Figure S5: Suzuki test set and training set comparisons for each test set, consisting of molecules not
present in the training set. Dark blue bars indicate training set distribution and light blue bars indicate
testing set distribution. Top: Comparisons of yield distributions of training and test sets. Bottom:
Comparisons of product molecule size distributions of training and testing sets.

Suzuki Yield Distribution: Nucleophiles Test Set

> 5%

5 - 19%

20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Yield

P
er

ce
nt

ag
e

> 5%

5 - 19%

20 - 39%

40 - 59%

60 - 79%
80 - 99%

99%+

Suzuki Yield Distribution: Electrophiles Test Set

Yield
Suzuki Product Molecular Size Distribution: Nucleophiles Test Set

Number of Heavy Atoms

0-10

11-20

21-30

31-40

41-50

51-60 60+

Suzuki Product Molecular Size Distribution: Electrophiles Test Set

Number of Heavy Atoms

0-10

11-20

21-30

31-40

41-50

51-60 60+

= Training Set = Testing Set

 S12

Figure S6: Training and testing dataset sizes for Suzuki and Buchwald-Hartwig coupling datasets. For
the Buchwald-Hartwig couplings, the dataset size is the mean of each halide / ligand / base / additive
being left out of the training set for testing.

Suzuki Dataset Sizes Mean Buchwald Dataset Sizes

Train Test Train Test

U
ns

ee
n

B
or

on
ic

 A
ci

ds

U
ns

ee
n

H
al

id
es

U
ns

ee
n

B
or

on
ic

 A
ci

ds

U
ns

ee
n

H
al

id
es

U
ns

ee
n

H
al

id
es

U
ns

ee
n

Li
ga

nd
s

U
ns

ee
n

B
as

es

U
ns

ee
n

A
dd

iti
ve

s

U
ns

ee
n

H
al

id
es

U
ns

ee
n

Li
ga

nd
s

U
ns

ee
n

B
as

es

U
ns

ee
n

A
dd

iti
ve

s

 S13

Figure S7: The product yield distributions for each halide test set. Note that these test sets combine 4
halides for a single split. Dark blue bars indicate training set distribution and light blue bars indicate
testing set distribution.

> 5%

5 - 19%

20 - 39%
40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Halide 1 Test Set

Yield

P
er
ce
nt
ag
e

Buchwald Yield Distribution: Halide 2 Test Set

Yield

> 5%

5 - 19% 20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Halide 3 Test Set Buchwald Yield Distribution: Halide 4 Test Set

> 5%

5 - 19%

20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

> 5%

5 - 19%
20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Yield Yield

P
er
ce
nt
ag
e

= Training Set = Testing Set

 S14

Figure S8: The product yield distributions for each ligand test set. Note that this test set uses one ligand
per split. Dark blue bars indicate training set distribution and light blue bars indicate testing set
distribution.

Buchwald Yield Distribution: Ligand 1 Test Set

Yield

P
er
ce
nt
ag
e

> 5% 5 - 19%

20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Ligand 2 Test Set

Yield

> 5%

5 - 19% 20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Ligand 3 Test Set

P
er
ce
nt
ag
e

Buchwald Yield Distribution: Ligand 4 Test Set

Yield Yield

> 5%

5 - 19% 20 - 39%

40 - 59%
60 - 79%

80 - 99%

99%+

> 5%

5 - 19% 20 - 39%
40 - 59% 60 - 79%

80 - 99%

99%+

= Training Set = Testing Set

 S15

Figure S9: The product yield distributions for each base test set. Note that this test set uses one base per
split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Buchwald Yield Distribution: Base 1 Test Set

Yield

P
er
ce
nt
ag
e

> 5%

5 - 19%

20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Base 2 Test Set

Yield

> 5%

5 - 19%

20 - 39%
40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Base 1 Test Set

Yield

P
er
ce
nt
ag
e

> 5%

5 - 19%
20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

= Training Set = Testing Set

 S16

Figure S10: The product yield distributions for each additive test set. Note that these test sets combine 6
additives for a single split. Dark blue bars indicate training set distribution and light blue bars indicate
testing set distribution.

Buchwald Yield Distribution: Additive 1 Test Set

Yield

P
er
ce
nt
ag
e

> 5%

5 - 19% 20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Additive 2 Test Set

Yield

> 5%

5 - 19%

20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Additive 3 Test Set

Yield

P
er
ce
nt
ag
e

> 5%

5 - 19%

20 - 39%

40 - 59%
60 - 79%

80 - 99%

99%+

Buchwald Yield Distribution: Additive 4 Test Set

Yield

> 5%

5 - 19% 20 - 39%

40 - 59%

60 - 79%

80 - 99%

99%+

= Training Set = Testing Set

 S17

Figure S11: The complete breakdown of odor classes in the Pyrfume training dataset.

 S18

Figure S12: The difference between the fragrance training and enantiomeric pairs testing sets, in both
molecular size and in the most common odor classification classes. Dark blue bars indicate training set
distribution and light blue bars indicate testing set distribution.

Fragrance Molecular Size Distribution

P
er

ce
nt

ag
e

Number of Heavy Atoms

0-10

11-15

16-20

21-25 26+

Top 5 Odor Classes

P
er

ce
nt

ag
e

Class

Fruity Green Sweet Floral Fatty Fresh Mint Herbal

= Training Set = Testing Set

 S19

Figure S13: Predictions from best Crystal-Olfaction model on all enantiomeric pairs. For clarity, correct
top 5 predictions are shown in parentheses. Horizontal line indicates that none of the top 5 most likely
labels were correct. Blue predictions show that Crystal-Olfaction correctly identified that the
enantiomeric pair had an identical / differing olfactive profile, even if no label was correctly predicted in
the top 5. Red predictions indicate that Crystal-Olfaction determined incorrectly identified the similarity
of scent profile between the enantiomeric pair.

Et

Me
HO

Et

Me
HO

19

fatty, fermented

20

ethereal, fresh

citrus, fresh, herbal

n-Pr
O

O

coconut, fruity, sweet

29

Me
Me

(R)-camphene (31)

balsamic, medicinal

(S)-camphene (32)

camphoreous, pine

Me
HO

Me
Me

O

33
dairy, floral, sweet

34
earthy

Me
HO

Me
Me

O

Et

OH

n-Pr

SH

OH n-Pr

SH

OH
21 22

herbal, sulfurous

i-Pr

MeO

fresh, musty

i-Pr

MeO

(S)-methone (24)

camphoreous, fresh

MeO

mint

Similar Olfactive Notes

CO2HC5H11

Me

CO2HC5H11

Me

13 14

animal animal

Me

i-Pr
AcO

Me

i-Pr
AcO

15 16

fresh, fruity, mint

OHC
Me

Me

Me

(S)-citronellal (25)

OHC
Me

Me

Me

(R)-citronellal (26)

citrus, fresh, herbal

27

floral

Et

OH

28

floral

i-Pr

(R)-isomethone (17)

MeO

i-Pr

mint

grassy, spicy,
sweet, vanilla

n-Pr
O

O

30

blackcurrant, fruity,
sweet, topical, woody

(R)-methone (23)

(S)-isomethone (18)

fresh, fruity, mint

Dissimilar Olfactive Notes

(––) (––)

(fruity, mint) (fruity, mint)

(fresh, herbal) (herbal)

(––) (––)

(mint) (mint)

(cheesy*) (ethereal)

(––)
(––)

(––) (camphoreous)

(––) (––)

(––) (camphoreous)

(sulfurous) (sweet, fruity)

= correctly identified similarity /
dissimilarity in olfactive notes

= incorrectly identified similarity /
dissimilarity in olfactive notes

* = mixture of the true olfactive notes

 S20

User's Guide

This guide is written for non-experts looking to use the foundational model for transfer learning for their
own tasks. We will begin with the basic installation and move into an example of how to use the
foundational model for Buchwald-Hartwig yield prediction. The model was trained on Linux OS and we
highly recommend that users do the same.

Prerequisites___

Installation of Conda:
A good rule of thumb when working with code in Python is to use virtual environments for your projects.
This will allow you to install the exact packages you need without worrying about conflicts from other
projects / previous installations. We will be using conda virtual environments. Official instructions for
installation can be found here: https://docs.conda.io/projects/miniconda/en/latest/. Please follow the
instructions according to your operating system.

Installation of Git (Optional):
The program used to interface with GitHub is git. Although not a requirement for getting the model from
the GitHub, it is a very useful tool in managing code. Official instructions for installation can be found
here: https://github.com/git-guides/install-git. Please follow the instructions according to your operating
system.

Getting the Code__

We will show you the commands used (highlighted in yellow) and the associated output (the line after
the command is run) to assist users in using command line inputs and our model. Commands can be run
by pressing the "return" key. Within this text, commands will be indicated with this font. These
commands are to be implemented in your computer's terminal / console.

Create a New Directory:
A directory can also be referred to as a "folder". For the remainder of the document, we will be using the
term directory but you may think of them as folders. To access our code, two methods are possible. The
first uses git, the second goes through GitHub.com's web-interface. We will go through both.

Start by making a new directory called "transfer_learning" and move into the directory. This can be done
by typing:

mkdir transfer_learning

There will be no output from this command.

 S21

Move into the directory with:

cd transfer_learning

 S22

We are now ready to download the code for Transfer Learning for a Foundational Chemistry Model. You
have two options. Option 1 requires the installation of git and Option 2 does not. Please choose either
Option 1 or Option 2.

Option 1 - Download the GitHub Repository with Git (Git installation required):

Clone the repository. This allows you to instantly download all the information off of the repository to
your new directory. Type:

git clone https://github.com/emmaking-smith/Modular_Latent_Space.git

Option 2 - Download the GitHub Repository from GitHub.com:

If you do not want to install git, you may download all the code from the GitHub website.
Go to https://github.com/emmaking-smith/Modular_Latent_Space.

 S23

Click on the green "Code" button.

Select "Download ZIP"

 S24

Unzip the zip file. This can typically be achieved by double clicking on the file.

Move the unzipped directory, Modular_Latent_Space-master from its current directory to the directory
we created at the beginning of this section (we named it transfer_learning). Drag and drop is the easiest
way to do this.

 S25

Setting up the Virtual Environment___

Here, we install the necessary packages to run the transfer learning. The necessary packages can be found
at https://github.com/emmaking-smith/Modular_Latent_Space at the bottom of the page under
"Dependencies".

First we create our virtual environment that will be used to run all of our code. Note that you must be
within this virtual environment to run the code without errors. To do this, we run the following command:

conda create -n tl3.7 python==3.7

Our virtual environment’s name is tl3.7 (transfer learning python version 3.7). We designate the python
version with the suffix of "python==3.7". It is critical to use the correct version of python when
attempting to use any other programmer's code.

 S26

Shortly thereafter, the console will prompt you to accept the installation of new packages. Type:

y

 S27

The output of these commands will look something like this:

We then activate our virtual environment.

conda activate tl3.7

You can tell that you are in a virtual environment by the leftmost text, which now says the environment
name (see orange box).

 S28

Package Installation___

Next, all the relevant packages of specific versions will be installed. We specify this with the "==" sign.
RDKit will be installed first.

conda install -y -c rdkit rdkit==2020.09.1

 S29

You will see many packages being installed. The final output will look something like this:

 S30

Pytorch and other useful torch packages are installed next with:

pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113
torchaudio===0.10.0+cu113 -f
https://download.pytorch.org/whl/cu113/torch_stable.html

Then networkx is installed with:

pip install networkx==1.11

 S31

This is the most critical package to get the correct version. After version 1.11, the graph nomenclature
changed and attempting to run the code with later versions will result in an error. If you believe you are
seeing a networkx error, please double check that the version you are running is 1.11. This can easily
be done using the following commands.

Start python - make sure you are in your virtual environment. Type:

python

	

 S32

Import networkx with:

import networkx

 S33

Check version with:

networkx.__version__

You should have an output of 1.11.

Next install numpy. This may have already been installed with a previous package.

pip install numpy==1.21.5

 S34

Then install pandas. Similar to numpy, this may already have been accomplished with a previous package
installation.

pip install pandas==1.3.5

 S35

Finally, install sklearn.

pip install scikit-learn==1.0.2

We are now all set up!

Run the Transfer Learning__

We will be using the Buchwald-Hartwig dataset as our example transfer learning. Note that the pretrained
layers from the crystal structure information will be frozen. This has been done for you and can be
observed in Modular_Latent_Space/buchwald/buchwald_yield_mpnn lines 29-30 (see orange box in the
figure below).

 S36

To run the transfer learning, we run a variation of following command:

python py_file_that_makes_predictions.py --option1 choice --option2 choice ...

The "--" indicates a flag. We are telling the model what arguments we are inputting. The flag lets the
program know that a user-defined selection will occur, and the words after it detail the selection.

Understanding the Buchwald-Hartwig Flags:

For the Buchwald-Hartwig transfer learning, we have 3 flags of importance: split, test_mol_idx, and
save_path. The split refers to what type of molecule should be left out for model validation. The options
are "halide", "base", "ligand", and "additive". They are case sensitive.

The test_mol_idx stands for test molecule index and refers to which halide / base / ligand / additive
molecules should be left out for model validation. Each index will yield a different set of molecules.

The final flag, save_path, is the place we wish to save our model and predictions. If we want to save it in
a new directory called "predictions" to our Desktop our save_path flag would look like:

--save_path ~/Desktop/predictions.

To summarize our flags:

Flag name Expected Value(s) Example Flag Value What to type

split one of the
following: halide, ligand --split ligand

 S37

base, ligand,
additive.

NOTE: Case

sensitive!

test_mol_idx

An integer between
0 and 3 if your split

is NOT base.

An integer between
0 and 2 if your split

IS base.

3*

*Must not have --split
base flag.

--test_mol_idx 3

save_path A path to a
directory.

A new directory in the
Modular_Latent_Space

directory called
transfer_learning_test.

--save_path
transfer_learning_test

NOTE: Assuming your
current location is the

Modular_Latent_Space
directory.

For more flags, please refer to Modular_Latent_Space/buchwald/buchwald_yield_prediction.py lines 25
- 37. For a basic transfer learning, feel free to use the default options.

Run the Transfer Learning (Finally!):

We will then run the transfer learning on the Buchwald-Hartwig dataset. The module to do so is called
buchwald_yield_prediction.py and is located in the buchwald directory. Move yourself into the buchwald
directory using the cd command. If you are currently in the Modular_Latent_Space directory, this can be
achieved with:

cd buchwald

You can easily tell you are now in the buchwald directory by looking at the path in blue. The final name
will be "buchwald" (see orange box in figure below).

 S38

To run the Buchwald-Hartwig predictions, using a base split, with split index 2, and saving the predictions
to a new directory called predictions/base_2, type:

python buchwald_yield_prediction.py --split base --test_mol_idx 2 --
save_path predictions/base_2

 S39

Helpful hint: If you are running these computations through an ssh, adding the nohup command to the
beginning will keep your training running even if you lose the ssh connection:

nohup python buchwald_yield_prediction.py --split base --test_mol_idx 2 --
save_path predictions/base_2

You can track your progress with the model_log.log (saved to the save_path directory) and the nohup
output file (default nohup.out).

Voila! Your predictions will be saved to predictions/base_2.

 S40

The preds.pickle are the predicted values, the model file is the final trained model, and the model_log.log
is the log file that gives more information regarding the training loss and model parameters.

Viewing the Predictions___

Ensure that you are in the correct directory (your save_path directory). If you are in the buchwald
directory after completing training and have been following the naming convention of this document, you
can move to the save_path directory by typing:

cd predictions/base_2/

 S41

To view pickle files, go into python by typing:

python

Import pandas with:

 S42

import pandas as pd

Import your predictions file with:

preds = pd.read_pickle('preds.pickle')

 S43

View your predictions file with:

preds

This will give you a snapshot of the prediction file. You can save it out as a csv file which is openable
with Microsoft Excel if that is more convenient for you with:

preds.to_csv('preds.csv')

 S44

This will generate a csv file in your working directory called preds.

Thank you for reading to the end of this guide!

We hope it has been a helpful resource for you.

