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Materials and Methods: 
Training and testing of the deep neural networks was performed on a server with 16-core dual threaded 
AMD Ryzen 95950X processors running CUDA 11.4. Dataset cleanup of the Suzuki dataset, Buchwald-
Hartwig dataset, toxicity datasets, and olfaction datasets was carried out on a 2020 MacBook Air M1 
(MacOS Big Sur 11.2.3) with PyCharm IDE (2021.1.1 Community Edition). 
 
Code Availability: 
The base model latent space parameters and finetuned model parameters are available on the GitHub 
repository (https://github.com/emmaking-smith/Modular_Latent_Space/tree/master). Cleaned, open-
source datasets and all code have also been made available. Access to the Cambridge Crystallographic 
Data Centre's (CCDC) Cambridge Structural Database (CSD) Python API and data can be accessed by 
entering a private access agreement with CCDC. 
 
A Non-Expert's Guide to Transfer Learning (CliffsNotes Version): 
Transfer learning is the process whereby the information gathered from one source (pretraining dataset) 
is used to "jump start" the learning from a second source (finetuning dataset). Typically, the finetuning 
dataset is the desired prediction target. If the finetuning dataset is small and data augmentation through 
other sources or experimental design is not possible or cost prohibitive, transfer learning is a potential 
solution. It allows the user to use a bigger model with the bigger pretraining dataset, which may lend itself 
to better results on the finetuning dataset task (finetuning task). Transfer learning may also be thought of 
as a way pointing the model in the correct direction.  
 
Practically, the transfer learning is as follows. A machine learning model is trained on the pretraining 
dataset to predict a pretraining task. The final layer, used to formulate the pretraining task predictions, is 
removed and replaced with a new layer that will be used to predict the finetuning dataset task. The 
previous neural network layers retain the information learned from the pretraining dataset task. From here, 
the user may opt to "freeze" the pretrained layers or to re-train the whole system. Freezing the layers 
allows for small datasets to be used with deep neural networks. Re-training the whole system may be 
more beneficial if both datasets are sufficiently large and sufficiently distinct from one another (Figure 
S1). 
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Model Test Set MSE 
Small MPNN 3.17 
Large MPNN 2.93 

 
Table S1: Mean Squared Error (MSE) of total loss (bond distance loss + bond angles loss) on crystal 
structure data for a variety of message passing neural networks (MPNNs). Test set consisted of unseen 
molecules. 
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Compound True Toxicity  
(log(mol kg-1)) 

Crystal-Tox Predicted 
Toxicity  

(log(mol kg-1)) 

Oloren 
ChemEngine 

Predicted Toxicity 
(log(mol kg-1)) 

water –0.70 1.53 1.98 
sucrose 1.06 1.01 1.48 
glucose 0.84 1.25 1.77 

monosodium glutamate 1.00 1.66 2.10 
THC 2.39 2.88 2.53 
CBD 2.51 2.62 2.41 

aconitine 6.90 3.84 3.38 
epibatidine 7.43 2.88 2.93 

MDMA 3.08 2.59 2.55 
cocaine 3.50 2.09 2.67 

LSD 4.29 2.65 2.89 
heroin 4.23 2.80 3.19 

 
Table S2: Predicted and true toxicity values of each compound in the non-drug test set for the best 
Crystal-Tox and Oloren ChemEngine models. 
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Model Split MAE 
Halide Set 0 Halide Set 1 Halide Set 2 Halide Set 3 

Random Forest 23.6 23.9 22.2 31.0 
Gaussian Process 27.3 25.2 21.7 30.9 

Adaboost 24.6 23.9 18.7 31.6 
Yield-BERT 27.3 25.2 21.7 30.9 
GraphRXN 9.5 41.6 30.9 18.7 

Crystal-Yield 26.7 14.8 16.3 27.5 
     
 Base 0 Base 1 Base 2  

Random Forest 32.0 32.4 19.9  
Gaussian Process 31.0 34.3 24.8  

Adaboost 27.2 29.5 19.9  
Yield-BERT 23.3 27.4 22.1  
GraphRXN 12.8 27.1 13.8  

Crystal-Yield 13.9 13.0 13.4  
     
 Ligand 0 Ligand 1 Ligand 2 Ligand 3 

Random Forest 27.4 29.0 27.6 29.8 
Gaussian Process 39.8 32.2 29.2 30.6 

Adaboost 26.8 29.9 25.9 27.2 
Yield-BERT 20.4 24.0 25.8 27.0 
GraphRXN 9.7 17.6 12.7 15.2 

Crystal-Yield 24.5 23.4 10.4 14.5 
Crystal-Yielda 17.1 12.2 6.5 10.8 

     
 Additive Set 0 Additive Set 1 Additive Set 2 Additive Set 3 

Random Forest 34.0 31.3 26.7 29.4 
Gaussian Process 32.7 29.0 24.5 27.9 

Adaboost 29.0 27.3 26.7 27.5 
Yield-BERT 25.2 22.9 22.8 25.3 
GraphRXN 16.7 15.2 22.8 15.4 

Crystal-Yield 15.6 16.6 17.2 15.5 
 
Table S3: The mean absolute error (MAE) for each fold in the Buchwald-Hartwig yield prediction. For 
halides and additives, several were left out at a single time to allow for equal training-testing splits for all 
validations. Bolded entries indicate the best model for each fold. aCrystal-Yield with output block 
increased from ~260K parameters to ~1 million parameters. GraphRXN had ~2 million parameters. 
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Figure S1: Graphical representation of the process of transfer learning. The neural network may be frozen 
(no more training occurs) if the finetuning dataset size cannot accommodate the depth of the whole system.  
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Figure S2: Ranking of elements in our cleaned CCDC dataset. 
  

C N O F S Cl P B S Cl P B Si Br Cu I Fe Zn Co

Os Re Au Rh K W Na Al Pt Ag Li Sn Pd Se Mo Mn Ru Cd Ni

V Cr Ti Pb Eu Ir As U Ga Ge Mg Sb Tb Gd Zr Te Hg Dy Nd

Tl Rb Sc Nb Ta Ho Cs Sr Yb Ce Ba Er Y Pr Bi Sm In La Ca

Lu Hf Tm Th Be Tc Np Pu

most common elements in dataset

least common elements in dataset



 S9 

 
Figure S3: Distribution of LD50 values and molecular sizes for the toxicity finetuning tasks. Dark blue 
bars indicate training set distribution, light blue bars indicate the TDC testing set distribution, and teal 
bars indicate the non-pharmaceutical testing set distribution.  
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Figure S4: Representative scopes of reaction yield datasets. (A) Top 5 boronic acids and aryl halides in 
the USPTO Suzuki coupling dataset. (B) All halides, bases, ligands, and additives used in Buchwald-
Hartwig coupling dataset. 
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Figure S5: Suzuki test set and training set comparisons for each test set, consisting of molecules not 
present in the training set. Dark blue bars indicate training set distribution and light blue bars indicate 
testing set distribution. Top: Comparisons of yield distributions of training and test sets. Bottom: 
Comparisons of product molecule size distributions of training and testing sets. 
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Figure S6: Training and testing dataset sizes for Suzuki and Buchwald-Hartwig coupling datasets. For 
the Buchwald-Hartwig couplings, the dataset size is the mean of each halide / ligand / base / additive 
being left out of the training set for testing. 
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Figure S7: The product yield distributions for each halide test set. Note that these test sets combine 4 
halides for a single split. Dark blue bars indicate training set distribution and light blue bars indicate 
testing set distribution. 
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Figure S8: The product yield distributions for each ligand test set. Note that this test set uses one ligand 
per split. Dark blue bars indicate training set distribution and light blue bars indicate testing set 
distribution. 
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Figure S9: The product yield distributions for each base test set. Note that this test set uses one base per 
split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution. 
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Figure S10: The product yield distributions for each additive test set. Note that these test sets combine 6 
additives for a single split. Dark blue bars indicate training set distribution and light blue bars indicate 
testing set distribution. 
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Figure S11: The complete breakdown of odor classes in the Pyrfume training dataset. 
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Figure S12: The difference between the fragrance training and enantiomeric pairs testing sets, in both 
molecular size and in the most common odor classification classes. Dark blue bars indicate training set 
distribution and light blue bars indicate testing set distribution. 
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Figure S13: Predictions from best Crystal-Olfaction model on all enantiomeric pairs. For clarity, correct 
top 5 predictions are shown in parentheses. Horizontal line indicates that none of the top 5 most likely 
labels were correct. Blue predictions show that Crystal-Olfaction correctly identified that the 
enantiomeric pair had an identical / differing olfactive profile, even if no label was correctly predicted in 
the top 5. Red predictions indicate that Crystal-Olfaction determined incorrectly identified the similarity 
of scent profile between the enantiomeric pair. 
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User's Guide 
 

This guide is written for non-experts looking to use the foundational model for transfer learning for their 
own tasks. We will begin with the basic installation and move into an example of how to use the 
foundational model for Buchwald-Hartwig yield prediction. The model was trained on Linux OS and we 
highly recommend that users do the same. 
 
Prerequisites_________________________________________________________________ 
 
Installation of Conda: 
A good rule of thumb when working with code in Python is to use virtual environments for your projects. 
This will allow you to install the exact packages you need without worrying about conflicts from other 
projects / previous installations. We will be using conda virtual environments. Official instructions for 
installation can be found here: https://docs.conda.io/projects/miniconda/en/latest/. Please follow the 
instructions according to your operating system. 
 
Installation of Git (Optional): 
The program used to interface with GitHub is git. Although not a requirement for getting the model from 
the GitHub, it is a very useful tool in managing code. Official instructions for installation can be found 
here: https://github.com/git-guides/install-git. Please follow the instructions according to your operating 
system. 
 
Getting the Code______________________________________________________________ 
 
We will show you the commands used (highlighted in yellow) and the associated output (the line after 
the command is run) to assist users in using command line inputs and our model. Commands can be run 
by pressing the "return" key. Within this text, commands will be indicated with this font. These 
commands are to be implemented in your computer's terminal / console. 
 
Create a New Directory: 
A directory can also be referred to as a "folder". For the remainder of the document, we will be using the 
term directory but you may think of them as folders. To access our code, two methods are possible. The 
first uses git, the second goes through GitHub.com's web-interface. We will go through both. 
 
Start by making a new directory called "transfer_learning" and move into the directory. This can be done 
by typing:  
 
mkdir transfer_learning  
 
There will be no output from this command. 
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Move into the directory with: 
 
cd transfer_learning 
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We are now ready to download the code for Transfer Learning for a Foundational Chemistry Model. You 
have two options. Option 1 requires the installation of git and Option 2 does not.  Please choose either 
Option 1 or Option 2. 
 
Option 1 - Download the GitHub Repository with Git (Git installation required): 
 
Clone the repository. This allows you to instantly download all the information off of the repository to 
your new directory. Type: 
 
git clone https://github.com/emmaking-smith/Modular_Latent_Space.git 
 

 
Option 2 - Download the GitHub Repository from GitHub.com: 
 
If you do not want to install git, you may download all the code from the GitHub website. 
Go to https://github.com/emmaking-smith/Modular_Latent_Space. 
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Click on the green "Code" button. 
 

 
Select "Download ZIP" 
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Unzip the zip file. This can typically be achieved by double clicking on the file. 
 

 
Move the unzipped directory, Modular_Latent_Space-master from its current directory to the directory 
we created at the beginning of this section (we named it transfer_learning). Drag and drop is the easiest 
way to do this. 
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Setting up the Virtual Environment_______________________________________________ 
 
Here, we install the necessary packages to run the transfer learning. The necessary packages can be found 
at https://github.com/emmaking-smith/Modular_Latent_Space at the bottom of the page under 
"Dependencies". 
 
First we create our virtual environment that will be used to run all of our code. Note that you must be 
within this virtual environment to run the code without errors. To do this, we run the following command: 
 
conda create -n tl3.7 python==3.7 
 
Our virtual environment’s name is tl3.7 (transfer learning python version 3.7). We designate the python 
version with the suffix of "python==3.7". It is critical to use the correct version of python when 
attempting to use any other programmer's code.  
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Shortly thereafter, the console will prompt you to accept the installation of new packages. Type: 
 
y 
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The output of these commands will look something like this: 
 

 
We then activate our virtual environment.  
 
conda activate tl3.7 
 
You can tell that you are in a virtual environment by the leftmost text, which now says the environment 
name (see orange box). 
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Package Installation___________________________________________________________ 
 
Next, all the relevant packages of specific versions will be installed. We specify this with the "==" sign. 
RDKit will be installed first. 
 
conda install -y -c rdkit rdkit==2020.09.1 
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You will see many packages being installed. The final output will look something like this: 
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Pytorch and other useful torch packages are installed next with: 
 
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 
torchaudio===0.10.0+cu113 -f 
https://download.pytorch.org/whl/cu113/torch_stable.html 
 
 

 
Then networkx is installed with: 
 
pip install networkx==1.11 
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This is the most critical package to get the correct version. After version 1.11, the graph nomenclature 
changed and attempting to run the code with later versions will result in an error. If you believe you are 
seeing a networkx error, please double check that the version you are running is 1.11. This can easily 
be done using the following commands. 
 
Start python - make sure you are in your virtual environment. Type: 
 
python 
 
	  



 S32 

 

 
Import networkx with: 
 
import networkx 
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Check version with: 
 
networkx.__version__ 
 

 
 
You should have an output of 1.11. 
 
Next install numpy.  This may have already been installed with a previous package. 
 
pip install numpy==1.21.5 
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Then install pandas. Similar to numpy, this may already have been accomplished with a previous package 
installation. 
 
pip install pandas==1.3.5 
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Finally, install sklearn. 
 
pip install scikit-learn==1.0.2 
 

 
 
We are now all set up! 
 
Run the Transfer Learning______________________________________________________ 
 
We will be using the Buchwald-Hartwig dataset as our example transfer learning. Note that the pretrained 
layers from the crystal structure information will be frozen. This has been done for you and can be 
observed in Modular_Latent_Space/buchwald/buchwald_yield_mpnn lines 29-30 (see orange box in the 
figure below). 
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To run the transfer learning, we run a variation of following command: 
 
python py_file_that_makes_predictions.py --option1 choice --option2 choice ... 
 
The "--" indicates a flag. We are telling the model what arguments we are inputting. The flag lets the 
program know that a user-defined selection will occur, and the words after it detail the selection. 
 
Understanding the Buchwald-Hartwig Flags: 
 
For the Buchwald-Hartwig transfer learning, we have 3 flags of importance: split, test_mol_idx, and 
save_path. The split refers to what type of molecule should be left out for model validation. The options 
are "halide", "base", "ligand", and "additive". They are case sensitive.  
 
The test_mol_idx stands for test molecule index and refers to which halide / base / ligand / additive 
molecules should be left out for model validation. Each index will yield a different set of molecules.  
 
The final flag, save_path, is the place we wish to save our model and predictions. If we want to save it in 
a new directory called "predictions" to our Desktop our save_path flag would look like:  
 
--save_path ~/Desktop/predictions. 
 
To summarize our flags: 

Flag name Expected Value(s) Example Flag Value What to type 

split one of the 
following: halide, ligand --split ligand 
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base, ligand, 
additive. 

 
NOTE: Case 

sensitive! 

test_mol_idx 

An integer between 
0 and 3 if your split 

is NOT base. 
 

An integer between 
0 and 2 if your split 

IS base. 

3* 
 
 

*Must not have --split 
base flag. 

--test_mol_idx 3 

save_path A path to a 
directory. 

A new directory in the 
Modular_Latent_Space 

directory called 
transfer_learning_test. 

--save_path 
transfer_learning_test 

 
NOTE: Assuming your 
current location is the 

Modular_Latent_Space 
directory. 

 
For more flags, please refer to Modular_Latent_Space/buchwald/buchwald_yield_prediction.py lines 25 
- 37. For a basic transfer learning, feel free to use the default options. 
 

 
Run the Transfer Learning (Finally!): 
 
We will then run the transfer learning on the Buchwald-Hartwig dataset. The module to do so is called 
buchwald_yield_prediction.py and is located in the buchwald directory. Move yourself into the buchwald 
directory using the cd command. If you are currently in the Modular_Latent_Space directory, this can be 
achieved with: 
 
cd buchwald 
 
You can easily tell you are now in the buchwald directory by looking at the path in blue. The final name 
will be "buchwald" (see orange box in figure below). 
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To run the Buchwald-Hartwig predictions, using a base split, with split index 2, and saving the predictions 
to a new directory called predictions/base_2, type: 
 
python  buchwald_yield_prediction.py --split base --test_mol_idx 2 --
save_path predictions/base_2 
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Helpful hint: If you are running these computations through an ssh, adding the nohup command to the 
beginning will keep your training running even if you lose the ssh connection: 
 
nohup python  buchwald_yield_prediction.py --split base --test_mol_idx 2 --
save_path predictions/base_2 
 

 
 
You can track your progress with the model_log.log (saved to the save_path directory) and the nohup 
output file (default nohup.out). 
 
Voila! Your predictions will be saved to predictions/base_2.  
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The preds.pickle are the predicted values, the model file is the final trained model, and the model_log.log 
is the log file that gives more information regarding the training loss and model parameters. 
 
Viewing the Predictions_________________________________________________________ 
 
Ensure that you are in the correct directory (your save_path directory). If you are in the buchwald 
directory after completing training and have been following the naming convention of this document, you 
can move to the save_path directory by typing: 
 
cd predictions/base_2/ 
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To view pickle files, go into python by typing: 
 
python 
 

 
Import pandas with: 
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import pandas as pd 
 

 
Import your predictions file with: 
 
preds = pd.read_pickle('preds.pickle') 
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View your predictions file with: 
 
preds 
 

 
 
This will give you a snapshot of the prediction file. You can save it out as a csv file which is openable 
with Microsoft Excel if that is more convenient for you with: 
 
preds.to_csv('preds.csv') 
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This will generate a csv file in your working directory called preds. 
 
 
 
 
 
 
 
 
 
 
 
 

Thank you for reading to the end of this guide! 
 

We hope it has been a helpful resource for you. 
 


