Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Transfer Learning for a Foundational Chemistry Model

Emma King-Smith*

Correspondence to: esk34@cam.ac.uk

Table of Contents

Materials and Methods	page	S 3
Code Availability	page	S3
A Non-Expert's Guide to Transfer Learning (CliffsNotes Version)	page	S3
Table S1	page	S4
Table S2	page	S5
Table S3	page	S6
Figure S1	page	S 7
Figure S2	page	S 8
Figure S3	page	S9
Figure S4	page	S10
Figure S5	page	S11
Figure S6	page	S12
Figure S7	page	S13
Figure S8	page	S14
Figure S9	page	S15
Figure S10	page	S16
Figure S11	page	S17
Figure S12	page	S18
Figure S13	page	S19
User's Guide	page	S20-S44

Materials and Methods:

Training and testing of the deep neural networks was performed on a server with 16-core dual threaded AMD Ryzen 95950X processors running CUDA 11.4. Dataset cleanup of the Suzuki dataset, Buchwald-Hartwig dataset, toxicity datasets, and olfaction datasets was carried out on a 2020 MacBook Air M1 (MacOS Big Sur 11.2.3) with PyCharm IDE (2021.1.1 Community Edition).

Code Availability:

The base model latent space parameters and finetuned model parameters are available on the GitHub repository (https://github.com/emmaking-smith/Modular_Latent_Space/tree/master). Cleaned, open-source datasets and all code have also been made available. Access to the Cambridge Crystallographic Data Centre's (CCDC) Cambridge Structural Database (CSD) Python API and data can be accessed by entering a private access agreement with CCDC.

A Non-Expert's Guide to Transfer Learning (CliffsNotes Version):

Transfer learning is the process whereby the information gathered from one source (pretraining dataset) is used to "jump start" the learning from a second source (finetuning dataset). Typically, the finetuning dataset is the desired prediction target. If the finetuning dataset is small and data augmentation through other sources or experimental design is not possible or cost prohibitive, transfer learning is a potential solution. It allows the user to use a bigger model with the bigger pretraining dataset, which may lend itself to better results on the finetuning dataset task (finetuning task). Transfer learning may also be thought of as a way pointing the model in the correct direction.

Practically, the transfer learning is as follows. A machine learning model is trained on the pretraining dataset to predict a pretraining task. The final layer, used to formulate the pretraining task predictions, is removed and replaced with a new layer that will be used to predict the finetuning dataset task. The previous neural network layers retain the information learned from the pretraining dataset task. From here, the user may opt to "freeze" the pretrained layers or to re-train the whole system. Freezing the layers allows for small datasets to be used with deep neural networks. Re-training the whole system may be more beneficial if both datasets are sufficiently large and sufficiently distinct from one another (Figure S1).

Model	Test Set MSE
Small MPNN	3.17
Large MPNN	2.93

Table S1: Mean Squared Error (MSE) of total loss (bond distance loss + bond angles loss) on crystal structure data for a variety of message passing neural networks (MPNNs). Test set consisted of unseen molecules.

Compound	True Toxicity (log(mol kg ⁻¹))	Crystal-Tox Predicted Toxicity (log(mol kg ⁻¹))	Oloren ChemEngine Predicted Toxicity (log(mol kg ⁻¹))
water	-0.70	1.53	1.98
sucrose	1.06	1.01	1.48
glucose	0.84	1.25	1.77
monosodium glutamate	1.00	1.66	2.10
THC	2.39	2.88	2.53
CBD	2.51	2.62	2.41
aconitine	6.90	3.84	3.38
epibatidine	7.43	2.88	2.93
MDMA	3.08	2.59	2.55
cocaine	3.50	2.09	2.67
LSD	4.29	2.65	2.89
heroin	4.23	2.80	3.19

Table S2: Predicted and true toxicity values of each compound in the non-drug test set for the best

 Crystal-Tox and Oloren ChemEngine models.

Madal		Split 1	MAE	
Niodei	Halide Set 0	Halide Set 1	Halide Set 2	Halide Set 3
Random Forest	23.6	23.9	22.2	31.0
Gaussian Process	27.3	25.2	21.7	30.9
Adaboost	24.6	23.9	18.7	31.6
Yield-BERT	27.3	25.2	21.7	30.9
GraphRXN	9.5	41.6	30.9	18.7
Crystal-Yield	26.7	14.8	16.3	27.5
	Base 0	Base 1	Base 2	
Random Forest	32.0	32.4	19.9	-
Gaussian Process	31.0	34.3	24.8	
Adaboost	27.2	29.5	19.9	
Yield-BERT	23.3	27.4	22.1	
GraphRXN	12.8	27.1	13.8	
Crystal-Yield	13.9	13.0	13.4	
	Ligand 0	Ligand 1	Ligand 2	Ligand 3
Random Forest	27.4	29.0	27.6	29.8
Gaussian Process	39.8	32.2	29.2	30.6
Adaboost	26.8	29.9	25.9	27.2
Yield-BERT	20.4	24.0	25.8	27.0
GraphRXN	9.7	17.6	12.7	15.2
Crystal-Yield	24.5	23.4	10.4	14.5
Crystal-Yield ^a	17.1	12.2	6.5	10.8
	Additive Set 0	Additive Set 1	Additive Set 2	Additive Set 3
Random Forest	34.0	31.3	26.7	29.4
Gaussian Process	32.7	29.0	24.5	27.9
Adaboost	29.0	27.3	26.7	27.5
Yield-BERT	25.2	22.9	22.8	25.3
GraphRXN	16.7	15.2	22.8	15.4
Crystal-Yield	15.6	16.6	17.2	15.5

Table S3: The mean absolute error (MAE) for each fold in the Buchwald-Hartwig yield prediction. For halides and additives, several were left out at a single time to allow for equal training-testing splits for all validations. Bolded entries indicate the best model for each fold. ^aCrystal-Yield with output block increased from ~260K parameters to ~1 million parameters. GraphRXN had ~2 million parameters.

Figure S1: Graphical representation of the process of transfer learning. The neural network may be frozen (no more training occurs) if the finetuning dataset size cannot accommodate the depth of the whole system.

С	Ν	0	F	S	CI	Ρ	в	S	CI	Ρ	В	Si	Br	Cu	I	Fe	Zn	Co
Os	Re	Au	Rh	к	w	Na	AI	Pt	Ag	Li	Sn	Pd	Se	Мо	Mn	Ru	Cd	Ni
V	<u> </u>	T :	Dh	E					<u> </u>	Ma	Sh	Th	64	7.	Ta	На	Dv	Nd
v	Gr		FU	Εu	Ir	AS	U	Ga	Ge	wig	30	ID	Gu	21	Te	ng	Ъу	nu
ТІ	Rb	Sc	Nb	Та	Но	Cs	Sr	Yb	Ce	Ва	Er	Y	Pr	Bi	Sm	In	La	Ca
				ما	ast co	mmo	مام n	mont	s in d	ataso	t							

Figure S2: Ranking of elements in our cleaned CCDC dataset.

Figure S3: Distribution of LD50 values and molecular sizes for the toxicity finetuning tasks. Dark blue bars indicate training set distribution, light blue bars indicate the TDC testing set distribution, and teal bars indicate the non-pharmaceutical testing set distribution.

Figure S4: Representative scopes of reaction yield datasets. (**A**) Top 5 boronic acids and aryl halides in the USPTO Suzuki coupling dataset. (**B**) All halides, bases, ligands, and additives used in Buchwald-Hartwig coupling dataset.

Figure S5: Suzuki test set and training set comparisons for each test set, consisting of molecules not present in the training set. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution. **Top:** Comparisons of yield distributions of training and test sets. **Bottom:** Comparisons of product molecule size distributions of training and testing sets.

Figure S6: Training and testing dataset sizes for Suzuki and Buchwald-Hartwig coupling datasets. For the Buchwald-Hartwig couplings, the dataset size is the mean of each halide / ligand / base / additive being left out of the training set for testing.

Figure S7: The product yield distributions for each halide test set. Note that these test sets combine 4 halides for a single split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Figure S8: The product yield distributions for each ligand test set. Note that this test set uses one ligand per split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Figure S9: The product yield distributions for each base test set. Note that this test set uses one base per split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Figure S10: The product yield distributions for each additive test set. Note that these test sets combine 6 additives for a single split. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Figure S11: The complete breakdown of odor classes in the Pyrfume training dataset.

Figure S12: The difference between the fragrance training and enantiomeric pairs testing sets, in both molecular size and in the most common odor classification classes. Dark blue bars indicate training set distribution and light blue bars indicate testing set distribution.

Figure S13: Predictions from best Crystal-Olfaction model on all enantiomeric pairs. For clarity, correct top 5 predictions are shown in parentheses. Horizontal line indicates that none of the top 5 most likely labels were correct. Blue predictions show that Crystal-Olfaction correctly identified that the enantiomeric pair had an identical / differing olfactive profile, even if no label was correctly predicted in the top 5. Red predictions indicate that Crystal-Olfaction determined incorrectly identified the similarity of scent profile between the enantiomeric pair.

User's Guide

This guide is written for non-experts looking to use the foundational model for transfer learning for their own tasks. We will begin with the basic installation and move into an example of how to use the foundational model for Buchwald-Hartwig yield prediction. The model was trained on Linux OS and we highly recommend that users do the same.

Prerequisites

Installation of Conda:

A good rule of thumb when working with code in Python is to use virtual environments for your projects. This will allow you to install the exact packages you need without worrying about conflicts from other projects / previous installations. We will be using conda virtual environments. Official instructions for installation can be found here: https://docs.conda.io/projects/miniconda/en/latest/. Please follow the instructions according to your operating system.

Installation of Git (Optional):

The program used to interface with GitHub is git. Although not a requirement for getting the model from the GitHub, it is a very useful tool in managing code. Official instructions for installation can be found here: https://github.com/git-guides/install-git. Please follow the instructions according to your operating system.

Getting the Code

We will show you the commands used (highlighted in yellow) and the associated output (the line after the command is run) to assist users in using command line inputs and our model. Commands can be run by pressing the "return" key. Within this text, commands will be indicated with this font. These commands are to be implemented in your computer's terminal / console.

Create a New Directory:

A directory can also be referred to as a "folder". For the remainder of the document, we will be using the term directory but you may think of them as folders. To access our code, two methods are possible. The first uses git, the second goes through GitHub.com's web-interface. We will go through both.

Start by making a new directory called "transfer_learning" and move into the directory. This can be done by typing:

mkdir transfer_learning

There will be no output from this command.

•••	📷 emmaking-smith — ubuntu@magic: ~/user_guide —	ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31	
buntu@magic	:: ~/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122	~ — -zsh	+
• • • buntu@magic (ubuntu@magic ubuntu@magic	<pre>emmaking-smith — ubuntu@magic: ~/user_guide — s: ~/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122 c: ~/user_guide\$ mkdir transfer_learning c: ~/user_guide\$</pre>	ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31 ~zsh	+

Move into the directory with:

cd transfer_learning

🖲 😑 💼 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learnin	g — ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31)
user_guide/transfer_learning — ssh -i alchemist_eks ubuntu@90.202.241.122	~ — -zsh	+
 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learnin user_guide/transfer_learning — ssh -i alchemist_eks ubuntu@90.202.241.122 ubuntu@magic: ~/user_guide\$ mkdir transfer_learning ubuntu@magic: ~/user_guide\$ cd transfer_learning ubuntu@magic: ~/user_guide/transfer_learning\$ 	g — ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31 ~zsh	+

We are now ready to download the code for Transfer Learning for a Foundational Chemistry Model. You have two options. Option 1 requires the installation of git and Option 2 does not. Please choose **either** Option 1 or Option 2.

Option 1 - Download the GitHub Repository with Git (Git installation required):

Clone the repository. This allows you to instantly download all the information off of the repository to your new directory. Type:

git clone https://github.com/emmaking-smith/Modular_Latent_Space.git

Option 2 - Download the GitHub Repository from GitHub.com:

If you do not want to install git, you may download all the code from the GitHub website. Go to https://github.com/emmaking-smith/Modular_Latent_Space.

E C emmaking-smith / Modular <> Code ⊙ Issues î\ Pull reques	_Latent_Space ts 🕞 Actions 🖽 Projects	Q Type [/ to search □ Wiki ① Security └∠ Insights 稔	> + • • • 11 🛆 🐼
S Modular_Latent_Space	Public	☆ Pin	
ुश master - ११ 1 branch 📀 0 t	ags	Go to file Add file - <> Code -	About 🕸
emmaking-smith Add files via up	bload	✓ 08604ef on Sep 22	The code corresponding to Transfer Learning for a Foundational Chemistry Model
MPNN	MPNN module	last month	
buchwald	buchwald modules	last month	Chemitativorg/engage/chemitativ/articl
fragrance	chiral tag	last month	machine-learning chemistry
📄 suzuki	suzuki modules	last month	Readme
toxicity	toxicity modules	last month	-\- Activity
LICENSE	Initial commit	last month	습 0 stars
B README.md	Update README.md	last month	① 1 watching
googlebd0229a4ecef9cfa.html	Add files via upload	last month	ళ్లి 0 forks
🗋 index.html	Update index.html	last month	Delesses

Click on the green "Code" button.

≡ Ç	emmaking-smith / Modular	r_Latent_Space	(Q Type 🕖 to search		>_ + • O I	1 🖻 😨		
<> Code	⊙ Issues 🖁 Pull reques	sts 🕑 Actions 🗄] Projects 🛛 🕮 Wiki	🕑 Security 🗠	Insights හි	Settings			
🔝 Mo	odular_Latent_Space	Public		☆ Pin	⊙ Unwatch 1	▼	ar 0 -		
្រៃ ma	aster 👻 🤔 1 branch 🔊 0 t	ags	Go to	file Add file -	<> Code -	About	ŝ		
	🔝 emmaking-smith Add files via upload			Codes	paces	The code corresponding to T Learning for a Foundational (ransfer Chemistry		
N	MPNN	MPNN module	E Clone		?		wiv/orticl		
b	buchwald	buchwald modules	HTTPS SSH	GitHub CLI		machine-learning chemistry	xivjai tici		
🖿 fi	ragrance	chiral tag	https://github.co	m/emmaking-smith/Modu	ular 🖸				
S	suzuki	suzuki modules	Use Git or checkout with SVN using the web URL.			Readme MIT license			
🖿 t	oxicity	toxicity modules	🗘 Open with GitHu	b Desktop		-\- Activity			
	ICENSE	Initial commit	A 1			☆ 0 stars			
C R	README.md	Update README.md	Download ZIP			① 1 watching			
L g	googlebd0229a4ecef9cfa.html	Add files via upload	🔀 Code 55% faste	r with AI pair program	ming.	상 0 forks			
https://github.com/	ndex.html emmaking-smith/Modular_Latent_Space/archive	Update index.html /refs/heads/master.zip	Start my free t	rial Don't show aga	in	Releases			

Select "Download ZIP"

Code O Issues 11 Pull	odular_Latent_Space requests	Q Ty Projects 🖽 Wiki ①	ype [∕] to search Security ⊡∕ Insights ເģ	>_ + • ⓒ th @ 💽			
	ace Public		☆ Pin ③ Unwatch	1 ▼ ¹ % Fork 0 ▼ ☆ Star 0 ▼			
ਿੰ master - ਿੱ 1 branch	🛇 0 tags	Go to file	Add file - <> Code -	About 錄			
😹 emmaking-smith Add files	s via upload	Local	Codespaces	The code corresponding to Transfer Learning for a Foundational Chemistry			
MPNN buchwald	MPNN module	Clone	CLI	Model			
fragrance suzuki	chiral tag suzuki modules	https://github.com/emma	aking-smith/Modular []	machine-learning chemistry □ Readme ① MIT license 小 Activity ☆ 0 stars			
toxicityLICENSE	toxicity modules	다 Open with GitHub Des	iktop				
 README.md googlebd0229a4ecef9cfa. 	Update README.md	Download ZIP	Al pair programming.	 ⊙ 1 watching ♀ 0 forks 			
index.html	Update index.html e/archive/refs/heads/master.zip	Start my free trial	Don't show again	Releases			

Unzip the zip file. This can typically be achieved by double clicking on the file.

•••	< > Downloads	≔≎	
Favorites	Name		Date Created 🗸 🗸
😭 emmaking-smith	Modular Latent Space-master.zip		Todav at 6:32 PM
AirDrop			
ecents			
🙏 Applications			
Desktop			
🗎 ccdc_manuscript			
crystal_structure			
🛅 Gaunt			
🗎 Jenny			
🗀 LSF Manuscript			
Documents			
HITEA			
cool papers			

Move the unzipped directory, Modular_Latent_Space-master from its current directory to the directory we created at the beginning of this section (we named it transfer_learning). Drag and drop is the easiest way to do this.

•••	< > Downloads	∷≡≎	<u> </u>	∱ ⊘ ⊙ ∨	Q
Favorites	Name			Date Created	~
😭 emmaking-smith	Modular Latent Space-master.zip			Todav at 6:32 PM	
AirDrop	Modular_Latent_Space-master			Sep 22, 2023 at 9:1	5 AM
P Recents	> 🚞 buchwald			Sep 22, 2023 at 9:1	5 AM
X Applications	> 🔄 fragrance			Sep 22, 2023 at 9:1	5 AM
Applications	🧕 googlebd0229a4ecef9cfa.html			Sep 22, 2023 at 9:1	5 AM
🚍 Desktop	index.html			Sep 22, 2023 at 9:1	5 AM
🗖 codo manuscrint	LICENSE			Sep 22, 2023 at 9:1	5 AM
	> 🚞 MPNN			Sep 22, 2023 at 9:1	5 AM
🗎 crystal_structure	README.md			Sep 22, 2023 at 9:1	5 AM
🗂 Gaunt	> 🚞 suzuki			Sep 22, 2023 at 9:1	5 AM
	> 🚞 toxicity			Sep 22, 2023 at 9:1	5 AM
🗖 Jenny					
🔁 LSF Manuscript					
Documents					
🗎 HITEA					
🔁 cool papers					

Setting up the Virtual Environment

Here, we install the necessary packages to run the transfer learning. The necessary packages can be found at https://github.com/emmaking-smith/Modular_Latent_Space at the bottom of the page under "Dependencies".

First we create our virtual environment that will be used to run all of our code. Note that you must be within this virtual environment to run the code without errors. To do this, we run the following command:

```
conda create -n tl3.7 python==3.7
```

Our virtual environment's name is tl3.7 (transfer learning python version 3.7). We designate the python version with the suffix of "python==3.7". It is critical to use the correct version of python when attempting to use any other programmer's code.

```
• • •
               📷 emmaking-smith — ubuntu@magic: ~/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31
   ..buntu@magic: ~/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122
ubuntu@magic:~/user_guide$ conda create -n tl3.7 python==3.7
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful attempt using repodata from current_repodata.json, retrying with next repo
data source.
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
 current version: 23.7.3
  latest version: 23.9.0
Please update conda by running
    $ conda update -n base -c defaults conda
Or to minimize the number of packages updated during conda update use
     conda install conda=23.9.0
## Package Plan ##
  environment location: /home/ubuntu/miniconda3/envs/tl3.7
  added / updated specs:
    - python==3.7
The following NEW packages will be INSTALLED:
```

Shortly thereafter, the console will prompt you to accept the installation of new packages. Type:

У

```
•
              💼 emmaking-smith — ubuntu@magic: ~/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122 — 108×31
...buntu@magic: ~/user_guide — ssh -i alchemist_eks.ubuntu@90.202.241.122
                                                                                   -zsh
 environment location: /home/ubuntu/miniconda3/envs/tl3.7
 added / updated specs:
   - python==3.7
The following NEW packages will be INSTALLED:
 _libgcc_mutex
                     pkgs/main/linux-64::_libgcc_mutex-0.1-main
  _openmp_mutex
                     pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu
                     pkgs/main/linux-64::ca-certificates-2023.08.22-h06a4308_0
 ca-certificates
 certifi
                     pkgs/main/linux-64::certifi-2022.12.7-py37h06a4308_0
                     pkgs/main/linux-64::libedit-3.1.20221030-h5eee18b_0
 libedit
 libffi
                     pkgs/main/linux-64::libffi-3.2.1-hf484d3e_1007
                     pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1
 libgcc-ng
 libgomp
                     pkgs/main/linux-64::libgomp-11.2.0-h1234567_1
 libstdcxx-ng
                     pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1
 ncurses
                     pkgs/main/linux-64::ncurses-6.4-h6a678d5_0
 openssl
                     pkgs/main/linux-64::openssl-1.0.2u-h7b6447c_0
                     pkgs/main/linux-64::pip-22.3.1-py37h06a4308_0
 pip
 python
                     pkgs/main/linux-64::python-3.7.0-h6e4f718_3
 readline
                     pkgs/main/linux-64::readline-7.0-h7b6447c_5
 setuptools
                     pkgs/main/linux-64::setuptools-65.6.3-py37h06a4308_0
                     pkgs/main/linux-64::sqlite-3.33.0-h62c20be_0
 salite
                     pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0
 tk
 wheel
                     pkgs/main/linux-64::wheel-0.38.4-py37h06a4308_0
 xz
                     pkgs/main/linux-64::xz-5.4.2-h5eee18b_0
 zlib
                     pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0
Proceed ([y]/n)? <mark>y</mark>
```

The output of these commands will look something like this:

🖲 😑 💼 e	mmaking-smith — ubuntu@magic: ~/user_guide — ssh	-i alchemist_eks ubuntu@90.202.241.122 — 108×31	F	
buntu@magic: ~/user	_guide — ssh -i alchemist_eks ubuntu@90.202.241.122	~ — -zsh	+	
ncurses openssl pip python readline setuptools sqlite tk wheel xz zlib	<pre>pkgs/main/linux-64::ncurses-6.4-h6ac pkgs/main/linux-64::openssl-1.0.2u-l pkgs/main/linux-64::pip-22.3.1-py37l pkgs/main/linux-64::python-3.7.0-h6c pkgs/main/linux-64::readline-7.0-h7l pkgs/main/linux-64::setuptools-65.6 pkgs/main/linux-64::sqlite-3.33.0-hc pkgs/main/linux-64::tk-8.6.12-h1ccal pkgs/main/linux-64::tk-8.6.12-h1ccal pkgs/main/linux-64::wheel-0.38.4-py2 pkgs/main/linux-64::zlib-1.2.13-h5ec</pre>	678d5_0 h7b6447c_0 h06a4308_0 e4f718_3 b6447c_5 .3-py37h06a4308_0 62c20be_0 ba5_0 37h06a4308_0 8b_0 ee18b_0		
Proceed ([y]/n)? Downloading and E	y xtracting Packages]	
Preparing transac Verifying transac Executing transac #	tion: done tion: done tion: done			
# To activate this environment, use # # \$ conda activate tl3.7 # #				
# To deactivate an active environment, use # # \$ conda deactivate ubuntu@magic:~/user guide\$				

We then activate our virtual environment.

conda activate tl3.7

You can tell that you are in a virtual environment by the leftmost text, which now says the environment name (see orange box).

• •	🛅 emmaking-smith — ubuntu@magic: ~/user_guide — se	sh -i alchemist_eks ubuntu@90.202.241.122 — 108×31	F		
buntu@magic: ~	/user_guide — ssh -i alchemist_eks ubuntu@90.202.241.122	~ — -zsh	+		
openssl pip python readline setuptools sqlite tk wheel xz zlib	pkgs/main/linux-64::openssl-1.0.2u pkgs/main/linux-64::pip-22.3.1-py3 pkgs/main/linux-64::python-3.7.0-h pkgs/main/linux-64::readline-7.0-h pkgs/main/linux-64::setuptools-65. pkgs/main/linux-64::sqlite-3.33.0- pkgs/main/linux-64::tk-8.6.12-h1cc pkgs/main/linux-64::wheel-0.38.4-p pkgs/main/linux-64::xz-5.4.2-h5eee pkgs/main/linux-64::zlib-1.2.13-h5	-h7b6447c_0 7h06a4308_0 6e4f718_3 7b6447c_5 6.3-py37h06a4308_0 h62c20be_0 aba5_0 y37h06a4308_0 18b_0 eee18b_0			
Proceed ([y]/r	n)? y]		
Preparing trar Verifying trar Executing trar # # To activate # # \$ conda	na Extracting Packages nsaction: done nsaction: done this environment, use activate tl3.7				
To deactivate an active environment, use \$ conda deactivate buntu@magic:~/user_guide total.7					

Package Installation

Next, all the relevant packages of specific versions will be installed. We specify this with the "==" sign. RDKit will be installed first.

conda install -y -c rdkit rdkit==2020.09.1

```
🖲 😑 💿 immaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.12...
                          – – zsh
                                                             .../Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.122
ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$ conda activate t13.7
[(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$      <mark>conda install -y -c rdkit rdkit==2</mark>
020.09.1
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Solving environment: unsuccessful attempt using repodata from current_repodata.json, retrying with next repo
data source.
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
  current version: 23.7.3
  latest version: 23.9.0
Please update conda by running
    $ conda update -n base -c defaults conda
Or to minimize the number of packages updated during conda update use
     conda install conda=23.9.0
## Package Plan ##
  environment location: /home/ubuntu/miniconda3/envs/tl3.7
  added / updated specs:
    - rdkit==2020.09.1
```

You will see many packages being installed. The final output will look something like this:

💿 😑 🔵 🛅 emmaking-smi	ith — ubuntu@magic: ~/user_guid	e/transfer_learning/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.1	2
	~ — -zsh	/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.122	+
<pre>libwebp-base libxcb libxml2 lz4-c mkl_mkl-service mkl_fft mkl_random numexpr numpy-base packaging pandas pcre pillow pixman py-boost python-dateutil pytz rdkit six zstd</pre>	<pre>pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::1: pkgs/main/linux-64::2: pkgs/main/linux-64::2: pkgs/main/linux-64::2: pkgs/main/linux-64::2:</pre>	bwebp-base-1.2.4-h5ee18b_1 bxcb-1.15-h7f8727e_0 bxml2-2.10.4-hcbfbd50_0 r4-c-1.9.4-h6a678d5_0 r1-2021.4.0-h06a4308_640 r1-2021.4.0-h06a4308_640 r1-2021.4.0-h06a4308_640 r1-2021.4.0-h06a4308_640 r1-2021.4.0-h06a4308_0 recpre-2.8.4-py37hd51133e4_0 recpre-2.8.4-py37hd591a56_3 recpre-2.8.4-py37hd591a56_3 repy37hd591a56_3 repy37hd591a56_3 repy37hd591a56_3 repy37hd591a56_3 repy37hd516a72_0 re-8.45-h295c915_0 re-8.45-h295c915_0 rec-8.45-h295c915_0 rec-8.45-h295c915_0 rec-8.45-h295c915_0 recost-1.73.0-py37h51133e4_12 recost-1.75.5-hc292b87_0	
Downloading and Ext Preparing transactic Verifying transactic Executing transactic (t13.7) ubuntu@magic	racting Packages on: done on: done on: done c:~/user_guide/transfer.	learning/Modular_Latent_Space\$	

Pytorch and other useful torch packages are installed next with:

```
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113
torchaudio===0.10.0+cu113 -f
https://download.pytorch.org/whl/cu113/torch_stable.html
```

```
🖲 😑 💿 🔤 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.12...
                                                            ../Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.122
                           -zsh
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$ pip3 install torch==1.10.0+cu113 t
orchvision==0.11.1+cu113 torchaudio===0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.ht
ml
Looking in links: https://download.pytorch.org/whl/cu113/torch_stable.html
Collecting torch==1.10.0+cu113
 Downloading https://download.pytorch.org/whl/cu113/torch-1.10.0%2Bcu113-cp37-cp37m-linux_x86_64.whl (1821.
5 MB)
                                              - 1.8/1.8 GB 2.5 MB/s eta 0:00:00
Collecting torchvision==0.11.1+cu113
  Downloading https://download.pytorch.org/whl/cu113/torchvision-0.11.1%2Bcu113-cp37-cp37m-linux_x86_64.whl
(24.6 MB)
                                              - 24.6/24.6 MB 8.7 MB/s eta 0:00:00
Collecting torchaudio===0.10.0+cu113
 Using cached https://download.pytorch.org/whl/cu113/torchaudio-0.10.0%2Bcu113-cp37-cp37m-linux_x86_64.whl
(2.9 MB)
Collecting typing-extensions
 Using cached typing_extensions-4.7.1-py3-none-any.whl (33 kB)
Requirement already satisfied: numpy in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-packages (from
torchvision==0.11.1+cu113) (1.21.5)
Requirement already satisfied: pillow!=8.3.0,>=5.3.0 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/sit
e-packages (from torchvision==0.11.1+cu113) (9.4.0)
Installing collected packages: typing-extensions, torch, torchvision, torchaudio
Successfully installed torch-1.10.0+cu113 torchaudio-0.10.0+cu113 torchvision-0.11.1+cu113 typing-extensions
-4.7.1
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$
```

Then networkx is installed with:

pip install networkx==1.11

This is the most critical package to get the correct version. After version 1.11, the graph nomenclature changed and attempting to run the code with later versions will result in an error. If you believe you are seeing a networkx error, please double check that the version you are running is 1.11. This can easily be done using the following commands.

Start python - make sure you are in your virtual environment. Type:

python

Import networkx with:

import networkx

Check version with:

networkx.__version__

You should have an output of 1.11.

Next install numpy. This may have already been installed with a previous package.

pip install numpy==1.21.5

Then install pandas. Similar to numpy, this may already have been accomplished with a previous package installation.

pip install pandas==1.3.5

```
🖲 😑 🖢 💼 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.12...
                           – -zsh
                                                            .../Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.122
                                                       ....
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$ pip install pandas==1.3.5
Requirement already satisfied: pandas==1.3.5 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-packag
es (1.3.5)
Requirement already satisfied: python-dateutil>=2.7.3 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/si
te-packages (from pandas==1.3.5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-package
s (from pandas==1.3.5) (2022.7)
Requirement already satisfied: numpy>=1.17.3 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-packag
es (from pandas==1.3.5) (1.21.5)
Requirement already satisfied: six>=1.5 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-packages (f
rom python-dateutil>=2.7.3->pandas==1.3.5) (1.16.0)
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$
```

Finally, install sklearn.

```
pip install scikit-learn==1.0.2
```

```
🖲 😑 💿 📷 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.12...
              /Users/emmaking-smith/Desktop — -zsh
                                                             .../Modular_Latent_Space — ssh -i alchemist_eks ubuntu@90.202.241.122
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$ pip install scikit-learn==1.0.2
Collecting scikit-learn==1.0.2
 Using cached scikit_learn-1.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.8 MB)
Requirement already satisfied: scipy>=1.1.0 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-package
s (from scikit-learn==1.0.2) (1.7.3)
Requirement already satisfied: joblib>=0.11 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-package
s (from scikit-learn==1.0.2) (1.3.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site
-packages (from scikit-learn==1.0.2) (3.1.0)
Requirement already satisfied: numpy>=1.14.6 in /home/ubuntu/miniconda3/envs/tl3.7/lib/python3.7/site-packag
es (from scikit-learn==1.0.2) (1.21.5)
Installing collected packages: scikit-learn
Successfully installed scikit-learn-1.0.2
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space$
```

We are now all set up!

Run the Transfer Learning

We will be using the Buchwald-Hartwig dataset as our example transfer learning. Note that the pretrained layers from the crystal structure information will be frozen. This has been done for you and can be observed in Modular_Latent_Space/buchwald/buchwald_yield_mpnn lines 29-30 (see orange box in the figure below).

```
13
       device = 'cuda' if torch.cuda.is available() else 'cpu'
14
15 v class Buchwald_MPNN(nn.Module):
           def __init__(self, message_size, message_passes, atom_list, pretrained_mpnn_path):
16
17
               super(Buchwald_MPNN, self).__init__()
18
19
               self.message_size = message_size
20
               self.message_passes = message_passes
21
               self.atom_list = atom_list
22
               self.pretrained_mpnn_path = pretrained_mpnn_path
23
24
               self.mpnn = Big_MPNN(self.message_size, self.message_passes, self.atom_list)
25
               mpnn_trained_state_dict = self.gen_states(self.pretrained_mpnn_path)
26
               self.mpnn.load_state_dict(mpnn_trained_state_dict)
27
28
               # Turning off the params.
29
               for param in self.mpnn.parameters():
30
                   param.requires_grad = False
31
32
               self.yield_predictor = nn.Sequential(
33
                   nn.Linear(self.message_size * 4, self.message_size * 4),
34
                   nn.ReLU().
35
                   # nn.Linear(self.message_size * 4, self.message_size * 4),
36
                   # nn.ReLU(),
37
                   # nn.Linear(self.message_size * 4, self.message_size * 4),
38
                   # nn.ReLU().
30
                   # nn.Linear(self.message size * 4. self.message size * 4)
```

To run the transfer learning, we run a variation of following command:

python py_file_that_makes_predictions.py --option1 choice --option2 choice ...

The "--" indicates a flag. We are telling the model what arguments we are inputting. The flag lets the program know that a user-defined selection will occur, and the words after it detail the selection.

Understanding the Buchwald-Hartwig Flags:

For the Buchwald-Hartwig transfer learning, we have 3 flags of importance: split, test_mol_idx, and save_path. The split refers to what type of molecule should be left out for model validation. The options are "halide", "base", "ligand", and "additive". They are case sensitive.

The test_mol_idx stands for test molecule index and refers to which halide / base / ligand / additive molecules should be left out for model validation. Each index will yield a different set of molecules.

The final flag, save_path, is the place we wish to save our model and predictions. If we want to save it in a new directory called "predictions" to our Desktop our save_path flag would look like:

--save_path ~/Desktop/predictions.

To summarize our flags:

Flag name	Expected Value(s)	Example Flag Value	What to type
split	one of the following: halide,	ligand	split ligand

	base, ligand, additive. NOTE: Case sensitive!		
test_mol_idx	An integer between 0 and 3 if your split is NOT base. An integer between 0 and 2 if your split IS base.	3* *Must not havesplit base flag.	test_mol_idx 3
save_path	A path to a directory.	A new directory in the Modular_Latent_Space directory called transfer_learning_test.	save_path transfer_learning_test NOTE: Assuming your current location is the Modular_Latent_Space directory.

For more flags, please refer to Modular_Latent_Space/buchwald/buchwald_yield_prediction.py lines 25 - 37. For a basic transfer learning, feel free to use the default options.

19 fr	om buchwald_yield_mpnn import Buchwald_MPNN
20	
21 🗸 cl	ass Initialization:
22	<pre>definit(self):</pre>
23	pass
24	
25 🗸	<pre>def init_args(self):</pre>
26	<pre>parser = argparse.ArgumentParser()</pre>
27	parser.add_argument('path_to_buchwald_data', type=str, help='The path to the Buchwald csv file.',
28	<pre>default='doyle_buchwald_data.csv')</pre>
29	<pre>parser.add_argument('epochs', type=int, default=100)</pre>
30	<pre>parser.add_argument('learning_rate', type=float, default=1e-4)</pre>
31	<pre>parser.add_argument('batch_size', type=int, default=64)</pre>
32	<pre>parser.add_argument('message_size', type=int, default=128)</pre>
33	<pre>parser.add_argument('message_passes', type=int, default=3)</pre>
34	<pre>parser.add_argument('pretrained_mpnn_path', type=str, default='/MPNN/big_mpnn_no_delocalised_no_unknown_model')</pre>
35	<pre>parser.add_argument('save_path', '-s', type=str)</pre>
36	<pre>parser.add_argument('split', type=str, help='Options are: halide, ligand, base, additive.')</pre>
37	<pre>parser.add_argument('test_mol_idx', type=int, help='What molecule to leave out for testing.')</pre>
38	return parser.parse_args()
39	

Run the Transfer Learning (Finally!):

We will then run the transfer learning on the Buchwald-Hartwig dataset. The module to do so is called buchwald_yield_prediction.py and is located in the buchwald directory. Move yourself into the buchwald directory using the cd command. If you are currently in the Modular_Latent_Space directory, this can be achieved with:

cd buchwald

You can easily tell you are now in the buchwald directory by looking at the path in blue. The final name will be "buchwald" (see orange box in figure below).

🖲 😑 💿 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space/buchwald — ssh -i alchemist_eks ubuntu@90					
/Users/emmaking-smith/Desktop — -zsh	atent_Space/buchwald — ssh -i alchemist_eks ubuntu@90.202.241.122 +				
<pre>emmaking-smith - ubuntu@magic: -/user_guide/transfer_lear /Users/emmaking-smith/Desktopzsh (t13.7) ubuntu@magic:~/user_guide/transfer_learning/N (t13.7) ubuntu@magic:~/user_guide/transfer_learning/N</pre>	<pre>rning/Modular_Latent_Space/buchwald — ssh -i alchemist_eks ubuntu@90.202.241.122 + lodular_Latent_Space\$ cd buchwald lodular_Latent_Space*/buchwald\$</pre>				

To run the Buchwald-Hartwig predictions, using a base split, with split index 2, and saving the predictions to a new directory called predictions/base_2, type:

python buchwald_yield_prediction.py --split base --test_mol_idx 2 -save_path predictions/base_2

Helpful hint: If you are running these computations through an ssh, adding the nohup command to the beginning will keep your training running even if you lose the ssh connection:

nohup python buchwald_yield_prediction.py --split base --test_mol_idx 2 -save_path predictions/base_2

You can track your progress with the model_log.log (saved to the save_path directory) and the nohup output file (default nohup.out).

Voila! Your predictions will be saved to predictions/base_2.

The preds.pickle are the predicted values, the model file is the final trained model, and the model_log.log is the log file that gives more information regarding the training loss and model parameters.

Viewing the Predictions

Ensure that you are in the correct directory (your save_path directory). If you are in the buchwald directory after completing training and have been following the naming convention of this document, you can move to the save_path directory by typing:

cd predictions/base_2/

💿 😑 💼 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_lear	ning/Modular_Latent_Space/buchwald/predictions/base_2 — ssh -i alchemi
/Users/emmaking-smith/Desktop — -zsh	ald/predictions/base_2 - ssh -i alchemist_eks ubuntu@90.202.241.122 +
/Users/emmaking-smith/Desktop — -zsh [(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/M (tl3.7) ubuntu@magic:~/user_guide/transfer_learning/M	ald/predictions/base_2 - ssh -i alchemist_eks ubuntu@90.202.241.122 + odular_Latent_Space/buchwald\$ cd predictions/base_2/ odular_Latent_Space/buchwald/predictions/base_2\$

To view pickle files, go into python by typing:

python

💿 😑 💼 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_lear	ning/Modular_Latent_Space/buchwald/predictions/base_2 — ssh -i alchemi
/Users/emmaking-smith/Desktop — <mark>-zsh</mark>	ald/predictions/base_2 - ssh -i alchemist_eks ubuntu@90.202.241.122 +
(t13.7) ubuntu@magic:~/user_guide/transfer_learning/Mu Python 3.7.0 (default, Oct 9 2018, 10:31:47) [GCC 7.3.0] :: Anaconda, Inc. on linux	odular_Latent_Space/buchwald/predictions/base_2\$ python
>>>	Note information.

Import pandas with:

import pandas as pd

```
emmaking-smith - ubuntu@magic: -/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2 - ssh -ialchemi...
/Users/emmaking-smith/Desktop - -zsh ...ald/predictions/base_2 - ssh -ialchemist_eks ubuntu@00.202.241.122 +
(t13.7) ubuntu@magic:-/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2$ python
Python 3.7.0 (default, Oct 9 2018, 10:31:47)
(GCC 7.3.0] :: Anaconda, Inc. on Linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> []
```

preds = pd.read_pickle('preds.pickle')

View your predictions file with:

preds

🖲 😑 💿 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2 — ssh -i alchemi 🔪									
/Users/emmaking-smith/Desktop — -zsh				al	ald/predictions/base_2 — ssh -i alchemist_eks ubuntu@90.202.241.122 +				
(tl3.7) ul Python 3.7 [GCC 7.3.0 Type "help >>> impor	<pre>(t13.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2\$ python Python 3.7.0 (default, Oct 9 2018, 10:31:47) [GCC 7.3.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> import nandas as pd</pre>								
>>> preds	= pd.r	ead_pi	.ckle('	preds	.pickle')				
<pre>>>> preds pla pla 1 2 3 4 1524 1525 1526 1527 1528</pre>	te row 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>/ col 17 18 19 20 20 21 28 29 29 230 231 232</pre>	base BTMG BTMG BTMG BTMG BTMG BTMG BTMG BTMG	···· ···· ···· ····	yield 20.671717 37.065176 40.108917 1.571874 13.579588 54.862777 1.720185 52.962783 55.264663 0.000000	predicted_yield 18.981762 19.198864 19.260603 18.936052 19.195978 25.901226 25.410936 25.581123 25.629990 17.102970	true_yield 20.671717 37.065176 40.108917 1.571874 13.579588 54.862777 1.720185 52.962783 55.264663 0.000000	loss 1.689955 17.866312 20.848314 17.364179 5.616390 28.961551 23.690751 27.381660 29.634674 17.102970	
[1529 rows x 20 columns] >>> ■									

This will give you a snapshot of the prediction file. You can save it out as a csv file which is openable with Microsoft Excel if that is more convenient for you with:

preds.to_csv('preds.csv')

```
😑 🔵 🛅 emmaking-smith — ubuntu@magic: ~/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2 — ssh -i alchemi...
               /Users/emmaking-smith/Desktop — -zsh
                                                               ...ald/predictions/base_2 — ssh -i alchemist_eks ubuntu@90.202.241.122
(tl3.7) ubuntu@magic:~/user_guide/transfer_learning/Modular_Latent_Space/buchwald/predictions/base_2$ python
Python 3.7.0 (default, Oct 9 2018, 10:31:47)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> preds = pd.read_pickle('preds.pickle')
>>> preds
      plate
              row
                   col
                         base
                                         yield predicted_yield true_yield
                                                                                     loss
                                ...
                                     20.671717
                                                       18.981762
                                                                                1.689955
0
                    17
                         BTMG
                                                                  20.671717
           1
                1
                               ...
                    18
                         BTMG
                                                       19.198864
                                                                               17.866312
           1
                1
                                     37.065176
                                                                   37.065176
1
                                • • •
2
                         BTMG
                                     40.108917
                                                       19.260603
                                                                   40.108917
                                                                               20.848314
           1
                1
                     19
                                ...
3
           1
                1
                     20
                         BTMG
                                      1.571874
                                                       18.936052
                                                                   1.571874
                                                                               17.364179
                                ...
4
           1
                1
                    21
                         BTMG
                                     13.579588
                                                       19.195978
                                                                   13.579588
                                                                                5.616390
                                . . .
. . .
          . . .
              . . .
                    . . .
                           . . .
                                . . .
                                     54.862777
1524
                                                       25.901226
                                                                   54.862777
                                                                               28.961551
           3
               32
                     28
                         BTMG
                                ...
1525
           3
               32
                     29
                         BTMG
                                ...
                                      1.720185
                                                       25.410936
                                                                    1.720185
                                                                               23.690751
1526
           3
               32
                     30
                         BTMG
                                     52.962783
                                                       25.581123
                                                                   52.962783
                                                                               27.381660
                                ...
1527
           3
               32
                     31
                         BTMG
                                     55.264663
                                                       25.629990
                                                                   55.264663
                                                                               29.634674
                                . . .
1528
                                      0.00000
                                                       17.102970
                                                                   0.000000
                                                                               17.102970
           3
               32
                         BTMG
                     32
                                ...
[1529 rows x 20 columns]
>>> preds.to_csv('preds.csv')
>>>
```

This will generate a csv file in your working directory called preds.

Thank you for reading to the end of this guide!

We hope it has been a helpful resource for you.