Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information:

Table of Contents

General Remarks	S2
Mechanistic Studies	S2-S6
Experimental Section	S7-S11
Analytical Data for Products	S11-S47
References	S47-S48
¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	S49-S209

General Remarks

All commercially available compounds were purchased from Sigma-Aldrich, Alfa-Aesar, Acros, Beijing Ouhe, and Beijing Chemical Works, Ltd. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Products were purified by flash chromatography on silica gel. ¹H-NMR spectra were recorded on Bruker AVANCE III-400 spectrometers. Chemical shifts (in ppm) were referenced to the solvent peak of CDCl₃ (7.26 ppm) and DMSO-d₆ (2.50 ppm). ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.0$ ppm) and DMSOd₆ (39.5 ppm). Mass spectra were recorded using a PE SCLEX QSTAR spectrometer. High resolution mass spectra were obtained with a Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer.

Mechanistic Studies

(1) ¹⁸O labeling experiments

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), octane-1-thiol (0.50 mmol, 73.1 mg), DMSO¹⁸ (1.75 mmol, 120 μ L) in DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) was added. The mixture was stirred in anhydrous DCM (2 mL) at 40 °C for 12 h under N₂ atmosphere. Then the reaction mixture was added dropwise to the solution of piperidine (1.5 mmol, 127.8 mg) and NEt₃ (4 mmol, 404.8 mg) in anhydrous DCM (1 mL) with ice-salt bath. The mixture was stirred at ambient temperature for 8 h, washed by 1M HCl (4 mL × 2) and brine (4 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford **46** (55.3 mg, 42%) as a white solid. The ratio of ${}^{16}\text{O}, {}^{16}\text{O}-46$: ${}^{18}\text{O}-46$ was determined by ESI-HRMS as 3:1. The low ${}^{18}\text{O}-1$ labled ratio may attribute to H₂O¹⁶ in reagents.

Figure S1. Analysis of 46 by HRMS.

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), H₂O¹⁸ (2.5 mmol, 45.0 mg) in DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) was added at room temperature. The mixture was stirred in anhydrous DCM (2 mL) at 40 °C for 12 h under N₂ atmosphere. Then the reaction mixture was added dropwise to the solution of piperidine (1.5 mmol, 127.8 mg) and NEt₃ (4 mmol, 404.8 mg) in anhydrous DCM (1 mL) with ice-salt bath. The mixture was stirred at ambient temperature for 8 h, washed by 1N HCl (4 mL × 2) and brine (4 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to afford **46** (73.0 mg, 55%) as a white solid. The ratio of ¹⁶O,¹⁶O-**46** : ¹⁶O,¹⁸O-**46** : ¹⁸O,¹⁸O-**46** was determined by ESI-HRMS as 10:9:2.

Figure S2. Analysis of 46 by HRMS.

(2) The kinetic experiments

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), octane-1-thiol **1** (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L) in anhydrous DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) was added at room temperature. The mixture was stirred at 40 °C for desired time. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ¹H-NMR. 0.200 Mmol (40%) of **2** and 0.137 mmol (55%) of **77** were detected in 1 h. 0.250 Mmol (50%) of **2** and 0.110 mmol (44%) of **78** were afforded in 2 h. 0.410 Mmol (82%) of **2** and 0.030 mmol (12%) of **78** were afforded in 8 h.

(3) Control experiments

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), octane-1-thiol **1** (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L) in anhydrous DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.01 mmol, 16 μ L) was added at room temperature. The mixture was stirred at 40 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ¹H-NMR. 0.100 Mmol (12%) of **2**, 0.082 mmol (33%) of **78**, and 0.135 mmol (54%) of **79** were detected.

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), octane-1-thiol **1** (0.50 mmol, 73.1 mg), DMSO (0.75 mmol, 52 μ L) in anhydrous DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.01 mmol, 16 μ L) was added at room temperature. The mixture was stirred at 40 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ¹H-NMR. 0.115 mmol (23%) of **2** and 0.187 mmol (75%) of **78** were detected.

(4) Intermediate characterization

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), 1,2-dioctyldisulfane **78** (0.25 mmol, 72.6 mg), different equiv. of DMSO in anhydrous DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) was added at room temperature. The mixture was stirred with at 40 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ¹H-NMR. Only 0.250 mmol (100%) of **78** was detected without DMSO. 0.130 Mmol (26%) of **2** and 0.167 mmol (67%) of **78** were detected with 1 equiv. of DMSO (0.5 mmol, 34 μ L). 0.295 Mmol of **2** (59%) and 0.082 mmol (33%) of **78** were detected with 2 equiv. of DMSO (1.0 mmol, 68 μ L). 0.340 Mmol (68%) of **2** and 0.062 mmol (25%) of **78** were detected with 3 equiv. of DMSO (1.5 mmol, 103 μ L).

To a solution of Ni(OTf)₂ (0.05 mmol, 17.8 mg), *S*-octyl octane-1-sulfonothioate **79** (0.25 mmol, 80.65 mg), different equiv. of DMSO in anhydrous DCM (2 mL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) was added at room temperature. The mixture was stirred with at 40 °C for 12 h. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ¹H-NMR. 0.155 Mmol (31%) of **2** and 0.115 mmol (46%) of **78** were detected without DMSO. 0.295 Mmol (59%) of **2** and 0.067 mmol (27%) and 0.040 mmol (16%) of **78** were detected with 2 equiv. of DMSO (1.0 mmol, 68 μ L), 0.345 mmol (69%) of **2** and 0 mmol (0%) of **78** were detected with 3 equiv. of DMSO (1.5 mmol, 103 μ L).

Experimental Section

1) Materials preparation

Method A: Substrate for **8** was prepared according to literature¹.

MeO Br +
$$H_2N$$
 NH_2 H_2N H_2N H_2 H_2N H_2 H_2O , 8 h H_2O , 110 °C, 8 h H_2O , 110 °C, 8 h

Method B: Substrate for 9 was prepared according to literature².

HO SH KF (1.1 equiv) O AcOH, 80 °C, 16 h Me O SH

Method C: Substrate for 13 was prepared according to literature³.

2) General procedure

Typical procedure for the oxidative bromination of primary thiols (1, 3-6, 8-12, 17, 23-24, 26-27, 30-33, 37-38, 41)

Ni(OTf)₂ (10 mol%, 17.8 mg, for 1,3-12,17), thiol substrate (0.5 mmol), DMSO (3.5 equiv, 120 μ L) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 1.5 equiv, 120 μ L) was added. The reaction mixture was stirred at 40 °C under N₂ atmosphere until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the product. Some products (26-27,38) were purified by chromatography on silica gel.

Typical procedure for the oxidative bromination of secondary thiols (14-16)

Ni(OTf)₂ (10 mol%, 17.8 mg), thiol substrate (0.5 mmol), DMSO (6.4 equiv, 220 μ L) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 2.5 equiv, 200 μ L) was added.

The reaction mixture was stirred at 40 $^{\circ}$ C under N₂ atmosphere until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the product.

Typical procedure for the oxidative bromination of aromatic thiols (7, 18-22, 25, 28-29, 34-36)

Ni(OTf)₂ (10 mol%, 17.8 mg, for **18-21**, **28**, **34-35**), thiol substrate (0.5 mmol), DMSO (3.5 equiv, 120 μ L) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 1.5 equiv, 120 μ L) was added. The reaction mixture was stirred under 40 °C under N₂ atmosphere for 12 h. DMSO (1.2 equiv, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.5 equiv, 40 μ L) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the product.

Typical procedure for the oxidative bromination of thiols with HBr sensitive groups (13, 39-40)

Ni(OTf)₂ (10 mol%, 17.8 mg, for **13**), thiol substrate (0.5 mmol), DMSO (3.5 equiv, 120 μ L) and EA (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (Aqueous, 48% w/w, 1.5 equiv, 84 μ L) was added. The reaction mixture was stirred under 40 °C until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na₂SO₄ and evaporated in vacuo to afford the product.

Typical procedure for the one-pot synthesis of sulfonyl derivatives

Ni(OTf)₂ (10 mol%, 17.8 mg), thiol substrate (0.5 mmol), DMSO (3.5 equiv, 120 μ L) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 1.5 equiv, 120 μ L) was added.

The reaction mixture was stirred at 40 $^{\circ}$ C under N₂ atmosphere until the full consumption of substrate monitored by TLC.

For sulfonamide: The reaction mixture was added dropwise to a solution of amine (3 equiv) and NEt₃ (4 mmol, 404 mg) in DCM (1 mL) with ice-salt bath under N₂ atmosphere, then stirred at ambient temperature for 8 h. The resulting solution was washed by 1N HCl (4 mL \times 2) and brine (4 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonamides.

For sulfonate: The reaction mixture was added dropwise to a solution of alcohol (3 equiv) and NEt₃ (4 mmol, 404 mg) in DCM (1 mL) with ice-salt bath, then stirred at ambient temperature for 8 h. The resulting solution was washed by water (4 mL \times 2) and brine (4 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonamides.

For sulfonyl fluoride: The reaction mixture was added dropwise to a solution of tetrabutylammonium fluoride (TBAF) (5 equiv, 653.7 mg) and NEt₃ (3.5 mmol, 353.5 mg) in DCM (1 mL) with ice-salt bath, then stirred at ambient temperature for 8 h. The resulting solution was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over Na_2SO_4 and evaporated in vacuo to afford the corresponding sulfonyl fluoride.

For sulfonyl azide: The reaction mixture was added dropwise to a solution of TMSN₃ (3 equiv, 172.8 mg) and NEt₃ (4 mmol, 404 mg) in DCM (1 mL) with ice-salt bath, then stirred at ambient temperature for 8 h. The resulting solution was washed by water (4 mL \times 2) and brine (4 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonyl azide.

Typical procedure for the gram-scale synthesis of 18

Ni(OTf)₂ (10 mol%, 356.8 mg), 4-methylbenzenethiol (10 mmol), DMSO (3.5 equiv, 2.4 mL) and anhydrous DCM (40 mL) were added into a round-bottom flask with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 1.5 equiv, 2.4 mL) was added. The flask was equipped with a condenser, then the reaction mixture was stirred under 40 °C for 12 h. DMSO (1.2 equiv, 0.8 mL) and HBr (AcOH solution, 33% w/w, 0.5 equiv, 0.8 mL) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was diluted with water (20 mL) and extracted with DCM (20 mL \times 2). The combined organic extracts were washed with a saturated solution of NaCl (20 mL), dried over Na₂SO₄, and evaporated in vacuo. The residue was filtrated over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1), and the filtrate was evaporated in vacuo to afford the product (1.69 g, 72%).

Procedure for one-pot synthesis of pharmaceutical intermediate 77

Ni(OTf)₂ (10 mol%, 16.84 mg), 4-methylbenzenethiol (0.5 mmol), DMSO (3.5 equiv, 120 μ L) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, 33% w/w, 1.5 equiv, 120 μ L) was added. The reaction mixture was stirred under 40 °C under N₂ atmosphere for 12 h. DMSO (1.2 equiv, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.5 equiv, 40 μ L) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was evaporated in vacuo. The residue and NEt₃ (1.2 equiv, 60.7 mg) was dissolved in DCM (2 mL), then NH₃ was bubbled into the solution in ice-salt bath for 1 h. The resulting solution was washed by water (2 mL × 2) and brine (2 mL), dried over Na₂SO₄, and evaporated in vacuo.

The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate = 4:1) to afford the product (60.8 mg, 71%).

Analytical Data for Products

octane-1-sulfonyl bromide (2)⁴ :

```
Me_____SO<sub>2</sub>Br
```

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 µL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 µL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 110.6 mg (86%) of **2** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.73 (t, *J* = 7.6 Hz, 2H), 2.05 – 1.96 (m, 2H), 1.53 – 1.44 (m, 2H), 1.38 – 1.24 (m, 8H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 69.7, 31.6, 28.86, 28.82, 27.2, 24.6, 22.5, 14.0.

butane-1-sulfonyl bromide (3)⁵ :

Me____SO₂Br

The reaction of butane-1-thiol (0.50 mmol, 45.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 81.4 mg (81%) of **3** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.74 (t, J = 8.0 Hz, 2H), 2.05 – 1.96 (m, 2H), 1.60 – 1.49 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 69.3, 26.5, 20.6, 13.4.

pentane-1-sulfonyl bromide (4) :

Me_____SO₂Br

The reaction of pentane-1-thiol (0.50 mmol, 52.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 83.9 mg (78%) of **4** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.73 (t, *J* = 7.6 Hz, 2H), 2.06 – 1.97 (m, 2H), 1.52 – 1.34 (m, 4H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 69.6, 29.2, 24.2, 21.9, 13.5.

2-phenylethane-1-sulfonyl bromide (5) :

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 99.6 mg (80%) of **4** as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 6.9 Hz, 1H), 7.28 (d, *J* = 7.4 Hz, 2H), 4.04 – 3.97 (m, 2H), 3.38 – 3.32 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 135.2, 129.0, 128.5, 127.5, 70.1, 30.6. HRMS m/z (EI) calcd for C₈H₉Br [M-SO₂]⁺ 183.9888, found: 183.9881.

2-ethylhexane-1-sulfonyl bromide (6) : Me 6 SO₂Br

The reaction of 2-ethylhexane-1-thiol (0.50 mmol, 73.2 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 90.1 mg (78%) of **4** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.78 (d, *J* = 6.0 Hz, 2H), 2.21 – 2.13 (m, 1H), 1.63 – 1.55 (m, 2H), 1.55 – 1.47 (m, 2H), 1.34 – 1.28 (m, 4H), 0.98 – 0.85 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 74.3, 36.6, 31.7, 28.0, 25.1, 22.5, 13.9, 10.1.

methyl 3-(bromosulfonyl)propanoate (7):

The reaction of methyl 3-mercaptopropanoate (0.50 mmol, 60.1 mg), DMSO (2.3 mmol, 160 μ L), HBr (AcOH solution, 33% w/w, 1 mmol, 160 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L)

and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40μ L) at 40 °C for 4 h afforded 66.9 mg (58%) of 7 as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 4.06 (t, *J* = 7.6 Hz, 2H), 3.76 (s, 3H), 3.01 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 168.8, 63.9, 52.7, 29.1.

3-methoxypropane-1-sulfonyl bromide (8):

MeO SO₂Br

The reaction of 3-methoxypropane-1-thiol (0.50 mmol, 53.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 94.4 mg (87%) of **8** as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 3.86 (t, *J* = 7.6 Hz, 2H), 3.54 (t, *J* = 5.7 Hz, 2H), 3.35 (s, 3H), 2.30 – 2.21 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 68.6, 66.8, 58.7, 25.1.

2-(bromosulfonyl)ethyl acetate (9) :

The reaction of 2-mercaptoethyl acetate (0.50 mmol, 60.1 mg), DMSO (1.75 mmol, 120 µL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 µL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 6 h afforded 72.7 mg (63%) of **9** as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.58 (t, *J* = 5.8 Hz, 2H), 4.09 (t, *J* = 5.8 Hz, 2H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 67.2, 57.5, 20.5.

2-methylpropane-1-sulfonyl bromide (10)⁶ :

The reaction of 2-methylpropane-1-thiol (0.50 mmol, 45.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 59.3 mg (76%) of **10** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 3.76 (d, J = 6.4 Hz, 2H), 2.58 – 2.46 (m, 1H), 1.19 (d, J = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 77.9, 26.4, 21.8.

3-methylbutane-1-sulfonyl bromide (11) :

The reaction of 3-methylbutane-1-thiol (0.50 mmol, 52.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 57.1 mg (70%) of **11** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.78 – 3.70 (m, 2H), 1.95 – 1.86 (m, 2H), 1.85 – 1.73 (m, 1H), 0.99 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 68.2, 32.8, 26.6, 22.0.

(4-chlorophenyl)methanesulfonyl bromide (12)⁷:

The reaction of (4-chlorophenyl)methanethiol (0.50 mmol, 79.0 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 56.6 mg (42%) of **12** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.44 (s, 4H), 4.91 (s, 2H).
¹³C NMR (101 MHz, CDCl₃): δ 136.8, 132.8, 129.5, 124.9, 73.9.

2-(1,3-dioxoisoindolin-2-yl)ethane-1-sulfonyl bromide (13) :

The reaction of 2-(2-mercaptoethyl)isoindoline-1,3-dione (0.50 mmol, 103.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (Aqueous, 48% w/w, 0.75 mmol, 84 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 119.3 mg (75%) of **13** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 5.4, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 4.32 (t, J = 6.5 Hz, 2H), 4.15 (t, J = 6.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 167.3, 134.5, 131.6, 123.7, 65.0, 32.9.

cyclohexanesulfonyl bromide (14)⁴ :

The reaction of cyclohexanethiol (0.50 mmol, 83.1 mg), DMSO (3.2 mmol, 220 µL), HBr (AcOH solution, 33% w/w, 1.25 mmol, 200 µL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 93.1 mg (82%) of **14** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.49 (tt, *J* = 11.9, 3.5 Hz, 1H), 2.49 – 2.34 (m, 2H), 2.02 – 1.95 (m, 2H), 1.77 – 1.67 (m, 3H), 1.46 – 1.22 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 78.8, 27.5, 24.9, 24.8.

cyclopentanesulfonyl bromide (15) :

The reaction of cyclopentanethiol (0.50 mmol, 61.1 mg), DMSO (3.2 mmol, 220 μL), HBr (AcOH solution, 33% w/w, 1.25 mmol, 200 μL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 66.2 mg (77%) of **15** as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 4.14 (ddd, *J* = 15.0, 8.7, 6.4 Hz, 1H), 2.28 – 2.11 (m, 4H), 1.98 – 1.86 (m, 2H), 1.81 – 1.68 (m, 2H).

S15

¹³C NMR (101 MHz, CDCl₃): δ 79.3, 29.2, 25.6.

3-methylbutane-2-sulfonyl bromide (16) :

The reaction of 3-methylbutane-2-thiol (0.50 mmol, 52.1 mg), DMSO (3.2 mmol, 220 μ L), HBr (AcOH solution, 33% w/w, 1.25 mmol, 200 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 68.8 mg (64%) of **16** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.77 – 3.69 (m, 1H), 2.77 – 2.63 (m, 1H), 1.52 (d, *J* = 7.0 Hz, 3H), 1.09 (dd, *J* = 6.9, 3.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 82.7, 29.1, 21.2, 17.1, 10.4.

2-((4-methylphenyl)sulfonamido)ethane-1-sulfonyl bromide (17) :

TosHN SO₂Br

The reaction of *N*-(2-mercaptoethyl)-4-methylbenzenesulfonamide (0.50 mmol, 115.5 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h afforded 90.7 mg (53%) of **17** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 5.54 (t, J = 6.0 Hz, 1H), 3.96 (t, J = 6.2 Hz, 2H), 3.53 (q, J = 6.1 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 144.3, 135.9, 130.0, 127.0, 68.2, 38.0, 21.5.

4-methylbenzenesulfonyl bromide (18)⁴ :

The reaction of 4-methylbenzenethiol (0.50 mmol, 62.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8

mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 90.4 mg (80%) of **18** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 2.48 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.7, 144.5, 130.0, 126.4, 21.7.

4-(tert-butyl)benzenesulfonyl bromide (19)⁵ :

The reaction of 4-(tert-butyl)benzenethiol (0.50 mmol, 83.2 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 103.9 mg (75%) of **19** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.91 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.7 Hz, 2H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 159.5, 144.3, 126.5, 126.3, 35.5, 30.9.

4-isopropylbenzenesulfonyl bromide (20)⁴ :

The reaction of 4-isopropylbenzenethiol (0.50 mmol, 76.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 86.8 mg (66%) of **20** as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.93 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 3.10 – 3. 01 (m, 1H), 1.32 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 157.2, 144.6, 127.6, 126.6, 34.3, 23.4.

4-methoxybenzenesulfonyl bromide (21)⁴ :

The reaction of 4-methoxybenzenethiol (0.50 mmol, 70.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 87.9 mg (70%) of **21** as colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 9.0 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 2H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 164.7, 139.1, 129.0, 114.5, 55.9.

4-chlorobenzenesulfonyl bromide (22)⁴ :

The reaction of 4-chlorobenzenethiol (0.50 mmol, 72.3 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 102.2 mg (80%) of **22** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 8.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 145.3, 142.0, 129.8, 127.8.

4-bromobenzenesulfonyl bromide (23)⁵ :

r

The reaction of 4-bromobenzenethiol (0.50 mmol, 94.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 88.5 mg (59%) of **23** as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 145.8, 132.9, 130.7, 127.8.

4-fluorobenzenesulfonyl bromide (24)⁴ :

The reaction of 4-fluorobenzenethiol (0.50 mmol, 64.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 75.3 mg (63%) of **24** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.11 – 8.00 (m, 2H), 7.34 – 7.25 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 166.2 (d, *J* = 261.5 Hz), 143.0 (d, *J* = 1.8 Hz), 129.5 (d, *J* = 10.1 Hz), 116.9 (d, *J* = 23.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -99.56.

4-(trifluoromethyl)benzenesulfonyl bromide (25)⁵ :

The reaction of 4-(trifluoromethyl)benzenethiol (0.50 mmol, 89.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 80.9 mg (56%) of **25** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 8.6 Hz, 2H).
¹³C NMR (101 MHz, CDCl₃): δ 149.5, 136.5 (q, J = 33.6 Hz), 127.0, 126.8 (q, J = 3.6 Hz), 122.6 (q, J = 274.4 Hz).

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.35.

4-cyanobenzenesulfonyl bromide (26)⁸ :

The reaction of 4-mercaptobenzonitrile (0.50 mmol, 67.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 22.1 mg (18%) of **26** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 8.6 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 149.6, 133.4, 127.0, 118.7, 116.5.

4-nitrobenzenesulfonyl bromide (27)⁵:

The reaction of 4-nitrobenzenethiol (0.50 mmol, 77.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 21.3 mg (16%) of **27** as a pale red solid.

¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 9.1 Hz, 2H), 8.21 (d, J = 9.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 150.8, 127.9, 124.9.

3-methylbenzenesulfonyl bromide (28)⁹:

The reaction of 3-methylbenzenethiol (0.50 mmol, 62.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 82.3 mg (70%) of **28** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 2H), 7.56 – 7.45 (m, 2H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 147.0, 140.1, 135.9, 129.3, 126.5, 123.5, 21.3. **3-chlorobenzenesulfonyl bromide (29)**⁹:

The reaction of 3-chlorobenzenethiol (0.50 mmol, 72.3 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 75.4 mg (59%) of **29** as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.89 (d, *J* = 8.6 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.57 (t, *J* = 8.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 147.9, 135.5, 135.2, 130.8, 126.4, 124.5.

3-fluorobenzenesulfonyl bromide (30)¹⁰:

The reaction of 3-fluorobenzenethiol (0.50 mmol, 64.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 80.1 mg (67%) of **30** as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.82 (d, *J* = 7.6 Hz, 1H), 7.70 (dt, *J* = 7.5, 2.0 Hz, 1H), 7.63 (td, *J* = 8.2, 5.2 Hz, 1H), 7.49 – 7.40 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 161.8 (d, J = 255.5 Hz), 148.1 (d, J = 7.4 Hz), 131.3 (d, J = 8.1 Hz), 122.5 (d, J = 21.2 Hz), 122.2 (d, J = 3.0 Hz), 113.9 (d, J = 113.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -107.19.

2-methoxybenzenesulfonyl bromide (31)⁸ :

The reaction of 2-methoxybenzenethiol (0.50 mmol, 70.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 106.7 mg (85%) of **31** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 9.7 Hz, 1H), 7.71 (t, *J* = 8.7 Hz, 1H), 7.17 – 7.08 (m, 2H), 4.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 157.1, 137.1, 134.2, 129.1, 120.0, 113.3, 56.5.

2-fluorobenzenesulfonyl bromide (32)⁴ :

The reaction of 2-fluorobenzenethiol (0.50 mmol, 64.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 100.4 mg (84%) of **32** as colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.97 – 7.89 (m, 1H), 7.80 – 7.72 (m, 1H), 7.39 – 7.29 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 158.4 (d, *J* = 264.6 Hz), 137.6 (d, *J* = 8.1 Hz), 134.4 (d, *J* = 12.1 Hz), 128.7, 124.5 (d, *J* = 4.0 Hz), 118.2 (d, *J* = 20.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -107.13.

4-(methylthio)benzenesulfonyl bromide (33) :

The reaction of 4-(methylthio)benzenethiol (0.50 mmol, 78.2 mg), DMSO (1.75 mmol,

120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 78.8 mg (59%) of **33** as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 8.7 Hz, 2H), 2.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.9, 142.6, 126.6, 125.0, 14.6.

2,4-dimethylbenzenesulfonyl bromide (34)⁴ :

The reaction of 2,4-dimethylbenzenethiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 95.9 mg (77%) of **34** as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃): δ 7.88 (d, *J* = 7.9 Hz, 1H), 7.24 – 7.14 (m, 2H), 2.73 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.6, 142.9, 137.4, 134.0, 128.3, 127.1, 21.5, 20.0.

3,5-dimethylbenzenesulfonyl bromide (**35**)⁵ :

The reaction of 3,5-dimethylbenzenethiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 90.0 mg (65%) of **35** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 2H), 7.34 (s, 1H), 2.44 (s, 6H).
¹³C NMR (101 MHz, CDCl₃): δ 146.9, 139.8, 136.8, 123.7, 21.2.

naphthalene-2-sulfonyl bromide (36)⁴ :

The reaction of 3,5-dimethylbenzenethiol (0.50 mmol, 80.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C

for 12 h, followed by adding DMSO (0.55 mmol, 40 μ L) and HBr (AcOH solution, 33% w/w, 0.25 mmol, 40 μ L) at 40 °C for 4 h afforded 85.4 mg (63%) of **36** as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 1.6 Hz, 1H), 8.08 – 7.92 (m, 4H), 7.79 – 7.64 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 143.8, 135.6, 131.4, 130.3, 130.1, 129.9, 128.3, 128.1, 128.1, 120.9.

4-acetamidobenzenesulfonyl bromide (37) :

37

The reaction of *N*-(4-mercaptophenyl)acetamide (0.50 mmol, 83.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 6 h afforded 34.8 mg (25%) of **37** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 (d, *J* = 9.0 Hz, 2H), 7.85 – 7.59 (m, 3H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.7, 144.0, 141.6, 128.1, 119.1, 24.8.

2-(bromosulfonyl)pyridine 1-oxide (38) :

The reaction of 2-mercaptopyridine 1-oxide (0.50 mmol, 63.6 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 44.0 mg (37%) of **38** as a white solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 8.45 (d, *J* = 6.2 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 6.5 Hz, 1H), 7.23 (t, *J* = 7.7 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆): δ 140.3, 131.9, 131.1, 125.8, 125.7.

thiophene-3-sulfonyl bromide (39)⁵ :

The reaction of thiophene-2-thiol (0.50 mmol, 58.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (Aqueous, 48% w/w, 0.75 mmol, 84 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 60.2 mg (53%) of **39** as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.90 – 7.85 (m, 1H), 7.84 – 7.79 (m, 1H), 7.19 – 7.14 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 147.0, 135.3, 134.0, 127.5.

2-methylfuran-3-sulfonyl bromide (40) :

The reaction of 2-methylfuran-3-thiol (0.50 mmol, 57.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (Aqueous, 48% w/w, 0.75 mmol, 84 μ L) in DCM (2 mL) at 40 °C for 12 h afforded 46.2 mg (41%) of **40** as a brown oil.

¹H NMR (400 MHz, CDCl₃): δ 7.34 (s, 1H), 6.74 (s, 1H), 2.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 157.6, 141.1, 129.6, 108.9, 13.3.

HRMS m/z (EI) calcd for C₅H₅BrO₃S [M]⁺ 223.9137, found: 223.9135.

N-phenethyloctane-1-sulfonamide (41)¹¹ :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 2-phenylethan-1-amine (1.5 mmol, 181.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-

salt bath, then reacted at ambient temperature for 8 h afforded 93.7 mg (63%) of **41** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.27 (m, 2H), 7.27 – 7.19 (m, 3H), 4.55 (t, *J* = 6.1 Hz, 1H), 3.37 (q, *J* = 6.8 Hz, 2H), 2. 90 – 2. 83 (m, 4H), 1. 72 – 1. 62 (m, 2H), 1.26 (s, 10H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 137.9, 128.7, 128.6, 126.7, 52.5, 44.3, 36.5, 31.6, 28.9, 28.8, 28.1, 23.4, 22.5, 13.9.

MS m/z (ESI) calcd for C₁₆H₂₈NO₂S [M+H]⁺ 298.18, found: 298.18.

N-benzyloctane-1-sulfonamide (42) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of phenylmethanamine (1.5 mmol, 160.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 90.7 mg (64%) of **42** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.25 (m, 5H), 5.04 (t, *J* = 6.1 Hz, 1H), 4.26 (d, *J* = 6.2 Hz, 2H), 2.85 (t, *J* = 8.0 Hz, 2H), 1. 74 – 1. 64 (m, 2H), 1.24 (s, 10H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 137.0, 128.6, 127.8, 53.1, 46.9, 31.6, 28.9, 28.8, 28.1, 23.4, 22.5, 13.9.

HRMS m/z (ESI) calcd for $C_{15}H_{26}NO_2S [M+H]^+ 284.1684$, found: 284.1689.

N-isobutyloctane-1-sulfonamide (43) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 2-methylpropan-1-amine (1.5 mmol, 109.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 73.6 mg (59%) of **43** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 4.37 (s, 1H), 2.99 (t, *J* = 7.6 Hz, 2H), 2.91 (t, *J* = 5.8 Hz, 2H), 1.84 – 1. 74 (m, 3H), 1.45 – 1.35 (m, 2H), 1.34 – 1.21 (m, 8H), 0.94 (d, *J* = 6.7 Hz, 6H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 52.5, 50.6, 31.6, 29.0, 28.95, 28.93, 28.2, 23.6, 22.5, 19.8, 14.0.

HRMS m/z (ESI) calcd for $C_{12}H_{28}NO_2S [M+H]^+ 250.1841$, found: 250.1842.

N-cyclohexyl-2-phenylethane-1-sulfonamide (44)¹²:

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of cyclohexanamine (1.5 mmol, 148.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 69.5 mg (52%) of 44 as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.30 (m, 2H), 7.30 – 7.26 (m, 1H), 7.26 – 7.22 (m, 2H), 4.17 (d, *J* = 7.6 Hz, 1H), 3.37 – 3.23 (m, 3H), 3.20 – 3.10 (m, 2H), 1.97 – 1.93 (m, 2H), 1.78 – 1.60 (m, 2H), 1. 60 – 1.56 (m, 1H), 1. 40 – 1.16 (m, 5H).

¹³C NMR (101 MHz, CDCl₃): δ 138.0, 128.8, 128.4, 126.9, 55.4, 52.8, 34.5, 30.2, 25.1, 24.7.

MS m/z (ESI) calcd for C₁₄H₂₂NO₂S [M+H]⁺ 268.14, found: 268.14

methyl (octylsulfonyl)glycinate (45) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of methyl glycinate hydrochloride (1.5 mmol, 188.3 mg) and NEt₃ (5.5 mmol, 556.1 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 66.3 mg (50%) of **45** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 4.91 (t, *J* = 5.5 Hz, 1H), 3.94 (d, *J* = 5.7 Hz, 2H), 3.77 (s, 3H), 3.05 (t, *J* = 8.0 Hz, 2H), 1. 88 – 1.76 (m, 2H), 1.47 – 1.36 (m, 2H), 1.35 – 1.22 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 53.7, 52.6, 44.1, 31.6, 29.0, 28.9, 28.2, 23.5, 22.5, 14.0.

HRMS m/z (ESI) calcd for $C_{11}H_{24}NO_4S [M+H]^+ 266.1426$, found: 266.1430.

1-(octylsulfonyl)piperidine (46) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of piperidine (1.5 mmol, 127.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 81.0 mg (62%) of **46** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 3.26 – 3.18 (m, 4H), 2.86 (t, *J* = 8.0 Hz, 2H), 1. 84 – 1.75 (m, 2H), 1.64 (s, 4H), 1.56 (s, 2H), 1.44 – 1.35 (m, 2H), 1.33 – 1.22 (m, 8H), 0.90 – 0.84 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 49.1, 46.6, 31.7, 29.0, 28.9, 28.5, 25.7, 23.8, 23.0, 22.6, 14.0.

HRMS m/z (ESI) calcd for C₁₃H₂₈NO₂S [M+H]⁺ 262.1841, found: 262.1844.

1-(octylsulfonyl)-4-phenylpiperidine (47):

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 4-phenylpiperidine (1.5 mmol, 241.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 148.4 mg (71%) of **47** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.30 (m, 2H), 7. 25 – 7.19 (m, 3H), 3.94 (d, *J* = 12.1 Hz, 2H), 2.98 – 2.82 (m, 4H), 2.62 (t, *J* = 12.1 Hz, 1H), 1.95 – 1.92 (m, 2H), 1.89 – 1.74 (m, 4H), 1. 47 – 1.39 (m, 2H), 1.36 – 1.25 (m, 8H), 0.92 – 0.85 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 144.9, 128.6, 126.7, 126.6, 49.4, 46.5, 42.1, 33.1, 31.7, 29.1, 29.0, 28.5, 23.1, 22.6, 14.1.

HRMS m/z (ESI) calcd for $C_{19}H_{32}NO_2S [M+H]^+ 338.2154$, found: 338.2156.

4-benzyl-1-(octylsulfonyl)piperidine (48) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 4-benzylpiperidine (1.5 mmol, 262.9 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 131.7 mg (60%) of **48** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.28 (t, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 7.5 Hz, 2H), 3.77 (d, *J* = 12.1 Hz, 2H), 2.89 – 2.82 (m, 2H), 2.68 (t, *J* = 11.6 Hz,

2H), 2.56 (d, *J* = 7.0 Hz, 2H), 1.81 – 1.69 (m, 4H), 1.65 (s, 1H), 1.38 (d, *J* = 7.8 Hz, 2H), 1.27 (s, 10H), 0.88 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 139.7, 129.0, 128.2, 126.0, 49.2, 46.0, 42.7, 37.6, 31.8, 31.6, 29.0, 28.9, 28.4, 23.0, 22.5, 14.0.

HRMS m/z (ESI) calcd for $C_{20}H_{34}NO_2S [M+H]^+ 352.2310$, found: 352.2307.

1'-(phenethylsulfonyl)-1,4'-bipiperidine (49) :

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 1,4'-bipiperidine (1.5 mmol, 252.5 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 94.2 mg (56%) of **49** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.30 (m, 2H), 7.26 – 7.18 (m, 3H), 3.86 (d, *J* = 12.2 Hz, 2H), 3.20 – 3.05 (m, 4H), 2.74 (t, *J* = 11.6 Hz, 2H), 2.55 – 2.44 (m, 4H), 2.34 (t, *J* = 11.4 Hz, 1H), 1.87 (d, *J* = 12.5 Hz, 2H), 1.65 – 1.54 (m, 6H), 1.48 – 1.39 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 138.1, 128.8, 128.3, 126.8, 61.9, 50.9, 50.1, 45.7, 29.3, 27.8, 26.3, 24.6.

HRMS m/z (ESI) calcd for $C_{18}H_{29}N_2O_2S [M+H]^+ 337.1950$, found: 337.1953.

3-methyl-1-(phenethylsulfonyl)piperidine (50) :

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 3-methylpiperidine (1.5 mmol, 148.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 82.9 mg (62%) of **50** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7. 34 – 7.28 (m, 2H), 7.29 – 7.21 (m, 3H), 3.72 (t, *J* = 13.2 Hz, 2H), 3.15 (s, 4H), 2.73 – 2.53 (m, 1H), 2.35 (t, *J* = 10.4Hz, 1H), 1.87 – 1.54 (m, 4H), 1.04 – 0.95 (m, 1H), 0.93 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 138.2, 128.8, 128.3, 126.8, 52.8, 50.7, 46.1, 32.3, 31.0, 29.3, 25.1, 18.8.

HRMS m/z (ESI) calcd for $C_{14}H_{22}NO_2S [M+H]^+ 268.1371$, found: 268.1372.

1-(octylsulfonyl)azepane (51) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of hexamethyleneimine (1.5 mmol, 148.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 95.6 mg (69%) of **51** as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 3.33 (t, *J* = 6.0 Hz, 4H), 2.97 – 2.84 (m, 2H), 1.80 – 1.70 (m, 6H), 1.66 – 1.58 (m, 4H), 1.40 – 1.35 (m, 2H), 1.26 (s, 8H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 50.7, 48.2, 31.6, 29.6, 29.0, 28.9, 28.4, 26.8, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₄H₃₀NO₂S [M+H]⁺ 276.1997, found: 276.1996.

1-(octylsulfonyl)azocane (52) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of azocane (1.5 mmol, 169.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 85.0 mg (59%) of **52** as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 3.26 (t, J = 5.8 Hz, 4H), 2.98 – 2.83 (m, 2H), 1.82 – 1.67 (m, 6H), 1.64 (s, 6H), 1.42 – 1.34 (m, 2H), 1.33 – 1.19 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 49.4, 48.9, 31.6, 29.0, 28.9, 28.5, 28.0, 26.7, 24.8, 23.2, 22.5, 14.0.

HRMS m/z (ESI) calcd for $C_{15}H_{32}NO_2S [M+H]^+ 290.2154$, found: 290.2154.

1-(octylsulfonyl)azepan-4-one (53) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of 4-perhydroazepinone hydrochloride (1.5 mmol, 224.4 mg) and NEt₃ (4.5 mmol, 455.4 mg) in ice-salt bath, then reacted for another 8 h to afford 81.4 mg (56%) of **53** as a white oil.

¹H NMR (400 MHz, CDCl₃): δ 3.59 – 3.45 (m, 4H), 2.99 – 2.86 (m, 2H), 2.76 – 2.59 (m, 4H), 1.95 – 1.85 (m, 2H), 1.81 – 1.70 (m, 2H), 1.44 – 1.35 (m, 2H), 1.27 (s, 8H), 0.91 – 0.84 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 210.5, 51.6, 50.7, 45.5, 44.4, 42.5, 31.6, 29.0, 28.9, 28.3, 25.7, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for $C_{14}H_{31}N_2O_3S [M+NH_4]^+$ 307.2050, found *m/z*: 307.2055.

1-methyl-4-(phenethylsulfonyl)piperazine (54) :

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 1-methylpiperazine (1.5 mmol, 150.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 92.6 mg (69%) of **54** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.30 (m, 2H), 7.26 (s, 1H), 7. 23 – 7.18 (m, 2H),
3.40 – 3.26 (m, 4H), 3.21 – 3.08 (m, 4H), 2.57 – 2.43 (m, 4H), 2.32 (s, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 137.8, 128.7, 128.1, 126.7, 54.3, 50.5, 45.7, 45.4, 29.1.
HRMS m/z (ESI) calcd for C₁₃H₂₁N₂O₂S [M+H]⁺ 269.1324, found: 269.1328.

1-ethyl-4-(phenethylsulfonyl)piperazine (55) :

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 1-ethylpiperazine (1.5 mmol, 171.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 115.4 mg (68%) of **55** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7. 36 – 7.29 (m, 2H), 7.28 – 7.24 (m, 1H), 7. 23 – 7.18 (m, 2H), 3.33 (t, J = 4.3 Hz, 4H), 3. 23 – 3.08 (m, 4H), 2.52 (t, J = 4.3 Hz, 4H), 2.46 (q, J = 7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 137.9, 128.7, 128.1, 126.7, 52.1, 51.8, 50.3, 45.5, 29.1, 11.7.

HRMS m/z (ESI) calcd for C₁₄H₂₃N₂O₂S [M+H]⁺ 283.1480, found: 283.1480.

4-(phenethylsulfonyl)morpholine (56)¹³:

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of morpholine (1.5 mmol, 130.6 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 84.2 mg (66%) of **56** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.30 (m, 2H), 7.29 – 7.25 (m, 1H), 7.25 – 7.20 (m, 2H), 3.72 (t, *J* = 4.4 Hz, 4H), 3.24 (t, *J* = 4.4 Hz, 4H), 3.20 – 3.05 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 137.8, 128.8, 128.3, 126.9, 66.5, 50.2, 45.7, 29.1. MS m/z (ESI) calcd for C₁₂H₁₈NO₃S [M+H]⁺ 256.10, found: 256.10.

1-(octylsulfonyl)-1*H*-imidazole (57):

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of 1*H*-

imidazole (1.5 mmol, 102.1 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 57.7 mg (47%) of **57** as an orange oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (s, 1H), 7.30 (s, 1H), 7.18 (s, 1H), 3.33 – 3.27 (m, 2H), 1.74 – 1.68 (m, 2H), 1.40 – 1.33 (m, 2H), 1.29 – 1.21 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 136.9, 131.3, 117.6, 56.0, 31.5, 28.7, 27.7, 23.1, 22.4, 13.9.

HRMS m/z (ESI) calcd for $C_{11}H_{21}N_2O_2S [M+H]^+ 245.1324$, found: 245.1328.

methyl (octylsulfonyl)-L-prolinate (58) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of methyl *L*-prolinate hydrochloride (1.5 mmol, 248.4 mg) and NEt₃ (4.5 mmol, 455.4 mg) in ice-salt bath, then reacted for another 8 h to afford 81.7 mg (53%) of **58** as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 4.50 (dd, *J* = 8.5, 3.8 Hz, 1H), 3.72 (s, 3H), 3.57 (q, *J* = 7.1 Hz, 1H), 3.45 – 3.38 (m, 1H), 3.08 (t, *J* = 7.1 Hz, 2H), 2.30 – 2.21 (m, 1H), 2.07 – 2.01 (m, 1H), 2.00 – 1.94 (m, 2H), 1.85 – 1.77 (m, 2H), 1.42 – 1.35 (m, 2H), 1.31 – 1.21 (m, 8H), 0.89 – 0.82 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.9, 60.2, 52.8, 52.2, 48.2, 31.6, 30.8, 29.0, 28.8, 28.3, 25.0, 23.0, 22.5, 13.9.

HRMS m/z (ESI) calc'd for C₁₄H₂₈NO₄S [M+H]⁺ 306.1739, found: 306.1743.

1-(octylsulfonyl)pyrrolidine (59) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of pyrrolidine (1.5 mmol, 106.6 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 73.0 mg (59%) of **59** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 3.35 (t, J = 6.7 Hz, 4H), 2.94 (t, J = 8.0 Hz, 2H), 2.00 – 1.86 (m, 4H), 1.86 – 1.74 (m, 2H), 1.43 – 1.37 (m, 2H), 1.35 – 1.22 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 49.5, 47.6, 31.7, 29.0, 28.9, 28.4, 25.8, 23.2, 22.5, 14.0.

HRMS m/z (ESI) calc'd for $C_{12}H_{26}NO_2S [M+H]^+ 248.1684$, found: 248.1687.

methyl 1-(octylsulfonyl)azetidine-3-carboxylate (60) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of methyl azetidine-3-carboxylate hydrochloride (1.5 mmol, 227.4 mg) and NEt₃ (5.5 mmol, 556.1 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 93.3 mg (64%) of **60** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 4.11 (d, J = 8.5 Hz, 4H), 3.76 (s, 3H), 3. 44 – 3.35 (m, 1H), 2.93 (t, J = 8.0 Hz, 2H), 1. 82 – 1.74 (m, 2H), 1.46 – 1.34 (m, 2H), 1.34 – 1.22 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.0, 52.4, 52.0, 51.0, 31.6, 31.4, 28.97, 28.90, 28.3, 23.0, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₃H₂₆NO₄S [M+H]⁺ 292.1583, found: 292.1588.

N,*N*-diethyl-2-phenylethane-1-sulfonamide (61) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 µL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 µL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of diethylamine (5 mmol, 365.5 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 49.5 mg (41%) of **61** as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7. 37 – 7.28 (m, 2H), 7.26 – 7.23 (m, 1H), 7. 23 – 7.18 (m, 2H), 3.31 (q, *J* = 7.1 Hz, 4H), 3.20 – 3.04 (m, 4H), 1.21 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 138.2, 128.7, 128.2, 126.7, 53.7, 41.4, 29.7, 14.4. HRMS m/z (ESI) calcd for C₁₂H₂₀NO₂S [M+H]⁺ 242.1215, found: 242.1218.

N-(4-methoxyphenyl)octane-1-sulfonamide (62) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of methyl 4-methoxyaniline (1.5 mmol, 184.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded 97.3 mg (65%) of **62** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.19 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 3H), 3.79 (s, 3H), 3.01 (t, *J* = 8.0 Hz, 2H), 1.84 - 1.75 (m, 2H), 1.42 - 1.16 (m, 10H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 157.6, 129.2, 124.1, 114.6, 55.4, 50.9, 31.6, 28.8, 28.1, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₅H₂₄NO₃S [M-H]⁻ 298.1477, found: 298.1478.

N-(4-(dimethylamino)phenyl)octane-1-sulfonamide (63) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of *N*,*N*-dimethylbenzene-1,4-diamine (1.5 mmol, 204.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded 90.6 mg (58%) of **63** as a yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.13 (d, *J* = 8.9 Hz, 2H), 6.67 (d, *J* = 8.9 Hz, 2H), 6.56 (s, 1H), 2.99 (t, *J* = 8.0 Hz, 2H), 2.94 (s, 6H), 1.84 – 1.76 (m, 2H), 1.39 – 1.31 (m, 2H), 1.24 (s, 8H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.1, 125.0, 112.9, 50.6, 40.6, 31.6, 28.9, 28.8, 28.1, 23.4, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₆H₂₉N₂O₂S [M+H]⁺ 313.1950, found: 313.1955.

N-(4-(tert-butyl)phenyl)octane-1-sulfonamide (64) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 4-(tert-butyl)aniline (1.5 mmol, 223.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded 108 mg (54%) of **64** as a yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.35 (d, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.74 (s, 1H), 3.07 (t, *J* = 8.0 Hz, 2H), 1.85 – 1.77 (m, 2H), 1.36 (s, 2H), 1.30 (s, 9H), 1.23 (s, 8H), 0.86 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 148.2, 134.0, 126.4, 120.6, 51.4, 34.4, 31.6, 31.2, 28.9, 28.1, 23.4, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₈H₃₅N₂O₂S [M+H]⁺ 343.2419, found: 343.2422.

2-phenylethane-1-sulfonamide (65)¹³:

The reaction of 2-phenylethane-1-thiol (0.50 mmol, 69.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under NH₃(g) atmosphere, then reacted at ambient temperature for 8 h afforded 47.2 mg (51%) of **65** as a white solid.

¹**H NMR (400 MHz, DMSO-d₆):** δ 7.41 – 7.14 (m, 5H), 6.87 (s, 2H), 3.30 – 3.21 (m, 2H), 3.05 – 2.95 (m, 2H).

¹³C NMR (101 MHz, DMSO-d₆): δ 139.1, 128.9, 128.7, 126.8, 55.9, 30.0. MS m/z (ESI) calcd for C₈H₁₀NO₂S [M-H]⁻ 184.04, found: 184.04.

octane-1-sulfonamide (66)¹⁴ :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under NH₃(g) atmosphere, then reacted at ambient temperature for 8 h afforded 59.0 mg (61%) of **66** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 4.97 (s, 2H), 3.10 (t, J = 8.0 Hz, 2H), 1.88 – 1.76 (m, 2H), 1.48 – 1.38 (m, 2H), 1.36 – 1.22 (m, 8H), 0.93 – 0.82 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 55.2, 31.6, 29.0, 28.9, 28.1, 23.8, 22.5, 14.0. MS m/z (ESI) calcd for C₈H₁₈NO₂S [M-H]⁻ 192.11, found: 192.11.

N-(((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1-yl)methyl)octane-1-sulfonamide (67) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of dehydroabietylamine (1.5 mmol, 426.7 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 87.7 mg (38%) of **67** as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.2 Hz, 1H), 7.00 (dd, J = 8.1, 2.0 Hz, 1H), 6.89 (d, J = 2.0 Hz, 1H), 4.22 (t, J = 6.9 Hz, 1H), 3.01 – 2.96 (m, 3H), 2.93 – 2.89 (m, 2H), 2.89 – 2.81 (m, 2H), 2.34 – 2.27 (m, 1H), 1.80 – 1.75 (m, 4H), 1.74 – 1.65 (m, 2H), 1.52 (dd, J = 10.9, 3.8 Hz, 1H), 1. 51 – 1.49 (m, 1H), 1.43 – 1.36 (m, 4H), 1.31 – 1.27 (m, 8H), 1.24 (s, 3H), 1.22 (d, J = 1.9 Hz, 6H), 0.97 (s, 3H), 0.92 – 0.88 (m, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 146.9, 145.6, 134.5, 126.8, 124.1, 123.8, 53.9, 52.5, 44.9, 38.2, 37.3, 37.0, 35.8, 33.4, 31.7, 29.8, 29.0, 28.9, 28.3, 25.2, 24.0, 23.9, 23.6, 22.6, 18.8, 18.5, 18.4, 14.0.

HRMS m/z (ESI) calcd for C₂₈H₅₁N₂O₂S [M+NH₄]⁺ 479.3671, found: 479.3677.

ethyl (3*R*,4*R*,5*S*)-4-acetamido-5-(octylsulfonamido)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (68) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, solvent was recovered with reduced pressure, then the residuals were dissolved in THF (1.0 mL), and added dropwise into THF (1 mL) solution of oseltamivir (1.5 mmol, 468.6 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 87.2 mg (36%) of **68** as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 6.76 (s, 1H), 6.30 (d, J = 8.8 Hz, 1H), 5.65 (d, J = 8.6 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.10 (d, J = 7.3 Hz, 1H), 3.97 (q, J = 8.7 Hz, 1H), 3.69 – 3.59 (m, 1H), 3.38 – 3.33 (m, 1H), 3.04 – 2.93 (m, 2H), 2.76 (dd, J = 17.8, 5.1 Hz, 1H), 2.43 (dd, J = 17.7, 9.6 Hz, 1H), 2.04 – 1.99 (m, 3H), 1.79 – 1.71 (m, 2H), 1.56 – 1.45 (m, 4H), 1.41 – 1.34 (m, 2H), 1.31 – 1.23 (m, 11H), 0.87 (q, J = 7.2 Hz, 9H). ¹³**C NMR (101 MHz, CDCl₃):** δ 172.0, 165.8, 137.3, 129.0, 82.3, 75.1, 61.0, 54.6, 54.2, 52.4, 32.2, 31.6, 29.0, 28.9, 28.2, 26.1, 25.6, 23.6, 23.3, 22.5, 14.1, 14.0, 9.4, 9.2. **HRMS m/z (ESI)** calcd for C₂₄H₄₅N₂O₆S [M+H]⁺ 489.2998, found: 489.3003.

1-(2-((2,4-dimethylphenyl)thio)phenyl)-4-(octylsulfonyl)piperazine (69) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of

vortioxetine (1.5 mmol, 447.7 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 152.3 mg (64%) of **69** as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 7.8 Hz, 1H), 7.16 (s, 1H), 7.12 – 7.06 (m, 1H), 7.06 – 6.99 (m, 2H), 6.93 – 6.86 (m, 1H), 6.52 (dd, J = 7.8, 1.0 Hz, 1H), 3.47 (t, J = 4.4 Hz, 4H), 3.14 (t, J = 4.6 Hz, 4H), 2.99 – 2.89 (m, 2H), 2.34 (d, J = 20.4 Hz, 6H), 1.91 – 1.79 (m, 2H), 1.47 – 1.38 (m, 2H), 1.34 – 1.25 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 148.2, 142.1, 139.2, 136.0, 134.4, 131.6, 127.7, 127.4, 126.2, 125.5, 124.9, 120.0, 51.3, 48.8, 46.2, 31.6, 28.9, 28.8, 28.4, 22.9, 22.5, 21.1, 20.4, 13.9.

HRMS m/z (ESI) calcd for $C_{26}H_{39}N_2O_2S_2 [M+H]^+ 475.2453$, found. 475.2457.

octane-1-sulfonyl fluoride (70)¹⁵ :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 µL), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 µL), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of TBAF (2.5 mmol, 653.7 mg) and NEt₃ (3.5 mmol, 354.2 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 58.9 mg (60%) of **70** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.41 – 3.30 (m, 2H), 2.00 – 1.89 (m, 2H), 1.53 – 1.43 (m, 2H), 1.35 – 1.25 (m, 8H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 50.9 (d, J = 16.2 Hz), 31.6, 28.8, 28.7, 27.8, 23.3, 22.5, 14.0.

¹⁹F NMR (376 MHz, CDCl₃): δ 53.27.

MS m/z (EI) calcd for C₈H₁₇FO₂S [M]⁺ 196.09, found: 196.11.

octane-1-sulfonyl azide (71)¹⁶:

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of azidotrimethylsilane (1.5 mmol, 172.8 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 84.8 mg (77%) of **71** as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 3.36 – 3.27 (m, 2H), 1.97 – 1.87 (m, 2H), 1.51 – 1.42 (m, 2H), 1.37 – 1.25 (m, 8H), 0.93 – 0.86 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 55.9, 31.5, 28.8, 27.9, 23.3, 22.5, 13.9.

MS m/z (EI) calcd for $C_8H_{17}N_3O_2S[M]^+$ 219.10, found: 219.25.

phenethyl octane-1-sulfonate (72) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 2-phenylethan-1-ol (1.5 mmol, 183.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 98.5 mg (66%) of **72** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.29 (m, 2H), 7.28 – 7.21 (m, 3H), 4.40 (t, *J* = 6.9 Hz, 2H), 3.04 (t, *J* = 6.9 Hz, 2H), 2.93 (t, *J* = 8.0 Hz, 2H), 1.76 – 1.63 (m, 2H), 1.35 – 1.21 (m, 10H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 136.4, 128.9, 128.5, 126.9, 69.7, 50.3, 35.6, 31.6, 28.8, 28.0, 23.2, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₆H₃₀NO₃S [M+NH₄]⁺ 316.1946, found: 316.1949.

4-phenylbutyl octane-1-sulfonate (73) :

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 4-phenylbutan-1-ol (1.5 mmol, 225.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded 112.6 mg (69%) of **73** as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.23 (m, 2H), 7.23 – 7.12 (m, 3H), 4.21 (t, *J* = 5.1 Hz, 2H), 3.06 (t, *J* = 8.0 Hz, 2H), 2.66 (t, *J* = 6.3 Hz, 2H), 1.89 – 1.68 (m, 6H), 1.46 – 1.37 (m, 2H), 1.28 (s, 8H), 0.88 (t, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 141.5, 128.4, 128.3, 125.9, 69.3, 50.4, 35.1, 31.6, 28.9, 28.9, 28.7, 28.1, 27.2, 23.4, 22.5, 14.0.

HRMS m/z (ESI) calcd for $C_{18}H_{34}NO_{3}S [M+NH_4]^+ 344.2259$, found: 344.2257.

4-methoxyphenyl octane-1-sulfonate (74):

The reaction of octane-1-thiol (0.50 mmol, 73.1 mg), DMSO (1.75 mmol, 120 μ L), HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L), Ni(OTf)₂ (0.05 mmol, 17.8 mg) in DCM (2 mL) at 40 °C for 12 h, followed by added dropwise into DCM (1 mL) solution of 4-methoxyphenol (1.5 mmol, 225.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath under N₂ atmosphere, then reacted at ambient temperature for 8 h afforded 105.1 mg (70%) of **74** as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.19 (d, *J* = 7.3 Hz, 2H), 6.90 (d, *J* = 7.3 Hz, 2H), 3.80 (s, 3H), 3.20 (t, *J* = 8.0 Hz, 2H), 2.01 – 1.89 (m, 2H), 1.51 – 1.40 (m, 2H), 1.40 – 1.20 (m, 8H), 0.89 (t, *J* = 6.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.3, 142.4, 123.0, 114.8, 55.6, 50.0, 31.6, 28.9, 28.8, 28.1, 23.4, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₁₅H₂₃O₄S [M-H]⁻ 299.1317, found: 299.1319.

10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyloctane-1sulfonate (75) :

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of 2-(10-hydroxydecyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione (1.5 mmol, 507.7 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 183.1 mg (71%) of **75** as an orange oil.

¹**H NMR (400 MHz, CDCl₃):** δ 4.20 (t, *J* = 6.6 Hz, 2H), 3.99 (d, *J* = 1.1 Hz, 6H), 3.11 – 3.04 (m, 2H), 2.47 – 2.42 (t, *J* = 7.4 Hz, 2H), 2.01 (s, 3H), 1.85 (m, 2H), 1.77 – 1.69 (m, 2H), 1.42 – 1.25 (m, 24H), 0.91 – 0.85 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 184.4, 183.9, 144.1, 144.0, 142.8, 138.4, 69.5, 60.9, 50.1, 31.5, 29.6, 29.1, 28.7, 28.5, 27.9, 26.1, 25.2, 23.3, 22.4, 13.8, 11.7.

HRMS m/z (ESI) calcd for $C_{27}H_{47}O_7S [M+H]^+ 515.3042$, found: 515.3048.

(Z)-2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl octane-1-sulfonate (76):

The solution of thiol **1** (0.50 mmol, 73.1 mg), Ni(OTf)₂ (0.05 mmol, 17.8 mg), DMSO (1.75 mmol, 136.7 mg) and HBr (AcOH solution, 33% w/w, 0.75 mmol, 120 μ L) in anhydrous DCM (2.0 mL) was heated at 40 °C for 12 h. After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of (*Z*)-2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (1.5 mmol, 568.3 mg) and NEt₃ (4 mmol, 404.8 mg) in ice-salt bath, then reacted for another 8 h to afford 172.6 mg (62%) of **76** as a white oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.34 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.0 Hz, 3H), 7.23 – 7.17 (t, *J* = 7.4 Hz, 2H), 7.14 (t, *J* = 6.6 Hz, 3H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.54 (d, *J* = 8.7 Hz, 2H), 4.50 – 4.39 (m, 2H), 4.12 – 4.03 (m, 2H), 3.41 (t, *J* = 7.4 Hz, 2H), 3.14 – 3.06 (m, 2H), 2.92 (t, *J* = 7.4 Hz, 2H), 1.89 – 1.73 (m, 2H), 1.42 – 1.33 (m, 2H), 1.30 – 1.18 (m, 8H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 156.1, 142.6, 141.4, 140.8, 135.6, 135.5, 131.7, 129.4, 129.3, 128.3, 128.2, 126.9, 126.6, 113.4, 67.4, 65.5, 50.6, 42.7, 38.4, 31.6, 28.8, 28.7, 28.0, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for C₃₂H₄₃ClNO₄S [M+NH₄]⁺ 572.2601, found: 572.2609.

4-methylbenzenesulfonamide (77)¹⁷ :

¹H NMR (400 MHz, DMSO-d₆): δ 7.71 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H),

7.27 (s, 2H), 2.37 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 141.8, 141.4, 129.2, 125.5, 20.8.

MS m/z (ESI) calcd for $C_7H_8NO_2S$ [M-H]⁻ 170.03, found: 170.03.

1,2-dioctyldisulfane (78)¹⁸:

¹**H NMR (400 MHz, CDCl₃):** δ 2.68 (t, *J* = 7.6 Hz, 4H), 1.72 – 1.63 (m, 4H), 1.38 (s, 4H), 1.28 (s, 16H), 0.88 (t, *J* = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 39.2, 31.8, 29.22, 29.20, 29.1, 28.5, 22.6, 14.0.

S-octyl octane-1-sulfonothioate (79)¹⁹:

¹**H NMR (400 MHz, CDCl₃):** δ 3.28 (t, *J* = 7.6 Hz, 2H), 3.12 (t, *J* = 7.4 Hz, 2H), 1.97 – 1.84 (m, 2H), 1.78 – 1.67 (m, 2H), 1.48 – 1.37 (m, 4H), 1.27 (s, 16H), 0.88 (t, *J* = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 62.7, 36.2, 31.7, 31.6, 29.6, 29.0, 28.98, 28.92, 28.89, 28.5, 27.9, 23.5, 22.59, 22.57, 14.05, 14.04.

References

- M. Yuki, K. Sakata, S. Kikuchi, H. Kawai, T. Takahashi, M. Ando, K. Nakajima and Y. Nishibayashi, *Chem. Eur. J.*, 2017, 23, 1007-1012.
- J. W. J. Bosco, B. R. Raju and A. K. Saikia, Synth. Commun., 2004, 34, 2849-2855.
- A. Gayet, C. Bolea and P. G. Andersson, Org. Biomol. Chem., 2004, 2, 1887-1893.
- 4. M. Jereb and L. Hribernik, *Green. Chem.*, 2017, **19**, 2286-2295.
- R. Chen, S. Xu, F. Shen, C. Xu, K. Wang, Z. Wang and L. Liu, *Molecules*, 2021, 26, 5551.
- 6. T. Kataoka, T. Iwama, T. Setta and A. Takagi, *Synthesis*, 1998, 4, 423-426.
- 7. J. F. King and D. J. H. Smith, J. Am. Chem. Soc., 1967, 89, 4803-4804.
- C. Silva-Cuevas, C. Perez-Arrieta, L. A. Polindara-Garcia and J. Armando Lujan-Montelongo, *Tetrahedron Lett.*, 2017, 58, 2244-2247.
- S. Lee, O. Cil, P. M. Haggie and A. S. Verkman, J. Med. Chem., 2019, 62, 8330-8337.

- S. Madabhushi, R. Jillella, V. Sriramoju and R. Singh, *Green. Chem.*, 2014, 16, 3125-3131.
- 11. N. Shohji, T. Kawaji and S. Okamoto, Org. Lett., 2011, 13, 2626-2629.
- R. A. Abramovitch, W. D. Holcomb and S. Wake, *J. Am. Chem. Soc.*, 1981, 103, 1525-1533.
- J. A. Andrews, L. R. E. Pantaine, C. F. Palmer, D. L. Poole and M. C. Willis, Org. Lett., 2021, 23, 8488-8493.
- D. Zhong, D. Wu, Y. Zhang, Z. Lu, M. Usman, W. Liu, X. Lu and W.-B. Liu, Org. Lett., 2019, 21, 5808-5812.
- P. Wang, H. Zhang, M. Zhao, S. Ji, L. Lin, N. Yang, X. Nie, J. Song and S. Liao, *Angew. Chem. Int. Ed.*, 2022, 61, e202207684.
- S. Azeez, P. Chaudhary, P. Sureshbabu, S. Sabiah and J. Kandasamy, Org. Biomol. Chem., 2018, 16, 8280-8285.
- T. Q. Davies, M. J. Tilby, D. Skolc, A. Hall and M. C. Willis, *Org. Lett.*, 2020, 22, 9495-9499.
- E. Rattanangkool, W. Krailat, T. Vilaivan, P. Phuwapraisirisan, M.
 Sukwattanasinitt and S. Wacharasindhu, *Eur. J. Org. Chem.*, 2014, 2014, 4795-4804.
- T. X. T. Luu, T.-T. T. Nguyen, T. N. Le, J. Spanget-Larsen and F. Duus, Journal of Sulfur Chemistry, 2015, 36, 340-350.

S55

S57

S71

S80

10	0	-10	-20	-30	-40	-50	-60	-70	$^{-80}$	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	
											PPM												

S123

S124

ppm

ppm

- 55.94

— 13.98

S201

ppm

S203

