Supporting Information:

Table of Contents

General Remarks	S 2
Mechanistic Studies	$\mathrm{S} 2-\mathrm{S} 6$
Experimental Section	$\mathrm{S} 7-\mathrm{S} 11$
Analytical Data for Products	$\mathrm{S} 11-\mathrm{S} 47$
References	$\mathrm{S} 47-\mathrm{S} 48$
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{and}{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{Spectra}$	$\mathrm{S} 49-\mathrm{S} 209$

General Remarks

All commercially available compounds were purchased from Sigma-Aldrich, AlfaAesar, Acros, Beijing Ouhe, and Beijing Chemical Works, Ltd. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Products were purified by flash chromatography on silica gel. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Bruker AVANCE III-400 spectrometers. Chemical shifts (in ppm) were referenced to the solvent peak of CDCl_{3} (7.26 ppm) and DMSO- $\mathrm{d}_{6}(2.50 \mathrm{ppm}) .{ }^{13} \mathrm{C}-$ NMR spectra were obtained by using the same NMR spectrometers and were calibrated with $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$ and DMSO$\mathrm{d}_{6}(39.5 \mathrm{ppm})$. Mass spectra were recorded using a PE SCLEX QSTAR spectrometer. High resolution mass spectra were obtained with a Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer.

Mechanistic Studies

(1) ${ }^{18} \mathrm{O}$ labeling experiments

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, octane-1-thiol $(0.50 \mathrm{mmol}, 73.1 \mathrm{mg})$, DMSO $^{18}(1.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in DCM (2 mL), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75$ $\mathrm{mmol}, 120 \mu \mathrm{~L})$ was added. The mixture was stirred in anhydrous DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. Then the reaction mixture was added dropwise to the solution of piperidine ($1.5 \mathrm{mmol}, 127.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in anhydrous DCM (1 mL) with ice-salt bath. The mixture was stirred at ambient temperature for 8 h, washed by $1 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL} \times 2)$ and brine $(4 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=20: 1)$ to afford $\mathbf{4 6}(55.3 \mathrm{mg}, 42 \%)$ as a white solid. The
ratio of ${ }^{16} \mathrm{O},{ }^{16} \mathrm{O}-46:{ }^{16} \mathrm{O},{ }^{18} \mathrm{O}-46$ was determined by ESI-HRMS as $3: 1$. The low ${ }^{18} \mathrm{O}-$ labled ratio may attribute to $\mathrm{H}_{2} \mathrm{O}^{16}$ in reagents.

Figure S1. Analysis of 46 by HRMS.

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathbf{H}_{2} \mathbf{O}^{18}(2.5 \mathrm{mmol}, 45.0 \mathrm{mg})$ in DCM (2 mL), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred in anhydrous DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. Then the reaction mixture was added dropwise to the solution of piperidine ($1.5 \mathrm{mmol}, 127.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in anhydrous $\mathrm{DCM}(1 \mathrm{~mL})$ with ice-salt bath. The mixture was stirred at ambient temperature for 8 h , washed by $1 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL} \times 2)$ and brine (4 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=20: 1$) to afford 46 (73.0 $\mathrm{mg}, 55 \%$) as a white solid. The ratio of ${ }^{16} \mathrm{O},{ }^{16} \mathrm{O}-46:{ }^{16} \mathrm{O},{ }^{18} \mathrm{O}-46:{ }^{18} \mathrm{O},{ }^{18} \mathrm{O}-46$ was determined by ESI-HRMS as 10:9:2.

Figure S2. Analysis of 46 by HRMS.
(2) The kinetic experiments

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, octane-1-thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg})$, DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2 mL), HBr (AcOH solution, 33\% $\mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for desired time. After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. 0.200 Mmol (40%) of $\mathbf{2}$ and 0.137 mmol (55%) of 77 were detected in $1 \mathrm{~h} .0 .250 \mathrm{Mmol}(50 \%)$ of $\mathbf{2}$ and $0.110 \mathrm{mmol}(44 \%)$ of 78 were afforded in 2 h . $0.410 \mathrm{Mmol}(82 \%)$ of 2 and $0.030 \mathrm{mmol}(12 \%)$ of 78 were afforded in 8 h .
(3) Control experiments

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, octane-1-thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg})$, DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2 mL), HBr (AcOH solution, 33\% $\mathrm{w} / \mathrm{w}, 0.01 \mathrm{mmol}, 16 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ${ }^{1} \mathrm{H}$-NMR. $0.100 \mathrm{Mmol}(12 \%)$ of 2, $0.082 \mathrm{mmol}(33 \%)$ of 78, and $0.135 \mathrm{mmol}(54 \%)$ of 79 were detected.

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, octane-1-thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg})$, DMSO ($0.75 \mathrm{mmol}, 52 \mu \mathrm{~L}$) in anhydrous $\mathrm{DCM}(2 \mathrm{~mL}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}$, $0.01 \mathrm{mmol}, 16 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the crude product. 1,1,2,2Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ${ }^{1} \mathrm{H}$-NMR. $0.115 \mathrm{mmol}(23 \%)$ of $\mathbf{2}$ and $0.187 \mathrm{mmol}(75 \%)$ of 78 were detected.
(4) Intermediate characterization

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), 1,2$-dioctyldisulfane $78(0.25 \mathrm{mmol}$, 72.6 mg), different equiv. of DMSO in anhydrous DCM (2 mL), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred with at $40^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Only 0.250 mmol (100%) of 78 was detected without DMSO. 0.130 Mmol (26%) of $\mathbf{2}$ and $0.167 \mathrm{mmol}(67 \%)$ of $\mathbf{7 8}$ were detected with 1 equiv. of DMSO ($0.5 \mathrm{mmol}, 34 \mu \mathrm{~L}$). 0.295 Mmol of 2 (59%) and 0.082 $\mathrm{mmol}(33 \%)$ of 78 were detected with 2 equiv. of DMSO ($1.0 \mathrm{mmol}, 68 \mu \mathrm{~L}$). 0.340 Mmol (68%) of $\mathbf{2}$ and $0.062 \mathrm{mmol}(25 \%)$ of $\mathbf{7 8}$ were detected with 3 equiv. of DMSO ($1.5 \mathrm{mmol}, 103 \mu \mathrm{~L}$).

To a solution of $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), S$-octyl octane-1-sulfonothioate 79 ($0.25 \mathrm{mmol}, 80.65 \mathrm{mg}$), different equiv. of DMSO in anhydrous DCM (2 mL), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) was added at room temperature. The mixture was stirred with at $40^{\circ} \mathrm{C}$ for 12 h . After cooling down to room temperature, the reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the crude product. 1,1,2,2-Tetrachloroethane (33.5 mg) was added into the crude product as internal standard to determine the yield by ${ }^{1} \mathrm{H}$-NMR. $0.155 \mathrm{Mmol}(31 \%)$ of $\mathbf{2}$ and $0.115 \mathrm{mmol}(46 \%)$ of $\mathbf{7 8}$ were detected without DMSO. 0.295 Mmol (59\%) of $\mathbf{2}$ and $0.067 \mathrm{mmol}(27 \%)$ of 78 were detected with 1 equiv. of DMSO ($0.5 \mathrm{mmol}, 34 \mu \mathrm{~L})$. 0.375 Mmol of $2(75 \%)$ and $0.040 \mathrm{mmol}(16 \%)$ of 78 were detected with 2 equiv. of DMSO ($1.0 \mathrm{mmol}, 68 \mu \mathrm{~L}$), $0.345 \mathrm{mmol}(69 \%)$ of 2 and $0 \mathrm{mmol}(0 \%)$ of 78 were detected with 3 equiv. of DMSO ($1.5 \mathrm{mmol}, 103 \mu \mathrm{~L}$).

Experimental Section

1) Materials preparation

Method A: Substrate for $\mathbf{8}$ was prepared according to literature ${ }^{1}$.

Method B: Substrate for 9 was prepared according to literature ${ }^{2}$.

Method C: Substrate for $\mathbf{1 3}$ was prepared according to literature ${ }^{3}$.

2) General procedure

Typical procedure for the oxidative bromination of primary thiols (1, 3-6, 8-12, 17,

23-24, 26-27, 30-33, 37-38, 41)

$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 17.8 \mathrm{mg}$, for $\mathbf{1 , 3 - 1 2 , 1 7})$, thiol substrate (0.5 mmol), DMSO (3.5 equiv, $120 \mu \mathrm{~L}$) and anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ were added into a reaction tube with a magnetic stir bar at room temperature, then $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, $120 \mu \mathrm{~L}$) was added. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the product. Some products $(\mathbf{2 6 - 2 7}, \mathbf{3 8})$ were purified by chromatography on silica gel.

Typical procedure for the oxidative bromination of secondary thiols (14-16)

$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 17.8 \mathrm{mg})$, thiol substrate $(0.5 \mathrm{mmol})$, DMSO (6.4 equiv, $220 \mu \mathrm{~L}$) and anhydrous DCM (2 mL) were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 2.5$ equiv, $200 \mu \mathrm{~L}$) was added.

The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the product.

Typical procedure for the oxidative bromination of aromatic thiols $\mathbf{(7 , 1 8 - 2 2 , 2 5}$, 28-29, 34-36)
$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 17.8 \mathrm{mg}$, for $\mathbf{1 8 - 2 1}, \mathbf{2 8}, \mathbf{3 4 - 3 5})$, thiol substrate (0.5 mmol), DMSO (3.5 equiv, $120 \mu \mathrm{~L})$ and anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ were added into a reaction tube with a magnetic stir bar at room temperature, then $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, $120 \mu \mathrm{~L}$) was added. The reaction mixture was stirred under $40^{\circ} \mathrm{C}$ under N_{2} atmosphere for 12 h . DMSO (1.2 equiv, $40 \mu \mathrm{~L}$) and HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.5$ equiv, 40 $\mu \mathrm{L}$) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the product.

Typical procedure for the oxidative bromination of thiols with HBr sensitive groups ($13,39-40$)
$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 17.8 \mathrm{mg}$, for $\mathbf{1 3})$, thiol substrate (0.5 mmol), DMSO (3.5 equiv, $120 \mu \mathrm{~L})$ and $\mathrm{EA}(2 \mathrm{~mL})$ were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (Aqueous, $48 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, $84 \mu \mathrm{~L}$) was added. The reaction mixture was stirred under $40^{\circ} \mathrm{C}$ until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the product.

Typical procedure for the one-pot synthesis of sulfonyl derivatives

$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 17.8 \mathrm{mg})$, thiol substrate (0.5 mmol), DMSO (3.5 equiv, $120 \mu \mathrm{~L}$) and anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, $120 \mu \mathrm{~L}$) was added.

The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere until the full consumption of substrate monitored by TLC.

For sulfonamide: The reaction mixture was added dropwise to a solution of amine (3 equiv) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404 \mathrm{mg})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ with ice-salt bath under N_{2} atmosphere, then stirred at ambient temperature for 8 h . The resulting solution was washed by $1 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL} \times 2)$ and brine $(4 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonamides.

For sulfonate: The reaction mixture was added dropwise to a solution of alcohol (3 equiv) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404 \mathrm{mg})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ with ice-salt bath, then stirred at ambient temperature for 8 h . The resulting solution was washed by water ($4 \mathrm{~mL} \times 2$) and brine (4 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonamides.

For sulfonyl fluoride: The reaction mixture was added dropwise to a solution of tetrabutylammonium fluoride (TBAF) (5 equiv, 653.7 mg) and $\mathrm{NEt}_{3}(3.5 \mathrm{mmol}, 353.5$ $\mathrm{mg})$ in DCM (1 mL) with ice-salt bath, then stirred at ambient temperature for 8 h . The resulting solution was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to afford the corresponding sulfonyl fluoride.

For sulfonyl azide: The reaction mixture was added dropwise to a solution of TMSN 3 (3 equiv, 172.8 mg) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404 \mathrm{mg})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ with ice-salt bath, then stirred at ambient temperature for 8 h . The resulting solution was washed by water (4 $\mathrm{mL} \times 2)$ and brine $(4 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate) to afford the corresponding sulfonyl azide.

Typical procedure for the gram-scale synthesis of 18

$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 356.8 \mathrm{mg})$, 4-methylbenzenethiol (10 mmol), DMSO (3.5 equiv, $2.4 \mathrm{~mL})$ and anhydrous DCM (40 mL) were added into a round-bottom flask with a magnetic stir bar at room temperature, then $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, 2.4 mL) was added. The flask was equipped with a condenser, then the reaction mixture was stirred under $40^{\circ} \mathrm{C}$ for 12 h . DMSO (1.2 equiv, 0.8 mL) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.5$ equiv, 0.8 mL) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with $\operatorname{DCM}(20 \mathrm{~mL} \times 2)$. The combined organic extracts were washed with a saturated solution of $\mathrm{NaCl}(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was filtrated over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1), and the filtrate was evaporated in vacuo to afford the product $(1.69 \mathrm{~g}, 72 \%)$.

Procedure for one-pot synthesis of pharmaceutical intermediate 77

$\mathrm{Ni}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%, 16.84 \mathrm{mg}), 4-m e t h y l b e n z e n e t h i o l(0.5 \mathrm{mmol})$, DMSO (3.5 equiv, $120 \mu \mathrm{~L})$ and anhydrous $\mathrm{DCM}(2 \mathrm{~mL})$ were added into a reaction tube with a magnetic stir bar at room temperature, then HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 1.5$ equiv, $120 \mu \mathrm{~L}$) was added. The reaction mixture was stirred under $40^{\circ} \mathrm{C}$ under N_{2} atmosphere for 12 h. DMSO (1.2 equiv, $40 \mu \mathrm{~L}$) and HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.5$ equiv, $40 \mu \mathrm{~L}$) were added next, the mixture was stired until the full consumption of substrate monitored by TLC. The reaction mixture was filtered over a short pad of silica gel by a mixture of hexane and ethyl acetate (10:1). The filtrate was evaporated in vacuo. The residue and $\mathrm{NEt}_{3}\left(1.2\right.$ equiv, 60.7 mg) was dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$, then NH_{3} was bubbled into the solution in ice-salt bath for 1 h . The resulting solution was washed by water $(2 \mathrm{~mL} \times 2)$ and brine $(2 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo.

The residue was purified by chromatography on a silica gel (petroleum ether/ethyl acetate $=4: 1$) to afford the product ($60.8 \mathrm{mg}, 71 \%$).

Analytical Data for Products
 octane-1-sulfonyl bromide (2) ${ }^{4}$:

 2

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h afforded $110.6 \mathrm{mg}(86 \%)$ of $\mathbf{2}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.73$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.05-1.96$ (m, 2H), 1.53 $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 69.7, 31.6, 28.86, 28.82, 27.2, 24.6, 22.5, 14.0.

butane-1-sulfonyl bromide (3) ${ }^{5}$:

3
The reaction of butane-1-thiol ($0.50 \mathrm{mmol}, 45.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $81.4 \mathrm{mg}(81 \%)$ of $\mathbf{3}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 3.74$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.05-1.96$ (m, 2H), 1.60 $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 69.3,26.5,20.6,13.4$.
pentane-1-sulfonyl bromide (4) :

4
The reaction of pentane-1-thiol ($0.50 \mathrm{mmol}, 52.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $83.9 \mathrm{mg}(78 \%)$ of 4 as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.73$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.06-1.97$ (m, 2H), 1.52 $1.34(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 69.6,29.2,24.2,21.9,13.5$.

2-phenylethane-1-sulfonyl bromide (5) :

5
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $99.6 \mathrm{mg}(80 \%)$ of 4 as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 135.2,129.0,128.5,127.5,70.1,30.6$.
HRMS m/z (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}\left[\mathrm{M}_{\left.-\mathrm{SO}_{2}\right]^{+}}\right.$183.9888, found: 183.9881.

2-ethylhexane-1-sulfonyl bromide (6) :

The reaction of 2-ethylhexane-1-thiol ($0.50 \mathrm{mmol}, 73.2 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $90.1 \mathrm{mg}(78 \%)$ of 4 as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 3.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.63-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 74.3,36.6,31.7,28.0,25.1,22.5,13.9,10.1$.
methyl 3-(bromosulfonyl)propanoate (7) :

7
The reaction of methyl 3-mercaptopropanoate ($0.50 \mathrm{mmol}, 60.1 \mathrm{mg}$), DMSO (2.3 mmol , $160 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 1 \mathrm{mmol}, 160 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40 \mu \mathrm{~L})$
and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40{ }^{\circ} \mathrm{C}$ for 4 h afforded 66.9 $\mathrm{mg}(58 \%)$ of 7 as a colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.8,63.9,52.7,29.1$.

3-methoxypropane-1-sulfonyl bromide (8):

8
The reaction of 3-methoxypropane-1-thiol ($0.50 \mathrm{mmol}, 53.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), $\mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $94.4 \mathrm{mg}(87 \%)$ of $\mathbf{8}$ as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.35$ (s, 3H), $2.30-2.21(m, 2 H)$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 68.6,66.8,58.7,25.1$.
2-(bromosulfonyl)ethyl acetate (9) :

9
The reaction of 2-mercaptoethyl acetate ($0.50 \mathrm{mmol}, 60.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 6 h afforded $72.7 \mathrm{mg}(63 \%)$ of 9 as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.58(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.11$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.2,67.2,57.5,20.5$.

2-methylpropane-1-sulfonyl bromide (10) ${ }^{6}$:

The reaction of 2-methylpropane-1-thiol ($0.50 \mathrm{mmol}, 45.1 \mathrm{mg}$), DMSO (1.75 mmol , $120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $59.3 \mathrm{mg}(76 \%)$ of $\mathbf{1 0}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.76(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 77.9,26.4,21.8$.

3-methylbutane-1-sulfonyl bromide (11) :

The reaction of 3-methylbutane-1-thiol ($0.50 \mathrm{mmol}, 52.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $57.1 \mathrm{mg}(70 \%)$ of $\mathbf{1 1}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3): $\delta 3.78-3.70(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.73$ (m, 1H), 0.99 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 68.2,32.8,26.6,22.0$.
(4-chlorophenyl)methanesulfonyl bromide (12) ${ }^{7}$:

12
The reaction of (4-chlorophenyl)methanethiol ($0.50 \mathrm{mmol}, 79.0 \mathrm{mg}$), DMSO (1.75 $\mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05$ $\mathrm{mmol}, 17.8 \mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $56.6 \mathrm{mg}(42 \%)$ of $\mathbf{1 2}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDC13): $\delta 7.44$ ($\mathrm{s}, 4 \mathrm{H}$), 4.91 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 136.8,132.8,129.5,124.9,73.9$.

2-(1,3-dioxoisoindolin-2-yl)ethane-1-sulfonyl bromide (13) :

13
The reaction of 2-(2-mercaptoethyl)isoindoline-1,3-dione ($0.50 \mathrm{mmol}, 103.6 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (Aqueous, $48 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 84 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}$ ($0.05 \mathrm{mmol}, 17.8 \mathrm{mg}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $119.3 \mathrm{mg}(75 \%)$ of $\mathbf{1 3}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.89(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=5.5,3.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 167.3,134.5,131.6,123.7,65.0,32.9$.
cyclohexanesulfonyl bromide (14) ${ }^{4}$:

14
The reaction of cyclohexanethiol ($0.50 \mathrm{mmol}, 83.1 \mathrm{mg}$), DMSO ($3.2 \mathrm{mmol}, 220 \mu \mathrm{~L}$), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.25 \mathrm{mmol}, 200 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h afforded $93.1 \mathrm{mg}(82 \%)$ of 14 as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.49(\mathrm{tt}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.34(\mathrm{~m}, 2 \mathrm{H})$, $2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 78.8,27.5,24.9,24.8$.
cyclopentanesulfonyl bromide (15) :

15
The reaction of cyclopentanethiol ($0.50 \mathrm{mmol}, 61.1 \mathrm{mg}$), DMSO ($3.2 \mathrm{mmol}, 220 \mu \mathrm{~L}$), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.25 \mathrm{mmol}, 200 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h afforded $66.2 \mathrm{mg}(77 \%)$ of $\mathbf{1 5}$ as colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 4.14$ (ddd, $J=15.0,8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 - 2.11 (m, $4 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 79.3,29.2,25.6$.
3-methylbutane-2-sulfonyl bromide (16) :

The reaction of 3-methylbutane-2-thiol ($0.50 \mathrm{mmol}, 52.1 \mathrm{mg}$), DMSO ($3.2 \mathrm{mmol}, 220$ $\mu \mathrm{L}), \mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 1.25 \mathrm{mmol}, 200 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $68.8 \mathrm{mg}(64 \%)$ of $\mathbf{1 6}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (dd, $J=6.9,3.6 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 82.7,29.1,21.2,17.1,10.4$.

2-((4-methylphenyl)sulfonamido)ethane-1-sulfonyl bromide (17) :

17
The reaction of N-(2-mercaptoethyl)-4-methylbenzenesulfonamide ($0.50 \mathrm{mmol}, 115.5$ mg), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 90.7 $\mathrm{mg}(53 \%)$ of $\mathbf{1 7}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.54$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 144.3,135.9,130.0,127.0,68.2,38.0,21.5$.

4-methylbenzenesulfonyl bromide (18) ${ }^{4}$:

The reaction of 4-methylbenzenethiol ($0.50 \mathrm{mmol}, 62.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), $\mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$
$\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO ($0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40{ }^{\circ} \mathrm{C}$ for 4 h afforded 90.4 $\mathrm{mg}(80 \%)$ of $\mathbf{1 8}$ as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.7,144.5,130.0,126.4,21.7$.

4-(tert-butyl)benzenesulfonyl bromide (19) ${ }^{5}$:

19
The reaction of 4-(tert-butyl)benzenethiol ($0.50 \mathrm{mmol}, 83.2 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), $\mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40$ $\mu \mathrm{L})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded $103.9 \mathrm{mg}(75 \%)$ of 19 as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 159.5,144.3,126.5,126.3,35.5,30.9$.

4-isopropylbenzenesulfonyl bromide (20) ${ }^{4}$:

20
The reaction of 4-isopropylbenzenethiol ($0.50 \mathrm{mmol}, 76.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40$ $\mu \mathrm{L})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded $86.8 \mathrm{mg}(66 \%)$ of $\mathbf{2 0}$ as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.93$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 - $3.01(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 157.2,144.6,127.6,126.6,34.3,23.4$.
4-methoxybenzenesulfonyl bromide (21) ${ }^{4}$:

21
The reaction of 4-methoxybenzenethiol ($0.50 \mathrm{mmol}, 70.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO ($0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40{ }^{\circ} \mathrm{C}$ for 4 h afforded 87.9 $\mathrm{mg}(70 \%)$ of 21 as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 164.7,139.1,129.0,114.5,55.9$.
4-chlorobenzenesulfonyl bromide (22) ${ }^{4}$:

22
The reaction of 4-chlorobenzenethiol ($0.50 \mathrm{mmol}, 72.3 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO ($0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and HBr (AcOH solution, 33% $\mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L}$) at $40^{\circ} \mathrm{C}$ for 4 h afforded $102.2 \mathrm{mg}(80 \%)$ of 22 as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $)^{2}$: $\delta 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.3,142.0,129.8,127.8$.
4-bromobenzenesulfonyl bromide (23) ${ }^{5}$:

23

The reaction of 4-bromobenzenethiol ($0.50 \mathrm{mmol}, 94.6 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 88.5 mg (59\%) of $\mathbf{2 3}$ as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.8,132.9,130.7,127.8$.
4-fluorobenzenesulfonyl bromide (24) ${ }^{4}$:

The reaction of 4-fluorobenzenethiol ($0.50 \mathrm{mmol}, 64.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 75.3 mg (63%) of $\mathbf{2 4}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.11-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): $\delta 166.2(\mathrm{~d}, J=261.5 \mathrm{~Hz}), 143.0(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 129.5$ (d, $J=10.1 \mathrm{~Hz}$), 116.9 (d, $J=23.2 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-99.56.

4-(trifluoromethyl)benzenesulfonyl bromide (25) ${ }^{5}$:

The reaction of 4-(trifluoromethyl)benzenethiol ($0.50 \mathrm{mmol}, 89.1 \mathrm{mg}$), DMSO (1.75 mmol, $120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40 \mu \mathrm{~L})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L}$) at $40^{\circ} \mathrm{C}$ for 4 h afforded $80.9 \mathrm{mg}(56 \%)$ of $\mathbf{2 5}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.5,136.5(\mathrm{q}, J=33.6 \mathrm{~Hz}), 127.0,126.8(\mathrm{q}, J=3.6$ $\mathrm{Hz}), 122.6(\mathrm{q}, J=274.4 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-63.35$.

4-cyanobenzenesulfonyl bromide (26) ${ }^{8}$:

The reaction of 4-mercaptobenzonitrile ($0.50 \mathrm{mmol}, 67.6 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $22.1 \mathrm{mg}(18 \%)$ of 26 as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): δ 149.6, 133.4, 127.0, 118.7, 116.5 .

4-nitrobenzenesulfonyl bromide (27) ${ }^{5}$:

The reaction of 4-nitrobenzenethiol ($0.50 \mathrm{mmol}, 77.6 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 21.3 mg (16%) of 27 as a pale red solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.47(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.8,127.9,124.9$.

3-methylbenzenesulfonyl bromide (28) ${ }^{9}$:

The reaction of 3-methylbenzenethiol ($0.50 \mathrm{mmol}, 62.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO ($0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded 82.3 $\mathrm{mg}(70 \%)$ of $\mathbf{2 8}$ as a colorless oil.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 147.0,140.1,135.9,129.3,126.5,123.5,21.3$.

3-chlorobenzenesulfonyl bromide (29) ${ }^{9}$:

The reaction of 3-chlorobenzenethiol $(0.50 \mathrm{mmol}, 72.3 \mathrm{mg})$, DMSO $(1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding $\mathrm{DMSO}(0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, 33% $\mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded $75.4 \mathrm{mg}(59 \%)$ of 29 as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3) : $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 147.9,135.5,135.2,130.8,126.4,124.5$.

3-fluorobenzenesulfonyl bromide (30) ${ }^{10}$:

30
The reaction of 3-fluorobenzenethiol ($0.50 \mathrm{mmol}, 64.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $80.1 \mathrm{mg}(67 \%)$ of $\mathbf{3 0}$ as a colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3 $): \delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{td}, J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 161.8(\mathrm{~d}, J=255.5 \mathrm{~Hz}), 148.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 131.3$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}), 122.5(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=113.9 \mathrm{~Hz})$. ${ }^{19}$ F NMR (376 MHz, CDCl3): $\delta-107.19$.

2-methoxybenzenesulfonyl bromide (31) ${ }^{8}$:

31

The reaction of 2-methoxybenzenethiol ($0.50 \mathrm{mmol}, 70.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 106.7 mg (85%) of $\mathbf{3 1}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.93(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ - 7.08 (m, 2H), 4.10 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 157.1,137.1,134.2,129.1,120.0,113.3,56.5$.
2-fluorobenzenesulfonyl bromide (32) ${ }^{4}$:

32
The reaction of 2-fluorobenzenethiol ($0.50 \mathrm{mmol}, 64.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 100.4 mg (84%) of $\mathbf{3 2}$ as colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 7.97-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.29$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 158.4(\mathrm{~d}, J=264.6 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 134.4$ (d, $J=12.1 \mathrm{~Hz}$), 128.7, $124.5(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 118.2(\mathrm{~d}, J=20.2 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-107.13$.

4-(methylthio)benzenesulfonyl bromide (33) :

33
The reaction of 4-(methylthio)benzenethiol ($0.50 \mathrm{mmol}, 78.2 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}), \mathrm{HBr}($ AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $78.8 \mathrm{mg}(59 \%)$ of $\mathbf{3 3}$ as a yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 149.9,142.6,126.6,125.0,14.6$.

2,4-dimethylbenzenesulfonyl bromide (34) ${ }^{4}$:

34
The reaction of 2,4-dimethylbenzenethiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40$ $\mu \mathrm{L})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded $95.9 \mathrm{mg}(77 \%)$ of $\mathbf{3 4}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.6,142.9,137.4,134.0,128.3,127.1,21.5,20.0$.

3,5-dimethylbenzenesulfonyl bromide (35) ${ }^{5}$:

35
The reaction of 3,5-dimethylbenzenethiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}$), $\mathrm{HBr}($ AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}$, $17.8 \mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by adding DMSO $(0.55 \mathrm{mmol}, 40$ $\mu \mathrm{L})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded 90.0 mg (65\%) of $\mathbf{3 5}$ as a white solid.
${ }^{1}$ H NMR (400 MHz, CDCl3 $_{3}$): $\delta 7.60(\mathrm{~s}, 2 \mathrm{H}), 7.34$ (s, 1H), 2.44 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 146.9,139.8,136.8,123.7,21.2$.
naphthalene-2-sulfonyl bromide (36) ${ }^{4}$:

36
The reaction of 3,5-dimethylbenzenethiol ($0.50 \mathrm{mmol}, 80.1 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$
for 12 h , followed by adding DMSO ($0.55 \mathrm{mmol}, 40 \mu \mathrm{~L}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, 33% $\mathrm{w} / \mathrm{w}, 0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ at $40^{\circ} \mathrm{C}$ for 4 h afforded $85.4 \mathrm{mg}(63 \%)$ of $\mathbf{3 6}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.54(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.79-$ 7.64 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 143.8,135.6,131.4,130.3,130.1,129.9,128.3,128.1$, 128.1, 120.9.

4-acetamidobenzenesulfonyl bromide (37) :

37
The reaction of N-(4-mercaptophenyl)acetamide ($0.50 \mathrm{mmol}, 83.6 \mathrm{mg}$), DMSO (1.75 $\mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in DCM (2 mL) at $40{ }^{\circ} \mathrm{C}$ for 6 h afforded $34.8 \mathrm{mg}(25 \%)$ of $\mathbf{3 7}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.94$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.85-7.59$ (m, 3H), 2.25 (s, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): δ 168.7, 144.0, 141.6, 128.1, 119.1, 24.8.
2-(bromosulfonyl)pyridine 1-oxide (38) :

38
The reaction of 2-mercaptopyridine 1-oxide ($0.50 \mathrm{mmol}, 63.6 \mathrm{mg}$), DMSO $(1.75 \mathrm{mmol}$, $120 \mu \mathrm{~L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded 44.0 mg (37%) of $\mathbf{3 8}$ as a white solid.
${ }^{1} H$ NMR (400 MHz, DMSO-d6): $\delta 8.45$ (d, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO-d6): $\delta 140.3,131.9,131.1,125.8,125.7$.
thiophene-3-sulfonyl bromide (39) ${ }^{5}$:

39
The reaction of thiophene-2-thiol ($0.50 \mathrm{mmol}, 58.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (Aqueous, $48 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 84 \mu \mathrm{~L}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $60.2 \mathrm{mg}(53 \%)$ of $\mathbf{3 9}$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3): $\delta 7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14$ (m, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.0,135.3,134.0,127.5$.

2-methylfuran-3-sulfonyl bromide (40) :

40
The reaction of 2-methylfuran-3-thiol ($0.50 \mathrm{mmol}, 57.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), HBr (Aqueous, $48 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 84 \mu \mathrm{~L}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h afforded $46.2 \mathrm{mg}(41 \%)$ of $\mathbf{4 0}$ as a brown oil.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{4 0 0} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right): \delta 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.6,141.1,129.6,108.9,13.3$.
HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E I})$ calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrO}_{3} \mathrm{~S}[\mathrm{M}]^{+}$223.9137, found: 223.9135.
N-phenethyloctane-1-sulfonamide (41) ${ }^{11}$:

41
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 2-phenylethan-1-amine ($1.5 \mathrm{mmol}, 181.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-
salt bath, then reacted at ambient temperature for 8 h afforded $93.7 \mathrm{mg}(63 \%)$ of 41 as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3 $): ~ \delta 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.26$ ($\mathrm{s}, 10 \mathrm{H}$), $0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 137.9,128.7,128.6,126.7,52.5,44.3,36.5,31.6,28.9$, 28.8, 28.1, 23.4, 22.5, 13.9.

MS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$298.18, found: 298.18.

N-benzyloctane-1-sulfonamide (42) :

42
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of phenylmethanamine ($1.5 \mathrm{mmol}, 160.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded 90.7 mg (64%) of $\mathbf{4 2}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDC13): $\delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.04(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 137.0,128.6,127.8,53.1,46.9,31.6,28.9,28.8,28.1$, 23.4, 22.5, 13.9 .

HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$284.1684, found: 284.1689.

N-isobutyloctane-1-sulfonamide (43) :

43

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 2-methylpropan-1-amine ($1.5 \mathrm{mmol}, 109.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in icesalt bath, then reacted at ambient temperature for 8 h afforded $73.6 \mathrm{mg}(59 \%)$ of 43 as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 4.37(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=5.8$ Hz, 2H), $1.84-1.74$ (m, 3H), $1.45-1.35$ (m, 2H), $1.34-1.21$ (m, 8H), 0.94 (d, $J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 52.5,50.6,31.6,29.0,28.95,28.93,28.2,23.6,22.5$, 19.8, 14.0.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$250.1841, found: 250.1842 .
N-cyclohexyl-2-phenylethane-1-sulfonamide (44) ${ }^{12}$:

44
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into DCM (1 mL) solution of cyclohexanamine ($1.5 \mathrm{mmol}, 148.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $69.5 \mathrm{mg}(52 \%)$ of 44 as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.93$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 138.0,128.8,128.4,126.9,55.4,52.8,34.5,30.2,25.1$, 24.7.

MS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$268.14, found: 268.14

methyl (octylsulfonyl)glycinate (45) :

45
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of methyl glycinate hydrochloride ($1.5 \mathrm{mmol}, 188.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(5.5 \mathrm{mmol}, 556.1$ mg) in ice-salt bath, then reacted at ambient temperature for 8 h afforded $66.3 \mathrm{mg}(50 \%)$ of $\mathbf{4 5}$ as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.91(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77$ (s, 3H), $3.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.22$ $(\mathrm{m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.2,53.7,52.6,44.1,31.6,29.0,28.9,28.2,23.5$, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$266.1426, found: 266.1430 .

1-(octylsulfonyl)piperidine (46) :

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of piperidine ($1.5 \mathrm{mmol}, 127.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $81.0 \mathrm{mg}(62 \%)$ of 46 as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.26-3.18(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.90$ - 0.84 (m, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 49.1,46.6,31.7,29.0,28.9,28.5,25.7,23.8,23.0$, 22.6, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$262.1841, found: 262.1844 .

1-(octylsulfonyl)-4-phenylpiperidine (47) :

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 4-phenylpiperidine ($1.5 \mathrm{mmol}, 241.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $148.4 \mathrm{mg}(71 \%)$ of 47 as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.89$ $-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 144.9,128.6,126.7,126.6,49.4,46.5,42.1,33.1,31.7$, 29.1, 29.0, 28.5, 23.1, 22.6, 14.1.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$338.2154, found: 338.2156 .

4-benzyl-1-(octylsulfonyl)piperidine (48) :

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 4-benzylpiperidine ($1.5 \mathrm{mmol}, 262.9 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $131.7 \mathrm{mg}(60 \%)$ of 48 as a white solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3): $\delta 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=11.6 \mathrm{~Hz}$,

2H), 2.56 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.69$ (m, 4H), 1.65 (s, 1H), 1.38 (d, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.27(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 139.7,129.0,128.2,126.0,49.2,46.0,42.7,37.6,31.8$, 31.6, 29.0, 28.9, 28.4, 23.0, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$352.2310, found: 352.2307.

1'-(phenethylsulfonyl)-1,4'-bipiperidine (49) :

49
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 1,4'-bipiperidine ($1.5 \mathrm{mmol}, 252.5 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in icesalt bath, then reacted at ambient temperature for 8 h afforded 94.2 mg (56\%) of 49 as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.34$ $(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.39(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 138.1,128.8,128.3,126.8,61.9,50.9,50.1,45.7,29.3$, 27.8, 26.3, 24.6.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$337.1950, found: 337.1953.
3-methyl-1-(phenethylsulfonyl)piperidine (50) :

50

The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 3-methylpiperidine ($1.5 \mathrm{mmol}, 148.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $82.9 \mathrm{mg}(62 \%)$ of $\mathbf{5 0}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 4 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.54$ $(\mathrm{m}, 4 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 138.2,128.8,128.3,126.8,52.8,50.7,46.1,32.3,31.0$, 29.3, 25.1, 18.8.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$268.1371, found: 268.1372 .

1-(octylsulfonyl)azepane (51) :

The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of hexamethyleneimine ($1.5 \mathrm{mmol}, 148.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $95.6 \mathrm{mg}(69 \%)$ of $\mathbf{5 1}$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 3.33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.97-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.70(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 50.7,48.2,31.6,29.6,29.0,28.9,28.4,26.8,23.3$, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$276.1997, found: 276.1996.

The solution of thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO ($1.75 \mathrm{mmol}, 136.7 \mathrm{mg}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of azocane ($1.5 \mathrm{mmol}, 169.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $85.0 \mathrm{mg}(59 \%)$ of $\mathbf{5 2}$ as a colorless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 3.26(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.98-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.67(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8$ Hz, 3H)
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDC13): $\delta 49.4,48.9,31.6,29.0,28.9,28.5,28.0,26.7,24.8$, 23.2, 22.5, 14.0 .

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$290.2154, found: 290.2154 .

1-(octylsulfonyl)azepan-4-one (53) :

The solution of thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), \mathrm{DMSO}$ ($1.75 \mathrm{mmol}, 136.7 \mathrm{mg}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40{ }^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM $(1 \mathrm{~mL})$ solution of 4perhydroazepinone hydrochloride ($1.5 \mathrm{mmol}, 224.4 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4.5 \mathrm{mmol}, 455.4$ mg) in ice-salt bath, then reacted for another 8 h to afford $81.4 \mathrm{mg}(56 \%)$ of 53 as a white oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3 $): \delta 3.59-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.59$ (m, 4H), $1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 8 \mathrm{H})$, $0.91-0.84(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.5,51.6,50.7,45.5,44.4,42.5,31.6,29.0,28.9$, 28.3, 25.7, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$307.2050, found m / z : 307.2055.

1-methyl-4-(phenethylsulfonyl)piperazine (54) :

54
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into DCM $(1 \mathrm{~mL})$ solution of 1-methylpiperazine ($1.5 \mathrm{mmol}, 150.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $92.6 \mathrm{mg}(69 \%)$ of $\mathbf{5 4}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H})$, $3.40-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.21-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 137.8,128.7,128.1,126.7,54.3,50.5,45.7,45.4,29.1$. HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$269.1324, found: 269.1328 .

1-ethyl-4-(phenethylsulfonyl)piperazine (55) :

The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}), \mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in $\operatorname{DCM}(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into DCM $(1 \mathrm{~mL})$ solution of 1-ethylpiperazine ($1.5 \mathrm{mmol}, 171.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $115.4 \mathrm{mg}(68 \%)$ of 55 as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.23-3.08(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{t}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.46(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 137.9,128.7,128.1,126.7,52.1,51.8,50.3,45.5,29.1$, 11.7.

HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$283.1480, found: 283.1480.

4-(phenethylsulfonyl)morpholine (56) ${ }^{13}$:

56
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into DCM (1 mL) solution of morpholine ($1.5 \mathrm{mmol}, 130.6 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $84.2 \mathrm{mg}(66 \%)$ of $\mathbf{5 6}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.24(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 137.8,128.8,128.3,126.9,66.5,50.2,45.7,29.1$.
MS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 256.10$, found: 256.10.

1-(octylsulfonyl)-1H-imidazole (57) :

The solution of thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO ($1.75 \mathrm{mmol}, 136.7 \mathrm{mg}$) and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40{ }^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 1 H -
imidazole ($1.5 \mathrm{mmol}, 102.1 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $57.7 \mathrm{mg}(47 \%)$ of 57 as an orange oil.
${ }^{1}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.95$ (s, 1H), 7.30 ($\mathrm{s}, 1 \mathrm{H}$), 7.18 ($\mathrm{s}, 1 \mathrm{H}$), 3.33 - 3.27 (m, $2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 136.9,131.3,117.6,56.0,31.5,28.7,27.7,23.1,22.4$, 13.9.

HRMS m/z (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$245.1324, found: 245.1328.

methyl (octylsulfonyl)-L-prolinate (58) :

58
The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), \mathrm{DMSO}$ ($1.75 \mathrm{mmol}, 136.7 \mathrm{mg}$) and HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of methyl L-prolinate hydrochloride ($1.5 \mathrm{mmol}, 248.4 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4.5 \mathrm{mmol}, 455.4 \mathrm{mg})$ in icesalt bath, then reacted for another 8 h to afford $81.7 \mathrm{mg}(53 \%)$ of $\mathbf{5 8}$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.50(\mathrm{dd}, J=8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.07$ - $2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-$ $1.21(\mathrm{~m}, 8 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 172.9,60.2,52.8,52.2,48.2,31.6,30.8,29.0,28.8$, 28.3, 25.0, 23.0, 22.5, 13.9.

HRMS m/z (ESI) calc'd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$306.1739, found: 306.1743.

1-(octylsulfonyl)pyrrolidine (59) :

59

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of pyrrolidine ($1.5 \mathrm{mmol}, 106.6 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded 73.0 mg (59\%) of $\mathbf{5 9}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.35(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ $-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 49.5,47.6,31.7,29.0,28.9,28.4,25.8,23.2,22.5$, 14.0.

HRMS \mathbf{m} / \mathbf{z} (ESI) calc'd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$248.1684, found: 248.1687.
methyl 1-(octylsulfonyl)azetidine-3-carboxylate (60) :

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of methyl azetidine-3-carboxylate hydrochloride ($1.5 \mathrm{mmol}, 227.4 \mathrm{mg}$) and $\mathrm{NEt}_{3}(5.5$ $\mathrm{mmol}, 556.1 \mathrm{mg}$) in ice-salt bath, then reacted at ambient temperature for 8 h afforded $93.3 \mathrm{mg}(64 \%)$ of $\mathbf{6 0}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.35(\mathrm{~m}$, $1 \mathrm{H}), 2.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.22(\mathrm{~m}$, $8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.0,52.4,52.0,51.0,31.6,31.4,28.97,28.90,28.3$, 23.0, 22.5, 14.0.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$292.1583, found: 292.1588 .

N, N-diethyl-2-phenylethane-1-sulfonamide (61) :

61
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of diethylamine ($5 \mathrm{mmol}, 365.5 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $49.5 \mathrm{mg}(41 \%)$ of $\mathbf{6 1}$ as a yellow oil. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18$ (m, 2H), 3.31 (q, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.20-3.04(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3 $)$: $\delta 138.2,128.7,128.2,126.7,53.7,41.4,29.7,14.4$.
HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$242.1215, found: 242.1218.

N-(4-methoxyphenyl)octane-1-sulfonamide (62) :

62
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of methyl 4-methoxyaniline ($1.5 \mathrm{mmol}, 184.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in icesalt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded $97.3 \mathrm{mg}(65 \%)$ of $\mathbf{6 2}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.19(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.79$ (s, 3H), 3.01 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.84-1.75$ (m, 2H), $1.42-1.16$ (m, 10H), 0.86 (t, $J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 157.6,129.2,124.1,114.6,55.4,50.9,31.6,28.8,28.1$, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$298.1477, found: 298.1478 .

N-(4-(dimethylamino)phenyl)octane-1-sulfonamide (63) :

63
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of N, N-dimethylbenzene-1,4-diamine ($1.5 \mathrm{mmol}, 204.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8$ mg) in ice-salt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded $90.6 \mathrm{mg}(58 \%)$ of $\mathbf{6 3}$ as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.13$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.67 ($\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.56 $(\mathrm{s}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 2 \mathrm{H})$, $1.24(\mathrm{~s}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 149.1,125.0,112.9,50.6,40.6,31.6,28.9,28.8,28.1$, 23.4, 22.5, 14.0 .

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$313.1950, found: 313.1955.

N -(4-(tert-butyl)phenyl)octane-1-sulfonamide (64) :

64
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}\left(\mathrm{OTf}_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})\right.$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 4-(tert-butyl)aniline ($1.5 \mathrm{mmol}, 223.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath under argon atmosphere, then reacted at ambient temperature for 8 h afforded 108 $\mathrm{mg}(54 \%)$ of 64 as a yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ $(\mathrm{s}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}$, $8 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.2,134.0,126.4,120.6,51.4,34.4,31.6,31.2,28.9$, 28.1, 23.4, 22.5, 14.0.

HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$343.2419, found: 343.2422.
2-phenylethane-1-sulfonamide (65) ${ }^{13}$:

65
The reaction of 2-phenylethane-1-thiol ($0.50 \mathrm{mmol}, 69.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120$ $\mu \mathrm{L}$), $\mathrm{HBr}\left(\mathrm{AcOH}\right.$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8$ $\mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into DCM $(1 \mathrm{~mL})$ solution of $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath under $\mathrm{NH}_{3}(\mathrm{~g})$ atmosphere, then reacted at ambient temperature for 8 h afforded $47.2 \mathrm{mg}(51 \%)$ of $\mathbf{6 5}$ as a white solid. ${ }^{1}$ H NMR (400 MHz, DMSO-d): $\delta 7.41$ - 7.14 (m, 5H), 6.87 ($\mathrm{s}, 2 \mathrm{H}$), $3.30-3.21$ (m, 2H), $3.05-2.95$ (m, 2H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d $\mathbf{6}$): $\delta 139.1,128.9,128.7,126.8,55.9,30.0$.
MS m/z (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-}$184.04, found: 184.04.
octane-1-sulfonamide (66) ${ }^{14}$:

66
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath under $\mathrm{NH}_{3}(\mathrm{~g})$ atmosphere, then reacted at ambient temperature for 8 h afforded 59.0 mg (61%) of $\mathbf{6 6}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.97$ ($\mathrm{s}, 2 \mathrm{H}$), 3.10 ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.88-1.76$ (m, $2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.82(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 55.2,31.6,29.0,28.9,28.1,23.8,22.5,14.0$.
$\mathbf{M S ~ m / z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$192.11, found: 192.11 .
N-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)octane-1-sulfonamide (67) :

The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L})$ in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of dehydroabietylamine ($1.5 \mathrm{mmol}, 426.7 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $87.7 \mathrm{mg}(38 \%)$ of 67 as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.93-2.89(\mathrm{~m}$, 2H), $2.89-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.65(\mathrm{~m}$, $2 \mathrm{H}), 1.52(\mathrm{dd}, J=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.31-$ $1.27(\mathrm{~m}, 8 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.92-0.88(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 146.9,145.6,134.5,126.8,124.1,123.8,53.9,52.5$, $44.9,38.2,37.3,37.0,35.8,33.4,31.7,29.8,29.0,28.9,28.3,25.2,24.0,23.9,23.6$, 22.6, 18.8, 18.5, 18.4, 14.0 .

HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 479.3671$, found: 479.3677 .
ethyl (3R,4R,5S)-4-acetamido-5-(octylsulfonamido)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (68) :

The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, solvent was recovered with reduced pressure, then the residuals were dissolved in THF (1.0 mL), and added dropwise into THF (1 mL) solution of oseltamivir ($1.5 \mathrm{mmol}, 468.6 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $87.2 \mathrm{mg}(36 \%)$ of $\mathbf{6 8}$ as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=17.8,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43$ (dd, $J=17.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.56$ $-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 11 \mathrm{H}), 0.87(\mathrm{q}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.0,165.8,137.3,129.0,82.3,75.1,61.0,54.6,54.2$, 52.4, 32.2, 31.6, 29.0, 28.9, 28.2, 26.1, 25.6, 23.6, 23.3, 22.5, 14.1, 14.0, 9.4, 9.2.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 489.2998$, found: 489.3003.

1-(2-((2,4-dimethylphenyl)thio)phenyl)-4-(octylsulfonyl)piperazine (69) :

69
The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), \mathrm{DMSO}$ $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of
vortioxetine ($1.5 \mathrm{mmol}, 447.7 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg}$) in ice-salt bath, then reacted for another 8 h to afford $152.3 \mathrm{mg}(64 \%)$ of $\mathbf{6 9}$ as a white solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.36$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 ($\mathrm{s}, 1 \mathrm{H}$), 7.12 - 7.06 (m, $1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J$ $=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.14(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=20.4 \mathrm{~Hz}, 6 \mathrm{H})$, $1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.2,142.1,139.2,136.0,134.4,131.6,127.7,127.4$, $126.2,125.5,124.9,120.0,51.3,48.8,46.2,31.6,28.9,28.8,28.4,22.9,22.5,21.1,20.4$, 13.9.

HRMS m/z (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 475.2453$, found. 475.2457.
octane-1-sulfonyl fluoride (70) ${ }^{15}$:

The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of TBAF ($2.5 \mathrm{mmol}, 653.7 \mathrm{mg}$) and $\mathrm{NEt}_{3}(3.5 \mathrm{mmol}, 354.2 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $58.9 \mathrm{mg}(60 \%)$ of 70 as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l 3}$) : $\delta 3.41-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43$ (m, 2H), $1.35-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 50.9$ (d, $J=16.2 \mathrm{~Hz}$), 31.6, 28.8, 28.7, 27.8, 23.3, 22.5, 14.0 .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 53.27$.
$\mathbf{M S} \mathbf{m} / \mathbf{z}(\mathbf{E I})$ calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$196.09, found: 196.11.
octane-1-sulfonyl azide (71) ${ }^{16}$:

71

The solution of thiol $\mathbf{1}(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), \mathrm{DMSO}$ ($1.75 \mathrm{mmol}, 136.7 \mathrm{mg}$) and HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40{ }^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM (1 mL) solution of azidotrimethylsilane ($1.5 \mathrm{mmol}, 172.8 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford $84.8 \mathrm{mg}(77 \%)$ of 71 as a yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3 $): ~ \delta 3.36-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 55.9,31.5,28.8,27.9,23.3,22.5,13.9$.
$\mathbf{M S} \mathbf{~ m} / \mathbf{z}(\mathbf{E I})$ calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$219.10, found: 219.25 .
phenethyl octane-1-sulfonate (72) :

72
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}\left(\mathrm{OTf}_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})\right.$ in DCM (2 mL) at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 2-phenylethan-1-ol ($1.5 \mathrm{mmol}, 183.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded $98.5 \mathrm{mg}(66 \%)$ of 72 as a colorless oil.
${ }^{1}{ }^{\mathbf{H}}$ NMR (400 MHz, CDCl3): $\delta 7.35-7.29$ (m, 2H), $7.28-7.21$ (m, 3H), $4.40(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.35$ $-1.21(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 136.4,128.9,128.5,126.9,69.7,50.3,35.6,31.6,28.8$, 28.0, 23.2, 22.5, 14.0.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$316.1946, found: 316.1949.

4-phenylbutyl octane-1-sulfonate (73) :

73
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 4-phenylbutan-1-ol ($1.5 \mathrm{mmol}, 225.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted at ambient temperature for 8 h afforded 112.6 mg (69%) of 73 as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3 $): ~ \delta 7.34-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.46$ $-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 141.5,128.4,128.3,125.9,69.3,50.4,35.1,31.6,28.9$, 28.9, 28.7, 28.1, 27.2, 23.4, 22.5, 14.0.

HRMS \mathbf{m} / \mathbf{z} (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$344.2259, found: 344.2257.

4-methoxyphenyl octane-1-sulfonate (74):

74
The reaction of octane-1-thiol ($0.50 \mathrm{mmol}, 73.1 \mathrm{mg}$), DMSO ($1.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$), $\mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$ in DCM $(2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 12 h , followed by added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 4-methoxyphenol ($1.5 \mathrm{mmol}, 225.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath under N_{2} atmosphere, then reacted at ambient temperature for 8 h afforded 105.1 $\mathrm{mg}(70 \%)$ of 74 as a colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$
(s, 3H), 3.20 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.01-1.89$ (m, 2H), $1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20$ (m, 8H), 0.89 (t, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.3,142.4,123.0,114.8,55.6,50.0,31.6,28.9,28.8$, 28.1, 23.4, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}$ [M-H] ${ }^{-299.1317, ~ f o u n d: ~ 299.1319 . ~}$
10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyloctane-1sulfonate (75) :

The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg}), \mathrm{DMSO}$ $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and HBr (AcOH solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into $\mathrm{DCM}(1 \mathrm{~mL})$ solution of 2-(10-hydroxydecyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione (1.5 mmol, 507.7 mg) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford 183.1 mg (71%) of $\mathbf{7 5}$ as an orange oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 4.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.11$ - $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 24 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 184.4,183.9,144.1,144.0,142.8,138.4,69.5,60.9$, 50.1, 31.5, 29.6, 29.1, 28.7, 28.5, 27.9, 26.1, 25.2, 23.3, 22.4, 13.8, 11.7.

HRMS $\mathbf{m} / \mathbf{z}(\mathbf{E S I})$ calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 515.3042$, found: 515.3048.
(Z)-2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl
octane-1-sulfonate (76):

The solution of thiol $1(0.50 \mathrm{mmol}, 73.1 \mathrm{mg}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.05 \mathrm{mmol}, 17.8 \mathrm{mg})$, DMSO $(1.75 \mathrm{mmol}, 136.7 \mathrm{mg})$ and $\mathrm{HBr}(\mathrm{AcOH}$ solution, $33 \% \mathrm{w} / \mathrm{w}, 0.75 \mathrm{mmol}, 120 \mu \mathrm{~L}$) in anhydrous DCM (2.0 mL) was heated at $40^{\circ} \mathrm{C}$ for 12 h . After the termination of the reaction, the reaction mixture was added dropwise into DCM $(1 \mathrm{~mL})$ solution of (Z)-2-(4-(4-chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol ($1.5 \mathrm{mmol}, 568.3 \mathrm{mg}$) and $\mathrm{NEt}_{3}(4 \mathrm{mmol}, 404.8 \mathrm{mg})$ in ice-salt bath, then reacted for another 8 h to afford 172.6 $\mathrm{mg}(62 \%)$ of 76 as a white oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.40-7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $7.23-7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.18(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 156.1,142.6,141.4,140.8,135.6,135.5,131.7,129.4$, $129.3,128.3,128.2,126.9,126.6,113.4,67.4,65.5,50.6,42.7,38.4,31.6,28.8,28.7$, 28.0, 23.3, 22.5, 14.0.

HRMS m/z (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{ClNO}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$572.2601, found: 572.2609.
4-methylbenzenesulfonamide (77) ${ }^{17}$:

${ }^{1} H$ NMR (400 MHz, DMSO-d6): $\delta 7.71$ (d, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (s, 2H), 2.37 (s, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d 6): $\delta 141.8,141.4,129.2,125.5,20.8$.
MS m/z (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$170.03, found: 170.03.

1,2-dioctyldisulfane (78) ${ }^{18}$:

78
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}$, $4 \mathrm{H}), 1.28(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 39.2,31.8,29.22,29.20,29.1,28.5,22.6,14.0$.
S-octyl octane-1-sulfonothioate (79) ${ }^{19}$:

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 3.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$
$-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.7$ Hz, 6H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): $\delta 62.7,36.2,31.7,31.6,29.6,29.0,28.98,28.92,28.89$, $28.5,27.9,23.5,22.59,22.57,14.05,14.04$.

References

1. M. Yuki, K. Sakata, S. Kikuchi, H. Kawai, T. Takahashi, M. Ando, K. Nakajima and Y. Nishibayashi, Chem. - Eur. J., 2017, 23, 1007-1012.
2. J. W. J. Bosco, B. R. Raju and A. K. Saikia, Synth. Commun., 2004, 34, 28492855.
3. A. Gayet, C. Bolea and P. G. Andersson, Org. Biomol. Chem., 2004, 2, 18871893.
4. M. Jereb and L. Hribernik, Green. Chem., 2017, 19, 2286-2295.
5. R. Chen, S. Xu, F. Shen, C. Xu, K. Wang, Z. Wang and L. Liu, Molecules, 2021, 26, 5551.
6. T. Kataoka, T. Iwama, T. Setta and A. Takagi, Synthesis, 1998, 4, 423-426.
7. J. F. King and D. J. H. Smith, J. Am. Chem. Soc., 1967, 89, 4803-4804.
8. C. Silva-Cuevas, C. Perez-Arrieta, L. A. Polindara-Garcia and J. Armando Lujan-Montelongo, Tetrahedron Lett., 2017, 58, 2244-2247.
9. S. Lee, O. Cil, P. M. Haggie and A. S. Verkman, J. Med. Chem., 2019, 62, 8330-8337.
10. S. Madabhushi, R. Jillella, V. Sriramoju and R. Singh, Green. Chem., 2014, 16, 3125-3131.
11. N. Shohji, T. Kawaji and S. Okamoto, Org. Lett., 2011, 13, 2626-2629.
12. R. A. Abramovitch, W. D. Holcomb and S. Wake, J. Am. Chem. Soc., 1981, 103, 1525-1533.
13. J. A. Andrews, L. R. E. Pantaine, C. F. Palmer, D. L. Poole and M. C. Willis, Org. Lett., 2021, 23, 8488-8493.
14. D. Zhong, D. Wu, Y. Zhang, Z. Lu, M. Usman, W. Liu, X. Lu and W.-B. Liu, Org. Lett., 2019, 21, 5808-5812.
15. P. Wang, H. Zhang, M. Zhao, S. Ji, L. Lin, N. Yang, X. Nie, J. Song and S. Liao, Angew. Chem. Int. Ed., 2022, 61, e202207684.
16. S. Azeez, P. Chaudhary, P. Sureshbabu, S. Sabiah and J. Kandasamy, Org. Biomol. Chem., 2018, 16, 8280-8285.
17. T. Q. Davies, M. J. Tilby, D. Skolc, A. Hall and M. C. Willis, Org. Lett., 2020, 22, 9495-9499.
18. E. Rattanangkool, W. Krailat, T. Vilaivan, P. Phuwapraisirisan, M. Sukwattanasinitt and S. Wacharasindhu, Eur. J. Org. Chem., 2014, 2014, 4795-4804.
19. T. X. T. Luu, T.-T. T. Nguyen, T. N. Le, J. Spanget-Larsen and F. Duus, Journal of Sulfur Chemistry, 2015, 36, 340-350.

$\begin{aligned} & \text { Hex } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ 웅영 송 \

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
50	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1
60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

| 50 | 140 | 1 | 1 |
| :--- |

1	,	1	1	1	1	,	1	,	1	1	1	,	1	1	1	1	1	1	,		1	1	1	1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\stackrel{\infty}{\infty} \stackrel{\circ}{\circ} \mathrm{O}$ ®	$\stackrel{\circ}{6}$	$\stackrel{\infty}{i}$
ヘ尺̇	¢	ก่
W	\|	

$\overbrace{0}^{\mathrm{MeO}}$ _$_{7} \mathrm{SO}_{2} \mathrm{Br}$

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\mathrm{MeO} \sim^{\sim} \mathrm{SO}_{2} \mathrm{Br}$
8

00	190	180	170		150	140	130	120	110	100	90	80	10	60	50					
0		180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

10

	1	1	12	110		1	80	70	60	50	1	1	1		
50	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

15

15

$\begin{array}{llllllllllllllllllllllllllllllll}50 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & \end{array}$

$\stackrel{\sim}{2}$		$\stackrel{\square}{\square}$	$\stackrel{\circ}{\text { a }}$	I
∞		-	ล	
	4	\|	\|	

[^0]

꾸앖	砍先	\cdots
守 \ddagger	－¢	突灾
11	｜｜	\checkmark

[^1]

閭	$\stackrel{\sim}{7}$	F	\％	\cdots
＋	®	－		へべがく
｜		1		

21

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

22

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |

- Ti T

		1		1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

話蕒		쿵ํㅜㅇ	\＆\％	88
－	㕸舟	gig	¢0\％	
11	\checkmark	\checkmark	V	

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

E		ํö
$\stackrel{\text { g }}{ \pm}$		N:
I	H1,	\checkmark

\qquad

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	190								110		90	80	70	60	50	40	30	20	10	0

$\underset{\infty}{*}$		\checkmark ㅇo
－	へ	成べ灾
｜	｜｜	V

28

| 1 | |
| :--- |
| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

 $\iint \sqrt{ }$

㖁和

| | 9.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1 |
| :--- |

	1	1	,	1	1	1	1	,	1	,	,	1	1	1	1	,	1	,	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

100	50	0	-50	-100	-150	-200	-250	-300

32

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
：00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－1

32

100	50	0	-50	-100	-150	-200	-250	-300

S115

S121

36

S123

S124

S125

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

(I) ${ }^{\mathrm{S}}-\mathrm{SO}_{2} \mathrm{Br}$

39

(1) 1) $-\mathrm{SO}_{2} \mathrm{Br}$

39

200	190	180	170	160	150	140	130	120	110		90		70	60	50			10			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

T	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1		,	,	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

S131

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	T	1
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

43

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

44

S139

S141

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

| 1 | |
| :--- |
| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |

T	1	1	1	,	1	1	1	,	1	1	1		1	,	1	1		1	1	1	,
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

49

			170			140			110		90		70	60	50	40	30	20		
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{PP} \end{gathered}$	90	80	70	60	50	40	30	20	10	0

50

T	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

-

\square	1	1	1	1	1	1	1	1	1	100	1	,	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	1	1	1	1	,	1	1	1	10			1	1		10	1	10	10	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

∞
0

 </ </l)

ヘベへへべ
\square

54

rivinier
|l

55

55

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\dot{\mu} \dot{\mu} \dot{\mu} \dot{\rho} \dot{\mu} \dot{\mu} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m}$

56

56

														60	50	10	30	20	10	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-

	1	1	1	,	1	1	1	1	1	,	1	,	1	1	,	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

,	1	1	1	1	1	1	1	,	,	1	,		1	,		T	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

S173

62

| 1 | |
| :--- |
| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |

S175

63

100	1	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
? 00	190	180	170	160	150	140	130	120	110		90			60	50	40	30	20	10	0

S177

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\underbrace{\text { Cln }}$
II

$\cdots \stackrel{\infty}{\infty} \stackrel{\infty}{\circ}$	$\underset{\text { J }}{\text { H }}$	병	
	$1{ }^{10}$		๙่ ล่
r	\|	\ 1	11

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

68

T	1	1	1	1	1	1	1	1	1		1	1	1	1	1	,	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
. 20	115	110	105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5

$\stackrel{8}{8}$	\%	$8{ }_{\text {¢ }}^{\text {¢ ¢ ¢ ¢ ¢ ¢ }}$
F	$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢

1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1		1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\xrightarrow{-}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

73

\%	\%	
$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	
1	\|	- - Vr

[^2]

¢ ${ }_{\text {¢ }}^{\text {¢ }}$	
V	vi

1	1	1	1	1		1	1	1	1	10	1		1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

78

	,	1	,	1	1	1	1	1	1	1	1	1	1	1	,	T
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

\&เวฮว 09を: ᄂ -

79

[^3]

$=\mid$

,	1	,	1	1	1		1	1	1	1	1	1	1	1
140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]:

[^1]:

[^2]:

[^3]:

