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1. Experimental Section

Chemicals

p-chloranil (CA) was purchased from Tokyo Chemical Industry (TCI) and recrystallized with toluene and 1-propanol. 

Tetrabuthylammonium hexafluorophosphate (TBAPF6) was purchased from TCI and recrystallized with ethanol. 

Dehydrated ethanol and acetonitrile were purchased from Wako Pure Chemical Corporation. 

Thermoelectric measurement

The Preparation of the electrolyte of CA•−/2− and the thermoelectric measurement were carried out under Ar atmosphere. 

CA•− and CA2− were prepared by electrochemical reduction of neutral CA. CA (1 mM) and TBAPF6 (0.1 M) dissolved 

in acetonitrile (20 mL) was injected in one side of an H-shape cell separated by a glass filter in the middle, and the same 

electrolyte without CA was injected in the other side of the cell. Pt coil, Ag wire, and Pt coil were used as working, 

reference, and counter electrodes, respectively. CA•− and CA2− were prepared by applying constant −0.5 and −1.1 V vs 

Ag pseudo electrode, respectively. Fig. S2a shows the time-course charge of the reduction. Both coulombic efficiencies 

were above 90 %, and we confirmed the preparation of CA•− and CA2−.

The prepared solutions were mixed, and various concentrations of EtOH (0, 0.04, 0.25, or 1.3 M) were added. Then, we 

obtained the acetonitrile electrolytes containing CA•−/2− (0.5 mM) redox couple and various concentrations of EtOH (0, 

0.04, 0.25, or 1.3 M). The electrolyte was put into an H-shaped cell with magnetic stirrers (Fig. S1a). 

The temperature on one side was cooled by a water circulator, and the temperature on the other side was heated by a 

ribbon heater, forming temperature differences between the two sides of the thermocell (Fig. S1a and S2b). Pt wire and 

GC plate were used as the electrodes, and the voltage was recorded by a source meter 2401 (Keithley). The temperatures 

of both sides of the cell were monitored by thermocouples (TM201, AS ONE). Two thermocouples were immersed in 

the stirred electrolyte and held near the electrode to measure temperature of the electrolyte. The thermocell was covered 

by septum stoppers to prevent the electrolyte from vaporization. Diameters of the Pt wire and GC plate are 1.0 and 3.0 

mm, respectively. The distance between the electrodes is 9.5 cm.

Current-voltage measurement

Current-voltage measurement was conducted by ALS 620 (BAS) under Ar atmosphere. The same experimental as in the 

thermoelectric measurement was used to record the output current while applying a temperature difference and 

monitoring the temperature of the electrolyte. Pt wire was used as the electrodes. When the temperature difference 

between the hot and cold electrodes was around 5 K, the current-voltage was measured by sweeping the voltage from the 

open circuit voltage to 0 V with stirring the electrolyte. The scan rate was 0.5 mV s−1. Pt wires were used as electrodes, 

and the current values were recorded by a source meter 2401 (Keithley). 
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Continuous power generation

Continuous power generation of the thermocell was carried out using an acetonitrile electrolyte containing CA•−/2− (0.5 

mM, each) redox couple, TBAPF6 (0.1 M), and EtOH (1.3 M) under the Ar atmosphere. The temperature on one side 

was cooled by a water circulator, and the temperature on the other side was heated by a hot plate (Fig. S2c). GC plate 

(Fig. S1d) was used as the electrodes at both cold and hot sides, and the current values were recorded by a source meter 

2401 (Keithley). The temperature difference between the hot and cold electrodes was kept between 12 and 13 K, and the 

current was measured while applying a constant voltage of 16.7 mV. The temperatures of both sides of the cell were 

monitored by a couple of thermocouples (TM201, AS ONE). Two thermocouples were immersed in the stirred electrolyte 

and held near the electrode to measure temperature of the electrolyte. The thermocell was covered by septum stoppers to 

prevent the electrolyte from vaporization.

UV-Vis spectroscopy

UV-Vis spectroscopy was conducted with a UV-vis spectrometer (V770. JASCO) at room temperature at the 200 to 600 

nm wavelength. The sample preparation and measurement were executed under an inert gas atmosphere. Acetonitrile 

solutions of CA (0.5 mM) and TBAPF6 (0.1 M) with various concentrations of EtOH (0–5 M) were prepared and put into 

a quartz cell (For neutral CA). In addition, the bulk electrolysis was performed at constant potentials of −0.7 and −1.4 V 

vs Ag/Ag+ to prepare the reduced CA species, CA•− and CA2−, respectively. Each reduced electrolyte was mixed with 

various concentrations of EtOH and acetonitrile electrolytes of CA•− or CA2− (0.5 mM), TBAPF6 (0.1 M), and EtOH (0–5 

M) were prepared and put into a quartz cell (For CA•− and CA2−). 

Square wave voltammetry at various temperatures (VT-SWV)

VT-SWV was measured with ALS 620 (BAS) using an acetonitrile solution containing 1.0 mM of CA and 0.1 M of 

TBAPF6 with various EtOH concentrations under N2 gas flow. GC plate, Ag/Ag+, and Pt wire were used as the working, 

reference, and counter electrodes, respectively. N2 gas was bubbled into the electrolyte during the measurement. 

Temperature of the electrolyte was controlled with a Peltier temperature-controlling equipment (NDC-100, NISSIN 

Japan). Temperature of the electrolyte was monitored by a thermocouple (TM201, AS ONE, Japan), which was immersed 

in the electrolyte and its tip was held near the working electrode.

The observed redox potential shifts of the CA•−/2− redox pair with changing temperatures are shown in Fig. S21. The 

slope of the graph shows a ΔE/ΔT value of the redox pair. Considering the ΔE/ΔT of Ag/Ag+ reference electrode is ca. 

+0.2 mV K−1,1 the Se can be estimated by adding 0.2 mV K−1 to the value of ΔE/ΔT. The estimated Se values were 

converted into the values of redox entropy (ΔSrc) by using Eq. 1, as shown in Table S2. 

Electrochemical impedance spectroscopy measurement
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Electrochemical impedance measurement was carried out with ALS 620 (BAS) for the acetonitrile solution containing 

CA (1.0 mM), TBAPF6 (0.1 M), and various concentrations of EtOH (0, 0.04, 0.25, or 1.3 M). Glassy carbon electrode, 

Ag/Ag+ electrode, and Pt wire were used as the working electrode, reference electrode, and counter electrode, 

respectively. The impedance of the redox reactions of CA0/•− and CA•−/2− was measured at the redox potentials of −0.277 

(CA0/•−) and −1.085 (CA•−/2−) V vs Ag/Ag+ reference electrode, respectively. The frequency was changed in the range of 

1 Hz ~ 100 kHz, and the potential amplitude was set at 10 mV.
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2. DFT Calculations

Theoretical Models and Calculations

We theoretically investigated the equilibrium geometries, electronic states, and electronic excitations of CA•−, CA2−, 

and local solvation structures (clusters) composed of CA•−/2− and several EtOH molecules. For all the geometry 

optimization calculations, we employed the Kohn–Sham density functional theory (DFT) along with the B3LYP 

functional2–4 and cc-pVDZ basis set.5,6 With the acetonitrile solvation effects incorporated using the polarizable 

continuum model (PCM),7 we studied the EtOH solvation configurations. The self-consistent-field stability analysis8,9 

was performed for all the electronic states to make sure that they have reliable electronic configurations.

First, we obtained the equilibrium geometries of CA•− and CA2− using Gaussian 16.10 Both of the geometries belong 

to the D2h point group. The ground-state term symbols for CA•− and CA2− are 2B2g and 1Ag, respectively. We then 

performed the so-called host–ligand coordination search implemented in CONFLEX 9.11 This is a brute-force scatter 

search to locate many local-energy-minimum geometries of host–ligand systems. In our calculations, we regarded CA•− 

(or CA2−) as a host and one EtOH molecule as a ligand to thoroughly examine the local solvation structure. CONFLEX 

9 generated 2592 (= 12 × 63) geometries of CA•−/2−···EtOH solvation structure, in which one EtOH molecule was arranged 

in different locations (i.e., 12 vertices of a regular icosahedron) and different orientations (i.e., six-fold rotation around 

each of the x, y, and z axes) around CA•−/2−. The 2592 geometries were used to start geometry optimization with Gaussian 

16.10 This CONFLEX/Gaussian-hybrid host–ligand search successfully yielded 1333 geometries for CA•−···EtOH and 

1698 geometries for CA2−···EtOH. The lowest-energy group among the resultant geometries consists of geometries in 

which the OH group of EtOH is bound to an O atom of CA•−/2−. The second- and third-lowest energy groups consist of 

geometries in which the OH group of EtOH is bound to a Cl atom and two Cl atoms of CA•−/2−, respectively. In each of 

the groups, we focused on the geometry that has no imaginary-frequency normal modes and is energetically stable. Such 

geometries in the lowest, second-lowest, third-lowest energy groups are denoted by CA•−/2−(O)···EtOH, 

CA•−/2−(Cl)···EtOH, and CA•−/2−(2Cl)···EtOH, respectively. Here, O, Cl, and 2Cl in parentheses indicate the constituent 

atom(s) of CA•−/2− to which the OH group is bound.

We further obtained equilibrium geometries of local solvation structures including several EtOH molecules as 

follows. Focusing on CA•−/2−(O)···EtOH and CA•−/2−(Cl)···EtOH, we inverted the EtOH geometry with respect to the 

center of the six C atoms of CA•−/2− to yield an additional EtOH geometry. The subsequent geometry optimization using 

Gaussian 16 yielded equilibrium geometries without any imaginary-frequency normal modes. These geometries are 

denoted by CA•−/2−(2O)···2EtOH and CA•−/2−(2Cl)···2EtOH. Because the binding between an OH group and an O atom 

of CA•−/2− is relatively strong, we further obtained equilibrium geometries of CA•−/2−(3O)···3EtOH and 

CA•−/2−(4O)···4EtOH, including three and four EtOH molecules, respectively, to examine the solvation capability. Let 

us note that we constructed the initial geometries including four EtOH molecules, required to start the optimization, by 

performing two-fold rotation of the EtOH geometries in CA•−/2−(2O)···2EtOH around the axis passing through the two 

O atoms of CA•−/2−. Simple removals of an EtOH molecule from them yielded initial geometries including three EtOH 
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molecules. 

To address the question of how the level of theory can affect the energetics of EtOH solvating around CA•−/2−, we 

also performed single-point calculations using the aug-cc-pVTZ basis set5,6,12 with and without the Grimme’s D3 

dispersion correction and Becke–Johnson damping (D3BJ).13

To obtain UV-Vis absorption spectra, we performed time-dependent density functional theory (TD-DFT) 

calculations5,6,12,14 with the aug-cc-pVTZ basis set.5,6,12 Every stick spectrum we obtained was convoluted with a Gaussian 

function with a half width at half maximum (HWHM) of 0.333 eV. We also performed single-point TD-DFT calculations 

of CA•−/2− in a polarizable continuum that describes the EtOH solvation. These calculations correspond to the extreme 

case of a high EtOH concentration within the PCM framework. Through the comparison between explicit and implicit 

(i.e., PCM) considerations of the EtOH solvation around CA•−/2−, we examined the effects of the hydrogen bonding, a 

molecular nature of the EtOH solvation, on the UV-Vis absorption spectra.



S9

3. Geometry Optimization and Absorption Peak Assignment of CA species

Optimized Geometries

Fig. S15a and S16a and Fig. S15b and S16b show the potential energy changes and geometries for the EtOH solvating 

around the O atoms of CA•− and CA2−, respectively. All the energies in Fig. S15 (S16) are relative to the reference energy 

of CA•−/2− and two (four) EtOH molecules at infinite separation; in other words, the energy of every structure in Fig. S15 

and S16 corresponds to the negative of the binding energy. The binding energy is positive both for CA•− and CA2− (Fig. 

S15 and S16, black solid circles). The binding energy for CA2− is much greater than that for CA•− (e.g., 26.9 kcal mol−1 

for CA2−(2O)···2EtOH and 15.4 kcal mol−1 for CA•−(2O)···2EtOH). Thanks to the out-of-plane contact structure, 

multiple EtOH molecules can be readily bound to the O atoms of CA•−/2− without incurring strong steric clashes (Fig. 

S16). The total binding energy is indeed almost additive with respect to the number of EtOH (at least up to four) and is 

greater in CA2− than in CA•− (52.6 and 30.6 kcal mol−1 for four EtOH adsorption to CA2− and CA•−, respectively). 

When using a highly accurate basis set, aug-cc-pVTZ,5,6,12 with and without the Grimme’s D3 dispersion correction 

and Becke–Johnson damping (D3BJ),13 the binding energies become somewhat smaller (Fig. S15 and S16, green 

diamonds and orange squares), but the aforementioned energetic features remain unchanged. 

The EtOH solvation around CA2− is energetically stronger than that around CA•− because hydrogen bonding with the 

O atoms of CA2− is strong. This is evident as the pronounced electronegative charges of the O atoms of CA2− and the 

short distance between an OH group and its nearby O atom of CA2−. In fact, the natural atomic charges15 of the O atoms 

of CA2− (−0.83e) are more electronegative than those of CA•− (−0.64e). Besides, the H atom of an OH group is close to 

an O atom of CA2−; for example, the H···O distance is 1.61 Å for CA2−(O)···EtOH and 1.81 Å for CA•−(O)···EtOH. As 

compared to the EtOH solvation around the O atoms of CA•− and CA2− (Fig. S15), that around the Cl atoms is noticeably 

weak (Fig. S17), which is consistent with the long H···Cl distance (e.g., 2.42 Å for CA2−(Cl)···EtOH and 2.58 Å for 

CA•−(Cl)···EtOH).

Absorption Peak Assignments

• Observed UV-Vis spectra of CA species

The UV-Vis spectrum of neutral CA was measured in acetonitrile electrolyte (0.5 mM CA and 0.1 M TBAPF6), and 

the absorption peak of only neutral CA species was observed at 288 nm (Fig. S5b). Then, we applied constant potentials 

of −0.7 and −1.4 V (vs Ag/Ag+) to prepare the two reduced species, CA•− and CA2−, respectively. After the reduction of 

neutral CA to CA•− at −0.7 V, the absorption peak of neutral CA disappeared, and the CA•− radical anion appeared at 

321, 420, and 448 nm (Fig. S5b).16,17 After the further reduction by applying −1.4 V, the absorption peak at 359 nm was 

observed, which is assigned to CA2− anion.17,18 These results confirm that the first reduction at −0.28 V in Fig. S5a 

corresponds to the reduction of CA to CA•− and the second reduction at −1.1 V corresponds to the reduction of CA•− to 

CA2−.
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• Calculated UV-Vis spectra of CA species

To conduct the peak assignments of the UV-Vis absorption spectra and examine the effects of the EtOH solvation on 

the spectra, we performed TD-DFT calculations14 with the aug-cc-pVTZ basis set.5,6,12 Note that for the peak assignments, 

we use the symbols of the frontier orbitals of neutral CA shown in Fig. S7 (e.g., π*(b2g)), as well as the multi-electron 

term symbols for CA•−/2− (e.g., 2B2g), because the orbitals are fairly similar to those of CA•−/CA2−. The overall profiles of 

the theoretical spectra for CA•− (Fig. S9a, black curve) and CA2− (Fig. 2a, bottom and S9b, black curve) without EtOH 

are similar to those of the experimental ones (Fig. S5b and S6b–c).

In the convoluted spectrum of CA•− without EtOH (Fig. S9a and S10a, black curves), a strong sharp peak, a weak 

peak, and a broad peak appear at 219, 273, and ~415 nm, respectively, which correspond to the experimental peaks at 

214, 321, and ~450 nm. All these are associated with π* ← π (π*) excitations. Specifically, three 2B3u ← 2B2g excitations 

at 219, 274, and 428 nm (three intense sticks labeled 2B3u, Fig. S9a) are attributed mainly to the π*(au) ← π(b1g) excitation, 

the π*(b3u) ← π*(b2g) and π*(au) ← π(b1g) excitations, and the π*(b2g) ← π(b3u) excitation, respectively. One 2Au ← 2B2g 

(π*(au) ← π*(b2g)) excitation at 406 nm, together with the 2B3u ← 2B2g excitation at 428 nm, gives rise to the broad peak 

at ~415 nm. Although not evident in the theoretical peak owing to its broadness, the peak splitting associated with these 

two excitations actually appears in the experimental peak at ~450 nm (420 and 448 nm, Fig. S5b and S6b).

In the convoluted spectrum of CA2− without EtOH (Fig. 2a, bottom, S9b, and S10b, black curves), a strong sharp 

peak, a small shoulder on it, and a broad peak appear at 221, 253, and 379 nm, respectively, which correspond to the 

experimental peaks at 223, 258, and 359 nm. The sharp peak and the shoulder are attributed primarily to the π*(au) ← 

π(b1g) and Rydberg(b3u) ← π*(b2g) excitations and the π*(b3u) ← π*(b2g) excitation, respectively. The Rydberg(b3u) 

orbital is diffuse and has a 4f shape (Fig. S8). These excitations below 260 nm are all 1B1u ← 1Ag excitations (Fig. 2a, 

bottom). There is no peak at ~300 nm, and most importantly, the broad peak of CA•− at ~415 nm (Fig. S9a) is noticeably 

blue-shifted to 379 nm in CA2− (Fig. 2a, bottom and S9b), as with the experimental spectra (Fig. S5b and S6b–c). Similar 

to the 2Au ← 2B2g excitation of CA•− at 406 nm which, in part, causes the broad peak at ~415 nm, the 1B2u ← 1Ag excitation 

of CA2− that causes the broad peak at 379 nm (the black stick at 381 nm, Fig. 2a, bottom) is attributed to the π*(au) ← 

π*(b2g) excitation (LUMO+1 ← HOMO excitation in CA2−, Fig. 2c). We summarized the peak assignment in Table 1. 

The peak shifts of CA2− at 379 nm in the TD-DFT calculation

Our calculations show that the EtOH solvation around the O atoms of CA2− (specifically, out-of-plane contact of the 

OH group(s) to CA2-) causes the blue shift of the broad peak at 379 nm (1B2u ← 1Ag, Fig. 2a and 2c). Even if pure 

EtOH solvation is considered within the PCM framework, a similar blue shift does not appear (Fig. S9b, gray curve). 

This is partly because the PCM model does not explicitly consider hydrogen bonding and partly because the 

permittivity (dielectric constant) of EtOH is not very different from that of acetonitrile. In addition, the EtOH solvation 

around the O atoms of CA•− and around the Cl atoms of CA•−/2− does not cause a similar blue shift (Fig. S9–S14). These 

results confirm that the hydrogen bonding between EtOH and the O atoms of CA2− plays a major role in the blue shift.
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4. The Derivation of the Theoretical Model Equations on Square Wave Voltammetry

Redox potential shift of CA by adding an H-bonding donor

The redox potentials from neutral CA to CA•− ( ) and from CA•− to CA2− ( ) are expressed by the Nernst 𝐸 𝐼
1/2 𝐸 𝐼𝐼

1/2

equation as below:

          (Eq. S1)
𝐸 𝐼

1/2 = 𝐸𝐼
0 +

𝑅𝑇
𝑛𝐹

ln ( [𝐶𝐴]

[𝐶𝐴• ‒ ])
          (Eq. S2)

𝐸 𝐼𝐼
1/2 = 𝐸𝐼𝐼

0 +
𝑅𝑇
𝑛𝐹

ln ([𝐶𝐴• ‒ ]
[𝐶𝐴2 ‒ ])

where  and  are the standard potentials of CA0/•− and CA•−/2−, respectively, R is the gas constant, T is the absolute 𝐸𝐼
0 𝐸𝐼𝐼

0

temperature, n is the number of electrons, and F is Faraday constant. When CA•− and CA2− are bound with the number 

of i and j of H-bonding donor molecules, respectively, the association reactions are shown in Eq. S3 and S4.

          (Eq. S3)𝐶𝐴• ‒ + 𝑖𝐷⇌𝐶𝐴• ‒ ‒ 𝐷𝑖

         (Eq. S4)𝐶𝐴2 ‒ + 𝑗𝐷⇌𝐶𝐴2 ‒ ‒ 𝐷𝑗

The binding constants of the H-bonding donor with CA•− ( , the number of the donor molecules is i) and CA2− ( , the 𝐾𝐼
𝑖 𝐾𝐼𝐼

𝑗

number of the donor molecules is j) are represented by Eq. S5 and S6, respectively.

          (Eq. S5)
𝐾𝐼

𝑖 =
[𝐶𝐴• ‒ ‒ 𝐷𝑖]

[𝐶𝐴• ‒ ]𝑓𝑟𝑒𝑒[𝐷]𝑖

          (Eq. S6)

𝐾𝐼𝐼
𝑗 =

[𝐶𝐴2 ‒ ‒ 𝐷𝑗]
[𝐶𝐴2 ‒ ]𝑓𝑟𝑒𝑒[𝐷]𝑗

The total concentration of free CA•− and the one binding with the donor molecules ( ) is expressed in Eq. S7, [𝐶𝐴• ‒ ]𝑡𝑜𝑡𝑎𝑙

and the total concentration of CA2− ( ) is also expressed in Eq. S8.[𝐶𝐴2 ‒ ]𝑡𝑜𝑡𝑎𝑙

          (Eq. S7)[𝐶𝐴• ‒ ]𝑡𝑜𝑡𝑎𝑙 = [𝐶𝐴• ‒ ]𝑓𝑟𝑒𝑒 + [𝐶𝐴• ‒ ‒ 𝐷] + [𝐶𝐴• ‒ ‒ 𝐷2] + … + [𝐶𝐴• ‒ ‒ 𝐷𝑖]

          (Eq. S8)[𝐶𝐴2 ‒ ]𝑡𝑜𝑡𝑎𝑙 = [𝐶𝐴2 ‒ ]𝑓𝑟𝑒𝑒 + [𝐶𝐴2 ‒ ‒ 𝐷] + [𝐶𝐴2 ‒ ‒ 𝐷2] + … + [𝐶𝐴2 ‒ ‒ 𝐷𝑗]

Previous reports assumed that only free CA species (H-bonding is not formed) undergo the redox reaction and that an H-

bonding donor can bind with only CA•− and CA2−, but not with neutral CA.18–23 Consequently, Eq. S1 and S2 can be 

transformed by using Eq. S5 and S7, and Eq. S6 and S8, respectively.
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          (Eq. S9)
𝐸 𝐼

1/2 = 𝐸𝐼
0 +

𝑅𝑇
𝑛𝐹

ln [ [𝐶𝐴]𝑡𝑜𝑡𝑎𝑙

[𝐶𝐴• ‒ ]𝑡𝑜𝑡𝑎𝑙
(1 + 𝐾𝐼

1[𝐷] + 𝐾𝐼
2[𝐷]2 + … + 𝐾𝐼

𝑖[𝐷]𝑖)]

          (Eq. S10)
𝐸 𝐼𝐼

1/2 = 𝐸𝐼𝐼
0 +

𝑅𝑇
𝑛𝐹

ln ([𝐶𝐴• ‒ ]𝑡𝑜𝑡𝑎𝑙

[𝐶𝐴2 ‒ ]𝑡𝑜𝑡𝑎𝑙

1 + 𝐾𝐼𝐼
1[𝐷] + 𝐾𝐼𝐼

2[𝐷]2 + … + 𝐾𝐼𝐼
𝑗 [𝐷]𝑗

1 + 𝐾𝐼
1[𝐷] + 𝐾𝐼

2[𝐷]2 + … + 𝐾𝐼
𝑖[𝐷]𝑖 )

In the absence of an H-bonding donor ([D] = 0), the total concentration of CA•− is equal to the concentration of free CA•−. 

The difference ( ) between the  without the H-bonding donor and with the donor is represented as Eq. S11. Note Δ𝐸 𝐼
1/2 𝐸 𝐼

1/2

that this operation deletes the terms,  and .𝐸𝐼
0

[𝐶𝐴]𝑡𝑜𝑡𝑎𝑙

[𝐶𝐴• ‒ ]𝑡𝑜𝑡𝑎𝑙

          (Eq. S11)
Δ𝐸 𝐼

1/2 =
𝑅𝑇
𝑛𝐹

ln (1 + 𝐾𝐼
1[𝐷] + 𝐾𝐼

2[𝐷]2 + … + 𝐾𝐼
𝑖[𝐷]𝑖)

By performing the same operation for CA2− as Eq. S11, the difference between the  with and without the H-𝐸 𝐼𝐼
1/2

bonding donor ( ) is represented as Eq. S12.Δ𝐸 𝐼𝐼
1/2

          (Eq. S12)
Δ𝐸 𝐼𝐼

1/2 =
𝑅𝑇
𝑛𝐹

ln (1 + 𝐾𝐼𝐼
1[𝐷] + 𝐾𝐼𝐼

2[𝐷]2 + … + 𝐾𝐼𝐼
𝑗 [𝐷]𝑗

1 + 𝐾𝐼
1[𝐷] + 𝐾𝐼

2[𝐷]2 + … + 𝐾𝐼
𝑖[𝐷]𝑖 )

EtOH concentration and the binding constants generate the positive shifts of the CA redox potentials.

We fitted the experimental  values with Eq. S11, which revealed that one or two EtOH molecules are bound to Δ𝐸 𝐼
1/2

CA•− anion, as shown in Fig. S18 and Table S1. In , the number of EtOH molecules bound to the CA2− anion was Δ𝐸 𝐼𝐼
1/2

set to two or four, because CA2− has a symmetric structure. TD-DFT calculation also showed four H-bond-accepting sites 

per a CA2− anion (Fig. 2c). From this simplification, Eq. S12 can be transformed as Eq. S13. 

          (Eq. S13)
Δ𝐸 𝐼𝐼

1/2 =
𝑅𝑇
𝑛𝐹

ln (1 + 𝐾𝐼𝐼
2[𝐷]2 + 𝐾𝐼𝐼

4[𝐷]4

1 + 𝐾𝐼
1[𝐷] + 𝐾𝐼

2[𝐷]2 )
We then fitted the experimental values of  with Eq. S13 by using the values of binding constants  and  Δ𝐸 𝐼𝐼

1/2 𝐾𝐼
1 𝐾𝐼

2

(yielded from the theoretical fitting of ). Fig. S18 shows the result of the theoretical fitting at various temperatures Δ𝐸 𝐼
1/2

(288–308 K). The obtained binding constants are listed in Table S1.
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The molar fraction of the number of bound EtOH molecules

The molar fraction of CA•− binding with the number i of the donor molecules ( ) is expressed in Eq. S14 by 𝜑𝐼
𝑖

transforming Eq. S7.

          (Eq. S14)
𝜑𝐼

𝑖 =
[𝐶𝐴• ‒ ‒ 𝐷𝑖]

[𝐶𝐴• ‒ ]𝑓𝑟𝑒𝑒 + [𝐶𝐴• ‒ ‒ 𝐷] + [𝐶𝐴• ‒ ‒ 𝐷2] + … + [𝐶𝐴• ‒ ‒ 𝐷𝑖]

Eq. S14 can be transformed by using the binding constant,  (Eq. S5) into Eq. S15. Then, we performed the same 𝐾𝐼
𝑖

operation for CA2− and obtained the molar fraction of CA2− binding with the number j of the donor molecules ( ) as 𝜑𝐼𝐼
𝑗

Eq. S16. 

          (Eq. S15)
𝜑𝐼

𝑖 =
𝐾𝐼

𝑖[𝐷]𝑖

1 + 𝐾𝐼
1[𝐷] + 𝐾𝐼

2[𝐷]2 + … + 𝐾𝐼
𝑖[𝐷]𝑖

          (Eq. S16)
𝜑𝐼𝐼

𝑗 =
𝐾𝐼𝐼

𝑗 [𝐷]𝑗

1 + 𝐾𝐼𝐼
1[𝐷] + 𝐾𝐼𝐼

2[𝐷]2 + … + 𝐾𝐼𝐼
𝑗 [𝐷]𝑗

The  and  at various temperatures (288–308 K) are summarized in Fig. S19.𝜑𝐼
𝑖 𝜑𝐼𝐼

𝑗

The enthalpy and entropy of the association of various numbers of EtOH

Table S1 shows the binding constants between CA species and various numbers of EtOH at various temperatures. 

The binding constants are plotted as a function of the reciprocal of temperature (Fig. S20). The plots were fitted with the 

van’t Hoff equation (Eq. S17), and we can obtain the enthalpy (ΔHas) and entropy (ΔSas) of the association between CA 

species and various numbers of EtOH (Table 2).

          (Eq. S17)
ln 𝐾 =‒

Δ𝐻𝑎𝑠

𝑅
1
𝑇

+
Δ𝑆𝑎𝑠

𝑅

where K is a binding constant, R is the gas constant, and T is a measured temperature. The van’t Hoff plots on the 

association of EtOH in Fig. S20 show a goodness of fit close to unity (r2 > 0.998), and the assumption that ΔSas and ΔHas 

is independent of temperature is valid in EtOH–CA•−/2− mixed system.
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Simulation of the entropy change in the redox reaction of CA•−/2− (ΔSrc) at various EtOH concentrations

The entropy change in the redox reaction (ΔSrc) can be simulated by the sum of the original ΔSrc (the redox entropy 

of CA•−/2− in acetonitrile electrolyte in the absence of EtOH, ΔSrc,0) and the difference of ΔSas between CA2− and CA•−. 

Since the number of bound EtOH molecules is distributed according to Eq. S14 and S15, the total association entropy of 

EtOH molecules with CA•− ( ) can be represented as the expected value of the association entropy for each Δ𝑆 𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

number of EtOH molecules and formulated as Eq. S18.

          (Eq. S18)
Δ𝑆 𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 = ∑
𝑖 = 1,2

(𝜑𝐼
𝑖Δ𝑆 𝐼

𝑎𝑠,𝑖)

The total association entropy of EtOH molecules with CA2− ( ) can be represented as Eq. S19 by the same Δ𝑆 𝐼𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

operation as Eq. S18.

          (Eq. S19)
Δ𝑆 𝐼𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 = ∑
𝑗 = 2,4

(𝜑𝐼𝐼
𝑗 Δ𝑆 𝐼𝐼

𝑎𝑠,𝑗)

Since both values of  and  depends on the concentration of an H-bonding donor, the values of  and 𝜑𝐼
𝑖 𝜑𝐼𝐼

𝑗 Δ𝑆 𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

 change with EtOH concentration and are shown in Fig. S22.Δ𝑆 𝐼𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

As written above, the ΔSrc can be simulated with the sum of  and , as shown in Eq. S20.Δ𝑆𝑟𝑐,  0 Δ𝑆 𝐼𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 ‒ Δ𝑆 𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

          (Eq. S20)
Δ𝑆𝑟𝑐 = Δ𝑆𝑟𝑐,  0 + (Δ𝑆 𝐼𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 ‒ Δ𝑆 𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙) = Δ𝑆𝑟𝑐,  0 + [ ∑

𝑗 = 2,4

(𝜑𝐼𝐼
𝑗 Δ𝑆 𝐼𝐼

𝑎𝑠,𝑗) ‒ ∑
𝑖 = 1,2

(𝜑𝐼
𝑖Δ𝑆 𝐼

𝑎𝑠,𝑖)]
The simulated values of ΔSrc with EtOH concentration by Eq. S20 are shown in Fig. 3e, and we compared the 

simulated and experimental values of the ΔSrc of CA•−/2− redox pair. To evaluate the experimental ΔSrc, we measured the 

square wave voltammograms of CA•−/2− at various temperatures. When increasing temperature, the redox potential (

) of CA•−/2− without EtOH shifted negatively, and the addition of EtOH caused the larger negative potential shift with 𝐸 𝐼𝐼
1/2

elevated temperature. The potential shifts were plotted versus the temperature change from an initial measured 

temperature (Fig. S21). The slope of the graph shows the ΔE/ΔT value, which can be converted to the ΔSrc value by using 

Eq. 1. The experimental ΔSrc values at various concentrations of EtOH are shown in Fig. 3e (black circles) and listed in 

Table S2. The simulated ΔSrc values agree with the experimental values, and this result supports that the increment of 

ΔSrc by adding EtOH is associated with the reorganization of the EtOH solvation with CA•−/2−. 
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5. Supporting Figures and Tables

(a)                             (b)

        

(c)                             (d)

            

Fig. S1 (a) H-shape glass cell used in measuring the Seebeck coefficient and the current–voltage curve. Diameter of the 
Pt electrode is 1.0 mm, and the distance between the electrodes is 9.5 cm. (b) Three-electrode cell for SWV and EIS 
measurements. (c) The top view of (b). GC and CE electrodes are separated by 1.5 cm.  (d) Glassy carbon electrodes. 
Diameter of the active area is 3.0 mm.
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(a)                          (b)                     (c)

        

Fig. S2 (a) Time-course of the bulk electrolysis. (b, c) Experimental setup (b) for thermoelectric measurement and 
current-voltage measurement (c) for the continuous power generation. The electrolyte consists of 0.5 mM of CA•− and 
CA2− and 0.1 M of TBAPF6 in acetonitrile. The electrolyte was put into an H-shape glass cell. One side of the cell was 
heated by (b) a ribbon heater and (c) a hot plate, and the other side was cooled by a water circulator. (b, c) Two 
electrodes (b = Pt, c = GC) and thermocouples were immersed into both sides of the electrolyte, and the output current 
and the temperature were monitored.

(a) The constant potentials were set to −0.5 and −1.1 V vs Ag pseudo electrode for the reduction reactions from neutral 

CA to CA•− and from CA•− to CA2−, respectively. The acetonitrile electrolyte before the reduction was comprised of 1.0 

mM of neutral CA and 0.1 M of TBAPF6. [CA] = 1.0 mM, [TBAPF6] = 0.1 M in acetonitrile

Fig. S3 The thermoelectrical voltage of Fe(CN)6
3−/4− aqueous electrolyte against the temperature difference. 

[Fe(CN)6
3−/4−] = 0.5 mM, [KCl] = 0.1 M in water
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Fig. S4 The current-voltage plots of the CA•−/2− in ACN electrolyte and aqueous Fe(CN)6
3−/4− electrolyte.

[CA•−/2−] = 0.5 mM, [TBAPF6] = 100 mM, [EtOH] = 0, 0.040, 0.25, or 1.3 M in acetonitrile.

[Fe(CN)6
3−/4−] = 0.5 mM, [KCl] = 0.1 M in water. 

The temperature difference between the hot and cold sides of the thermocells (ΔT) is 4.6–5.9 K.
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(a)

(b)

Fig. S5 (a) The cyclic voltammogram and (b) UV-Vis spectra of CA species

(a) The cyclic voltammogram of CA in acetonitrile electrolyte without EtOH. Glassy carbon, Ag/Ag+, and Pt coil were 

used as working, reference, and counter electrodes, respectively. [CA] = 1.0 mM, [TBAPF6] = 0.1 M in acetonitrile.

(b) The UV-vis spectra of CA species in acetonitrile. CA•− and CA2− were prepared by electrochemical reduction at −0.7 

and −1.4 V vs Ag/Ag+, respectively. [CAs] = 0.5 mM, [TBAPF6] = 0.1 M in acetonitrile.
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(a) Neutral CA

(b) CA•−

(c) CA2−

Fig. S6 UV-vis spectra of (a) neutral CA, (b) CA•−, and (c) CA2− in acetonitrile with various EtOH concentrations. 

[CAs] = 0.5 mM, [TBAPF6] = 0.1 M, [EtOH] = 0, 0.0025, 0.016, 0.040, 0.10, 0.16, 0.25, 0.63, 1.3, 1.6, or 5.0 M in 

acetonitrile. 
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Fig. S7 Kohn–Sham frontier orbitals (from HOMO-2 to LUMO+3) of electroneutral CA. 

The orbital energies are shown in eV. The equilibrium geometry belongs to the D2h point group.

*(ag), -1.22 eV *(b3u), -0.81 eV

*(b2g), LUMO, -4.37 eV *(au), -1.65 eV

(b3u), -8.39 eV (b1g), HOMO, -7.71 eV

n(b3g), -8.52 eV
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Fig. S8 Rydberg(b3u) orbital (LUMO+18) of CA2−. The orbital energy is 2.51 eV.
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(a)

(b)

Fig. S9 Theoretical UV-Vis absorption spectra of CA•−/2− and CA•−/2− (nO)···nEtOH (n = 1, 2). 

The black stick spectra in panels (a) and (b) indicate the oscillator strengths f of the X ← 2B2g excitations in CA•− and the 

X ← 1Ag excitations in CA2−, respectively. The term symbols, X, of the final electronic states of excitations with f > 0.05 

are shown to indicate the excitation characteristics. The spectra (curves) were obtained by convolution of the stick spectra 

with a Gaussian function (HWHM = 0.333 eV). Acetonitrile solvation effects were considered in all the spectrum 

calculations. Acetonitrile solvation effects were considered in all the calculations; an exception is the calculation of 

CA•−/2− in EtOH, in which the ethanol solvation was modeled as a polarizable continuum.
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(a)

(b)

Fig. S10 Theoretical UV-Vis absorption spectra of CA•−/2− and CA•−/2−(mCl)···nEtOH (m, n = 1 or 2). 

The black stick spectra in panels (a) and (b) indicate the oscillator strengths f of the X ← 2B2g excitations in CA•− and the 

X ← 1Ag excitations in CA2−, respectively. The term symbols, X, of the final electronic states of excitations with f > 0.05 

are shown to indicate the excitation characteristics. The spectra (curves) were obtained by convolution of the stick spectra 

with a Gaussian function (HWHM = 0.333 eV). Acetonitrile solvation effects were considered in all the spectrum 

calculations.
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(a) CA•−                                        (b) CA•− in EtOH

    

(c) CA•−(O)···EtOH                            (d) CA•−(2O)···2EtOH

    

Fig. S11 Theoretical UV-Vis absorption spectra of (a) CA•− and (b–d) CA•−(nO)···nEtOH (n = 1, 2). 

The black sticks indicate the oscillator strength, while the cyan curves, given as convolution with a Gaussian function 

with a half width at half maximum (HWHM) of 0.333 eV, indicate molar absorbance. Using the PCM theory, we 

considered acetonitrile solvation effects for all the spectra; an exception is the spectrum of CA•− in EtOH, in which we 

modeled the ethanol solvation as a polarizable continuum.
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(a) CA2−                                    (b) CA2− in EtOH

  

(c) CA2−(O)···EtOH                        (d) CA2−(2O)···2EtOH

    

Fig. S12 Theoretical UV-Vis absorption spectra of CA2− and CA2−(nO)···nEtOH (n = 1, 2). 

The black sticks indicate the oscillator strength, while the cyan curves, given as convolution with a Gaussian function 

with a half width at half maximum (HWHM) of 0.333 eV, indicate molar absorbance. Using the PCM theory, we 

considered acetonitrile solvation effects for all the spectra; an exception is the spectrum of CA2− in EtOH, in which we 

modeled the ethanol solvation as a polarizable continuum.
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(a) CA•−                                  (b) CA•−(Cl)···EtOH

 

(c) CA•−(2Cl)···EtOH                    (d) CA•−(2Cl)···2EtOH

 

Fig. S13 Theoretical UV-Vis absorption spectra of CA•− and CA•−(mCl)···nEtOH (m, n = 1 or 2). 

The black sticks indicate the oscillator strength, while the cyan curves, given as convolution with a Gaussian function 

with a half width at half maximum (HWHM) of 0.333 eV, indicate molar absorbance. We considered acetonitrile 

solvation effects using the PCM theory.
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(a) CA2−                                  (b) CA2−(Cl)···EtOH

 

(c) CA2−(2Cl)···EtOH                    (d) CA2−(2Cl)···2EtOH

 

Fig. S14 Theoretical UV-Vis absorption spectra of CA2− and CA2−(mCl)···nEtOH (m, n = 1 or 2). 

The black sticks indicate the oscillator strength, while the cyan curves, given as convolution with a Gaussian function 

with a half width at half maximum (HWHM) of 0.333 eV, indicate molar absorbance. We considered acetonitrile 

solvation effects using the PCM theory.
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(a) CA•− with and without EtOH molecules           (b) CA2− with and without EtOH molecules

Fig. S15 Potential energies and geometries of CA•−/2− and CA•−/2−(nO)···nEtOH (n = 1, 2). 

All the energies are relative to the reference energy of CA•−/2− and two EtOH molecules at infinite separation in the 

acetonitrile solvent, and the geometries of any free EtOH molecules are not shown. The equilibrium geometries were 

obtained at the B3LYP/cc-pVDZ level (black solid circles). Single-point calculations were performed at the B3LYP/aug-

cc-pVTZ level with and without the D3BJ dispersion correction (green diamonds and orange squares, respectively).
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(a) CA•− with and without EtOH molecules

(b) CA2− with and without EtOH molecules

Fig. S16 Potential energies and geometries of CA•−/2− and CA•−/2−(nO)···nEtOH (n = 1, … , 4). 

All the energies are relative to the reference energy of CA•−/2− and four EtOH molecules at infinite separation in the 

acetonitrile solvent, and the geometries of any free EtOH molecules are not shown. The equilibrium geometries were 

obtained at the B3LYP/cc-pVDZ level (black solid circles). Single-point calculations were performed at the B3LYP/aug-

cc-pVTZ level with and without the D3BJ dispersion correction (green diamonds and orange squares, respectively).

CA•−(3O)

···3EtOH

CA•−(4O)

···4EtOH

CA2−(3O)

···3EtOH

CA2−(4O)

···4EtOH
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 (a) CA•− with and without EtOH molecules

(b) CA2− with and without EtOH molecules

Fig. S17 Potential energies and geometries of CA•−/2− and CA•−/2−(mCl)···nEtOH (m, n = 1 or 2). 

All the energies are relative to the reference energy of CA•−/2− and two EtOH molecules at infinite separation in the 

acetonitrile solvent, and the geometries of any free EtOH molecules are not shown. The equilibrium geometries were 

obtained at the B3LYP/cc-pVDZ level (black solid circles). Single-point calculations were performed at the B3LYP/aug-

cc-pVTZ level with and without the D3BJ dispersion correction (green diamonds and orange squares, respectively).
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(a) 288 K                    (b) 293 K                   (c) 298 K

            

(d) 303 K                                (e) 308 K

               

Fig. S18 The redox potential shifts of CA0/•− and CA•−/2− by adding EtOH at various temperatures (288–308 K). 

[CA] = 1.0 mM, [TBAPF6] = 0.1 M, and [EtOH] = 0.0010, 0.0025, 0.0063, 0.016, 0.04, 0.10, 0.16, 0.25, 0.40, 0.63, 0.79, 

1.0, 1.3, 1.6, 2.0, 3.2, 5.0, or 7.9 M. Glassy carbon, Ag/Ag+, and Pt coil were used as working, reference, and counter 

electrodes. The black and red lines derive from the theoretical model fitting using Eq. S11 and S13, respectively, and the 

binding constants at 288–308 K are summarized in Table S1. 
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Table S1. Binding constants of EtOH with CA•− ( ) and CA2− ( ) at various temperatures.𝐾𝐼
𝑖 𝐾𝐼𝐼

𝑗

(a) 288 K                      (b) 293 K                    (c) 298 K

      

(d) 303 K                           (e) 308 K

        

Fig. S19 The molar fraction of the number of bound EtOH molecules with CA•− and CA2− at various temperatures. 

The molar fractions are calculated from Eq. S15 and S16. 

T = 288 K T = 293 K T = 298 K T = 303 K T = 308 K

 (10−1 M−1)𝐾𝐼
1 3.9 ± 0.1 3.7 ± 0.1 3.5 ± 0.5 3.3 ± 0.4 3.1 ± 0.4CA•−

 (10−2 M−2)𝐾𝐼
2 4.8 ± 1.4 4.4 ± 1.2 4.0 ± 1.1 3.8 ± 1.0 3.5 ± 0.9

 (102 M−2)𝐾𝐼𝐼
2 15 ± 5 12 ± 3 10 ± 2 7.5 ± 1.6 5.9 ± 1.1CA2−

 (103 M−4)𝐾𝐼𝐼
4 35 ± 5 21 ± 3 12 ± 1 7.2 ± 0.8 4.4 ± 0.5
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Fig. S20 Van’t Hoff plots showing the temperature dependence of the binding constants of EtOH molecules associating 
with CA•− or CA2− (the subscript shows the number of EtOH). The results showed good agreement with the linear 
fitting (r2 > 0.998).

 is the binding constant of EtOH molecules (the number of i) with CA•−, and  is the binding constant of EtOH 𝐾𝐼
𝑖 𝐾𝐼𝐼

𝑗

molecules (the number of j) with CA2−. 
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(a) [EtOH] = 0–0.0025 M       (b) [EtOH] = 0.0063–0.016 M     (c) [EtOH] = 0.040–0.16 M    
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Fig. S21 Shift of redox potential of CA•−/2− in the SWV measurement versus the temperature change of the electrolyte 
at various concentrations of EtOH: (a) 0–0.0025 M; (b) 0.0063–0.016 M (the first and second measurements); (c) 
0.040–0.16 M; (d) 0.25–0.63 M; (e) 0.79–1.3 M; (f) 1.6–3.2 M; and (g) 5.0–7.9 M

Glassy carbon, Ag/Ag+, and Pt coil were used as working, reference, and counter electrodes. The plots were given by the 
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current peaks of SWV measurement at various temperatures. The slope of the graph shows a ΔE/ΔT value. [CA] = 1.0 

mM, [TBAPF6] = 0.1 M, and [EtOH] = 0, 0.0010, 0.0025, 0.0063, 0.016, 0.040, 0.10, 0.16, 0.25, 0.40, 0.63, 0.79, 1.0, 

1.3, 1.6, 2.0, 3.2, 5.0, or 7.9 M

Considering the ΔE/ΔT of Ag/Ag+ reference electrode is ca. +0.2 mV/K,1 the Se can be estimated by adding 0.2 mV K−1 

to the value of ΔE/ΔT. The estimated Se values can be converted into the values of redox entropy (ΔSrc) by using Eq. 1.

In Regions 1 and 2 (low concentration region of EtOH), the experimental values of ΔSrc of CA•−/2− deviate from the 

theoretical values (Fig. 3e). One possible reason could be a gradual loss of EtOH from the electrolyte due to vaporization 

of EtOH during the SWV measurement. We compared the goodness of fit (r2) of the plot of ΔE vs. ΔT at each 

concentration of EtOH studied (Fig. S21). The r2 values are 0.999 in most of the plot, showing a good linearity of the 

experimental values. However, lower r2 values less than 0.997 were observed when the concentration of EtOH is low, 

such as at 0.0025, 0.016, 0.10, and 0.16 M. The deviation from the linearity is likely caused by the vaporization of EtOH 

at high temperature, and especially when the concentration of EtOH is low, the effect of losing the EtOH from the 

electrolyte can induce a larger shift in the redox potential and reduce the r2 values.
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Table S2. Experimental ΔSrc values of CA•−/2− with various EtOH concentrations obtained from Fig. S21.

EtOH concentration (M) ΔSrc value (J mol−1 K−1)

0 −130

0.001 −130

0.0025 −140

0.0063 −170

0.016 −170

0.040 −180

0.063 −210

0.10 −230

0.16 −250

0.25 −260

0.40 −270

0.63 −270

0.79 −270

1.0 −270

1.3 −290

1.6 −280

2.0 −280

3.2 −270

5.0 −280

7.9 −250

Glassy carbon, Ag/Ag+, and Pt coil were used as working, reference, and counter electrodes. The slope of the graph 

shows a ΔE/ΔT value. [CA] = 1.0 mM, [TBAPF6] = 0.1 M, and [EtOH] = 0, 0.0010, 0.0025, 0.0063, 0.016, 0.040, 0.10, 

0.16, 0.25, 0.40, 0.63, 0.79, 1.0, 1.3, 1.6, 2.0, 3.2, 5.0, or 7.9 M

Considering the ΔE/ΔT of Ag/Ag+ reference electrode is ca. +0.2 mV K−1,1 the Se can be estimated by adding 0.2 mV 

K−1 into the value of ΔE/ΔT. The estimated Se values can be converted into the values of redox entropy (ΔSrc) by using 

Eq. 1. The change in the experimental values of ΔSrc with increasing EtOH concentration is shown in Fig. 3e.
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Fig. S22 The entropy changes in the association of various numbers of EtOH molecules with (top) CA2− and (bottom) 
CA•−.

 is the molar fraction of the number (i) of bound EtOH molecules with CA•−,  is the molar fraction of the number of 𝜙𝐼
𝑖 𝜙𝐼𝐼

𝑗

(j) of bound EtOH molecules with CA2−,  is the association entropy between i of EtOH molecules and CA•−,  Δ𝑆 𝐼
𝑎𝑠,𝑖 Δ𝑆 𝐼𝐼

𝑎𝑠,𝑗

is the association entropy between j of EtOH molecules and CA2−, and  and  are the total values of the Δ𝑆 𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 Δ𝑆 𝐼𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙

association entropy of CA•− and CA2−, respectively. The simulated ΔSrc curve can be obtained from Eq. S20 by using 

 and .Δ𝑆 𝐼
𝑎𝑠,𝑡𝑜𝑡𝑎𝑙 Δ𝑆 𝐼𝐼

𝑎𝑠,𝑡𝑜𝑡𝑎𝑙
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Fig. S23 The Nyquist plot for the acetonitrile electrolyte containing neutral CA and TBAPF6 at the potential of +0.1 V 
vs Ag/Ag+, where no redox reaction is observed. 

[CA] = 1.0 mM, [TBAPF6] = 0.1 M in acetonitrile solvent. The glassy carbon, Ag/Ag+, and Pt coil electrodes were used 

as working, reference, and counter electrodes, respectively.

The Nyquist plot in Fig. S23 was measured at the potential of +0.1 V vs Ag/Ag+, and a semi-circle was observed at the 

high-frequency side. At the potential of +0.1 V, no redox reaction was observed (Fig. S5a), suggesting that the semi-

circle is attributed not to the charge transfer resistance of CA species but to the solution resistance (Rs) and the electrical 

double layer formation (Cd). 

The Nyquist plot in Fig. 4a (−0.277 V vs Ag/Ag+) shows a similar semi-circle to Fig. S23. The semi-circle in Fig. 4a is 

followed by a 45°-degree line at the low-frequency side, which is attributed mainly to the diffusion process of the redox 

reaction (the Warburg impedance) and confirms the redox reaction of CA0/•−.

Thus, we conclude that the redox reaction of CA0/•− is so fast (the Rct of CA0/•− is so small) that the semi-circle derived 

from the Rct in Fig. 4a merges with a semi-circle derived from Rs and Cd. In light of this result, we show the total 

resistances of the Rs and Rct of the electrolytes in Fig. 4c to investigate the clear effect of EtOH on the redox kinetics of 

CA species. 



S39

6. References

1 A. J. Debethune, T. S. Licht and N. Swendeman, Journal of Electrochemical Society, 1959, 106, 616–625.

2 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.

3 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem Phys Lett, 1989, 157, 200–206.

4 A. D. Becke, J Chem Phys, 1993, 98, 5648–5652.

5 T. H. Dunning, J Chem Phys, 1989, 90, 1007–1023.

6 D. E. Woon and T. H. Dunning, J Chem Phys, 1993, 98, 1358–1371.

7 J. Tomasi, B. Mennucci and R. Cammi, Chem Rev, 2005, 105, 2999–3094.

8 R. Bauernschmitt and R. Ahlrichs, J Chem Phys, 1996, 104, 9047–9052.

9 R. Seeger and J. A. Pople, J Chem Phys, 1977, 66, 3045–3050.

10 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, 

G. A. Petersson, H. Nakatsuji and et al., Gaussian 16, Gaussian, Inc, Wallingford, CT, Revision A.03., 2016.

11 H. Goto and E. Osawa, CONFLEX 9, CONFLEX Corp, Tokyo, Japan, Revision B., 2022.

12 R. A. Kendall, T. H. Dunning and R. J. Harrison, J Chem Phys, 1992, 96, 6796–6806.

13 S. Grimme, S. Ehrlich and L. Goerigk, J Comput Chem, 2011, 32, 1456–1465.

14 M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke and E. K. U. Gross, Time-dependent Density 

Functional Theory, Springer-Verlag, Berlin: Heidelberg, Germany, 2006.

15 F. Weinhold and C. R. Landis, Discovering chemistry with natural bond orbitals, John Wiley & Sons, Inc., 

Hoboken, NJ, 1st ed., 2012.

16 M. Oyama and H. Park, Journal of Electroanalytical Chemistry, 2002, 523, 79–85.

17 B. Uno, N. Okumura and K. Seto, Journal of Physical Chemistry A, 2000, 104, 3064–3072.

18 B. Uno, N. Okumura, M. Goto and K. Kano, Journal of Organic Chemistry, 2000, 65, 1448–1455.

19 M. E. Tessensohn and R. D. Webster, Electrochem commun, 2016, 62, 38–43.

20 M. Quan, D. Sanchez, M. F. Wasylkiw and D. K. Smith, J Am Chem Soc, 2007, 129, 12847–12856.

21 N. Gupta and H. Linschitz, J Am Chem Soc, 1997, 119, 6384–6391.

22 M. Gómez, F. J. González and I. González, J Electrochem Soc, 2003, 150, E527.

23 M. Gómez, C. Z. Gómez-Castro, I. I. Padilla-Martínez, F. J. Martínez-Martínez and F. J. González, Journal of 

Electroanalytical Chemistry, 2004, 567, 269–276.
 


