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S1. Distribution of Token Sizes 

The input instructions (natural language and chemical language inputs) are 

tokenized at the character level, dividing them into natural language tokens and 

chemical tokens. This tokenization strategy has been proven to provide better 

performance and stronger expressive capabilities. The distributions of token sizes in the 

training and validation sets are depicted in Figure S1, from which we determined to set 

the input token size to 150 and the output token size to 8 to strike a balance between 

memory requirements and computational speed. 

 

Figure S1. Distributions of token sizes. Subplots a, b, c, and d respectively represent the distribution 

of token sizes for the training set input, training set output, test set input, and test set output. 

S2. Fitting Curve of PolyNC 

PolyNC exhibits outstanding performance in regression tasks, as illustrated in 

Figure S2. Despite significant differences in the ranges of values for each property, 

remarkably, PolyNC achieves the best performance in tasks where the properties are 

not explicitly differentiated. This outcome provides evidence of PolyNC's potential 

understanding of diverse chemical knowledge across multiple properties. 
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Figure S2. Fitting plots of PolyNC on each regression task. 

S3. Performance of ML baselines 

S3.1 Regression tasks 

The evaluation metrics used for the regression models were 𝑅2, 𝑀𝐴𝐸, and 𝑀𝑆𝐸, 

as shown in Figure 3 of the main text. The values for MAE and MSE can be found in 

the table below. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

(1) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

(2) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

(3) 

where 𝑛  is the number of samples, 𝑦𝑖  represents the ground truth values, 𝑦�̂� 

represents the predicted values, and �̅� represents the average value of the ground truths. 
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We divided the dataset with training set/test set = 0.8/0.2, and then all models were 

trained and evaluated on the same training and test sets. Since the data in the training 

and test sets were divided homogeneously (Figure 3a in the main text), no cross-

validation was performed to reduce the overhead of computational resources and time. 

The detailed results of MAE and MSE are as follows. 

Table S1. MAE and MSE of each regression model. 

Model 
Tg BC AE All 

MAE MSE MAE MSE MAE MSE MAE MSE 

LR 111.20 17299.20 0.99 1.84 0.28 1.77 107.18 16044.68 

SVR 106.07 18433.34 1.70 4.89 0.27 0.11 84.34 21151.63 

GPR 188.03 50253.78 5.14 30.83 5.96 35.79 81.37 20308.13 

GCN 44.62 3146.62 0.55 0.51 0.37 0.15 26.79 1763.73 

RF 40.48 3671.94 0.80 1.00 0.05 0.01 27.31 2591.18 

BAG 30.64 2837.74 0.65 0.77 0.04 0.00 25.77 2438.35 

RR 32.17 1884.57 0.65 0.78 0.05 0.01 37.01 2632.58 

ADA 35.93 2276.52 0.67 0.75 0.09 0.01 34.87 2347.12 

EXT 30.59 2633.18 0.63 0.63 0.04 0.00 22.85 1561.41 

PolyT5 37.68 2552.54 0.59 0.67 0.09 0.01 15.14 1013.10 

S3.2 The HRC Classification task  

The evaluation metrics used for the classification models were Accuracy , 

Precision, Recall, and F1 Score, as shown in Figure 4 of the main text. The values for 

Accuracy, Precision, Recall, and F1 Score can be found in the table below. 

Accuracy =
TP + TN

TP + TN + FP + FN
(4) 

Precision =
TP

TP + FP
(5) 

Recall =
TP

TP + FN
(6) 

F1 Score =
2 ⋅ Precision ⋅ Recall

Precision + Recall
(7) 
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weight
𝑖
=

C𝑖

∑ C𝑖
3
𝑖=1

(8) 

where TP represents true positive, TN represents true negative, TP represents false 

positive, FN represents false negative, and C𝑖 represents the number of class i. 

The performance of eight baseline models for classification tasks, including 

Logistic regression (LRC), Naive bayes (NBC), Support vector machine (SVC), 

AdaBoost (ADAC), Decision tree (DTC), Random forest (RFC), K-nearest neighbors 

(KNNC) and XGBoost (XGBC), is depicted in Table S2 and Figure S3. In this 

classification task, LRC and SVC performed relatively poorly, resulting in cross-class 

errors. The remaining ML models performed slightly better, without generating cross-

class errors, but their performance in specific categories was weaker than PolyNC. 

Table S2. Accuracy, Precision, Recall and F1 Score of the classification models. 

Model Accuracy Precision Recall F1 Score 

LRC 0.08 0.01 0.08 0.01 

NBC 0.35 0.12 0.35 0.18 

SVC 0.57 0.32 0.57 0.41 

ADAC 0.49 0.79 0.49 0.43 

DTC 0.68 0.64 0.68 0.65 

RFC 0.73 0.67 0.73 0.70 

KNNC 0.70 0.73 0.70 0.70 

XGBC 0.73 0.67 0.73 0.70 

PolyT5 0.82 0.82 0.82 0.81 
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Figure S3. The performance of eight baseline models for classification tasks. (a) Logistic regression 

(LRC). (b) Naive bayes (NBC). (c) Support vector machine (SVC). (d) AdaBoost (ADAC). (e) 

Decision tree (DTC). (f) Random forest (RFC). (g) K-nearest neighbors (KNNC). (h) XGBoost 

(XGBC). 

S4. Synthesis and Characterization 

2,3,3',4'-biphenyl tetracarboxylic diandhydride (3,4'-BPDA) were purchased from 

Shanghai Chemical Reagent Plant and used directly. 4,4'-Diamino-p-terphenyl (DPTP) 

and 4,4'-benzidine (Bz) were purchased from Changzhou Sunlight Medical Raw 

Material Co. Ltd. and purified by sublimation before use. Precursors of PI, polyamide 

acid (PAA), were synthesized from the reaction of 3,4'-BPDA with aromatic diamines 

(DPTP, Bz) in DMAc, respectively.  

Fourier transform infrared (FTIR) spectra were acquired using a VERTEX 70 

spectrometer, covering the range of 4000 to 400 cm-1. The FTIR analysis revealed 

distinct peaks at approximately 1776 cm-1 and 1708 cm-1, corresponding to the 

asymmetric and symmetric stretching vibrations of the C=O bond in the imine ring, 
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respectively. Additionally, a peak at 1369 cm-1 indicated the stretching vibration of the 

C-N bond in the imide ring, while a characteristic peak at 1500 cm-1 represented the 

benzene ring. The infrared spectra analysis (Figure S4) of the copolymerized polyimide 

samples confirmed the presence of imine carbonyl absorption peaks, which are 

indicative of the imide ring structure. These findings provide compelling evidence for 

the successful synthesis of polyimide across all sample proportions. 

 

Figure S4. FTIR spectra of PI-1 and PI-2. 

To further validate specific functional groups and ensure the successful synthesis 

of the polyimides, we employed triple quadrupole gas chromatography/mass 

spectrometry (GC/MS) analysis (Figure S5, S6). With FTIR and GC/MS analysis, we 

found that all structures were successfully synthesized. 

 

Figure S5. GC/MS of PI-1. The characteristic functional group of PI-1, diphenyl, can be identified. 
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Figure S6. GC/MS of PI-2. The characteristic functional group of PI-2, triphenyl, can be identified. 

The inherent viscosities (ηinh) of PAA solutions were measured with an Ubbelohde 

viscometer at a concentration of 0.5 g/dL in DMAc at 30 °C. DSC analysis was 

performed using a calorimeter (Q20 DSC, TA instruments), and the sample mass was 

approximately 3 mg and thus obtained the Tg of each PI. A summary of Inherent 

viscosity and Tg is listed in Table S3. PolyNC predicted the least deviation (5°C and 

20°C) between predicted and ground truth values for these two samples compared to 

other baseline models of the main text. 

 

Table S3. Inherent viscosity of the PAA solution of PI-1 and PI-2. 

Sample 
ηinh 

(dL/g) 

Tg 

(oC) 

PolyNC’s Prediction 

(oC) 

PI-1 1.82 405 410 

PI-2 1.65 390 410 
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S5. Attention Analysis 

The encoder of PolyNC consists of 12 attention heads, as shown in Figure S7 and 

S8, each focusing on different contexts to extract distinct knowledge. The attention 

scores for the fifth and ninth attention heads of PI-1 and PI-2 are shown and detailed in 

Figure 5 of the main text. It can be observed that the attention head 1, 2, 9 and 11 mainly 

focuses on the tokens themselves. The attention head 3, 4, 5, 8, 10 primarily attends to 

adjacent tokens for each token because the nearby tokens in polymer SMILES usually 

represent atoms bonded to each other in the polymer, and atoms are most significantly 

affected by their local environments, while the attention heads 6, 7 and 12 focus on 

more global information. The simultaneous perception of self-information, neighboring 

information, and global information contributed to the success of PolyNC. The 

attention scores of PI-1 and PI-2 exhibits similar attention scores matrices due to the 

structural similarity between them, which implies that learning more data has the 

potential to enhance PolyNC's discriminative capabilities. 
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Figure S7. Attention maps of PI-1. Prompt is 'Predict the Tg of the following SMILES: 

[*]C1=CC=C(C2=CC=C(N3C(C(C=CC(C4=CC=CC(C(C5[*])=O)=C4C5=O)=C6)=C6C3=O)=O

)C=C2)C=C1' 
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Figure S8. Attention maps of PI-2. Prompt is 'Predict the Tg of the following SMILES: 

[*]C1=CC=C(C2=CC=C(C3=CC=C(N4C(C(C=CC(C5=CC=CC(C(C6[*])=O)=C5C6=O)=C7)=

C7C4=O)=O)C=C3)C=C2)C=C1' 

  



13 

 

S6. Comparison with Current Large Language Models 

(LLMs) and LLMs-induced Models 

S6.1 Comparison with ChatGPT, Claude-instant, Llama-2-

70b, and Google-PaLM 

To demonstrate the irreplaceability of PolyNC in accelerating polymer 

development, we compared it with the most advanced general-purpose large models 

available today, including ChatGPT, Claude-instant, Llama-2-70b, and Google-PaLM. 

The results are shown in Figure S9. In the realm of polymer research tasks that pique 

our interest, the performance of PolyNC surpasses that of extensively trained large 

predictive models, which require substantial human resources, computing resources, 

and financial investments, highlight the superiority of our model. Based on the same 

prompts, our model provides more precise and professional answers. Although PolyNC 

may provide fewer natural language responses compared to larger commercial models, 

its answers are more direct and accurate. Furthermore, any shortcomings in its 

responses can be easily addressed by refining the training corpus, which does not 

diminish the success of PolyNC in predicting a wide range of polymer properties based 

on both natural and chemical language. In addition, PolyNC requires significantly less 

memory space and hardware resources compared to the aforementioned larger 

commercial models. This highlights the advantages of domain-specific models in terms 

of resource efficiency. 
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Figure S9. Each LLM's response to the polymer-related prompt. Polymer-specific PolyNC provides 

more precise and professional answers. Due to the custom division of heat resistance levels in 

polyimides based on previous experience, we not only provide the depicted prompt to the general 

large-scale models but also inform them about the criteria for the divisions for the elimination of 

unnecessary errors with “The heat resistance level is distinguished based on Tg, where: Class 1 is 

for polyimides with a Tg greater than 400°C. Class 2 is for polyimides with a Tg between 300-

400°C. Class 3 is for polyimides with a Tg less than 300°C”. 

S6.2 Comparison with TransPolymer and polyBERT 

In the manuscript, we have demonstrated that PolyNC can achieve superior or 

comparable performance compared to descriptor-based or graph-based ML models. 

Additionally, we have also compared the performance of PolyNC with two state-of-the-

art LLMs-induced models (TransPolymer, npj Comput Mater 9, 64 (2023) and 

polyBERT, Nat Commun 14, 4099 (2023)) that have been reported recently. 

In the first place, both TransPolymer and polyBERT employ a paradigm based on 

pre-training and fine-tuning to predict polymer properties. By means of pre-training, a 

feature extractor capable of extracting polymer descriptors is obtained, and the 

extracted machine fingerprints are subsequently utilized as inputs for downstream 

neural networks. However, PolyNC takes a one-step, end-to-end and multi-tasks 

approach for achieving the same objective, which is one of the advantages of PolyNC. 
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The key aspect in predicting polymer properties using language models lies in 

extracting appropriate latent representations for polymers. This step typically requires 

a large amount of data (5M for TransPolymer and 100M for polyBERT). In contrast, 

PolyNC successfully extracted these patterns using supervised learning with just over 

20,000 data samples (Figure S10). 

 

Figure S10. PolyNC can achieve end-to-end multitask prediction based on both natural language 

prompts and chemical language prompts. 

While expanding the functionality of LLMs in polymers domain is the focus of 

our research, we have also compared the performance of PolyNC with TransPolymer 

and polyBERT, which are also derived from LLMs. According to their papers, 

TransPolymer and polyBERT demonstrated comparable model performance. Due to the 

availability of more reproducible code in TransPolymer’s github repository, we 

primarily evaluated the performance of the TransPolymer model on the three regression 

tasks in our work, while the data for polyBERT was sourced from its respective paper 

(both TransPolymer and polyBERT did not address any classification tasks in their 

study). 

We selected the TransPolymer models pre-trained on 0.05M and 5M data. 

Additionally, we trained a version based on randomly sampled 0.02M data (under the 

parameters and settings provided by TransPolymer), taking into account the data 

volume used by PolyNC, to compare the performance of both models under an equal 

data volume due to the data-greedy nature of LLMs. Based on the experimental results 

(Table S4), we have demonstrated that when using R2 as the evaluation metric and 
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considering an equal training data volume, PolyNC performed comparably to 

TransPolymer. As the training data of TransPolymer increased, its performance 

continued to improve. According to the results from polyBERT’s paper, it has also been 

observed that the model’s performance on the Tg task improves with larger data 

volumes. These findings regarding data volume suggest that PolyNC has the potential 

to further enhance its performance as the data volume increases, which will be a focus 

of our future efforts. It is worth noting that both PolyNC and polyBERT were trained 

on multiple tasks simultaneously, and the distribution shift between tasks can 

potentially be detrimental to the performance. For example, even with a larger training 

dataset, polyBERT performs worse than PolyNC and TransPolymer on the AE task. 

Indeed, despite the potential risk of performance degradation due to distributional shifts, 

the impressive end-to-end multitasking capability of PolyNC is still highly impressive. 

 

Table S4. Performance comparison between PolyNC and recently models. The performance 

of TransPolymer and polyBERT is comparable. Due to the convenience of code and data availability, 

we chose to conduct comparative experiments using TransPolymer. The data for polyBERT was 

obtained from its paper (https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-023-

39868-6/MediaObjects/41467_2023_39868_MOESM1_ESM.pdf) 

 PolyNC TransPolymer polyBERT 

# Train data 0.02M 0.02M 0.05M 5M 100M 

R2--Tg 0.85 0.85 0.90 0.91 0.92±0.01 

R2--BC 0.85 0.86 0.89 0.90 - 

R2--AE 0.89 0.87 0.92 0.96 0.85±0.02 

is end-to-end ? True False False 

is multi-tasks ? True False True 

is multi-types ? True True False 

It is worth acknowledging that TransPolymer takes into account factors such as 

molecular weight, temperature, and other conditions to improve the accuracy of 

property predictions for specific tasks. And the natural language prompts in PolyNC 

can also play a significant role in facilitating the description of these structure-

independent features. This would require a larger amount of data for training, and we 
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are mining data that includes these non-structural factors to further enhance the 

functionality of PolyNC. 

S7. The Sensitivity of PolyNC to SMILES Variations 

After performing data augmentation based on SMILES enumeration, our dataset 

has been expanded. Different SMILES notations of the same polymer are distinct inputs 

for the language model. However, since they correspond to the same underlying 

structure, the model's predicted results should be consistent. To study the robustness of 

PolyNC to SMILES variations, we plotted the distributions of the average values and 

standard deviations of PolyNC for different SMILES representations of the same 

structure on the three regression tasks (Tg, BC and AE), which have stronger potential 

variability than the classification task. From Figure S11, it can be observed that PolyNC 

shows acceptable errors in predicting different SMILES for the same structure (after all, 

different SMILES representations can alter the order of tokens, thereby changing the 

actual input to the model).  

 

Figure S11. The distributions of the average values and standard deviations of PolyNC for different 
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SMILES representations of the same structure are shown across three regression tasks (a) and for 

Tg (b), BC (c), and AE (d). The x-axis represents different polymer structures, while the y-axis 

represents the average prediction values of different SMILES representations for each structure by 

PolyNC. The error bars represent the standard deviation of PolyNC across different SMILES 

representations of each structure. 

We present a complex polymer structure (containing carbonyl, cyclic, amide, etc.) 

as a sample in Table S5, listing 15 different SMILES variations and model predictions 

for each SMILES variation, and find that PolyNC exhibits similar or equal and highly 

accurate predictions for the different SMILES variations of this structure.  

 

Table S5. An example demonstration of a complex polymer structure (containing 

ester groups, rings, amide groups, etc.), PolyNC exhibits close to identical and highly 

accurate predictions for different SMILES representations of this structure. We have 

uploaded the results on all structures in the test sets at:  

https://github.com/HKQiu/Unified_ML4Polymers/blob/main/data/PromptAndPolyNC

Prediction.csv. 

 

Above findings demonstrated that PolyNC's predictions depend more on the 

underlying structure rather than the different notations of SMILES, as reflected in the 

relatively small deviations in the predicted results for most molecules. But it needs to 

be emphasized that PolyNC needs further strengthening in recognizing different 

SMILES of the same structure to eliminate the deviations, and incorporating more 

training data could further enhance the model's robustness. 

https://github.com/HKQiu/Unified_ML4Polymers/blob/main/data/PromptAndPolyNCPrediction.csv
https://github.com/HKQiu/Unified_ML4Polymers/blob/main/data/PromptAndPolyNCPrediction.csv


19 

 

S8. Predictive Capability of PolyNC for Complex Molecular 

Structures 

Complex structures can be found in organic molecules, such as cis-trans isomerism 

and chirality. These complex structures can be described using SMILES notation. For 

example, C2H2F2 can be represented as F/C=C\F (cis-) and F/C=C/F (trans-), and the 

"@ " and "@@" symbols are used to denote L and D chirality, respectively. The 

complex structures that can be represented using SMILES notation can all be used as 

inputs for PolyNC. However, our dataset contains limited information in this regard, 

making it necessary to acquire additional data in order to enhance its predictive 

capabilities for such structures. In addition, we also validated PolyNC's capability in 

handling typical complex structures in polymers: rings, homopolymers, copolymers, 

and branching. For cyclic polymers, we have selected a molecule with heterocyclic 

structures as an example. For branched polymers, we have chosen a structure with 

multiple side groups as an example. This selection is because the SMILES syntax 

remains consistent in handling these structures. The results are detailed in Table S6. 

These examples demonstrate PolyNC's proficiency in dealing with complex polymer 

structures. Furthermore, features related to polymer processing, such as number-

average molecular weight (Mn), temperature, etc., which are beyond the scope of 

SMILES, can be described in the natural language prompt with more additional training 

data. 

Table S6. Examples of complex polymer structure and PolyNC’s predictions. 

Type Structure Prompt Pred. (Exp.) 

rings 
 

Predict the bandgap crystal of the fol

lowing SMILES: c1(*)cccc(-c2ccc(-c3s

c(*)cc3)s2)n1 

2.32 (2.051) 

eV 

homo-

polymers 

 Predict the atomization energy of the 

following SMILES: O=C(N*)NC(=O)* 

-6.22  

(-6.462) eV 

copolymers 

(alternating) 

 Predict the Tg of the following SMIL

ES: c1cc(-c2c(C)cc(*)cc2)c(C)cc1-n1c
385 (3743) ℃ 
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(=O)c2cc3c(=O)n(*)c(=O)c3cc2c1=O 

branching 

 

Predict the bandgap crystal of the fol

lowing SMILES: C(C(CC(C(C(*)(C#

N)C#N)C#N)(C#N)C#N)(CC(C#N)(C*)

C#N)C#N)#N 

6.45 (6.454) 

eV 
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