## Photocatalytic, Modular Difunctionalization of Alkenes Enabled by Ligand-to-Metal Charge Transfer and Radical Ligand Transfer

Kang-Jie Bian, David Nemoto Jr., Xiao-Wei Chen, Shih-Chieh Kao, James Hooson and Julian G. West\*

Department of Chemistry, Rice University, 6500 Main St, Houston, TX-77005, USA.

### Contents

| I. General Procedures for Substrate Synthesis                                |
|------------------------------------------------------------------------------|
| General Procedure 1 for the Synthesis of Unactivated Alkenes3                |
| General Procedure 2 for the Synthesis of Unactivated Alkenes3                |
| Procedure for the Synthesis of N-(but-3-en-1-yl)benzenesulfonamide           |
| Procedure for the Synthesis of N-(but-3-en-1-yl)-N-methylbenzenesulfonamide4 |
| Procedure for the Synthesis of 2-(but-3-en-1-yl)isoindoline-1,3-dione5       |
| II. Optimization of Conditions (Photocatalytic Diazidation)                  |
| 2.1 optimization of iron salts6                                              |
| 2.2 optimization of the amount of oxidant7                                   |
| 2.3 optimization of iron catalyst loading7                                   |
| 2.4 optimization of wavelength8                                              |
| 2.5 control experiments8                                                     |
| III. Optimization of Conditions (Photocatalytic Dichlorination)9             |
| 3.1 optimization of iron salts9                                              |
| 3.2 control experiments                                                      |
| IV. Optimization of Conditions (Photocatalytic Fluorochlorination)11         |
| 4.1 optimization of iron salts11                                             |
| 4.2 optimization of catalyst loading12                                       |
| 4.3 optimization of reactants loading (alkene)12                             |
| 4.4 optimization of reactants loading (Selectfluor)13                        |
| V. Experimental Methods of Difunctionalization of Alkenes13                  |
| VI. Preliminary Testing on Photocatalytic Fluoroazidation15                  |
| VII. Characterization of Corresponding Products                              |

| VIII. NMR Spectrum for New Compounds | 48 |
|--------------------------------------|----|
| IX. References                       |    |

## **General Information**

All reagents were purchased from commercially available sources and used without further purification. All reactions were monitored by either <sup>1</sup>H NMR or thin layer chromatography (TLC) carried out on 0.25 mm pre-coated silia plates (F-254) purchased from Silicycle, Quebec, Canada, using shortwave UV light as visualizing agent and KMnO4 or phosphomolybdic acid (PMA) as developing agents. Flash column chromatography was performed using SiliaFlash-P60 silica gel (40 - 63 µm) purchased from Silicycle, Quebec, Canada and preparatory thin-layer chromatography was purchased from Miles Scientific (GF 1000 µm, 20 x 20 cm). <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on a Bruker DRX-600 spectrometers operating at 600 MHz for proton nuclei, 151 MHz for carbon nuclei and 565 MHz for fluorine nuclei were calibrated using residual undeuterated solvent as an internal reference (CDCl3: 7.26 ppm <sup>1</sup>H NMR and 77.00 ppm <sup>13</sup>C NMR). 25 W PR160L 427 nm LEDs from Kessil Lights were used as light source. For reporting NMR peak multiplicities, the following abbreviations were used: s = singlet, d =doublet, t = triplet, q = quartet, quin = quintet, hept = heptet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an Agilent UHPLC TOF mass spectrometer using electrospray ionization time-of-flight (ESI-TOF), chemical ionization time-of-flight (CI-TOF) or atmospheric pressure chemical ionization (APCI).

## I. General Procedures for Substrate Synthesis

**General Procedure 1 for the Synthesis of Unactivated Alkenes** 



To an RB flask were added 5-pentenol (4.9 mmol, 1.96 equiv), carboxylic acid (2.5 mmol, 1.0 equiv), 4-dimethylamino pyridine (0.24 mmol, 0.097 equiv), and a stir bar. The RB flask was then evacuated and backfilled with nitrogen gas three times. Dry dichloromethane (0.225 M) was added via syringe to the RB flask, dissolving the solid components. The RB flask was then placed in an ice bath positioned on top of a stirring plate. Dicyclohexyl carbodiimide (4.85 mmol, 1.94 mmol) was added to the mixture via syringe dropwise over a period of 5 minutes. The ice bath was then removed, allowing the reaction to return to room temperature. The reaction was left to stir overnight. Following reaction, the mixture was concentrated through rotary evaporation. Subsequent flash column chromatography (hexanes/EtOAc) allowed for isolation of the ester.<sup>1-2</sup>

#### General Procedure 2 for the Synthesis of Unactivated Alkenes



To an RB flask were added 5-pentenoic acid (2.5 mmol, 1.0 equiv), alcohol (4.9 mmol, 1.96 equiv), 4-dimethylamino pyridine (0.24 mmol, 0.097 equiv), and a stir bar. The RB flask was then evacuated and backfilled with nitrogen gas three times. Dry dichloromethane (0.225 M) was added via syringe to the RB flask, dissolving the solid components. The RB flask was then placed in an ice bath positioned on top of a stirring plate. Dicyclohexyl carbodiimide (4.85 mmol, 1.94 mmol) was added to the mixture via syringe dropwise over a period of 5 minutes. The ice bath was then removed, allowing the reaction to return to room temperature. The reaction was left to stir overnight. Following reaction, the mixture was concentrated through rotary

evaporation. Subsequent flash column chromatography (hexanes/EtOAc) allowed for isolation of the ester.<sup>1-2</sup>

#### Procedure for the Synthesis of N-(but-3-en-1-yl)benzenesulfonamide



To an RB flask were added benzenesulfonamide (944 mg, 6.0 mmol), 4-bromobut-1-ene (0.8 mL, 6.0 mmol), dimethylformamide (30 mL), and a stir bar. Potassium carbonate (830 mg, 6.0 mmol) was added to the reaction mixture. After stirring overnight at 80 °C, the mixture was cooled to room temperature and quenched with water. The reaction mixture was then washed with brine and extracted with diethyl ether. The organic layer was concentrated through rotary evaporation. Subsequent flash column chromatography (hexanes/EtOAc) (3:1) allowed for isolation of *N*-(but-3-en-1-yl)benzenesulfonamide.<sup>3</sup>

#### Procedure for the Synthesis of N-(but-3-en-1-yl)-N-methylbenzenesulfonamide



To an RB flask were added sodium hydride (60% in mineral oil, 240 mg, 6 mmol), dimethylformamide (25 mL), a solution of *N*-(but-3-en-1-yl)benzenesulfonamide (1.20 g, 5 mmol) in DMF (5 mL), and a stir bar in an ice bath at 0 °C. The reaction mixture was brought to room temperature and stirred for 30 minutes. The reaction mixture was cooled to 0 °C in an ice bath again, and a solution of methyl iodide (1.06 g, 7.5 mmol) in DMF (5 mL) was added dropwise over a period of 5 minutes by syringe. The reaction mixture was brought to room temperature and left to run overnight. The reaction mixture was quenched with a saturated aqueous solution of sodium bicarbonate. The mixture was then washed with brine and extracted with diethyl ether. The organic phase was dried over sodium sulfate and concentrated through rotary evaporation. Subsequent flash column chromatography (hexanes/EtOAc) (10:1) produced

N-(but-3-en-1-yl)-N-methylbenzenesulfonamide.<sup>4</sup>

#### Procedure for the Synthesis of 2-(but-3-en-1-yl)isoindoline-1,3-dione



To an RB flask were added phthalimide (1.71 g, 11.6 mmol), potassium hydroxide (0.650 g, 11.6 mmol), ethyl alcohol (20 mL), and a stir bar. The reaction mixture was stirred at room temperature for 2 h and evaporated to remove EtOH. The resulting residue was then dissolved in dimethylformamide (15 mL) and 4-bromobut-1-ene (1.10 mL, 12.8 mmol) was added. The reaction mixture was stirred at reflux overnight. The reaction mixture was cooled, diluted with ethyl acetate, and quenched with saturated sodium bicarbonate. The mixture was then washed with brine. The extracted organic layer was dried over sodium sulfate and concentrated through rotary evaporation. Subsequent flash column chromatography (hexanes/EtOAc) (10:1) produced 2-(but-3-en-1-yl)isoindoline-1,3-dione.<sup>5</sup>

# II. Optimization of Conditions (Photocatalytic

# **Diazidation**)

|       | + TMSN <sub>3</sub><br>3 equiv. Selectfluor (2 equiv.)<br>CH <sub>3</sub> CN (0.1M)<br>24h, 390 nm LED | $ \begin{array}{c} 0 \\ N_{3} \\ N_{3} \\ \hline 0 \\ 1 \end{array} $ |
|-------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Entry | Cat.                                                                                                   | yield (%)                                                             |
| 1     | Fe(NO <sub>3</sub> )₃·9H₂O                                                                             | 50                                                                    |
| 2     | Fe(OTf) <sub>3</sub>                                                                                   | 36                                                                    |
| 3     | Fe(acac) <sub>3</sub>                                                                                  | 48                                                                    |
| 4     | FeCl₃·6H₂O                                                                                             | 24                                                                    |
| 5     | Fe(OAc) <sub>2</sub>                                                                                   | 62                                                                    |
| 6     | FeCl <sub>2</sub>                                                                                      | 48                                                                    |

## 2.1 optimization of iron salts

|       | + 1<br>3 | ſMSN₃<br>equiv. | Fe(OAc) <sub>2</sub> (20 mol%)<br>Selectfluor (x equiv.)<br>CH <sub>3</sub> CN (0.1M)<br>24h, 390 nm LED | $ \begin{array}{c}                                     $ |
|-------|----------|-----------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Entry |          |                 | Selectfluor                                                                                              | yield (%)                                                |
| 1     |          |                 | 1.0 equiv.                                                                                               | 80                                                       |
| 2     |          |                 | 1.5 equiv.                                                                                               | 76                                                       |
| 3     |          |                 | 2.0 equiv.                                                                                               | 62                                                       |
| 4     |          |                 | 2.5 equiv.                                                                                               | 56                                                       |

## 2.2 optimization of the amount of oxidant

## 2.3 optimization of iron catalyst loading

|       | $\begin{array}{c} \mbox{TMSN}_3 \\ \mbox{3 equiv.} \end{array} \begin{array}{c} \mbox{Fe}(OAc)_2 \ (x \ equiv.) \\ \mbox{Selectfluor} \ (1 \ equiv.) \\ \mbox{CH}_3 CN \ (0.1M) \\ \mbox{24h}, \ 390 \ nm \ LED \end{array}$ | $ \begin{array}{c}                                     $ |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Entry | Fe(OAc) <sub>2</sub>                                                                                                                                                                                                         | yield (%)                                                |
| 1     | 2.5 mol%                                                                                                                                                                                                                     | 72                                                       |
| 2     | 5 mol%                                                                                                                                                                                                                       | 76                                                       |
| 3     | 10 mol%                                                                                                                                                                                                                      | 88                                                       |
| 4     | 20 mol%                                                                                                                                                                                                                      | 80                                                       |

## 2.4 optimization of wavelength



## 2.5 control experiments

|       | + TMSN <sub>3</sub><br>3 equiv.<br>$Fe(OAc)_2 (10 mol\%)$<br>Selectfluor (1 equiv.)<br>$CH_3CN (0.1M)$<br>24h, 390 nm LED |           |
|-------|---------------------------------------------------------------------------------------------------------------------------|-----------|
| Entry | Deviation from the standard conditions                                                                                    | yield (%) |
| 1     | no iron salt                                                                                                              | 12        |
| 2     | no light                                                                                                                  | ND        |
| 3     | no Selectfluor                                                                                                            | 20        |

# **Dichlorination**)

## 3.1 optimization of iron salts

| -<br>0<br>11 |   |                  |                                                                                                  |  |
|--------------|---|------------------|--------------------------------------------------------------------------------------------------|--|
|              | + | NaCl<br>3 equiv. | iron salt (10 mol%)<br>Selectfluor (1 equiv.)<br>CH <sub>3</sub> CN/H <sub>2</sub> O (9:1, 0.1M) |  |
|              |   |                  | 24h, 390 nm LED                                                                                  |  |

| Entry | Cat. (20 mol%)                                       | yield (%) |
|-------|------------------------------------------------------|-----------|
| 1     | Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O | 86        |
| 2     | Fe(OTf) <sub>3</sub>                                 | 82        |
| 3     | Fe(acac) <sub>3</sub>                                | 12        |
| 4     | FeCl <sub>3</sub> 6H <sub>2</sub> O                  | 82        |
| 5     | Fe(SO <sub>4</sub> ) <sub>3</sub> 5H <sub>2</sub> O  | 80        |
| 6     | Fe(OAc) <sub>2</sub>                                 | 32        |
| 7     | FeCl <sub>2</sub>                                    | 72        |

## 3.2 control experiments

|       | + NaCl<br>3 equiv. Selectfluor (1 equiv.)<br>CH <sub>3</sub> CN/H <sub>2</sub> O (9:1, 0.1M)<br>24h, 390 nm LED |           |
|-------|-----------------------------------------------------------------------------------------------------------------|-----------|
| Entry | Deviation from the standard conditions                                                                          | yield (%) |
| 1     | no iron salt                                                                                                    | ND        |
| 2     | no light                                                                                                        | ND        |
| 3     | no Selectfluor                                                                                                  | trace     |
| 4     | no water                                                                                                        | trace     |

# **Fluorochlorination**)

| BzO<br>1 equiv. | iron salt (20 mol%)<br>Selecfluor (2.2 equiv.)<br>+ NaCl →<br>CH <sub>3</sub> CN/H <sub>2</sub> O (9:1, 0.1M)<br>1 equiv. 24h, 390 nm LED | BzO A F<br>BzO CI<br>B CI |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Entry           | [Fe]                                                                                                                                      | yield (A/B)               |
| 1               | FeCl <sub>2</sub>                                                                                                                         | 8/4                       |
| 2               | Fe(OAc) <sub>2</sub>                                                                                                                      | 56/8                      |
| 3               | Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O                                                                                      | trace/44                  |
| 4               | Fe(OTf) <sub>3</sub>                                                                                                                      | 8/36                      |
| 5               | FeCl <sub>3</sub> 6H <sub>2</sub> O (5%)                                                                                                  | trace/32                  |
| 6               | FeCl <sub>3</sub> 6H <sub>2</sub> O (10%)                                                                                                 | trace/52                  |

## 4.1 optimization of iron salts

| BzO<br>1 equiv. | Fe(OAc) <sub>2</sub> (x mol%)<br>Selecfluor (2.2 equiv.)<br>→<br>CH <sub>3</sub> CN/H <sub>2</sub> O (9:1, 0.1M)<br>1 equiv. 24h, 390 nm LED | BzO A F<br>BzO B CI |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Entry           | Fe(OAc) <sub>2</sub>                                                                                                                         | yield (A/B)         |
| 1               | 10%                                                                                                                                          | 64/8                |
| 2               | 20%                                                                                                                                          | 56/8                |
| 3               | 30%                                                                                                                                          | 52/20               |

## 4.2 optimization of catalyst loading

## 4.3 optimization of reactants loading (alkene)

| -                                          |      |          | U V                       | ,                                             |             |
|--------------------------------------------|------|----------|---------------------------|-----------------------------------------------|-------------|
|                                            |      | NaCl     | Fe(O<br>Selec             | Ac)₂ (10 mol%)<br>cfluor (z equiv.)           | BzO A F     |
| BzO´                         ✓<br>x equiv. | y eq | y equiv. | CH <sub>3</sub> CN<br>24h | /H <sub>2</sub> O (9:1, 0.1M)<br>, 390 nm LED | BzO B CI    |
| Entry                                      | х    |          | у                         | Z                                             | yield (A/B) |
| 1                                          | 1    |          | 1                         | 2.2                                           | 64/8        |
| 2                                          | 1.2  |          | 1                         | 2.2                                           | 72/8        |
| 3                                          | 1.4  |          | 1                         | 2.2                                           | 68/12       |
| 4                                          | 1.5  |          | 1                         | 2.2                                           | 66/8        |
| 5                                          | 1.5  |          | 1                         | 2.5                                           | 70/16       |

| BzO<br>1.2 equiv. | + | NaCI<br>1 equiv. | Fe(OAc) <sub>2</sub> (10 mol%)<br><u>Selecfluor</u> (z equiv.)<br>→<br>CH <sub>3</sub> CN/H <sub>2</sub> O (9:1, 0.1M)<br>24h, 390 nm LED | BzO A F<br>BzO CI<br>B CI |
|-------------------|---|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Entry             |   |                  | Z                                                                                                                                         | yield (A/B)               |
| 1                 |   |                  | 2                                                                                                                                         | 72/4                      |
| 2                 |   |                  | 2.4                                                                                                                                       | 68/16                     |
| 3                 |   |                  | 1.8                                                                                                                                       | 64/12                     |

#### 4.4 optimization of reactants loading (Selectfluor)

# V. Experimental Methods of Difunctionalization of Alkenes

**General Procedure A** for diazidation of alkenes: Fe(OAc)<sub>2</sub> (0.01 mmol, 10 mol%) and Selectfluor (0.1 mmol, 1.0 equiv.) were added in an oven-dried 8-mL test vial containing a Teflon<sup>®</sup>-coated magnetic stir bar. The vial was evacuated and backfilled with N2 (repeated for 4 times), followed by addition of alkenes (0.1 mmol, 1.0 equiv.) and TMSN3 (0.3 mmol, 3.0 equiv) in MeCN (1.0 mL, 0.1 M in regard to alkenes) via syringe under N2. The reaction mixture was placed under 390nm Kessil<sup>®</sup> light (25% intensity) light after sealing the punctured holes of the vial cap with vacuum grease and electric tape/parafilm for better air-tight protection and allowed to react at room temperature for 24 h. Following this, the reaction mixture was filtered through a pad of celite which was subsequently rinsed with DCM. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the corresponding diazidated products.

**General Procedure B** for dichlorination of alkenes: Fe(NO3)3·9H2O (0.02 mmol, 20 mol%), sodium chloride (0.3 mmol, 3.0 equiv.) and Selectfluor (0.1 mmol, 1.0 equiv.) were added in an oven-dried 8-mL test vial containing a Teflon<sup>®</sup>-coated magnetic stir bar. The vial was evacuated and backfilled with N2 (repeated for 4 times), followed by addition of alkenes (0.1 mmol, 1.0

equiv.) in MeCN/H<sub>2</sub>O (9:1, 1.0 mL, 0.1 M in regard to alkenes) via syringe under N2. The reaction mixture was placed under 390nm Kessil<sup>®</sup> light (25% intensity) light after sealing the punctured holes of the vial cap with vacuum grease and electric tape/parafilm for better air-tight protection and allowed to react at room temperature for 24 h. Following this, the reaction mixture was filtered through a pad of celite which was subsequently rinsed with DCM. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the corresponding dichlorinated products.

**General Procedure C** for fluorochlorination of alkenes:  $Fe(OAc)_2$  (0.01 mmol, 8 mol%), sodium chloride (0.1 mmol, 0.8 equiv.) and Selectfluor (0.2 mmol, 1.7 equiv.) were added in an oven-dried 8-mL test vial containing a Teflon<sup>®</sup>-coated magnetic stir bar. The vial was evacuated and backfilled with N2 (repeated for 4 times), followed by addition of alkenes (0.12 mmol, 1.0 equiv.) in MeCN/H<sub>2</sub>O (9:1, 1.0 mL, 0.1 M in regard to alkenes) via syringe under N2. The reaction mixture was placed under 390nm Kessil<sup>®</sup> light (25% intensity) light after sealing the punctured holes of the vial cap with vacuum grease and electric tape/parafilm for better air-tight protection and allowed to react at room temperature for 24 h. Following this, the reaction mixture was filtered through a pad of celite which was subsequently rinsed with DCM. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the corresponding fluorochlorinated products. Note that optimization of this reaction described in the tables above was done using NaCl as the limiting reagent.

# VI. Preliminary Testing on Photocatalytic Fluoroazidation

**Procedure** for fluoroazidation of alkenes:  $Fe(OAc)_2$  (0.01 mmol, 10 mol%) and Selectfluor (loading according to Table below) were added in an oven-dried 8-mL test vial containing a Teflon<sup>®</sup>-coated magnetic stir bar. The vial was evacuated and backfilled with N<sub>2</sub> (repeated for 4 times), followed by addition of alkenes (0.1 mmol, 1.0 equiv.) and TMSN<sub>3</sub> (0.1 mmol, 1.0 equiv) in MeCN (1.0 mL, 0.1 M in regard to alkenes) via syringe under N<sub>2</sub>. The reaction mixture was placed under 390nm Kessil<sup>®</sup> light (25% intensity) after sealing the punctured holes of the vial cap with vacuum grease and electric tape/parafilm for better air-tight protection and allowed to react at room temperature for 24 h. Following this, the reaction mixture was filtered through a pad of celite which was subsequently rinsed with DCM. The filtrate was concentrated, and the residue was then purified by preparatory thin-layer chromatography (with eluent of Hex:EA = 5:1) to give the corresponding fluoroazidation products.



<sup>a</sup> with 1 equiv. of alkene. <sup>b</sup> with 1.2equiv. of alkene. <sup>c</sup> with 3 equiv. of  $TMSN_3$ . <sup>1</sup>H NMR yield was determined by using  $CH_2Br_2$  as an internal standard.

2-(4-azido-3-fluorobutyl)isoindoline-1,3-dione



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 5.5, 3.0 Hz, 2H), 7.66 (dd, J = 5.5, 3.0 Hz, 2H), 4.74 – 4.58 (m, 1H), 3.83 – 3.77(m, 2H), 3.41 – 3.32 (m, 2H), 2.14 – 2.04 (m, 1H), 1.99 – 1.86 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 168.22, 134.13, 132.00, 123.40, 90.61 (d, J = 174.3 Hz), 54.03 (d, J = 21.9 Hz), 34.13 (d, J = 4.7 Hz), 31.12 (d, J = 20.6 Hz). <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -186.19 – -186.66 (m). HRMS ESI: [M-N<sub>2</sub>+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>12</sub>FN<sub>4</sub>O<sub>2</sub>: 263.0939; Found 263.0936





## **VII. Characterization of Corresponding Products**

#### 2-(3,4-diazidobutyl)isoindoline-1,3-dione



<sup>1</sup>-----' Prepared according to General Procedure A and obtained as white solid. **Yield** 86%, 24.5 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.4, 3.0 Hz, 2H), 3.84 (qt, J = 14.0, 6.7 Hz, 2H), 3.58 – 3.52 (m, 1H), 3.49 (dd, J = 12.7, 4.1 Hz, 1H), 3.42 (dd, J = 12.7, 7.3 Hz, 1H), 1.91 (dtd, J = 14.1, 7.0, 4.3 Hz, 1H), 1.82 (ddt, J = 14.3, 9.3, 6.4 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 168.27, 134.19, 131.95, 123.43, 59.75, 54.94, 34.68, 30.77.

The compound characterization was reported in literature.<sup>6</sup>

#### 1,2-diazidododecane



<sup>4</sup>------' Prepared according to General Procedure A and obtained as colorless oil. Yield 87%, 21.9 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  3.49-3.43 (m, 1H), 3.38 (dd, J = 12.7, 4.0 Hz, 1H), 3.31 (dd, J = 12.7, 7.4 Hz, 1H), 1.58 - 1.53 (m, 2H), 1.48 - 1.40 (m, 1H), 1.37 - 1.26 (m, 15H), 0.88 (t, J = 6.9 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 62.09, 54.85, 31.90, 31.78, 29.56, 29.51, 29.41, 29.31, 29.30, 25.88, 22.69, 14.12. HRMS APCI: [M-N<sub>2</sub>+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>25</sub>N<sub>4</sub>: 225.2074; Found 225.2067

#### (3,4-diazidobutyl)benzene



<sup>1</sup>------ Prepared according to General Procedure A and obtained as colorless oil. **Yield** 85%, 18.4 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.35-7.29 (m, 2H), 7.24-7.15 (m, 3H), 3.49 – 3.38 (m, 2H), 3.35 (dd, *J* = 12.6, 7.3 Hz, 1H), 2.86-2.77 (m, 1H), 2.73-2.66 (m, 1H), 1.91 – 1.78 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  140.35, 128.66, 128.39, 126.36, 61.11, 54.94, 33.39, 32.00. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl benzoate



<sup>1</sup>Prepared according to General Procedure A and obtained as colorless oil. **Yield** 84%, 23.0 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 – 7.98 (m, 2H), 7.60 – 7.54 (m, 1H), 7.49 – 7.41 (m, 2H), 4.41 – 4.31 (m, 2H), 3.58-3.52 (m, 1H), 3.45 (dd, *J* = 12.7, 4.2 Hz, 1H), 3.38 (dd, *J* = 12.7, 7.3 Hz, 1H), 2.02 – 1.92 (m, 1H), 1.92-1.82 (m, 1H), 1.77 – 1.63 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.54, 133.09, 130.08, 129.57, 128.44, 64.13, 61.61, 54.86, 28.55, 25.32. The compound characterization was reported in literature.<sup>6</sup>

4,5-diazidopentyl 4-chlorobenzoate



**Yield** 72%, 22.2 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1)

to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 4.42 – 4.30 (m, 2H), 3.58-3.52 (m, 1H), 3.45 (dd, J = 12.7, 4.3 Hz, 1H), 3.38 (dd, J = 12.7, 7.2 Hz, 1H), 2.02 – 1.92 (m, 1H), 1.91-1.81 (m, 1H), 1.76 – 1.62 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.67, 139.55, 130.96, 128.79, 128.49, 64.38, 61.54, 54.82, 28.48, 25.27. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl 4-(trifluoromethyl)benzoate



**Yield** 76%, 26.0 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 4.51-4.33 (m, 2H), 3.61-3.52 (m, 1H), 3.46 (dd, J = 12.6, 4.3 Hz, 1H), 3.40 (dd, J = 12.7, 7.2 Hz, 1H), 2.03-1.94 (m, 1H), 1.95-1.85 (m, 1H), 1.78 – 1.63 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.32, 134.55 (q, *J* = 32.7 Hz), 133.24, 129.99, 125.49 (q, *J* = 3.8 Hz), 123.60 (q, *J* = 272.5 Hz), 64.72, 61.53, 54.82, 28.45, 25.25.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -63.10.

The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl 4-methylbenzenesulfonate



<sup>1</sup>/<sub>2</sub>------<sup>2</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 86%, 27.9 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 3.45 – 3.36 (m, 2H), 3.31 (dd, J = 12.5, 7.1 Hz, 1H), 2.46 (s, 3H), 1.88-1.78 (m, 1H), 1.78-1.69 (m, 1H), 1.65 – 1.59 (m, 1H), 1.55-1.46 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  145.04, 132.86, 129.95, 127.90, 69.54, 61.26, 54.81, 27.93, 25.40, 21.66. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl (2,2,2-trichloroethyl) carbonate



Yield 78%, 27.0 mg. Purification is through prepared according to General Procedure A and obtained as colorless oil. Yield 78%, 27.0 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 7:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.78 (s, 2H), 4.33-4.22 (m, 2H), 3.56-3.48 (m, 1H), 3.44 (dd, J = 12.7, 4.2 Hz, 1H), 3.37 (dd, J = 12.7, 7.2 Hz, 1H), 1.97-1.88 (m, 1H), 1.88 – 1.78 (m, 1H), 1.73 – 1.65 (m, 1H), 1.65 – 1.58 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  153.94, 94.38, 76.80, 68.33, 61.51, 54.85, 28.20, 25.14. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl furan-2-carboxylate



**Yield** 42%, 11.1 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (dd, J = 1.8, 0.9 Hz, 1H), 7.20 (dd, J = 3.5, 0.8 Hz, 1H), 6.53 (dd, J = 3.5, 1.7 Hz, 1H), 4.39-4.30 (m, 2H), 3.61 – 3.50 (m, 1H), 3.45 (dd, J = 12.7, 4.1 Hz, 1H), 3.37 (dd, J = 12.7, 7.3 Hz, 1H), 1.99 – 1.89 (m, 1H), 1.89-1.81 (m, 1H), 1.73 – 1.62 (m, 2H).<sup>1</sup>

<sup>3</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)** δ 158.65, 146.46, 144.46, 118.14, 111.93, 64.11, 61.56, 54.86, 28.47, 25.24. HRMS ESI: [M-N<sub>2</sub>+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>13</sub>N<sub>4</sub>O<sub>3</sub>: 237.0982; Found 237.0986

#### (tetrahydro-2*H*-pyran-4-yl)methyl 4,5-diazidopentanoate



Yield 62%, 17.5 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 5:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.03 – 3.94 (m, 4H), 3.62 – 3.54 (m, 1H), 3.46 (dd, J = 12.7, 4.2 Hz, 1H), 3.42 – 3.35 (m, 3H), 2.53 – 2.43 (m, 2H), 1.94 – 1.87 (m, 2H), 1.80-1.73 (m, 1H), 1.63-1.58 (m, 2H), 1.42-1.33 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.48, 69.00, 67.44, 61.09, 54.86, 34.46, 30.25, 29.47, 26.98. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl quinoline-2-carboxylate



**Yield** 48%, 15.6 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  9.45 (d, J = 2.1 Hz, 1H), 8.86 (d, J = 2.2 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.96 (dd, J = 8.2, 1.4 Hz, 1H), 7.88—7.82 (m, 1H), 7.70 – 7.57 (m, 1H), 4.52 – 4.39 (m, 2H), 3.61-3.55 (m, 1H), 3.48 (dd, J = 12.7, 4.3 Hz, 1H), 3.41 (dd, J = 12.7, 7.2 Hz, 1H), 2.11-2.00 (m, 1H), 1.99-1.88 (m, 1H), 1.82-1.74 (m, 1H), 1.74 – 1.69 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.34, 149.94, 149.88, 138.89, 132.05, 129.50, 129.18, 127.59, 126.84, 122.89, 64.69, 61.56, 54.86, 28.49, 25.33. HRMS APCI: [M +H]<sup>+</sup> calcd. for C<sub>15</sub>H<sub>16</sub>N7O<sub>2</sub>: 326.1360; Found 326.1348

#### N-(3,4-diazidobutyl)-N-methylbenzenesulfonamide



<sup>1</sup>21.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.85 – 7.76 (m, 2H), 7.66 – 7.60 (m, 1H), 7.60-7.52 (m, 2H), 3.75-3.67 (m, 1H), 3.53 (dd, *J* = 12.8, 4.0 Hz, 1H), 3.45 (dd, *J* = 12.8, 6.7 Hz, 1H), 3.26-3.18 (m, 1H), 3.05-2.96 (m, 1H), 2.76 (s, 3H), 1.86-1.77 (m, 1H), 1.71 – 1.64 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 136.84, 132.88, 129.22, 129.20, 127.38, 58.93, 54.66, 46.99, 35.36, 29.85. The compound characterization was reported in literature.<sup>6</sup>

#### N-(3,4-diazidobutyl)benzenesulfonamide



<sup>1</sup>20.4 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 – 7.82 (m, 2H), 7.65 – 7.59 (m, 1H), 7.58-7.52 (m, 2H), 4.95 (t, *J* = 6.3 Hz, 1H), 3.67-3.61 (m, 1H), 3.44 (dd, *J* = 12.7, 4.1 Hz, 1H), 3.35 (dd, *J* = 12.7, 7.1 Hz, 1H), 3.14 – 3.03 (m, 2H), 1.79-1.69 (m, 1H), 1.64-1.56 (m, 1H).<sup>1</sup>

<sup>3</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  139.42, 132.98, 129.31, 127.02, 59.05, 54.75, 39.88, 31.68. The compound characterization was reported in literature.<sup>6</sup>

#### 1,2-diazido-6-bromohexane



<sup>1</sup>-----'Prepared according to General Procedure A and obtained as colorless oil. Yield 89%, 22.0 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>)  $\delta$  3.51 – 3.45 (m, 1H), 3.45 – 3.40 (m, 3H), 3.35 (dd, *J* = 12.7, 7.3 Hz, 1H), 1.96 – 1.81 (m, 2H), 1.66 – 1.60 (m, 1H), 1.58 – 1.51 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 61.79, 54.76, 33.16, 32.20, 30.91, 24.52.

The compound characterization was reported in literature.<sup>6</sup>

#### 2-(2,3-diazidopropyl)cyclohexan-1-one



<sup>1</sup>------' Prepared according to General Procedure A and obtained as colorless oil. **Yield** 68%, 15.1 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 5:1) to give the corresponding 1.1:1 mixture of diastereometric diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  3.74-3.64 (m, 0.50H), 3.63-3.55 (m, 0.45H), 3.50 (dd, *J* = 12.7, 3.8 Hz, 1H), 3.44 (dd, *J* = 12.7, 3.9 Hz, 0.48H), 3.39-3.30 (m, 1H), 2.61-2.54 (m, 0.54H), 2.52-2.46 (m, 0.48H), 2.45 – 2.31 (m, 2H), 2.24-2.16 (m, 0.47H), 2.16 – 2.01 (m, 2H), 1.98 – 1.85 (m, 1.55H), 1.78 – 1.64 (m, 2H), 1.47 – 1.33 (m, 1.54H), 1.21 – 1.16 (m, 0.52H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) & 212.58, 211.93, 60.56, 59.18, 55.55, 55.15, 47.17, 46.92, 42.39, 42.10, 35.50, 33.67, 32.44, 31.26, 28.22, 27.85, 25.38, 25.09.

HRMS APCI: [M-N<sub>2</sub>+H]<sup>+</sup> calcd. for C<sub>9</sub>H<sub>15</sub>N<sub>3</sub>O: 195.1240; Found 195.1250

#### 4,5-diazidopentan-1-ol



'-----' Prepared according to General Procedure A and obtained as colorless oil. Yield 53%, 9.0 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 5:1) to give the

corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  3.75-3.66 (m, 2H), 3.57 – 3.51 (m, 1H), 3.43 (dd, J = 12.7, 4.0 Hz, 1H), 3.36 (dd, J = 12.7, 7.4 Hz, 1H), 1.76 – 1.62 (m, 4H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  62.16, 61.86, 54.89, 28.80, 28.31. The compound characterization was reported in literature.<sup>6</sup>

#### 6,7-diazidoheptanoic acid



<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 52%, 11.0 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA: AcOH = 2:1:0.1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  3.52-3.44 (m, 1H), 3.40 (dd, J = 12.7, 4.1 Hz, 1H), 3.33 (dd, J = 12.7, 7.3 Hz, 1H), 2.40 (t, J = 7.3 Hz, 2H), 1.72 – 1.63 (m, 2H), 1.60-1.49 (m, 3H), 1.45 (qt, J = 9.6, 2.6 Hz, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  179.04, 61.78, 54.80, 33.60, 31.45, 25.33, 24.24.

The compound characterization was reported in literature.<sup>6</sup>

#### (2,3-diazido-2-methylpropyl)benzene



 $^{18}$  Prepared according to General Procedure A and obtained as colorless oil. Yield 76%, 16.4 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.26 (m, 3H), 7.24 – 7.19 (m, 2H), 3.23 (s, 2H), 2.87 (d, *J* = 13.6 Hz, 1H), 2.82 (d, *J* = 13.6 Hz, 1H), 1.29 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  135.32, 130.47, 128.40, 127.15, 63.94, 58.35, 43.20, 21.09. The compound characterization was reported in literature.<sup>6</sup>

#### (2,3-diazido-2-methylpropoxy)benzene



<sup>19</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 86%, 19.9 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 – 7.27 (m, 2H), 7.02-6.96 (m, 1H), 6.95-6.88 (m, 2H), 4.00 – 3.93 (m, 2H), 3.51 (d, J = 12.5 Hz, 1H), 3.47 (d, J = 12.6 Hz, 1H), 1.45 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 158.07, 129.60, 121.62, 114.60, 71.29, 62.86, 56.24, 19.26. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidooctane



 $V_{1,0}$  Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 63%, 12.4 mg. d.r. 1.3:1. Purification is through preparatory column chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>) δ 3.37 – 3.33 (m, 0.85H), 3.30 – 3.25 (m, 1.15H), 1.71-1.63 (m, 1H), 1.62 – 1.57 (m, 2H), 1.56 – 1.48 (m, 3H), 1.46 – 1.38 (m, 2H), 1.00-0.95 (m, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 65.62, 65.02, 33.36, 32.40, 19.60, 19.48, 13.82.

The compound characterization was reported in literature.<sup>6</sup>

#### 2,3-diazidobutane-1,4-diyl dibenzoate



white solid in the mixture of two isomers. **Yield** 40%, 15.2 mg. d.r. = 3.3:1 (anti:syn).<sup>7</sup> Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 8:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.11-8.03 (m, 4H), 7.65-7.56 (m, 2H), 7.52-7.43 (m, 4H), 4.77 (dd, J = 11.7, 2.7 Hz, 0.47H), 4.67 (dd, J = 11.6, 4.0 Hz, 1.53H), 4.57 (dd, J = 11.6, 7.2 Hz, 1.55H), 4.54 – 4.49 (m, 0.45H), 4.04 – 3.96 (m, 1.51H), 3.95 – 3.90 (m, 0.44H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.98, 165.96, 133.61, 133.57, 129.81, 129.09, 129.00, 128.61, 64.30, 64.28, 60.46, 60.32.

HRMS APCI: [M-N2+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>17</sub>N<sub>4</sub>O<sub>4</sub>: 353.1244; Found 353.1236

#### 3,4-diazidohexyl benzoate



'------' Prepared according to General Procedure A and obtained as colorless oil in a mixture of two isomers. **Yield** 68%, 19.6 mg. d.r. 1.1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.00-7.99 (m, 2H), 7.63 – 7.55 (m, 1H), 7.50 – 7.41 (m, 2H), 4.56 – 4.51 (m, 1H), 4.48 – 4.41 (m, 1H), 3.64-3.58 (m, 0.58H), 3.58-3.53 (m, 0.42H), 3.44-3.38 (m, 0.53H), 3.33-3.28 (m, 0.47H), 2.16 – 2.02 (m, 1.56H), 1.96-1.89 (m, 0.54H), 1.79-1.72 (m, 1H), 1.71 – 1.62 (m, 1H), 1.07 (q, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.36, 133.22, 133.19, 129.83, 129.79, 129.58, 128.49, 128.47, 67.29, 66.85, 62.42, 62.01, 61.51, 61.44, 30.65, 29.45, 24.39, 23.90, 10.79, 10.63. The compound characterization was reported in literature.<sup>6</sup>

#### 4-(4-(1,2-diazidopropyl)cyclohexyl)benzonitrile



Prepared according to General Procedure A and obtained as colorless oil in a mixture of two isomers. **Yield** 58%, 17.9 mg. d.r. 1.5:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.56 (m, 2H), 7.33 – 7.28 (m, 2H), 3.70 (qd, J = 6.6, 5.0 Hz, 0.40H), 3.64 (p, J = 6.5 Hz, 0.60H), 3.17 (t, J = 6.2 Hz, 0.59H), 2.95 (dd, J = 6.8, 5.0 Hz, 0.39H), 2.59-2.52 (m, 1H), 2.03 – 1.94 (m, 3H), 1.86 – 1.61 (m, 2H), 1.51 – 1.30 (m, 7H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 152.25, 132.32, 127.62, 119.05, 109.99, 72.13, 72.02, 58.06, 57.63, 44.17, 38.89, 38.65, 33.27, 33.17, 33.06, 33.00, 30.10, 30.08, 28.40, 28.23, 16.83, 14.64. The compound characterization was reported in literature.<sup>6</sup>

#### 2,3-diazido-3-methylbutyl benzoate



Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 – 8.05 (m, 2H), 7.62 – 7.58 (m, 1H), 7.50-7.43 (m, 2H), 4.75 (dd, J = 11.5, 2.8 Hz, 1H), 4.30 (dd, J = 11.5, 9.5 Hz, 1H), 3.69 (dd, J = 9.4, 2.8 Hz, 1H), 1.42 (s, 3H), 1.39 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.27, 133.46, 129.81, 129.33, 128.58, 68.32, 64.65, 62.11, 23.84, 22.96. The compound characterization was reported in literature.<sup>6</sup>

#### 1,2-diazidocyclooctane



<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 64%, 12.4 mg. d.r. = 3.8:1 (trans:cis).<sup>8</sup> Purification is through preparatory column chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 3.81 – 3.70 (m, 0.41H), 3.51 (dd, *J* = 4.9, 2.2 Hz, 1.60H), 1.97-1.89 (m, 2H), 1.84 – 1.71 (m, 4H), 1.70 – 1.62 (m, 2H), 1.60 – 1.54 (m, 2H), 1.48-1.31 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 66.57, 63.37, 29.24, 28.10, 26.43, 25.55, 24.74, 23.46. The compound characterization was reported in literature.<sup>6</sup>

#### 2,3-diazidobicyclo[2.2.1]heptane, (1R,2R,3R,4S)-2,3-diazidobicyclo[2.2.1]heptane



<sup>1</sup> the mixture of two isomers. **Yield** 65%, 11.5 mg. d.r. = 3.2:1 (trans:cis).<sup>9</sup> Purification is through preparatory column chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  3.66 (dt, J = 4.5, 2.2 Hz, 0.26H), 3.60 (d, J = 1.7 Hz, 1.74H), 3.19 (t, J = 2.6 Hz, 0.25H), 2.52 – 2.41 (m, 0.31H), 2.36 (dq, J = 3.3, 1.6 Hz, 1.74H), 2.33 (d, J = 4.3 Hz, 0.28H), 1.79-1.73 (m, 1H), 1.69 – 1.62 (m, 1H), 1.62-1.59 (m, 1H), 1.43 – 1.36 (m, 0.57H), 1.24-1.21 (m, 1H), 1.18-16 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  70.44, 69.99, 67.47, 41.96, 41.61, 41.54, 40.51, 35.01, 33.37, 26.27, 25.89, 25.78, 20.86.

The compound characterization was reported in literature.<sup>6</sup>

#### (5R)-5-(1,2-diazidopropan-2-yl)-2-methylcyclohex-2-en-1-one



Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 54%, 12.7 mg. d.r. 1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  6.82-6.65 (m, 1H), 3.47 – 3.33 (m, 2H), 2.55 – 2.46 (m, 1H), 2.42 – 2.22 (m, 4H), 1.78 (s, 3H), 1.37 (d, J = 5.4 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 198.52, 198.39, 144.06, 143.64, 135.64, 135.50, 64.73, 64.67, 57.60, 57.48, 41.24, 41.21, 39.04, 38.81, 26.97, 26.67, 18.64, 18.48, 15.60, 15.59.

The compound characterization was reported in literature.<sup>6</sup>

#### (1,2-diazidoethyl)benzene



28 Prepared according to General Procedure A and obtained as colorless oil. Yield 86%, 16.2 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.45 – 7.36 (m, 3H), 7.36 – 7.31 (m, 2H), 4.67 (dd, *J* = 8.5, 4.8 Hz, 1H), 3.50 (dd, *J* = 12.8, 8.4 Hz, 1H), 3.44 (dd, *J* = 12.8, 4.8 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 136.30, 129.10, 129.07, 126.95, 65.52, 55.94.

The compound characterization was reported in literature.<sup>6</sup>

1,2-diazido-1,2-diphenylethane



Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 74%, 19.6 mg. d.r. = 2:1 (syn:anti).<sup>10</sup> Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>) δ 7.41-7.35 (m, 2H), 7.30-7.25 (m, 2H), 7.24-7.21 (s, 3H), 7.12 – 7.01 (m, 3H), 4.69 (s, 0.65H), 4.64 (s, 1.35H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 135.85, 135.76, 129.01, 128.74, 128.70, 128.60, 127.97, 127.68, 70.74, 69.66. The compound characterization was reported in literature.<sup>6</sup>

1,2-diazido-2,3-dihydro-1*H*-indene



Prepared according to General Procedure A and obtained as colorless oil in a mixture of two isomers. **Yield** 50%, 10.0 mg. d.r. = 3:1 (trans:cis).<sup>10</sup> Purification is through preparatory thinlayer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (trans) (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 – 7.26 (m, 4H), 4.77 (d, J = 5.6 Hz, 1H), 4.17 (td, J = 7.0, 5.6 Hz, 1H), 3.35 (dd, J = 16.0, 7.3 Hz, 1H), 2.94 (dd, J = 15.9, 6.6 Hz, 1H).

<sup>13</sup>C NMR (trans) (151 MHz, CDCl<sub>3</sub>) δ 139.09, 137.73, 129.48, 127.77, 125.15, 124.57, 70.25, 67.66, 36.12. <sup>1</sup>H NMR (cis) (600 MHz, CDCl<sub>3</sub>) δ 7.42 – 7.29 (m, 4H), 4.84 (d, J = 5.6 Hz, 1H), 4.30 (td, J = 6.6, 5.6 Hz, 1H), 3.23 – 3.12 (m, 2H).

<sup>13</sup>C NMR (cis) (151 MHz, CDCl<sub>3</sub>) δ 139.72, 137.49, 129.75, 127.73, 125.41, 124.94, 66.94, 64.09, 35.57. The compound characterization was reported in literature.<sup>6</sup>

#### 2,3-diazido-3-phenylpropyl benzoate



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.08-8.00 (m, 2H), 7.62 – 7.56 (m, 1H), 7.50 – 7.39 (m, 6H), 7.39 – 7.34 (m, 1H), 4.73-4.66 (m, 1H), 4.61-4.56 (m, 0.57H), 4.41 – 4.33 (m, 1H), 4.13-4.09 (m, 0.46H), 4.04-3.97 (m, 0.59H)., 3.96 – 3.90 (m, 0.41H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.02, 165.90, 135.30, 135.12, 133.47, 133.42, 129.77, 129.74, 129.45, 129.33, 129.22, 129.14, 128.56, 128.54, 127.75, 127.42, 66.75, 65.75, 64.62, 64.30, 64.12, 64.02. The compound characterization was reported in literature.<sup>6</sup>

#### methyl 2,3-diazido-3-phenylpropanoate



<sup>1</sup>------' Prepared according to General Procedure A and obtained as colorless oil in a mixture of two isomers. **Yield** (trans+cis) 68%, 16.7 mg. d.r. 1.4:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA =10:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (trans) (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 – 7.36 (m, 5H), 4.90 (d, J = 8.0 Hz, 1H), 4.10 (d, J = 8.1 Hz, 1H), 3.83 (s, 3H).

<sup>13</sup>C NMR (trans) (151 MHz, CDCl<sub>3</sub>) δ 168.17, 134.35, 129.45, 129.00, 127.75, 65.45, 65.37, 52.96. <sup>1</sup>H NMR (cis) (600 MHz, CDCl<sub>3</sub>) δ 7.48 – 7.34 (m, 5H), 5.06 (d, J = 5.8 Hz, 1H), 4.02 (d, J = 5.7 Hz, 1H), 3.75 (s, 3H).

<sup>13</sup>C NMR (cis) (151 MHz, CDCl<sub>3</sub>) δ 168.05, 134.89, 129.32, 129.04, 127.43, 66.31, 66.26, 53.04. The compound characterization was reported in literature.<sup>6</sup>

#### (3,4-dichlorobutyl)benzene



<sup>1</sup>------' Prepared according to General Procedure B and obtained as colorless oil. **Yield** 81%, 16.3 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.34 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 4.03-3.96 (m, 1H), 3.78 (dd, *J* = 11.3, 5.1 Hz, 1H), 3.66 (dd, *J* = 11.4, 7.4 Hz, 1H), 2.96-2.87 (m, 1H), 2.81-2.72 (m, 1H), 2.35-2.27 (m, 1H), 2.08-1.97 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  140.35, 128.57, 128.51, 126.28, 60.20, 48.22, 36.67, 31.99. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>28</sub>N<sub>7</sub>O<sub>4</sub>S: 438.1918; Found 438.1908

#### 4,5-dichloropentyl benzoate



<sup>1</sup>-----<sup>34</sup>-----<sup>1</sup>Prepared according to General Procedure B and obtained as colorless oil. Yield 86%, 22.5 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 8.10 – 8.02 (m, 2H), 7.61 – 7.54 (m, 1H), 7.49-7.42 (m, 2H), 4.43 – 4.34 (m, 2H), 4.16 – 4.09 (m, 1H), 3.81 (dd, *J* = 11.4, 5.0 Hz, 1H), 3.68 (dd, *J* = 11.3, 7.8 Hz, 1H), 2.25 – 2.16 (m, 1H), 2.15 – 2.03 (m, 1H), 2.01 – 1.81 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.54, 133.03, 130.09, 129.56, 128.41, 64.03, 60.44, 47.96, 31.73, 25.27. The compound characterization was reported in literature.<sup>11</sup>

4,5-dichloropentyl 4-methoxybenzoate



Yield 52%, 15.1 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 8.05 – 7.96 (m, 2H), 6.98-6.87 (m, 2H), 4.39 – 4.30 (m, 2H), 4.15-4.08 (m, 1H), 3.87 (s, 3H), 3.81 (dd, *J* = 11.3, 5.0 Hz, 1H), 3.68 (dd, *J* = 11.3, 7.8 Hz, 1H), 2.25 – 2.16 (m, 1H), 2.12-2.01 (m, 1H), 1.97 – 1.83 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.29, 163.38, 131.59, 122.50, 113.63, 63.72, 60.48, 55.44, 47.99, 31.76, 25.31. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>17</sub>Cl<sub>2</sub>O<sub>3</sub>: 291.0549; Found 291.0541

#### 4,5-dichloropentyl 4-bromobenzoate



**Yield** 55%, 18.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 8.02 – 7.85 (m, 2H), 7.65 – 7.38 (m, 2H), 4.44 – 4.33 (m, 2H), 4.17 – 4.07 (m, 1H), 3.81 (dd, *J* = 11.3, 4.9 Hz, 1H), 3.67 (dd, *J* = 11.3, 7.9 Hz, 1H), 2.24-2.16 (m, 1H), 2.11 – 2.05 (m, 1H), 1.97 – 1.82 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.80, 131.76, 131.09, 130.96, 128.98, 128.77, 128.16, 64.29, 60.33, 47.88, 31.64, 25.19.

HRMS APCI: [M+Cl]<sup>-</sup> calcd. for C<sub>12</sub>H<sub>13</sub>BrCl<sub>3</sub>O<sub>2</sub>: 372.9170; Found 372.9167

#### 4,5-dichloropentyl 4-nitrobenzoate



**Yield** 73%, 22.2 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 8.32 – 8.28 (m, 2H), 8.24 – 8.19 (m, 2H), 4.49 – 4.39 (m, 2H), 4.16-4.07 (m, 1H), 3.83 (dd, *J* = 11.3, 4.8 Hz, 1H), 3.67 (dd, *J* = 11.3, 8.1 Hz, 1H), 2.27-2.18 (m, 1H), 2.18 – 2.07 (m, 1H), 2.02-1.92 (m, 1H), 1.92 – 1.84 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 164.62, 150.59, 135.48, 130.71, 123.60, 65.00, 60.19, 47.80, 31.58, 25.14. HRMS APCI: [M]<sup>-</sup> calcd. for C<sub>12</sub>H<sub>13</sub>Cl<sub>2</sub>NO<sub>4</sub>: 305.0222; Found 305.0225

#### (2,3-dichloropropoxy)benzene



<sup>1</sup>/-----<sup>2</sup> Prepared according to General Procedure B and obtained as colorless oil. **Yield** 56%, 11.4 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.34 – 7.28 (m, 2H), 7.03-6.98 (m, 1H), 6.97 – 6.89 (m, 2H), 4.38 (tt, J = 6.3, 5.0 Hz, 1H), 4.32 – 4.24 (m, 2H), 3.97 (dd, J = 11.6, 6.5 Hz, 1H), 3.91 (dd, J = 11.6, 5.0 Hz, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 157.92, 129.63, 121.66, 114.70, 68.05, 57.29, 45.02. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>9</sub>H<sub>11</sub>Cl<sub>2</sub>O: 205.0181; Found 205.0177

4,5-dichloropentyl (2,2,2-trichloroethyl) carbonate



**Yield** 79%, 26.2 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 15:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 4.78 (s, 2H), 4.30 (td, J = 6.2, 3.7 Hz, 2H), 4.12-4.03 (m, 1H), 3.80 (dd, J = 11.4, 4.9 Hz, 1H), 3.66 (dd, J = 11.4, 7.8 Hz, 1H), 2.22-2.12 (m, 1H), 2.09 – 1.97 (m, 1H), 1.96 – 1.72 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 153.94, 94.36, 76.75, 68.26, 60.27, 47.90, 31.32, 25.20. HRMS APCI: [M+Cl]<sup>-</sup> calcd. for C<sub>8</sub>H<sub>11</sub>Cl<sub>6</sub>O<sub>3</sub>: 364.8845; Found 364.8842

#### 2-(3,4-dichlorobutyl)isoindoline-1,3-dione



<sup>1</sup>-----'Prepared according to General Procedure B and obtained as white solid. **Yield** 85%, 23.1 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 – 7.84 (m, 2H), 7.77-7.71 (m, 2H), 4.14-4.05 (m, 1H), 3.98 – 3.86 (m, 2H), 3.84 (dd, J = 11.5, 4.9 Hz, 1H), 3.70 (dd, J = 11.5, 7.4 Hz, 1H), 2.52-2.41 (m, 1H), 2.16 – 2.08 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.21, 134.12, 131.94, 123.38, 58.11, 47.89, 35.07, 33.88. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>12</sub>Cl<sub>2</sub>NO<sub>2</sub>: 272.0240; Found 272.0232

#### N-(3,4-dichlorobutyl)-N-methylbenzenesulfonamide



Prepared according to General Procedure B and obtained as colorless oil. Yield 58%, 17.1 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.84 – 7.79 (m, 2H), 7.64 – 7.60 (m, 1H), 7.57 – 7.53 (m, 2H), 4.24 – 4.18 (m, 1H), 3.87 (dd, *J* = 11.5, 4.6 Hz, 1H), 3.71 (dd, *J* = 11.5, 7.2 Hz, 1H), 3.32-3.23 (m, 1H), 3.17-3.08 (m, 1H), 2.78 (s, 3H), 2.39-2.29 (m, 1H), 1.94-1.86 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 136.93, 132.83, 129.20, 127.42, 57.65, 48.08, 47.25, 35.52, 33.50. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>11</sub>H<sub>16</sub>Cl<sub>2</sub>NO<sub>2</sub>S: 296.0273; Found 296.0265

#### *N*-(3,4-dichlorobutyl)benzenesulfonamide



<sup>1</sup>/-----<sup>1</sup>/ Prepared according to General Procedure B and obtained as colorless oil. **Yield** 52%, 14.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.91 – 7.85 (m, 2H), 7.64 – 7.58 (m, 1H), 7.55 (dd, *J* = 8.3, 6.9 Hz, 2H), 4.76 (t, *J* = 6.5 Hz, 1H), 4.17-4.10 (m, 1H), 3.76 (dd, *J* = 11.5, 4.8 Hz, 1H), 3.63 (dd, *J* = 11.5, 7.3 Hz, 1H), 3.25 – 3.13 (m, 2H), 2.29-2.21 (m, 1H), 1.88-1.78 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 139.53, 132.94, 129.29, 127.05, 57.82, 47.99, 40.12, 35.10. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>14</sub>Cl<sub>2</sub>NO<sub>2</sub>S: 282.0117; Found 282.0109

#### 6-bromo-1,2-dichlorohexane



<sup>1</sup>-------Prepared according to General Procedure B and obtained as colorless oil. **Yield** 82%, 19.1 mg. Purification is through preparatory column chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.07-4.01 (m, 1H), 3.78 (dd, J = 11.3, 5.0 Hz, 1H), 3.65 (dd, J = 11.3, 7.7 Hz, 1H), 3.43 (t, J = 6.7 Hz, 2H), 2.10 – 2.00 (m, 1H), 1.99 – 1.84 (m, 2H), 1.82 – 1.70 (m, 2H), 1.63 – 1.56 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  60.63, 47.99, 34.12, 33.14, 32.02, 24.53. GC-MS: [M]<sup>+</sup> calcd. for C<sub>6</sub>H<sub>11</sub>BrCl<sub>2</sub>: 231.9421; Found 232

#### diethyl 2-(2,3-dichloropropyl)malonate



<sup>1</sup>/-----<sup>1</sup>/Prepared according to General Procedure B and obtained as colorless oil. **Yield** 80%, 21.7 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 7:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 4.31 – 4.17 (m, 4H), 4.17-4.10 (m, 1H), 3.80 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.76 – 3.65 (m, 2H), 2.72-2.64 (m, 1H), 2.23-2.12 (m, 1H), 1.33-1.23 (m, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 168.69, 168.47, 61.88, 61.82, 58.48, 49.06, 48.23, 34.42, 14.05, 14.02.

HRMS APCI:  $[M+H]^+$  calcd. for  $C_{10}H_{17}Cl_2O_4$  271.0498; Found 271.0491

#### (2,3-dichloro-2-methylpropyl)benzene



<sup>45</sup>-----<sup>45</sup>-----<sup>45</sup> Prepared according to General Procedure B and obtained as colorless oil. **Yield** 73%, 14.8 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.41 – 7.26 (m, 5H), 3.63 (s, 2H), 3.14 (d, *J* = 14.1 Hz, 2H), 1.67 (s, 3H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  135.51, 130.84, 128.12, 127.21, 70.62, 51.93, 45.91, 28.25. GC-MS: [M]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>12</sub>Cl<sub>2</sub>: 202.0316; Found 202

#### (2,3-dichloro-2-methylpropoxy)benzene



<sup>40</sup>-----<sup>40</sup>Prepared according to General Procedure B and obtained as colorless oil. **Yield** 70%, 15.3 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.35 – 7.28 (m, 2H), 7.02-6.97 (m, 1H), 6.97 – 6.91 (m, 2H), 4.21 – 4.10 (m, 2H), 4.01 (d, J = 11.4 Hz, 1H), 3.83 (d, J = 11.4 Hz, 1H), 1.75 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 158.15, 129.56, 121.56, 114.79, 72.00, 67.96, 50.04, 25.28.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>13</sub>Cl<sub>2</sub>O: 219.0338; Found 219.0332

#### 2,3-dichlorobutane-1,4-diyl dibenzoate



<sup>1</sup>------' Prepared according to General Procedure B and obtained as white solid in the mixture of two isomers. **Yield** 68%, 24.9 mg. d.r. 2.6:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.13 – 7.99 (m, 4H), 7.64-7.56 (m, 2H), 7.51-7.43 (m, 4H), 4.87 – 4.77 (m, 3H), 4.73 – 4.69 (m, 0.56H), 4.67 – 4.62 (m, 1H), 4.58 – 4.52 (m, 1.44H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.84, 133.54, 133.48, 129.77, 129.76, 129.26, 128.56, 128.54, 65.27, 64.95, 58.06, 57.43.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>17</sub>Cl<sub>2</sub>O<sub>4</sub>: 367.0498; Found 367.0489

#### 3,4-dichlorohexyl benzoate



The first rule of the first rule of the first rule of the first rule of two isomers. Yield 67%, 18.4 mg. d.r. 1.9:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.13-8.01 (m, 2H), 7.63-7.54 (m, 1H), 7.49-7.41 (m, 2H), 4.64 – 4.54 (m, 1H), 4.54 – 4.45 (m, 1H), 4.34-4.29 (m, 0.34H), 4.22-4.16 (m, 0.66H), 4.06 – 3.97 (m, 1H), 2.62 – 2.55 (m, 0.67H), 2.48-2.39 (m, 0.34)2.28 – 2.14 (m, 1H), 2.12 – 1.99 (m, 1H), 1.90-1.80 (m, 1H), 1.13-1.05 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.35, 133.13, 133.10, 129.97, 129.94, 129.58, 128.44, 128.43, 67.43, 67.00, 61.70, 61.67, 61.58, 61.36, 34.01, 33.88, 28.25, 27.80, 11.42, 10.54.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>17</sub>Cl<sub>2</sub>O<sub>2</sub>: 275.0600; Found 275.0592

#### 2,3-dichloro-3-methylbutyl benzoate



<sup>45</sup>-----<sup>45</sup> Prepared according to General Procedure B and obtained as colorless oil. **Yield** 78%, 20.4 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.13 – 8.04 (m, 2H), 7.62 – 7.55 (m, 1H), 7.49-7.43 (m, 2H), 5.04-4.97 (m, 1H), 4.63-4.52 (m, 1H), 4.39-4.31 (m, 1H), 1.80 (d, J = 2.2 Hz, 3H), 1.72 (d, J = 2.1 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.15, 133.31, 129.76, 129.59, 128.47, 69.20, 67.13, 66.04, 31.75, 27.81. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>15</sub>Cl<sub>2</sub>O<sub>2</sub>: 261.0444; Found 261.0437

1,2-dichlorocyclooctane



Yield 52%, 9.4 mg. d.r. = 3.7:1 (trans:cis).<sup>12</sup> Purification is through preparatory column chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 4.51-4.46 (m, 0.42H), 4.33 – 4.24 (m, 1.58H), 2.36 – 2.18 (m, 2H), 2.15 – 2.00 (m, 2H), 1.98 – 1.81 (m, 2H), 1.79 – 1.65 (m, 2H), 1.64 – 1.56 (m, 2H), 1.55-1.52 (m, 0.42H) 1.47-1.37 (m, 1.58H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 68.13, 33.28, 25.42, 25.04.

The compound characterization was reported in literature.<sup>12</sup>

(5R)-5-(1,2-dichloropropan-2-yl)-2-methylcyclohex-2-en-1-one



Source Prepared according to General Procedure B and obtained as colorless oil in a mixture of two isomers. **Yield** 52%, 15.9 mg. d.r. 1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  6.81 – 6.67 (m, 1H), 3.85 (dd, J = 14.0, 11.4 Hz, 1H), 3.70 (dd, J = 15.8, 11.4 Hz, 1H), 2.70 – 2.55 (m, 2H), 2.55 – 2.39 (m, 3H), 1.80 (q, J = 1.8 Hz, 3H), 1.68 (d, J = 9.6 Hz, 3H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  198.75, 198.44, 143.86, 143.76, 135.38, 135.28, 73.22, 73.17, 50.81, 50.77, 41.14, 40.97, 39.02, 38.78, 26.87, 26.67, 26.31, 26.29, 15.62, 15.60.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>15</sub>Cl<sub>2</sub>O: 221.0494; Found 221.0488

#### (1,2-dichloroethyl)benzene



Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>)  $\delta$  7.50 – 7.32 (m, 5H), 5.00 (dd, J = 8.0, 6.6 Hz, 1H), 4.00 (dd, J = 11.3, 6.6 Hz, 1H), 3.93 (dd, J = 11.4, 8.0 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 137.97, 129.17, 128.82, 127.39, 61.73, 48.33.

The compound characterization was reported in literature.<sup>13</sup>

#### 1,2-dichloro-2,3-dihydro-1*H*-indene



t trans:cis > 20:1 Prepared according to General Procedure B and obtained as colorless oil in single isomer. Yield 65%, 12.2 mg. d.r. > 20:1 (trans:cis).<sup>13</sup> Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.49 – 7.42 (m, 1H), 7.37 – 7.27 (m, 3H), 5.35 (d, *J* = 2.9 Hz, 1H), 4.66 (dt, *J* = 6.2, 3.2 Hz, 1H), 3.71 (dd, *J* = 16.7, 6.0 Hz, 1H), 3.18 (dd, *J* = 16.7, 3.4 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  139.83, 139.79, 129.69, 127.92, 125.48, 125.10, 67.57, 64.46, 40.71. The compound characterization was reported in literature.<sup>13</sup>

#### 1,2-dichloropropyl)benzene



**Yield** 52%, 9.8 mg. d.r. > 20:1 (trans:cis).<sup>13</sup> Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.42 – 7.33 (m, 5H), 4.91 (d, *J* = 7.8 Hz, 1H), 4.42 – 4.35 (m, 1H), 1.71 (d, *J* = 6.5 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  138.64, 128.79, 128.53, 127.74, 67.40, 60.20, 22.17. The compound characterization was reported in literature.<sup>13</sup>

#### methyl 2,3-dichloro-3-phenylpropanoate



**Vield** 64%, 14.9 mg. d.r. > 20:1 (trans:cis).<sup>14</sup> Purification is through preparatory thin-layer chromatography (with

eluent of Hexane) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.46 – 7.36 (m, 5H), 5.18 (d, *J* = 10.7 Hz, 1H), 4.62 (d, *J* = 10.7 Hz, 1H), 3.90 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 168.01, 136.30, 129.48, 128.81, 128.07, 61.00, 58.76, 53.42. HRMS APCI: [M+NH4]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>14</sub>Cl<sub>2</sub>NO<sub>2</sub>: 250.0396; Found 250.0392

#### 2,3-dichloro-3-phenylpropyl benzoate



**trans: cis**  $\geq$  **20:1**<sup>-/</sup> Prepared according to General Procedure B and obtained as colorless oil in single isomer. **Yield** 53%, 16.4 mg. d.r.  $\geq$  20:1 (trans: cis).<sup>13</sup> Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.12 – 8.05 (m, 2H), 7.64 – 7.57 (m, 1H), 7.51 – 7.44 (m, 4H), 7.43 – 7.36 (m, 3H), 5.16 (d, J = 8.5 Hz, 1H), 4.80 (dd, J = 4.7, 2.3 Hz, 1H), 4.65 (dt, J = 9.0, 4.7 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.90, 137.51, 133.42, 129.77, 129.43, 129.15, 128.72, 128.70, 128.53, 127.92, 65.51, 62.04, 61.62.

The compound characterization was reported in literature.<sup>13</sup>

#### 4,5-diazidopentyl 2-(4-isobutylphenyl)propanoate



Prepared according to General Procedure A and obtained as colorless oil. **Yield** 68%, 24.3 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.19 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 4.18-4.02 (m, 2H), 3.69 (q, J = 7.1 Hz, 1H), 3.41-3.33 (m, 1H), 3.28 (dd, J = 12.7, 4.1 Hz, 1H), 3.23 (dd, J = 12.7, 7.3 Hz, 1H), 2.45 (d, J = 7.2 Hz, 2H), 1.89-1.81 (m, 1H), 1.79 - 1.71 (m, 1H), 1.68 - 1.62 (m, 1H), 1.49 (d, J = 7.2 Hz, 3H), 1.46 - 1.40 (m, 2H), 0.90 (d, J = 6.6 Hz, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 174.67, 140.66, 137.72, 137.71, 129.37, 127.15, 63.81, 63.79, 63.66, 61.44, 61.41, 54.77, 54.76, 45.16, 45.14, 45.13, 45.02, 30.21, 28.30, 28.18, 25.05, 25.01, 22.39, 18.33, 18.29. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>27</sub>N<sub>6</sub>O<sub>2</sub>: 359.2190; Found 359.2184

#### 4,5-diazidopentyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate



Yield 65%, 25.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57-7.51 (m, 2H), 7.47-7.42 (m, 2H), 7.42 – 7.34 (m, 2H), 7.17 – 7.09 (m, 2H), 4.21 – 4.07 (m, 2H), 3.76 (q, *J* = 7.2 Hz, 1H), 3.45 – 3.38 (m, 1H), 3.34 (ddd, *J* = 12.7, 4.2, 1.6 Hz, 1H), 3.28 (dd, *J* = 12.7, 7.2 Hz, 1H), 1.84-1.74 (m, 1H), 1.74 – 1.65 (m, 1H), 1.55 – 1.44 (m, 5H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  173.91, 159.66 (d, J = 248.4 Hz), 141.70 (d, J = 7.6 Hz), 135.36, 130.84 (d, J = 3.9 Hz), 128.91 (d, J = 3.0 Hz), 128.49, 127.89 (d, J = 13.6 Hz), 127.73, 123.53 (d, J = 3.3 Hz), 115.21 (d, J = 23.6 Hz), 64.11 (d, J = 14.3 Hz), 61.41 (d, J = 3.6 Hz), 54.75, 45.00, 28.26 (d, J = 13.6 Hz), 25.04 (d, J = 5.4 Hz), 18.23 (d, J = 4.5 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -117.52 (t, J = 10.5 Hz).

The compound characterization was reported in literature.<sup>6</sup>

4,5-diazidopentyl 3-methyl-4-oxo-2-phenyl-4H-chromene-8-carboxylate



<sup>1</sup>------' Prepared according to General Procedure A and obtained as colorless oil. **Yield** 84%, 36.3 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex:EA= 2:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.48 (dd, J = 7.9, 1.8 Hz, 1H), 8.27 (dd, J = 7.5, 1.8 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.60-7.53 (m, 3H), 7.46 (t, J = 7.7 Hz, 1H), 4.48 – 4.31 (m, 2H), 3.39-3.31 (m, 1H), 3.27 (dd, J = 12.7, 4.1 Hz, 1H), 3.22 (dd, J = 12.7, 7.4 Hz, 1H), 2.23 (s, 3H), 1.95 – 1.87 (m, 1H), 1.84 – 1.76 (m, 1H), 1.59 – 1.46 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  178.25, 164.53, 161.00, 154.45, 136.25, 133.10, 131.01, 130.59, 129.34, 128.51, 124.11, 123.33, 120.44, 117.82, 64.76, 61.51, 54.79, 28.43, 25.19, 11.80. The compound characterization was reported in literature.<sup>6</sup>

#### 4,5-diazidopentyl 4-(N,N-dipropylsulfamoyl)benzoate



Colorless oil. **Yield** 71%, 31.0mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding diazidation products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.4 Hz, 2H), 4.45 – 4.35 (m, 2H), 3.59-3.52 (m, 1H), 3.47 (dd, J = 12.7, 4.2 Hz, 1H), 3.40 (dd, J = 12.7, 7.1 Hz, 1H), 3.14 – 3.06 (m, 4H), 2.03-1.95 (m, 1H), 1.94-1.85 (m, 1H), 1.76 – 1.63 (m, 2H), 1.60-1.50 (m, 4H), 0.87 (t, J = 7.4 Hz, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.18, 144.35, 133.30, 130.22, 127.05, 64.80, 61.51, 54.80, 49.90, 28.44, 25.24, 21.92, 11.16.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>28</sub>N<sub>7</sub>O<sub>4</sub>S: 438.1918; Found 438.1908

#### (2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4,5-diazidopentanoate



<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 59%, 18.9 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 4.93-4.87 (m, 1H), 3.61-3.52 (m, 1H), 3.45 (dd, J = 12.7, 4.1 Hz, 1H), 3.36 (dd, J = 12.7, 7.3 Hz, 1H), 2.53-2.44 (m, 2H), 2.40-2.31 (m, 1H), 1.95-1.86 (m, 2H), 1.83 – 1.72 (m, 2H), 1.72-1.66 (m, 1H), 1.35 – 1.26 (m, 1H), 1.26-1.19 (m, 1H), 0.98-0.93 (m, 1H), 0.90 (s, 3H), 0.87 (s, 3H), 0.83 (d, J = 2.4 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 172.75, 80.42, 61.23, 54.90, 48.78, 47.85, 44.86, 36.80, 30.68, 28.05, 28.03, 27.16, 27.15, 27.12, 19.70, 18.83, 13.54.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C15H25N6O2: 321.2034; Found 321.2030

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4,5-diazidopentanoate



<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 42%, 13.5 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  4.77-4.64 (m, 1H), 3.60-3.53 (m, 1H), 3.45 (dd, J = 12.8, 4.1 Hz, 1H), 3.36 (dd, J = 12.7, 7.4 Hz, 1H), 2.51-2.38 (m, 2H), 2.00-1.93 (m, 1H), 1.93-1.80 (m, 2H), 1.79-1.72 (m, 1H), 1.71-1.65 (m, 2H), 1.52-1.45 (m, 1H), 1.41-1.33 (m, 1H), 1.09 – 0.96 (m, 2H), 0.91-0.86 (m, 7H), 0.76 (dd, J = 7.0, 2.2 Hz, 3H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  172.02, 74.69 (d, J = 2.8 Hz), 61.24 (d, J = 3.1 Hz), 54.91, 46.99 (d, J = 2.1 Hz), 40.91 (d, J = 5.0 Hz), 34.20, 31.40, 30.69, 27.14 (d, J = 4.9 Hz), 26.36 (d, J = 5.4 Hz), 23.41 (d, J = 1.9 Hz)., 22.01, 20.75 (d, J = 2.4 Hz), 16.31 (d, J = 2.7 Hz).

HRMS APCI: [M-N2+H]<sup>+</sup> calcd. for C19H27N4O2: 295.2129; Found 295.2124

(4R,5R,6R)-6-(1,2-diazidopropan-2-yl)-4,5-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-on



Prepared according to General Procedure A and obtained as colorless oil in a mixture of isomers. **Yield** 60%, 18.1 mg. d.r. 1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 2:1) to give the corresponding diazidation products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  5.80-5.70 (m, 1H), 3.45-3.31 (m, 2H), 2.53 – 2.43 (m, 1H), 2.43-2.35 (m, 1H), 2.31 – 2.20 (m, 2H), 2.04 – 1.91 (m, 3H), 1.91 – 1.81 (m, 1H), 1.28 – 1.21 (m, 3H), 1.24-1.07 (m, 3H), 1.01-0.96 (m, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  199.32, 199.25, 169.06, 169.04, 124.84, 65.90, 65.75, 58.08, 57.73, 41.99, 40.49, 39.23, 39.20, 39.00, 38.77, 32.54, 32.48, 27.33, 27.13, 18.27, 17.97, 16.86, 16.81, 15.00, 14.98. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>15</sub>H<sub>23</sub>N<sub>6</sub>O: 303.1928; Found 303.1922

benzyl 9,10-diazidooctadecanoate



h Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 70%, 31.9 mg. d.r. = 1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 15:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.39 – 7.30 (m, 5H), 5.12 (s, 2H), 3.32 (h, *J* = 4.9 Hz, 1H), 3.25 (dq, *J* = 6.7, 4.3 Hz, 1H), 2.36 (t, *J* = 7.5 Hz, 2H), 1.69-1.28 (m, 24H), 0.89 (t, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 173.64, 136.06, 128.55, 128.19, 66.11, 65.86, 65.82, 65.24, 65.20, 34.25, 31.82, 31.26, 31.24, 30.36, 30.28, 29.39, 29.35, 29.33, 29.19, 29.14, 29.04, 28.96, 26.31, 26.25, 26.19, 26.12, 24.84, 22.65, 14.12.

The compound characterization was reported in literature.<sup>6</sup>
(1*R*,5*R*,7*S*)-7-(2,2-dimethyl-1,3-dioxolan-4-yl)-3,3-dimethyl-2,4,6-trioxabicyclo[3.2.1]octan-5-yl 4,5-diazidopentanoate



Yield 49%, 20.9 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 2:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  6.16 (d, J = 2.1 Hz, 1H), 4.87 (dd, J = 5.9, 3.6 Hz, 1H), 4.71 (dd, J = 5.9, 2.1 Hz, 1H), 4.45-4.36 (m, 1H), 4.13 – 4.07 (m, 1H), 4.07-4.01 (m, 2H), 3.62-3.54 (m, 1H), 3.47 (dt, J = 12.7, 4.0 Hz, 1H), 3.38 (dd, J = 12.7, 7.3 Hz, 1H), 2.54 – 2.43 (m, 2H), 1.96 – 1.85 (m, 1H), 1.80 – 1.71 (m, 1H), 1.49 (s, 3H), 1.47 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  171.02 (d, *J* = 3.3 Hz), 113.36, 109.41, 101.01 (d, *J* = 4.7 Hz), 85.01, 82.33 (d, *J* = 5.5 Hz), 79.25 (d, *J* = 2.7 Hz), 72.83 (d, *J* = 2.3 Hz), 66.78 (d, *J* = 4.7 Hz), 60.95 (d, *J* = 12.0 Hz), 54.84 (d, *J* = 3.2 Hz), 30.31 (d, *J* = 17.4 Hz), 27.00 (d, *J* = 1.9 Hz), 26.72 (d, *J* = 9.8 Hz), 25.93, 25.12 (d, *J* = 2.3 Hz), 24.63 (d, *J* = 2.1 Hz).

HRMS APCI: [M-N2+H]<sup>+</sup> calcd. for C17H27N4O7: 399.1874; Found 399.1864

benzyl (2*S*,4a*S*,6a*S*,6b*R*,8a*R*,10*S*,12a*S*,12b*R*,14b*R*)-10-((4,5-diazidopentanoyl)oxy)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate



<sup>1</sup>-----' Prepared according to General Procedure A and obtained as white solid. **Yield** 51%, 37.0 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 2:1) to give the corresponding diazidation products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>)  $\delta$  7.43 – 7.31 (m, 5H), 5.55 (s, 1H), 5.20 (d, J = 12.2 Hz, 1H), 5.09 (d, J = 12.2 Hz, 1H), 4.54 (dd, J = 11.8, 4.6 Hz, 1H), 3.62-3.52 (m, 1H), 3.46 (dd, J = 12.7, 4.1 Hz, 1H), 3.37 (dd, J = 12.9, 7.2 Hz, 1H), 2.84-2.76 (m, 1H), 2.54 – 2.41 (m, 2H), 2.34 (s, 1H), 2.06-1.97 (m, 3H), 1.97 – 1.87 (m, 2H), 1.84 – 1.74 (m, 2H), 1.74 – 1.63 (m, 3H), 1.57 (s, 1H), 1.48 – 1.28 (m, 9H), 1.19-1.14 (m, 7H), 1.11 (s, 3H), 1.07 – 0.98 (m, 2H), 0.91 – 0.86 (m, 6H), 0.82-0.78 (m, 1H), 0.73 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 200.03, 176.23, 172.24, 172.22, 169.21, 169.20, 136.09, 128.61, 128.42, 128.30, 128.24, 81.14, 66.22, 61.63, 61.19, 54.96, 54.87, 48.20, 45.34, 43.98, 43.14, 41.00, 38.72, 38.06, 37.61, 36.87, 32.63, 31.76, 31.13, 30.77, 30.68, 29.70 28.41, 28.28, 28.10, 27.13, 27.07, 26.42, 26.35, 23.59, 23.55, 23.29, 18.63, 17.34, 16.76, 16.41.

The compound characterization was reported in literature.<sup>6</sup>

## 4,5-dichloropentyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate



<sup>1</sup>------'Prepared according to General Procedure B and obtained as colorless oil. **Yield** 72%, 27.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.24 – 7.19 (m, 2H), 7.15 – 7.09 (m, 2H), 4.18 – 4.05 (m, 2H), 4.00 – 3.92 (m, 1H), 3.75 – 3.66 (m, 2H), 3.61 – 3.51 (m, 1H), 3.13 (dd, *J* = 14.0, 4.1 Hz, 1H), 2.50 (dd, *J* = 13.9, 9.6 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.16 – 2.06 (m, 2H), 2.00-1.92 (m, 2H), 1.90-1.83 (m, 1H), 1.78-1.69 (m, 2H), 1.59-1.51 (m, 1H), 1.49 (d, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 220.31, 174.58, 138.97, 138.96, 138.29, 129.17, 127.54, 63.76, 63.67, 60.38, 60.35, 51.04, 47.97, 45.14, 38.21, 35.20, 31.56, 31.48, 29.29, 25.08, 20.56, 18.35, 18.33. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>27</sub>Cl<sub>2</sub>O<sub>3</sub>: 385.1332; Found 385.1330

## 4,5-dichloropentyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate



'-----' Prepared according to General Procedure B and obtained as colorless oil. **Yield** 65%, 27.5 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding dichlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 – 8.13 (m, 2H), 7.92 – 7.85 (m, 2H), 4.45 – 4.37 (m, 2H), 4.16 – 4.09 (m, 1H), 3.82 (dd, J = 11.3, 4.9 Hz, 1H), 3.68 (dd, J = 11.3, 8.0 Hz, 1H), 3.15 – 3.06 (m, 4H), 2.26-2.18 (m, 1H), 2.16 – 2.06 (m, 1H), 1.99 – 1.84 (m, 2H), 1.60 – 1.49 (m, 4H), 0.87 (t, J = 7.4 Hz, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 165.19, 144.30, 133.36, 130.21, 127.04, 64.69, 60.26, 49.91, 47.85, 31.62, 25.17, 21.92, 11.16.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>28</sub>Cl<sub>2</sub>NO<sub>4</sub>S: 424.1111; Found 424.1106

#### 4,5-dichloropentyl 2-(2,4-dichlorophenoxy)acetate



<sup>1</sup>------' Prepared according to General Procedure B and obtained as colorless oil. **Yield** 82%, 29.5 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (t, J = 2.1 Hz, 1H), 7.17 (dt, J = 8.9, 2.1 Hz, 1H), 6.78 (dd, J = 8.8, 1.6 Hz, 1H), 4.70 (s, 2H), 4.28 – 4.19 (m, 2H), 4.02 (ddt, J = 12.4, 7.9, 3.8 Hz, 1H), 3.76 (ddd, J = 11.5, 4.9, 1.6 Hz, 1H), 3.65 – 3.52 (m, 1H), 2.09-2.00 (m, 1H), 1.99-1.88 (m, 1H), 1.84 – 1.76 (m, 1H), 1.76 – 1.68 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 168.10, 152.36, 130.43, 127.60, 127.18, 124.27, 114.62, 66.34, 64.68, 60.23, 47.88, 31.51, 25.09.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>15</sub>Cl<sub>4</sub>O<sub>3</sub>: 358.9770; Found 358.9768

#### 4,5-dichloropentyl 2-(4-chlorophenoxy)-2-methylpropanoate



vil. **Yield** 79%, 27.9 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.20 (d, *J* = 9.0 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 4.24 – 4.16 (m, 2H), 4.01-3.92 (m, 1H), 3.71 (dd, *J* = 11.3, 5.0 Hz, 1H), 3.55 (dd, *J* = 11.3, 7.8 Hz, 1H), 1.97 – 1.88 (m, 2H), 1.79-1.69 (m, 1H), 1.65-1.58 (m, 7H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 173.96, 154.10, 129.20, 127.16, 120.14, 79.45, 64.60, 60.27, 47.87, 31.48, 25.38, 25.35, 25.08.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>20</sub>Cl<sub>3</sub>O<sub>3</sub>: 353.0473; Found 353.0468

## (2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4,5-dichloropentanoate



<sup>1</sup>------'Prepared according to General Procedure B and obtained as colorless oil. **Yield** 69%, 21.2 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  4.91 (dq, J = 8.9, 3.1 Hz, 1H), 4.18 – 4.08 (m, 1H), 3.81 (dd, J = 11.4, 5.0 Hz, 1H), 3.67 (dd, J = 11.4, 7.6 Hz, 1H), 2.65 – 2.51 (m, 2H), 2.48 – 2.33 (m, 2H), 2.05 – 1.90 (m, 2H), 1.80-1.71 (m, 1H), 1.71-1.66 (m, 1H), 1.35-1.28 (m, 1H), 1.24-1.19 (m, 1H), 0.97 (dd, J = 13.8, 3.5 Hz, 1H), 0.91 (s, 3H), 0.88 (s, 3H), 0.84 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 172.76, 80.34, 80.31, 60.08, 60.06, 48.75, 48.02, 47.81, 44.82, 36.79, 36.74, 30.91, 30.40, 30.37, 28.01, 27.09, 19.69, 18.82, 13.55, 13.54.

HRMS ESI: [M+H]<sup>+</sup> calcd. for C15H25Cl2O2: 307.1226; Found 307.1667

# 5-(1,2-dichloroethyl)-3-(3,5-dichlorophenyl)-5-methyloxazolidine-2,4-dione



Prepared according to General Procedure B and obtained as colorless oil in the mixture of two isomers. **Yield** 86%, 30.7 mg. d.r. = 1.1:1. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding dichlorination products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 – 7.28 (m, 3H), 4.50 – 4.43 (m, 1H), 4.08 (dd, J = 12.4, 4.7 Hz, 0.50H), 4.02 (dd, J = 12.2, 6.8 Hz, 0.55H), 3.93 (dd, J = 12.2, 7.0 Hz, 0.56H), 3.83 (dd, J = 12.4, 7.6 Hz, 0.50H), 1.84 (d, J = 16.0 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 170.71, 170.69, 151.79, 151.63, 135.73, 132.20, 132.13, 129.46, 129.44, 123.89, 123.85, 85.53, 84.79, 62.96, 62.45, 43.18, 42.77, 22.04, 20.21.

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>10</sub>Cl<sub>4</sub>NO<sub>3</sub>: 355.9409; Found 355.9405

# (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4,5-dichloropentanoate



<sup>1</sup> Prepared according to General Procedure B and obtained as colorless oil. **Yield** 50%, 15.5 mg. Purification is through preparatory column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding dichlorination products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.76-4.66 (m, 1H), 4.17-4.08 (m, 1H), 3.79 (ddd, J = 11.4, 5.0, 1.5 Hz, 1H), 3.66 (dd, J = 11.4, 7.5 Hz, 1H), 2.61 – 2.46 (m, 2H), 2.43 – 2.36 (m, 1H), 2.02 – 1.92 (m, 2H), 1.89-1.80 (m, 1H), 1.74-1.63 (m, 2H), 1.52-1.44 (m, 1H), 1.41-1.34 (m, 1H), 1.11 – 0.97 (m, 2H), 0.95 – 0.82 (m, 7H), 0.76 (dd, J = 7.0, 2.0 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.01 (d, *J* = 3.3 Hz), 74.61, 60.10 (d, *J* = 7.4 Hz), 48.06, 46.99 (d, *J* = 2.5 Hz), 40.91 (d, *J* = 2.8 Hz), 34.22, 31.40, 30.95, 30.43 (d, *J* = 6.0 Hz), 26.32 (d, *J* = 6.2 Hz), 23.43 (d, *J* = 6.8 Hz), 22.02, 20.76 (d, *J* = 3.2 Hz), 16.33 (d, *J* = 4.6 Hz).

HRMS APCI: [M+Na]<sup>+</sup> calcd. for C<sub>15</sub>H<sub>26</sub>Cl<sub>2</sub>NaO<sub>2</sub>: 331.1202; Found 331.1198

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 4,5-dichloropentanoate



Yield 56%, 23.7 mg. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding dichlorination products.

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.27 (m, 1H), 6.89 – 6.80 (m, 2H), 4.25-4.17 (m, 1H), 3.83 (dd, J = 11.4, 4.9 Hz, 1H), 3.70 (dd, J = 11.4, 7.7 Hz, 1H), 2.95 – 2.89 (m, 2H), 2.89-2.81 (m, 1H), 2.81-2.74 (m, 1H), 2.55 – 2.47 (m, 2H), 2.46 – 2.38 (m, 1H), 2.33-2.26 (td, J = 10.9, 4.3 Hz, 1H), 2.19 – 1.94 (m, 5H), 1.68 – 1.62 (m, 2H), 1.58 – 1.41 (m, 4H), 0.91 (s, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 171.38, 148.37, 138.12, 137.57, 126.50, 121.50, 118.66, 59.86, 50.41, 47.97, 44.15, 37.98, 35.89, 31.54, 30.74, 30.26, 29.43, 26.33, 25.76, 21.61, 13.85. HRMS ESI: [M+H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>29</sub>Cl<sub>2</sub>O<sub>3</sub>: 423.1488; Found 423.1429

#### 1-chloro-2-fluorododecane



"------'Prepared according to General Procedure C and obtained as colorless oil. **Yield** 63%, 16.7 mg. Yield is referred to equivalent of olefin. Purification is through flash column chromatography (with eluent of Hexane) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 4.72-4.57 (m, 1H), 3.69 – 3.55 (m, 2H), 1.79 – 1.61 (m, 2H), 1.50 – 1.42 (m, 1H), 1.42 – 1.25 (m, 15H), 0.88 (t, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 92.50 (d, J = 174.5 Hz), 45.87 (d, J = 25.4 Hz), 32.40 (d, J = 20.5 Hz), 31.90, 29.58, 29.52, 29.42, 29.32, 29.30, 24.69 (d, J = 4.1 Hz), 22.69, 14.14. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -172.53 - -189.11 (m). HRMS ESI: [M+Na]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>24</sub>ClFNa: 245.1443; Found 245.2320

(4-chloro-3-fluorobutyl)benzene



"------' Prepared according to General Procedure C and obtained as colorless oil. **Yield** 45%, 10.2 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.31 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.16 (m, 3H), 4.71 – 4.58 (m, 1H), 3.66-3.59 (m, 2H), 2.90-2.79 (m, 1H), 2.79-2.68 (m, 1H), 2.15 – 2.06 (m, 1H), 2.03 – 1.89 (m, 1H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  140.59, 128.57, 128.45, 126.25, 91.35 (d, J = 175.4 Hz), 45.76 (d, J = 25.4 Hz), 34.11 (d, J = 20.7 Hz), 30.85 (d, J = 4.3 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -174.72 – -189.52 (m).

GC-MS: [M]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>12</sub>ClF: 186.0612; Found 186

## 5-chloro-4-fluoropentyl benzoate



<sup>1</sup>-----'Prepared according to General Procedure C and obtained as colorless oil. Yield 58%, 17.1 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  8.08 – 7.99 (m, 2H), 7.61 – 7.53 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 4.81 – 4.67 (m, 1H), 4.44 – 4.32 (m, 2H), 3.71 – 3.60 (m, 2H), 2.06-1.96 (m, 1H), 1.96 – 1.83 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.54, 133.04, 130.09, 129.55, 128.41, 91.88 (d, *J* = 175.5 Hz), 64.20, 45.52 (d, *J* = 25.6 Hz), 29.16 (d, *J* = 20.8 Hz), 24.24 (d, *J* = 4.1 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -182.39 – -182.93 (m).

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>15</sub>ClFO<sub>2</sub>: 245.0739; Found 245.0738

# 5-chloro-4-fluoropentyl 4-chlorobenzoate



Yield 55%, 18.4 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer

chromatography (with eluent of Hex: EA = 10:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>) δ 8.00 – 7.93 (m, 2H), 7.46 – 7.39 (m, 2H), 4.81 – 4.65 (m, 1H), 4.43 – 4.32 (m, 2H), 3.66 (dd, *J* = 19.1, 5.0 Hz, 2H), 2.05-1.96 (m, 1H), 1.96 – 1.81 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  165.67, 139.48, 130.95, 128.77, 128.53, 91.83 (d, *J* = 175.7 Hz), 64.46, 45.46 (d, *J* = 25.9 Hz), 29.10 (d, *J* = 21.1 Hz), 24.20 (d, *J* = 4.1 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -179.52 – -186.92 (m).

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>14</sub>Cl<sub>2</sub>FO<sub>2</sub>: 279.0349; Found 279.0349

# 5-chloro-4-fluoropentyl 4-ethylbenzoate



**Yield** 48%, 15.8 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding fluorochlorination products. **H NMR (600 MHz, CDCl3)** δ 7.99 – 7.90 (m, 2H), 7.30-7.24 (m, 2H), 4.80 – 4.66 (m, 1H), 4.42 – 4.29 (m, 2H), 3.70 – 3.59 (m, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.03-1.95 (m, 1H), 1.94 – 1.81 (m, 3H), 1.26 (t, J = 7.6 Hz, 4H). **<sup>13</sup>C NMR (151 MHz, CDCl3)** δ 166.62, 149.92, 129.68, 127.94, 127.56, 91.90 (d, J = 175.5 Hz), 64.00, 45.54 (d, J = 25.6 Hz), 29.17 (d, J = 21.1 Hz), 28.96, 24.26 (d, J = 4.2 Hz), 15.27. **<sup>19</sup>F NMR (565 MHz, CDCl3)** δ -177.12 – -190.41 (m).

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>14</sub>H<sub>19</sub>ClFO<sub>2</sub>: 273.1052; Found 273.1050

## 5-chloro-4-fluoropentyl 4-methylbenzenesulfonate



20.9 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 6:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.79 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 4.68-4.50 (m, 1H), 4.14-4.02 (m, 2H), 3.58 (dd, J = 19.3, 5.0 Hz, 2H), 2.46 (s, 3H), 1.92 – 1.83 (m, 1H), 1.82 – 1.71 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  144.97, 132.81, 129.93, 127.89, 91.52 (d, *J* = 175.6 Hz), 69.64, 45.41 (d, *J* = 25.4 Hz), 28.50 (d, *J* = 20.9 Hz), 24.42 (d, *J* = 3.8 Hz), 21.67.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -176.71 – -191.51 (m).

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>17</sub>ClFO<sub>3</sub>S: 295.0565; Found 295.0565

## N-(4-chloro-3-fluorobutyl)-N-methylbenzenesulfonamide



<sup>1</sup> Prepared according to General Procedure C and obtained as colorless oil. **Yield** 58%, 19.2 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding fluorochlorination products. <sup>1</sup>**H NMR (600 MHz, CDCl**<sub>3</sub>)  $\delta$  7.84 – 7.77 (m, 2H), 7.65 – 7.58 (m, 1H), 7.58-7.51 (m, 2H), 4.94 – 4.77 (m, 1H), 3.77 – 3.66 (m, 2H), 3.20 (dt, *J* = 14.2, 7.2 Hz, 1H), 3.12 (dt, *J* = 13.4, 6.4 Hz, 1H), 2.78 (s, 3H), 2.10 – 1.96 (m, 2H). <sup>13</sup>**C NMR (151 MHz, CDCl**<sub>3</sub>)  $\delta$  136.92, 132.84, 129.20, 127.38, 89.52 (d, *J* = 175.1 Hz), 46.28 (d, *J* = 5.0 Hz), 45.54 (d, *J* = 24.6 Hz), 35.48, 30.83 (d, *J* = 21.0 Hz).

<sup>19</sup>**F NMR (565 MHz, CDCl<sub>3</sub>)** δ -184.27 (dddt, J = 46.4, 28.0, 22.1, 18.1 Hz). HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>11</sub>H<sub>16</sub>ClFNO<sub>2</sub>S: 280.0569; Found 280.0568

#### N-(4-chloro-3-fluorobutyl)benzenesulfonamide



<sup>1</sup> Prepared according to General Procedure C and obtained as colorless oil. **Yield** 53%, 17.0 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 3:1) to give the corresponding fluorochlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.91 – 7.83 (m, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.52 (m, 2H), 4.85 (t, J = 6.3 Hz, 1H), 4.83 – 4.69 (m, 1H), 3.71 – 3.52 (m, 2H), 3.25 – 3.08 (m, 2H), 1.99 – 1.85 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 139.49, 132.92, 129.28, 127.02, 90.13 (d, J = 174.9 Hz), 45.32 (d, J = 25.0 Hz), 39.31 (d, J = 3.9 Hz), 32.41 (d, J = 20.4 Hz). <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -174.72 – -189.79 (m). HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>14</sub>ClFNO<sub>2</sub>S: 266.0412; Found 266.0410

## 2-(4-chloro-3-fluorobutyl)isoindoline-1,3-dione



<sup>1</sup> Prepared according to General Procedure C and obtained as white solid. **Yield** 57%, 17.3 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 5:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.4, 3.1 Hz, 2H), 4.76 (ddq, J = 47.6, 8.8, 4.5 Hz, 1H), 3.89 (t, J = 6.9 Hz, 2H), 3.68 (dd, J = 19.3, 5.0 Hz, 2H), 2.22 – 2.01 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.25, 134.14, 131.98, 123.40, 90.30 (d, J = 176.0 Hz), 45.31 (d, J = 25.4 Hz), 34.11 (d, J = 4.4 Hz), 31.34 (d, J = 20.5 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>d)  $\delta$  -176.23 – -190.00 (m).

HRMS APCI: [M]<sup>-</sup> calcd. for C<sub>12</sub>H<sub>11</sub>ClFNO<sub>2</sub>: 255.0457; Found 255.0465

# diethyl 2-(3-chloro-2-fluoropropyl)malonate



<sup>1</sup>-----'Prepared according to General Procedure C and obtained as colorless oil. **Yield** 48%, 14.7 mg. Yield is referred to equivalent of olefin. Purification is through flash column chromatography (with eluent of Hex: EA = 7:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 4.84 – 4.68 (m, 1H), 4.29 – 4.18 (m, 4H), 3.72 – 3.57 (m, 3H), 2.37 – 2.26 (m, 2H), 1.34-1.26 (m, 6H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.79, 168.63, 90.01 (d, J = 176.4 Hz), 61.85, 47.80, 47.78, 45.43 (d, J = 24.8 Hz), 31.67 (d, J = 20.3 Hz), 14.02 (d, J = 4.3 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -177.32 - -190.00 (m).

HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>17</sub>ClFO<sub>4</sub>: 255.0794; Found 255.0792

#### 11-chloro-10-fluoroundecanal



Yield is referred to equivalent of olefin. Purification is through flash column chromatography (with eluent of Hex: EA = 10:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 9.88 – 9.64 (m, 1H), 4.72 – 4.56 (m, 1H), 3.70 – 3.54 (m, 2H), 2.49-2.38 (m, 2H), 1.78 – 1.61 (m, 4H), 1.49 – 1.31 (m, 10H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 202.85, 92.44 (d, *J* = 174.8 Hz), 45.80 (d, *J* = 25.5 Hz), 43.89, 32.38 (d, *J* = 20.4 Hz), 29.20, 29.17, 29.09, 24.65 (d, *J* = 4.4 Hz), 22.03.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -170.34 – -186.44 (m).

GC-MS: [M-H2O]<sup>+</sup> calcd. for C10H18ClF: 204.1081; Found 204

11-chloro-10-fluoroundecanoic acid



Yield is referred to equivalent of olefin. Purification is through flash column chromatography (with eluent of Hex: EA: AcOH = 3:1:0.1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 4.71 – 4.55 (m, 1H), 3.68 – 3.54 (m, 2H), 2.35 (t, *J* = 7.5 Hz, 2H), 1.78 – 1.61 (m, 4H), 1.51-1.42 (m, 1H), 1.42 – 1.30 (m, 9H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.70, 92.48 (d, *J* = 174.5 Hz), 45.86 (d, *J* = 25.5 Hz), 33.96, 32.39 (d, *J* = 20.5 Hz), 29.22, 29.19, 29.10, 28.98, 24.67 (d, *J* = 4.3 Hz), 24.63.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -172.73 - -192.40 (m).

HRMS APCI: [M-H]<sup>-</sup> calcd. for C<sub>11</sub>H<sub>19</sub>ClFO<sub>2</sub>: 237.1052; Found 237.1060

# (3-chloro-2-fluoro-2-methylpropyl)benzene



<sup>1</sup>-----<sup>87</sup>/<sub>2</sub> Prepared according to General Procedure C and obtained as colorless oil. **Yield** 56%, 12.5 mg. Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding fluorochlorination products.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.34 – 7.25 (m, 5H), 3.49 (dd, *J* = 14.4, 1.1 Hz, 2H), 3.06 (d, *J* = 20.5 Hz, 2H), 1.42 (d, *J* = 21.5 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  135.36, 135.33, 130.36, 128.36, 127.00, 95.33 (d, *J* = 176.0 Hz), 48.80 (d, *J* = 30.3 Hz), 43.11 (d, *J* = 21.9 Hz), 22.88 (d, *J* = 23.5 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -130.53 - -164.24 (m).

HRMS ESI: [M+K]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>12</sub>ClFK: 225.0243; Found 225.0693

#### 2-chloro-3-fluoro-3-methylbutyl benzoate



Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hex: EA = 10:1) to give the corresponding fluorochlorination products.

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 – 8.02 (m, 2H), 7.62 – 7.56 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 4.78 (ddd, J = 12.0, 3.6, 0.8 Hz, 1H), 4.50 (dd, J = 11.9, 8.3 Hz, 1H), 4.24 (ddd, J = 9.5, 8.3, 3.6 Hz, 1H), 1.65 – 1.48 (m, 1H). <sup>13</sup>**C** NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.21, 133.36, 129.77, 129.56, 128.51, 95.46 (d, J = 172.8 Hz), 64.93 (d, J = 4.7 Hz), 63.49 (d, J = 27.8 Hz), 25.49 (d, J = 23.9 Hz), 23.08 (d, J = 23.9 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -140.69 (pd, J = 22.3, 10.1 Hz).

HRMS ESI: [M+K]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>14</sub>ClFKO<sub>2</sub>: 283.0298; Found 283.2843

#### (2-chloro-1-fluoroethyl)benzene



Yield is referred to equivalent of olefin. Purification is through preparatory thin-layer chromatography (with eluent of Hexane) to give the corresponding fluorochlorination products.

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.34 (m, 5H), 5.60 (ddd, J = 47.1, 7.9, 3.8 Hz, 1H), 3.88 – 3.68 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  136.57 (d, J = 20.1 Hz), 129.26 (d, J = 1.9 Hz), 128.72, 125.75 (d, J = 6.8 Hz), 93.07 (d, J = 178.2 Hz), 46.89 (d, J = 28.2 Hz).

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -178.70 (ddd, J = 48.0, 26.4, 15.5 Hz).

The compound characterization was reported in literature.<sup>15</sup>

#### *N*,*N*-diallyl-4-methylbenzenesulfonamide--3,4-bis(azidomethyl)-1-tosylpyrrolidine



Prepared according to General Procedure A and obtained as colorless oil in the mixture of two isomers. **Yield** 67%, 22.4 mg. d.r. = 2.1:1.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.72 (dd, *J* = 13.2, 8.0 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 3.47-3.37 (m, 2H), 3.34-3.27 (m, 2H), 3.27-3.21 (m, 0.70H), 3.18-3.13 (m, 1.36H), 3.13-3.07 (m, 1.35H), 3.04-2.99 (m, 0.65H), 2.47-2.43 (m, 3H), 2.42-2.37 (m, 1.28H), 2.14-2.08 (m, 0.63H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 143.94, 133.16, 132.46, 129.82, 127.71, 127.48, 52.77, 50.58, 50.25, 49.54, 41.13, 39.75, 21.59, 21.56.

The compound characterization was reported in literature.<sup>6</sup>

dibenzyl (E)-2-azido-2-(4-azidobut-2-en-1-yl)malonate

<sup>1</sup>------<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil in single isomer. **Yield** 60%, 25.2 mg. E/Z >20:1.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.48 – 7.27 (m, 10H), 5.70 – 5.43 (m, 2H), 5.35 – 5.14 (m, 4H), 3.58 (d, *J* = 6.5 Hz, 2H), 2.70 (t, *J* = 6.0 Hz, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.57, 134.46, 128.81, 128.71, 128.59, 128.56, 127.53, 71.43, 68.48, 52.25, 36.89. The compound characterization was reported in literature.<sup>6</sup>

#### 1,2-diazido-3,3-dimethylbutane



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  3.51 (dd, J = 12.2, 2.2 Hz, 1H), 3.26 (dd, J = 12.2, 10.2 Hz, 1H), 3.21 (dd, J = 10.2, 2.2 Hz, 1H), 0.96 (s, 9H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 72.75, 52.45, 34.99, 26.43.

The compound characterization was reported in literature.<sup>6</sup>

# N-(2,3-diazidopropyl)benzamide



<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.84 – 7.75 (m, 2H), 7.59 – 7.52 (m, 1H), 7.49 – 7.42 (m, 2H), 6.51 (t, *J* = 6.1 Hz, 1H), 3.92 (tt, *J* = 7.2, 4.2 Hz, 1H), 3.74 (ddd, *J* = 14.1, 6.4, 4.5 Hz, 1H), 3.59 (dd, *J* = 12.9, 4.0 Hz, 1H), 3.51 – 3.39 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  167.89, 133.65, 132.00, 128.76, 126.96, 61.08, 52.90, 41.38. HRMS APCI: [M+H]<sup>+</sup> calcd. for C<sub>10</sub>H<sub>12</sub>N<sub>7</sub>O: 246.1098; Found 246.1096

# (4-chloro-3-fluoro-2-methylbutan-2-yl)benzene



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.32 (m, 4H), 7.28 – 7.25 (m, 1H), 4.68 (ddd, J = 48.2, 7.5, 3.5 Hz, 1H), 3.40 – 3.30 (m, 2H), 1.44 (d, J = 1.7 Hz, 3H), 1.42 (d, J = 1.3 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  143.91 (d, J = 3.4 Hz), 128.61, 126.92, 126.27, 100.45, 99.83 (d, J = 185.1 Hz), 43.94 (d, J = 23.7 Hz), 41.85 (d, J = 18.7 Hz), 26.20 (d, J = 4.3 Hz), 22.49 (d, J = 4.7 Hz). <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -189.10 – -189.62 (m).

GC-MS: [M]<sup>+</sup> calcd. for C<sub>11</sub>H<sub>14</sub>ClF: 200.0768; Found 200

# *N*-(3-chloro-2-fluoropropyl)benzamide



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.84 – 7.74 (m, 2H), 7.58 – 7.50 (m, 1H), 7.49-7.41 (m, 2H), 6.47 (s, 1H), 4.98 – 4.85 (m, 1H), 4.03-3.87 (m, 1H), 3.82 – 3.65 (m, 3H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  167.82, 133.72, 131.97, 128.74, 126.99, 90.84 (d, *J* = 176.6 Hz), 43.53 (d, *J* = 24.2 Hz), 41.55 (d, *J* = 21.4 Hz).

<sup>19</sup>**F** NMR (565 MHz, CDCl<sub>3</sub>) δ -187.92 – -188.26 (m). HRMS ESI:  $[M+H]^+$  calcd. for C<sub>21</sub>H<sub>26</sub>Cl<sub>2</sub>FNO: 216.0586; Found 216.0589

# (1-azidoethyl)benzene



<sup>1</sup> Prepared according to General Procedure A and obtained as colorless oil. **Yield** 25%, 3.6 mg.<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$  7.45 – 7.29 (m, 5H), 4.62 (q, J = 6.8 Hz, 1H), 1.54 (d, J = 6.8 Hz, 3H). <sup>13</sup>**C NMR (151 MHz, CDCl<sub>3</sub>)**  $\delta$  140.85, 128.78, 128.14, 126.38, 61.10, 21.59.

# HRMS APCI: [M-N2+H]<sup>+</sup> calcd. for C<sub>8</sub>H<sub>10</sub>N: 120.0808; Found 120.0810

# 4,5-diazidopentyl 4-ethylbenzoate



Vield 68%, 20.5 mg.

<sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)** δ 7.99 – 7.90 (m, 2H), 7.30 – 7.24 (m, 2H), 4.41 – 4.29 (m, 2H), 3.55 (ddt, *J* = 8.8, 7.3, 4.4 Hz, 1H), 3.45 (dd, *J* = 12.7, 4.2 Hz, 1H), 3.38 (dd, *J* = 12.7, 7.3 Hz, 1H), 2.71 (q, *J* = 7.6 Hz, 2H), 2.01 – 1.92 (m, 1H), 1.92 – 1.83 (m, 1H), 1.78 – 1.62 (m, 2H), 1.26 (t, *J* = 7.6 Hz, 4H).

<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 166.60, 149.98, 129.69, 127.96, 127.49, 63.91, 61.61, 54.85, 28.96, 28.53, 25.32, 15.26.

The compound characterization was reported in literature.<sup>6</sup>

# VIII. NMR Spectrum for New Compounds




















































































































































































































































## 


























































































































































































## **IX. References**

[1] Nikitas, N. F.; Voutyritsa, E.; Gkizis, P. L.; Kokotos, C. G. *Eur. J. Org. Chem.* **2021**, *2021*, 96.

[2] Liu, J.; Lu, C.; Wu, S.; Wu, X.; Wu, Z.; Xue, X.-S.; Yu, J.; Zhu, C. Angew. Chem. Int. Ed. **2020**, *59*, 8195.

[3] Jiang, H.-J.; Liu, K.; Yu, J.; Zhang, L.; Gong, L.-Z. Angew. Chem. Int. Ed. 2017, 56, 11931.

[4] C. Almansa, J. Alfón, A. F. de Arriba, F. L. Cavalcanti, I. Escamilla, L. A. Gómez, et al. J. Med. Chem. 2003, 46, 3463.

[5] Aldrich, C.; Brody, S.; Cushman, M.; Fan, B.-Z.; Hiasa, H.; Liang, J.-H.; Lv, W.; Yang, Z.-Y. *Eur. J. Med. Chem.* **2020**, *193*, 112222.

[6] Bian, K.-J.; Kao, S.-C.; Nemoto, D.; Chen, X.-W.; West, J. G. *Nature Communications* **2022**, *13* (1), 7881.

[7] Scheurer, A.; Mosset, P.; Saalfrank, R. W. Tetrahedron: Asymmetry 1997, 8 (8), 1243-1251.

[8] Siu, J. C.; Parry, J. B.; Lin, S. *Journal of the American Chemical Society* **2019**, *141* (7), 2825-2831.

[9] Peng, H.; Yuan, Z.; Chen, P.; Liu, G. Chinese Journal of Chemistry 2017, 35 (6), 876-880.

[10] Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. *Angewandte Chemie International Edition* **2015**, *54* (39), 11481-11484.

[11] Ho, M. L.; Flynn, A. B.; Ogilvie, W. W. *The Journal of Organic Chemistry* **2007**, *72* (3), 977.

[12] Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Organic & Biomolecular Chemistry **2013**, *11* (10), 1598.

[13] Fu, N.; Sauer, G. S.; Lin, S. *Journal of the American Chemical Society* **2017**, *139* (43), 15548.

[14] Tan, E. W.; Chan, B.; Blackman, A. G. *Journal of the American Chemical Society* **2002**, *124* (10), 2078-2079.

[15] Xia, J.-B.; Zhu, C.; Chen, C. *Journal of the American Chemical Society* **2013**, *135* (46), 17494.