This version of the SI published 24/07/2025 replaces the previous version published 05/03/2024

Arylazobenzimidazoles: Versatile Visible-Light Photoswitches with Tuneable Z-isomer Stability

Sophie A. M. Steinmüller^a, Magdalena Odaybat^b, Giulia Galli^a, Matthew J. Fuchter^{b,*} and Michael Decker^{a,*}

^aPharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

^bDepartment of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London SW7 2AZW12 0BZ, United Kingdom.

Electronic Supplementary Information

Table of Contents

Photochemistry
General Methods 2
UV/Vis Characterization 2
E/Z Compositions of PSSs17
LC/MS Data17
UV/Vis Spectra
Long-Term Stability
Quantum Yield Measurements
Synthesis
General Methods 47
Experimental
NMR Spectra61
Computational
General Methods
Optimised Geometries
Time-Dependent DFT
References

Photochemistry

General Methods

UV/Vis experiments were performed with a Varian Cary 50 Bio UV/Vis spectrophotometer using Hellma (Type 100-QS) quartz glass Suprasil cuvettes (10 mm light path). Absorption spectra were measured at room temperature and analyzed using CaryWinUV software. Samples were irradiated using LEDs of Seoulviosys, Cree, Lumileds and LedEngin emitting the monochromatic wavelengths (365 nm, 385 nm, 400 nm, 440 nm, 475 nm, 505 nm, 530 nm, 590 nm and 617 nm). Only spectra where irradiation of the solutions with the respective wavelength for 90 seconds yielded maximal conversion to the corresponding equilibrium are shown. Wavelengths not allowing for full conversion in the given time frame were excluded. Thermal relaxation was measured by switching the photochromic compounds into the thermodynamically meta-stable Z-isomer using either 400 nm (violet), 440 nm (blue) or 475 nm (cyan) light. Afterwards, Z-isomer thermal relaxation was determined by monitoring the change of absorption at the respective λ_{max} at room temperature (22°C) in DMSO and at 37°C in TRIS-buffer (pH = 7.4), containing 25% DMSO for solubility. Halflives were analyzed through nonlinear regression (curve fit)-plateau followed by one phase decay with Graphpad Prism 9. If a compound did not thermally isomerize back within 15 h, LEDs were used to switch it back to the E-isomer and the half-life was extrapolated. Absence of photo-fatigue was analyzed either using a Varian Cary 50 Bio UV/Vis spectrophotometer and Hellma (Type 100-QS) quartz glass Suprasil cuvettes (10 mm light path), or by measuring several compounds requiring similar irradiation wavelengths simultaneously using a 96-well plate and a Spectramax 250 absorbance microplate reader (molecular devices). Compounds were irradiated alternatingly with the indicated wavelengths and absorption of the solutions was checked to be constant for each PSS.

UV/Vis Characterization

Figure S 1. Photophysical properties of compound **3a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**3a** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**3a** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 2. Photophysical properties of compound **3b**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**3b** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**3b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 3. Photophysical properties of compound **3c**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**3c** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**3c** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 4. Photophysical properties of compound **3d**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**3d** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**3d** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 5. Photophysical properties of compound **3pz**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μM compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 385 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**3pz** in DMSO in the dark after switching with 385 nm, measured at 22°C; (D) stability of Z-**3pz** in TRIS-buffer (containing 50 % DMSO, pH= 7.4) in the dark after switching with 385 nm, measured at 37°C.

Figure S 6. Photophysical properties of compound **8a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**8a** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**8a** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 7. Photophysical properties of compound 8b. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**8b** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**8b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 8. Photophysical properties of compound **8d**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**8d** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**8d** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 9. Photophysical properties of compound **8e**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**8e** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**8e** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 10. Photophysical properties of compound **8pz**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**8pz** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**8pz** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 11. Photophysical properties of compound **13aH**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13aH** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**13aH** in TRIS-buffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 12. Photophysical properties of compound **13a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13a** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**13a** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 13. Photophysical properties of compound **13b.** Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**13b** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**13b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 14. Photophysical properties of compound **13c**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13c** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**13c** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 15. Photophysical properties of compound **13d**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 440 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13d** in DMSO in the dark after switching with 440 nm, measured at 22°C; (D) stability of Z-**13d** in TRISbuffer (containing 50 % DMSO, pH= 7.4) in the dark after switching with 440 nm, measured at 37°C.

Figure S 16. Photophysical properties of compound **13e**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 475 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**13e** in DMSO in the dark after switching with 475 nm, measured at 22°C; (D) stability of Z-**13e** in TRISbuffer (containing 50 % DMSO, pH= 7.4) in the dark after switching with 475 nm, measured at 37°C.

Figure S 17. Photophysical properties of compound **13f**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 475 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13f** in DMSO in the dark after switching with 475 nm, measured at 22°C; (D) stability of Z-**13f** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 475 nm, measured at 37°C.

Figure S 18. Photophysical properties of compound **13pz**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**13pz** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**13pz** in TRIS-buffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 19. Photophysical properties of compound **18a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 440 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**18a** in DMSO in the dark after switching with 440 nm, measured at 22°C; (D) stability of Z-**18a** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 440 nm, measured at 37°C.

Figure S 20. Photophysical properties of compound **18b**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 440 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**18b** in DMSO in the dark after switching with 440 nm, measured at 22°C; (D) stability of Z-**18b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 440 nm, measured at 37°C.

Figure S 21. Photophysical properties of compound **18d**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 440 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**18d** in DMSO in the dark after switching with 440 nm, measured at 22°C; (D) stability of Z-**18d** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 440 nm, measured at 37°C.

Figure S 22. Photophysical properties of compound **18pz**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**18pz** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**18pz** in TRIS-buffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 23. Photophysical properties of compound **23a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**23a** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**23a** in TRIS-buffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 24. Photophysical properties of compound **23b**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**23b** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**23b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 25. Photophysical properties of compound **23c**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 530 nm for 1 min in DMSO; (C) stability of Z-**23c** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**23c** in 1:3 TRIS-buffer/ DMSO (pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 26. Photophysical properties of compound **23d**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**23d** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**23d** in TRIS-buffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 27. Photophysical properties of compound **26a**. Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 590 nm for 1 min in DMSO; (C) stability of Z-**26a** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**26a** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

Figure S 28. Photophysical properties of compound **26b** Absorption spectra: (A) after irradiation with different wavelengths of 30 μ M compound in DMSO; (B) repeated E/Z-isomerization by alternating irradiation with 400 nm and 617 nm for 1 min in DMSO; (C) stability of Z-**26b** in DMSO in the dark after switching with 400 nm, measured at 22°C; (D) stability of Z-**26b** in TRISbuffer (containing 25 % DMSO, pH= 7.4) in the dark after switching with 400 nm, measured at 37°C.

E/Z Compositions of PSSs

The photostationary distribution (PSD) of the photostationary states (PSS) for *E*-isomers were determined by LC-MS. The amount of *Z*- and *E*-isomer was quantified by integration of the respective peak in the LC trace. Absorption was measured at the respective isosbestic point. Due to several *Z*-isomers displaying half-lives in the second to minute range, *Z*-isomer PSDs were too fast to be accurately investigated using LC-MS or NMR spectroscopy. Therefore, *Z*-isomer PSDs were estimated as previously described.¹ The respective *Z*-isomer PSD ratios were estimated based on the PSS with the highest concentration of *Z*-isomer.

Initially, the residual *E*-isomer in this PSS was estimated from the absorbance at the respective *E*-isomer absorption maximum ($\lambda_{max} \pi \rightarrow \pi^*$). Using this estimate, the spectrum of the pure *E*-isomer was subtracted from that PSS spectrum. The estimate for the residual *E*-isomer fraction was varied to obtain a range that predicted a sensible UV/vis spectrum for the pure *Z*-isomer. The maximum fraction of residual *E*-isomer represents the highest value that ensured that the absorbance remained positive at all wavelengths. The minimum fraction of residual *E*-isomer was determined as the lowest value which ensured no obvious remaining *E*-isomer π - π^* absorbance in the spectrum. The centre point of this range was used to assign the respective *Z*-isomer PSD. From this, the authentic Z-isomer UV/vis spectrum was extrapolated with an approximate 3-4% absolute uncertainty in absorbance. To ensure comparability of PSDs across the scaffold, all PSDs were analyzed using the same methods.

LC/MS Data

<Chromatogram>

mV

0.00-1						Ward and and and and and and and and and an
0,0	2,5	5,0	7,5	10,0	12,5	15,0
Peak#	Ret. Time	Area	Area%			
1	11,894	702580	3,545			
2	13,227	19118006	96,455			
Total		19820586	100,000			

17,5 min

<Chromatogram> mV

<Chromatogram>

29339012

<Chromatogram>

1 2

Total

<Chromatogram> mV

<Chromatogram>

<Chromatogram>

Detector A 373nm

17,5

min

15,0

13,066

12,281

<Chromatogram>

<Chromatogram> mV

<Chromatogram>

<Chromatogram> mV

MS Chromatogram

Segment#1 (x1.000.000)

<Chromatogram> mV

Peak#	Ret. Time	Area	Area%
1	12,639	581549	5,789
2	13,834	9453686	94,114
3	14,908	9683	0,096
Total		10044919	100,000

<Chromatogram>

0,00-

Peak#

0,0

1 2

Total

2,5

11,584 13,000

Ret. Time

5,0

477889

Area

7,5

10,0

12,5

15,0

17,5 min

UV/Vis Spectra

- pure E
- 400 nm PSS
- --- estimated Z for 15% residual E
- estimated Z for 18% residual E
- --- estimated Z for 21% residual E

- pure E
- 400 nm PSS
- --- estimated Z for 5% residual E
- estimated Z for 8% residual E
- --- estimated Z for 11% residual E

- pure *E*
- 400 nm PSS
- estimated Z for 15% residual E
- estimated Z for 18% residual E
- --- estimated Z for 21% residual E

- pure E
- 400 nm PSS
- --- estimated Z for 12% residual E
- estimated Z for 15% residual E
- --- estimated Z for 18% residual E

- pure E
- 385 nm PSS
- --- estimated Z for 6% residual E
- estimated Z for 9% residual E
- --- estimated Z for 12% residual E

- pure E
 400 nm PSS
- --- estimated Z for 13% residual E
- estimated Z for 16% residual E
- --- estimated Z for 19% residual E

S33

Long-Term Stability

Additionally to investigating photo-fatigue, compounds **3pz** and **8a** were chosen for evaluating stability towards longterm light exposure using both an *N*-methylated arylazobenzimidazole derivative and a derivative with a free benzimidazole-NH.

Continuous irradiation was carried out with the respective wavelength (used for switching to the *Z*-isomer) for 30 mins. Absorption was measured every 5 mins. No noticeable photo-fatigue was observed, and the compound could be switched back to the *E*-isomer using the respective wavelength.

Figure S 29. UV/vis stability measurement. Pre-irradiation with the E-isomer wavelength ($\lambda = 530$ nm) for the first data point, followed by continuous irradiation for 30 mins with the respective Z-isomer wavelength $\lambda = 385$ or 400 nm. The absorption remains stable for the duration of irradiation and switching back to the E-isomer results in similar absorption compared to the data point prior to continuous irradiation.

To further monitor potential photodegradation, LC/MS was used as the analytical method. The respective LC trace was measured at 254 nm to determine potential impurities/degradation products. For continuous irradiation of **8a** at 400nm over 60 mins, no compound degradation was observed. The HPLC traces were comparable at prior to and after 60 mins irradiation with a purity of **8a** over 98 % (the injection peak at 2 mins results from injecting a DMSO sample and was not considered for determination of purity).

Figure S 30. LC/MS run of compound **8a** after irradiation with λ = 400 nm for 60 mins shows both the E- and Z-isomer peaks as well as an injection peak (DMSO). No impurity peaks have appeared which verifies stability of the compound and resistance to photo-degradation. Shown is the MIC to verify the compound mass.

For compound **3pz**, continuous irradiation was carried out at 385nm over 70 mins, which did not result in significant photo-degradation. While there was a small (<2%) impurity in the sample, the amount of this impurity does not significantly change after irradiation for 70 mins. Even if small changes in the impurity level are considered (~1-1.5 % during >1 h of continuous irradiation at 385nm), such a duration of irradiation is over 120-times longer than the irradiation time required for switching. We therefore conclude that these two representative compounds show excellent stability in terms of photodegradation.

Figure S 31. LC/MS run of compound **3pz** after irradiation with λ = 385 nm for 70 mins shows both the E- and Z-isomer peaks as well as an injection peak and the small impurity at 5.27 mins. Compound **3pz** is still >98 % pure after 70 mins irradiation.

Quantum Yield Measurements

The photoisomerization quantum yields of **3pz** and **8a** were calculated for irradiation at 365nm. The measurements were performed in dry acetonitrile and at ambient temperature ($T = 22^{\circ}C$) to offer a direct comparison with other reported photoswitches. Spectra were recorded with an Agilent Cary60 UV/vis spectrophotometer equipped with a temperature controller and using a standard quartz cuvette (1 cm path length).

Photon Flux Determination

The photon flux of a Nichia NCSU276A LED (365 nm, 800 mW when operating at 100% power) fitted with a collimating lens was determined by ferrioxalate actinometry. The method follows a previously reported procedure and is based on the photochemical degradation of ferrioxalate to Fe^{2+} :^{2, 3}

$$Fe(C_2O_4)_3^{3-}hv \xrightarrow{hv} Fe^{2+}C_2O_4^{--} + 2C_2O_4^{2-}$$
$$Fe(C_2O_4)_3^{3-} + C_2O_4^{--} \xrightarrow{\Delta} Fe^{2+} + 2CO_2 + 3C_2O_4^{2-}$$

A known volume of 30 mM potassium ferrioxalate in 0.2 N H_2SO_4 (V₁ = 2 ml) was irradiated under stirring in a quartz cuvette placed 3.5 cm away from the light source. After different irradiation times, an aliquot of the solution (V₂ = 0.5 ml) was mixed with 1 mL buffer (1.2 M NaOAc + 0.72 N H_2SO_4) and 2 mL 1,10-phenanthroline (6 mM) and finally diluted to 25 ml (V₃) with mQ H_2O . The formation of the tris-phenanthroline complex was measured after 1 h by recording the absorbance at 510 nm.

The absorbance data was then plotted as a function of the irradiation time and the corresponding slope was used to determine the photon flux according to the linear equation provided by Stranius and Börjesson:³

$$I = slope \frac{V_1 \cdot V_3 \cdot N_a}{V_2 \cdot \varepsilon_{510nm} \cdot l \cdot \varphi}$$

Where *I* is the photon flux, φ is the quantum yield of the ferrioxalate degradation at 365 nm (φ = 1.21), *l* is the path length of the cuvette in cm, ε_{510nm} is the molar extinction coefficient of the iron (II) tris-phenanthroline complex at 510 nm (ε_{510nm} =11,100 M⁻¹ cm⁻¹), N_a is Avogadro's number, and V₁, V₂ and V₃ are the volumes of the different solutions in dm³ to take into account dilution factors.

Using this method, the photon flux of the 365 nm LED operating at 5% power was determined to be 2.117×10^{16} photons/s.

Figure S 32. Absorbance at 510 nm of the phenanthroline complex with iron (II) released by the photodegradation of potassium ferrioxalate after different irradiation times at 365 nm. A linear fit of the recorded data (red line and black squares, respectively) was obtained with the software OriginPro.

Molar Extinction Coefficients

Molar extinction coefficients of the *E* isomers were determined from their UV/vis spectra recorded in the dark at various concentrations. Following the Beer-Lambert law:

$$A = \varepsilon \cdot l \cdot c$$

Where A is the absorbance at a given wavelength, l is the path length of the cuvette in cm, and c is the molar concentration of the compound (M), the molar extinction coefficients ε could be determined through a linear fitting of the absorbance against concentration plot.

Molar extinction coefficients of the *Z* isomers were estimated from their predicted pure UV/vis spectra. Pure *Z*-isomer spectra were calculated from the spectra of the pure *E* isomer and from the spectra of a mixture of known composition at the PSS. PSDs were determined according to the method reported by Fischer⁴ and the isomers ratios were verified by LC-MS and/or NMR analysis (see also *E/Z* Compositions of PSSs).

Due to the low molar absorptivity of the compounds at 525 nm, the photoisomerization quantum yields could not be determined with sufficient accuracy at 525 nm.

Molar extinction coefficients and PSDs used to calculate the photoisomerization quantum yields at 365 nm are reported in **Table S1**.

Figure S 33. (A) UV/vis absorption spectra of **3pz** recorded at different concentrations (10-70 μ M) in dry acetonitrile at 22°C. (B) Absorbance of **3pz** at 365 nm plotted against the compound concentration. A linear fitting of the data was obtained with the software OriginPro and this was used to determine the slope corresponding to the molar extinction coefficient.

Figure S 34. (A) UV/vis absorption spectra of **8a** recorded at different concentrations (10-70 μ M) in dry acetonitrile at 22°C. (B) Absorbance of **8a** at 365 nm plotted against the compound concentration. A linear fitting of the data was obtained with the software OriginPro and this was used to determine the slope corresponding to the molar extinction coefficient.

Photoisomerization Quantum Yields

Photoisomerization quantum yields (φ_{EZ} and φ_{ZE}) at 365 nm were determined using a previously reported literature procedure. All samples were prepared in dry acetonitrile with a final volume of 3 ml. Irradiation was performed at room temperature (T = 22°C), with the sample positioned at 3.5 cm from the light source and under continuous stirring. The quantum yields were calculated using the software provided by Stranius and Börjesson, which fits the change in absorbance over time of the *E* isomer to the equation below:³

$$\frac{d[E]}{dt} = - \frac{\varphi_{E} \cdot I \cdot \beta_{E}(t)}{N_{a} \cdot V} + \frac{\varphi_{Z} \cdot I \cdot \beta_{Z}(t)}{N_{a} \cdot V} + k_{t, Z \to E}[Z]$$

Where φ is the photoisomerization quantum yield of a given isomer, *I* is the photon flux, β is the fraction of photons absorbed by a given isomer, *V* is the volume of the sample in dm³, N_a is Avogadro's numbers, k_t is the rate of the spontaneous $Z \rightarrow E$ back-isomerization.

Figure S 35. (A) UV/vis absorption spectra of **3pz** recorded in dry acetonitrile at 22°C after increasing irradiation times at 365 nm. (B) Absorbance of **3pz** at 365 nm plotted against the irradiation time. An exponential fitting of the data was obtained with the software OriginPro.

Figure S 36. (A) UV/vis absorption spectra of *8a* recorded in dry acetonitrile at 22°C after increasing irradiation times at 365 nm. (B) Absorbance of *8a* at 365 nm plotted against the irradiation time. An exponential fitting of the data was obtained with the software OriginPro.

Figure S 37. E- and Z-isomers concentration for **3pz** (A) and **8a** (B) plotted as a function of the irradiation time at 365 nm in dry acetonitrile and at 22°C.

Table S1. Molar extinction coefficients (ε), photostationary state distributions (PSDs) and photoisomerization quantum yields (φ) of **3pz** and **8a** at 365 nm irradiation.

Compound	ε_E (M ⁻¹ cm ⁻¹)	ε _Z (M ⁻¹ cm ⁻¹)	PSD (% <i>E</i>)	φ _{EZ}	<i>Φz</i> ε
3pz	25,068	3,630	9.7%	0.22	0.18
8a	24,405	5,800	19.9%	0.17	0.15

365 nm

Synthesis

General Methods

Reagents and Solvents

All reagents and solvents were directly used as purchased from the following commercial suppliers: ABCR, Sigma Aldrich (Merck) and BLDPharm.

Thin-layer and Silica Column Chromatography

Reactions were monitored using analytical thin-layer chromatography (TLC) with precoated plates with silica gel 60 GF254 plates (Machery-Nagel GmbH & Co. KG). Detection was carried out by irradiation and consequent fluorescence quenching at 254 nm or excitation at 365 nm. Silica gel 60 (60 Å pore size, 40–63 µm; Macherey Nagel GmbH & Co. KG, Düren, Germany) was used as the stationary phase for compound purification by column chromatography.

Nuclear magnetic resonance (NMR) Spectroscopy

NMR ¹H and ¹³C spectra were recorded with a Bruker AV-400 NMR instrument (Bruker, Karlsruhe, Germany) in deuterated solvents. Spectra were calibrated with the hydrogen signal of the respective solvent as an internal standard and chemical shifts were expressed in ppm (CD₂Cl₂: ¹H: 5.32 ppm, ¹³C: 54.00 ppm; CDCl₃: ¹H: 7.26 ppm, ¹³C: 77.16 ppm; CD₃OD: ¹H: 4.87 ppm, ¹³C: 49.00 ppm, DMSO-d₆: ¹H: 2.50 ppm an 3.33 ppm (H₂O), ¹³C: 39.52 ppm). *J* is the coupling constant in hertz [s⁻¹].

Liquid Chromatography Mass Spectrometry (LC-MS)

Measurements for verification and purity of the compounds were performed by LC-MS using a Shimadzu kit, equipped with a DGU-20A3R controller, a DGU-20A degasser, a LC-20AB liquid chromatograph and an SPD-20A UV/Vis detector connected to an LCMS-2020 mass spectrometer (ESI ionization). The stationary phase was a Synergi 4U fusion-RP 80A (150 × 4.6 mm) column, and a MeOH/H₂O gradient containing 0.1% formic acid was used as the mobile phase. The compounds were dissolved in MeOH and filtered through syringe filters. Data are reported as mass-to-charge ratio (m/z) of the corresponding positively charged molecular ions. All target compounds were purified to \ge 95% evaluated by integration of peaks in the chromatogram measured at 254 nm.

Method:

Parameters: Mobile phase A: H₂O (0.1% HCOOH), mobile phase B: MeOH (0.1% HCOOH)

Flow rate: 1.0 mL/min, Detection: 254 nm; Scan range: 60-1000 m/z;

Gradient: 0-11 min 5% \rightarrow 95% B, 11-15 min 95% B, 15-16 min 95% \rightarrow 5% B, 16-18min 5% B.

Reversed-Phase Column Chromatography

Purification of target compounds was done using reversed-phase column chromatography with an Interchim PuriFlash 430 instrument (Ultra Performance Flash Purification) connected to an Interchim Flash ELSD (Detection: 200-600 nm). A Flash Pure Select C18 30 μ M spherical 4g column was used with a flow rate of 10.0 mL/min.

Mobile phase A: H₂O, mobile phase B: MeOH.

Standard method:

0-7 min 60% B, 7-15 min 60% \rightarrow 72% B, 15-22 min 72% B, 22-30 min 72% \rightarrow 95%, 30-35 min 95% B

The gradient was manually held at the current percentage upon appearance and for the duration of a peak.

Experimental

Figure S 38. Synthesis of arylazobenzimidazoles bearing an NH in the heterocyclic ring. Reagents and conditions: (a) oxone[®], water, CH2Cl2, rt, 1-12 h; (b) 1H-benzo[d]imidazol-2-amine or 5-methoxy-1H-benzo[d]imidazol-2-amine, toluene/40% NaOH, aq. (4mL/mmol), 80-85°C, 2-6h (general procedure II); (c) 2-amino-benzimidazole, toluene/DMSO (2mL/mmol), 1 mL/mmol 40% NaOH, aq., 65°C, 30-60min (general procedure III).

Figure S 39. Synthesis of methylated arylazobenzimidazole derivatives. Reagents and conditions: (a) CH₃NH₂, NEt₃, EtOH, rt or 55°C, overnight; (b) H₂, Pd/C, THF, rt, overnight; (c) Na₂SxH₂O, NaHCO₃, MeOH, reflux, 1h; (d) BrCN, CH₂Cl₂, RT, overnight; (e) BrCN, MeCN/H₂O, 55°C, 3h, then RT, overnight; (f) **2a-f** or **2pz**, toluene/40% NaOH, aq. (4mL/mmol), 80-85°C, 2-6h (general procedure II); (g) **2a-d** or **2pz**, toluene/DMSO (2mL/mmol), 1 mL/mmol 40% NaOH, aq., 65°C, 30-60min (general procedure III).

General Procedure I for Oxidation to Nitroso Compounds: The aniline compound (1 eq.) was dissolved in dichloromethane and Oxone[®] (2 eq.) was dissolved in an equal amount of water. The solutions were mixed and stirred vigorously at ambient temperature for 2 - 16 h until consumption of the staring material. The reaction was quenched by addition of sat. NaHCO₃ solution (aq.). The layers were separated and the aqueous layer was extracted with dichloromethane (2x). The combined organic layers were dried over Na₂SO₄, filtered and evaporated under reduced pressure to yield the crude nitroso derivatives. Crude nitroso derivatives were purified by column chromatography as indicated. The respective turquoise spots were collected and used without characterization.

General Procedure II for Basic BAEYER-MILLS Reaction: The respective 2-benzimidazole amine (1 eq.) and the respective nitroso compound (2 eq.) were dissolved in toluene (2 mL/mmol) and an equal amount of 40% NaOH (aq.) was added. The biphasic system was heated to $80-85^{\circ}$ C for 2 – 6 h until consumption of the 2-benzimidazole amine derivative. The

reaction was diluted with water and the aqueous layer was extracted with EtOAc or CH_2Cl_2 . The combined organic extracts were washed with brine, dried over Na_2SO_4 , filtered and concentrated *in vacuo*.

General Procedure III for Basic BAEYER-MILLS Reaction containing DMSO: The respective 2-benzimidazole amine (1 eq.) and the respective nitroso compound (2 eq.) were dissolved in DMSO/toluene (50:50, 2 mL/mmol) and 40% NaOH, aq. (1 mL/mmol) was added. The reaction was stirred at 65 °C for 30–60 min and quenched with water. The aqueous layer was extracted with EtOAc or CH_2Cl_2 and the combined organic extracts were washed with brine (3x), dried over Na_2SO_4 , filtered and concentrated *in vacuo*.

1-Ethoxy-4-nitrosobenzene (2b)

The reaction was performed according to general procedure I from commercially available 4-ethoxyaniline (280 μ L, 2.19 mmol). Gravity column chromatography with 6:1 petroleum ether/EtOAc was used for purification. Compound **2b** was obtained as a turquoise solid (0.260 g, 78.7 %) and used without characterization.

1-Ethoxy-3-nitrosobenzene (2c)

The reaction was performed according to general procedure I from commercially available 3-ethoxyaniline (467 μ mL, 3.64 mmol). Gravity column chromatography with 8:1 petroleum ether/EtOAc was used for purification. Compound **2c** was obtained as a turquoise solid (229 mg, 41.6 %) and used without characterization.

1-Chloro-4-nitrosobenzene (2d)

The reaction was performed according to general procedure I from commercially available 4-chloroaniline (0.401 g, 3.14 mmol). Gravity column chromatography with 1:1 petroleum ether/dichloromethane was used for purification. Compound **2d** was obtained as a turquoise solid (0.375 g, 84.5 %) and used without characterization.

1-Nitro-4-nitrosobenzene (2e)

The reaction was performed according to general procedure I from commercially available 4-nitroaniline (0.400 g, 2.90 mmol). Gravity column chromatography with 2:1 petroleum ether/dichloromethane was used for purification. Compound **2e** was obtained as a turquoise solid (0.206 g, 46.8 %) and used without characterization.

1-Nitro-3-nitrosobenzene (2f)

The reaction was performed according to general procedure I from commercially available 3-nitroaniline (0.400 g, 2.90 mmol). Gravity column chromatography with 3:1 petroleum ether/dichloromethane was used for purification. Compound **2f** was obtained as a turquoise solid (0.213 g, 48.4 %) and used without characterization.

1-methyl-3-nitroso-1H-pyrazole (2pz)

The reaction was performed according to general procedure I from commercially available 1-methyl-1H-pyrazole-3amine (0.250 g, 2.57 mmol). Gravity column chromatography with dichloromethane was used for purification. Compound **2pz** was obtained as a turquoise solid (0.125 g, 43.7 %)) and used without characterization.

(E)-2-(phenyldiazenyl)-1H-benzo[d]imidazole (3a)

The reaction was done according to general procedure II from commercially available 1*H*-benzo[*d*]imidazol-2amine (50.0 mg, 376 μ mol) and nitrosobenzene (40.2 mg, 376 μ mol). The crude product was purified by column chromatography with DCM/MeOH 50:1 + 1 % NEt₃. Compound **3a** was obtained as an orange solid (9.60 mg, 11.5 %).

¹H NMR (400 MHz, CD₂Cl₂) δ [ppm]: 8.07 – 7.98 (m, 2H), 7.79 – 7.69 (m, 2H), 7.64 – 7.53 (m, 3H), 7.43 – 7.35 (m, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ [ppm]: 157.6, 152.7, 133.6, 130.0, 125.2, 124.2. LC-MS analysis (254 nm): t_r = 10.18 min (cis) and 11.65 min (trans), ESI-MS: m/z calcd for C₁₃H₁₀N₄, 223.09; found, 223.00.

(E)-2-((4-ethoxyphenyl)diazenyl)-1H-benzo[d]imidazole (3b)

The reaction was done according to general procedure III from 1*H*-benzo[*d*]imidazol-2-amine (40.0 mg, 300 μ mol) and 4-ethoxynitrosobenzene (**2b**) (90.7 mg, 600 μ mol). The crude product was purified by gravity column chromatography with CH₂Cl₂ and then further purified via preparative TLC (PE/EtOAc; 7/3) to give **3b** as orange solid (7.30 mg, 9.13 %).

¹**H NMR** (400 MHz, DMSO-d₆) δ [ppm]: 12.82 (s, 1H), 8.02 – 7.95 (m, 2H), 7.80 – 7.46 (m, 2H), 7.30 (s, 2H), 7.23 – 7.15 (m, 2H), 4.19 (q, J = 6.9 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, DMSO-d₆) δ [ppm]: 163.1, 157.9, 146.6, 125.8, 115.9, 64.4, 15.0. **LC-MS analysis** (254 nm): t_r= 12.14 min (trans), ESI-MS: m/z calcd for C₁₅H₁₄N₄O, 267.12; found, 267.10.

(E)-2-((3-ethoxyphenyl)diazenyl)-1H-benzo[d]imidazole (3c)

The reaction was done according to general procedure III from compound 1*H*-benzo[*d*]imidazol-2-amine (50.0 mg, 376 μ mol) and compound **2c** (114 mg, 751 μ mol). Purification was done using column chromatography with CH₂Cl₂/MeOH 99:1 + 0.5 % NEt₃ to give compound **3c** as an orange solid (18.6 mg, 18.6%).

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.65 (m, 2H), 7.62 (d, J = 1.0 Hz, 1H), 7.52 (t, J = 2.2 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.14 – 7.08 (m, 1H), 4.06 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 156.9, 153.3, 130.0, 121.1, 119.7, 104.9, 63.8, 14.7. LC-MS analysis (254 nm): t_r= 10.54 min (cis) and 12.09 min (trans), ESI-MS: m/z calcd for C₁₅H₁₄N₄O, 267.12; found, 267.05.

(E)-2-((4-chlorophenyl)diazenyl)-1H-benzo[d]imidazole (3d)

The reaction was done according to general procedure III from 1*H*-benzo[*d*]imidazol-2-amine (40.0 mg, 300 μ mol) compound **2d** (90.7 mg, 600 μ mol). The crude product was purified by gravity column chromatography with CH₂Cl₂ and then further purified via prep-TLC (PE/EtOAc; 7/3) to give compound **3d** as orange solid (7.30 mg, 9.13 %).

¹H NMR (400 MHz, DMSO-d₆) δ [ppm]: 13.06 (s, 1H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.78 – 7.60 (m, 4H), 7.38 – 7.29 (m, 2H).¹³C NMR (101 MHz, DMSO-d₆) δ [ppm]: 157.5, 151.0, 137.9, 130.4, 125.1. LC-MS analysis (254 nm): t_r= 11.36 min (cis) and 12.56 min (trans), ESI-MS: m/z calcd for C₁₃H₉ClN₄, 257.05; found, 257.00.

(E)-5-methoxy-2-(phenyldiazenyl)-1H-benzo[d]imidazole (13aH)

The reaction was done according to general procedure II from 5-methoxy-1*H*-benzo[*d*]imidazol-2-amine (50.0 mg, 306 μ mol) and nitrosobenzene (65.6 mg, 613 μ mol). Pre-purification was performed using column chromatography with petroleum ether/EtOAc 4:1. Pure **13aH** was obtained after preparative TLC with CH₂Cl₂ + 0.1 % MeOH as an orange solid (24.1 mg, 31.5%).

¹**H NMR** (400 MHz, CDCl3) δ 10.58 (s, 1H), 8.00 – 7.88 (m, 2H), 7.78 (s, 1H), 7.48 (qd, *J* = 4.4, 1.7 Hz, 3H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.82 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 152.6, 132.9, 129.7, 124.0, 56.2. **LC-MS analysis** (254 nm): t_r= 11.93 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₂N₄O, 253.10; found, 253.00.

(E)-2-((1-methyl-1H-pyrazol-3-yl)diazenyl)-1H-benzo[d]imidazole (3pz)

The reaction was done according to general procedure II from 1*H*-benzo[*d*]imidazol-2-amine (50 mg, 0.376 mmol) and compound **2pz** (45.9 mg, 0.413 mmol). Purification was done via column chromatography using $CH_2Cl_2 + 1.5$ % MeOH. Compound **3pz** was obtained as an orange solid (63.0 mg, 74.2 %).

¹H NMR (400 MHz, DMSO-*d*₆) δ [ppm]: 13.02 (s, 1H), 7.93 – 7.88 (m, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.38 – 7.20 (m, 2H), 6.70 – 6.66 (m, 1H), 4.01 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ [ppm]: 163.1, 157.6, 143.6, 133.8, 133.5, 125.4, 122.5, 120.5, 112.5, 95.4. LC-MS analysis (254 nm): t_r= 7.57 min (cis) and 9.60 min (trans), ESI-MS: m/z calcd for C₁₁H₁₀N₆, 227.10; found, 227.20.

N-methyl-2-nitroaniline (5)

1-Fluoro-4-nitrobenzene (2.00 g, 14.2 mmol) was dissolved in EtOH and methylamine (33% in EtOH; 6.62 mL, 53.2 mmol) and triethylamine (2.40 mL, 17.1 mmol) were added. The reaction was stirred at rt for 18h. The solvent was evaporated *in vacuo* and compound **5** was directly used for the next reaction (2.16 g, quant yield).

N1-methylbenzene-1,2-diamine (6)

 NH_2 NH

Compound **5** (2.16 g, 14.2 mmol) was dissolved in THF and Pd/C (10 %wt) was added under argon atmosphere. Then, the flask was equipped with hydrogen and the solution was stirred under hydrogen-atmosphere for 24 h.

The mixture was filtered through Celite[®] and the solvent was removed *in vacuo*. Compound **6** was obtained as a dark brown oil (1.73 g, quant. yield) and directly used for the next step.

1-methyl-1*H*-benzo[*d*]imidazol-2-amine (**7**)

Cyanogen bromide (1.35 g, 12.8 mmol) was dissolved in CH_2Cl_2 and compound **6** (1.20 g, 9.82 mmol) was added, then the reaction was stirred at RT overnight. The solution was cooled in an ice bath for 10 mins and quenched by addition of 1N NaOH (aq.). The aqueous layer was diluted with brine and extracted with methylene chloride. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude compound was purified by column chromatography using $CH_2Cl_2 + 2\%$ MeOH + 0.1 % NEt₃ to obtain compound **7** as a dark brown solid (0.556 g, 38.5 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 7.41 – 7.38 (m, 1H), 7.15 – 7.03 (m, 3H), 4.70 (brs, 2H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 153.8, 141.1, 134.6, 121.8, 120.1, 116.2, 107.7, 28.8.

(E)-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (8a)

The reaction was done according to general procedure III using compound **7** (40.2 mg, 0.273 mmol) and commercially available nitrosobenzene (58.5 mg, 0.546 mmol). Purification was done via column chromatography using CH_2Cl_2 . Compound **8a** was obtained as an orange solid (58.3 mg, 90.3 %).

¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 7.94 – 7.89 (m, 1H), 7.57 – 7.52 (m, 3H), 7.49 – 7.44 (m, 1H), 7.41 – 7.32 (m, 2H), 4.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 153.3, 142.2, 136.2, 132.8, 129.3, 124.6, 124.1, 123.9, 122.2, 110.1, 29.9. LC-MS analysis (254 nm): t_r = 10.89 min (cis) and 11.91 min (trans), ESI-MS: m/z calcd for C₁₄H₁₂N₄, 237.11; found, 237.10.

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-1H-benzo[d]imidazole (8b)

The reaction was done according to general procedure III from compound **7** (42.4 mg, 0.288 mmol) and compound **2b** (87.1 mg, 0.576 mmol). Purification was done via column chromatography using $CH_2Cl_2 + 0.5\%$ MeOH. Compound **8b** was obtained as an orange solid (23.6 mg, 29.2 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 8.11 (d, 2H), 7.94 – 7.85 (m, 1H), 7.51 – 7.42 (m, 1H), 7.40 – 7.30 (m, 2H), 7.01 (d, 2H), 4.19 – 4.09 (m, 5H), 1.47 (t, *J* = 1.8 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ [ppm]: 163.3, 155.6, 147.9, 142.3, 136.2, 126.3, 124.1, 123.9, 121.9, 115.0, 109.9, 64.2, 29.9, 14.8. **LC-MS analysis** (254 nm): t_r= 11.30 min (*trans*), ESI-MS: m/z calcd for C₁₆H₁₆N₄O, 281.13; found, 281.10.

(E)-2-((4-chlorophenyl)diazenyl)-1-methyl-1H-benzo[d]imidazole (8d)

The reaction was done according to general procedure III from compound **7** (42.4 mg, 0.288 mmol) and compound **2d** (87.1 mg, 0.576 mmol). Purification was done via column chromatography using $CH_2Cl_2 + 0.5\%$ MeOH. Compound **8d** was obtained as an orange solid (62.1 mg, 89.3 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 8.10 – 8.04 (m, 2H), 7.95 – 7.89 (m, 1H), 7.57 – 7.47 (m, 3H), 7.45 – 7.33 (m, 2H), 4.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 155.0, 151.7, 142.3, 139.0, 136.3, 129.7, 125.0, 124.9, 124.3, 12

122.2, 110.1, 30.0. **LC-MS analysis** (254 nm): t_r= 11.05 min (*cis*) and 12.26 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₁ClN₄, 271.07; found, 271.00.

(E)-1-methyl-2-((4-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (8e)

The reaction was done according to general procedure II from compound **7** (35.0 mg, 0.238 mmol) and 2e (43.4 mg, 0.285 mmol). Purification was done via preparative TLC using $CH_2Cl_2 + 0.2\%$ MeOH. Compound **8e** was obtained as an orange solid (9.42 mg, 14.1 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 8.47 – 8.39 (m, 2H), 8.27 – 8.18 (m, 2H), 7.94 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.54 (dt, *J* = 8.4, 1.0 Hz, 1H), 7.50 – 7.36 (m, 2H), 4.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 156.2, 154.9, 149.7, 142.5, 136.6, 125.8, 125.0, 124.4, 122.8, 110.5, 30.2. **LC-MS analysis** (254 nm): t_r= 11.34 min (*cis*) and 12.15 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₁N₅O₂, 282.09; found, 282.15.

(E)-1-methyl-2-((1-methyl-1H-pyrazol-3-yl)diazenyl)-1H-benzo[d]imidazole (8pz)

The reaction was done according to general procedure II from compound **7** (54.0 mg, 0.330 mmol) and **2pz** (40.4 mg, 0.363 mmol). Purification was done via column chromatography using $CH_2Cl_2 + 2$ % MeOH. Compound **8pz** was obtained as an orange solid (60.2 mg, 75.9 %).

¹H NMR (400 MHz, MeOD) δ [ppm]: 7.81 – 7.75 (m, 1H), 7.74 – 7.69 (m, 1H), 7.67 – 7.62 (m, 1H), 7.47 – 7.36 (m, 2H), 6.78 (dd, J = 2.5, 0.9 Hz, 1H), 4.17 (s, 3H), 4.07 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ [ppm]: 165.6, 156.4, 142.5, 137.4, 134.4, 125.9, 125.3, 121.5, 111.8, 97.5, 40.0, 30.5. LC-MS analysis (254 nm): t_r = 8.19 min (*cis*) and 9.07 min (*trans*), ESI-MS: m/z calcd for C₁₂H₁₂N₆, 241.11; found, 241.00.

4-methoxy-N-methyl-2-nitroaniline (10)

1-Fluoro-4-methoxy-2-nitrobenzene (2.00 g, 11.7 mmol) was dissolved in EtOH and methylamine (33% in EtOH; 5.46 mL, 43.8 mmol) and triethylamine (1.95 mL, 14.0 mmol) were added. The reaction was stirred at rt for 18h. The solvent was evaporated *in vacuo*. The residue was dissolved in EtOAc and washed with water, dried over Na₂SO₄, and concentrated in vacuo. Compound **10** was used for the next reaction without further purification (1.45 g, 68.1 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 7.97 (s, 1H), 7.63 (d, *J* = 3.0 Hz, 1H), 7.20 – 7.15 (m, 1H), 6.83 (d, *J* = 9.3 Hz, 1H), 3.80 (s, 3H), 3.02 (d, *J* = 5.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ [ppm]: 149.7, 142.5, 131.0, 127.6, 114.9, 107.2, 56.0, 30.1.

4-methoxy-N1-methylbenzene-1,2-diamine (11)

Compound **10** (1.35 g, 7.41 mmol) was dissolved in EtOAc and Pd/C (10 %wt) was added under argon atmosphere. Then, the flask was equipped with hydrogen and the solution was stirred at 40°C under hydrogen-atmosphere for 20 h. The mixture was filtered through Celite[®] and the solvent was removed in vacuo. Compound **11** was used for the next reaction without purification (1.12 g, quant. yield).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 7.51 (d, *J* = 8.3 Hz, 1H), 7.30 – 7.24 (m, 2H), 4.64 (s, 3H), 4.19 (s, 3H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 153.7, 136.8, 132.3, 113.0, 103.9, 103.3, 55.7, 31.9.

5-methoxy-1-methyl-1H-benzo[d]imidazol-2-amine (12)

Cyanogen bromide (0.627 g, 5.92 mmol) and compound **11** (0.300 g, 1.97 mmol) were mixed and then dissolved in CAN/H₂O (1:1) and heated to 50 C for 1 h. The solution was cooled in an ice bath for 10 mins and quenched by addition of 1N NaOH (aq.). The aqueous layer was diluted with brine and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Compound **12** was purified via column chromatography with a gradient of 98:2 CH₂Cl₂/MeOH + 0.5 % NEt₃ to 9:1CH₂Cl₂/MeOH + 0.5 % NEt₃ and obtained as a red solid (0.180 g, 52.0 %).

¹**H NMR** (400 MHz, MeOD) δ [ppm]: 7.29 (d, *J* = 8.8 Hz, 1H), 6.92 (d, *J* = 2.3 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.3 Hz, 1H), 3.80 (s, 3H), 3.61 (s, 3H). ¹³**C NMR** (101 MHz, MeOD) δ [ppm]: 158.9, 151.8, 131.0, 126.4, 97.9, 56.5, 29.5.

(E)-5-methoxy-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (13a)

The reaction was done according to general procedure II from compound **12** (50 mg, 282 μ mol) and commercially available nitrosobenzene (66.4 mg, 564 μ mol). Pre-purification was performed using column chromatography with CH₂Cl₂/MeOH 95:5. Preparative TLC with CH₂Cl₂ + 0.1 % MeOH gave the pure compound **13a** (29.8 mg, 39.7%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.04 (m, 2H), 7.58 – 7.49 (m, 3H), 7.35 (d, J = 8.9 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 7.04 (dd, J = 8.9, 2.4 Hz, 1H), 4.15 (s, 3H), 3.87 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.6, 155.3, 153.4, 143.3, 132.6, 131.2, 129.3, 123.8, 116.1, 110.7, 102.6, 55.8, 30.0. **LC-MS analysis** (254 nm): t_r= 9.71 min (*cis*) and 10.25 min (*trans*), ESI-MS: m/z calcd for C₁₅H₁₄N₄O, 267.12; found, 267.20.

(E)-2-((4-ethoxyphenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13b)

The reaction was done according to general procedure II from compound **12** (40.0 mg, 226 μ mol) and **2b** (68.2 mg, 451 μ mol). Pre-purification was done with column chromatography (CH₂Cl₂: MeOH 95:5). Compound **13b** (10.5 mg, 15.0%) was obtained after purification via preparative TLC (CH₂Cl₂ + 0.15% MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.06 (m, 2H), 7.34 (d, J = 8.9 Hz, 1H), 7.30 (d, J = 2.3 Hz, 1H), 7.04 – 6.98 (m, 3H), 4.18 – 4.09 (m, 5H), 3.87 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.0, 157.4, 155.7, 147.9, 143.3, 131.1, 126.1, 115.3, 115.0, 110.5, 102.7, 64.1, 55.9, 29.9, 14.9. **LC-MS analysis** (254 nm): t_r= 10.19 min (*trans*), ESI-MS: m/z calcd for C₁₇H₁₈N₄O₂, 311.14; found, 311.10.

(E)-2-((3-ethoxyphenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13c)

The reaction was done according to general procedure II using compound **12** (40.0 mg, 226 μ mol) and **2c** (68.2 mg, 451 μ mol). Pre-purification was performed using column chromatography with CH₂Cl₂/ MeOH 95:5. Purification via preparative TLC (CH₂Cl₂: MeOH 99.85:0.15) yielded compound **13c** as an orange solid (8.22 mg, 11.7%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.70 (m, 1H), 7.64 – 7.60 (m, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.05 (dd, J = 8.9, 2.4 Hz, 1H), 4.20 – 4.10 (m, 5H), 3.88 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.8, 157.7, 154.6, 143.3, 131.3, 130.0, 119.8, 117.2, 116.2,

110.7, 108.1, 102.7, 63.9, 55.9, 30.1, 14.9. **LC-MS analysis** (254 nm): t_r= 10.43 min (*cis*) and 11.22 min (*trans*), ESI-MS: m/z calcd for C₁₇H₁₈N₄O₂, 311.14; found, 311.10.

(E)-2-((4-chlorophenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13d)

The reaction was done according to general procedure II from compound **12** (50.0 mg, 282 μ mol) and **2d** (79.9 mg, 564 μ mol). Pre-purification was done via column chromatography (CH₂Cl₂: MeOH 98:2). Reversed-phase flash column chromatography yielded compound **13d** as an orange solid (38.9 mg, 45.8 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 8.06 – 7.95 (m, 2H), 7.51 – 7.44 (m, 2H), 7.32 (d, J = 8.9 Hz, 1H), 7.27 (d, J = 2.3 Hz, 1H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 4.11 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 157.74, 155.09, 151.70, 143.31, 138.59, 131.23, 129.64, 124.90, 116.39, 110.76, 102.52, 55.80, 29.98. LC-MS analysis (254 nm): t_r= 11.80 min (*cis*) and 12.73 min (*trans*), ESI-MS: m/z calcd for C₁₅H₁₃ClN₄O, 301.08; found, 301.05.

(E)-5-methoxy-1-methyl-2-((4-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (13e)

The reaction was done according to general procedure II from compound **12** (50 mg, 282 μ mol) and **2e** (85.8 mg, 564 μ mol). Pre-purification was performed with flash column chromatography (CH₂Cl₂: MeOH 99:1). Preparative TLC with CH₂Cl₂ + 0.5% MeOH yielded compound **13e** (7.89 mg, 8.98 %) as an orange solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 8.5 – 8.4 (m, 2H), 8.2 – 8.1 (m, 2H), 7.5 (d, J = 9.0 Hz, 1H), 7.3 (d, J = 2.4 Hz, 1H), 7.1 (dd, J = 9.0, 2.4 Hz, 1H), 4.2 (s, 3H), 3.9 (s, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ [ppm]:158.6, 156.9, 149.9, 144.0, 125.4, 124.6, 118.0, 111.8, 102.6, 56.3, 30.8. LC-MS analysis (254 nm): t_r= 12.62 min (*trans*), ESI-MS: m/z calcd for C₁₅H₁₃N₅O₃, 312.10; found, 312.10.

(E)-5-methoxy-1-methyl-2-((3-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (13f)

The reaction was done according to general procedure II from compound **12** (50.0 mg, 282 μ mol) and **2f** (64.4 mg, 423 μ mol). Pre-purification was performed with column chromatography (CH₂Cl₂: MeOH 99:1). Reversed-phase column chromatography yielded compound **13f** as an orange solid (2.81 mg, 3.20 %).

¹H NMR (400 MHz, CD₂Cl₂) δ [ppm]: 8.73 (t, J = 2.1 Hz, 1H), 8.37 – 8.33 (m, 1H), 8.33 – 8.28 (m, 1H), 7.71 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.18 (d, J = 2.4 Hz, 1H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 4.12 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 153.7, 149.3, 143.6, 131.7, 131.6, 130.5, 126.1, 117.6, 115.8, 111.1, 102.5, 55.9, 30.3. LC-MS analysis (254 nm): tr= 10.33 min (*cis*) and 11.20 min (*trans*), ESI-MS: m/z calcd for C₁₅H₁₃N₅O₃, 312.10; found, 312.05.

(E)-5-methoxy-1-methyl-2-((1-methyl-1H-pyrazol-3-yl)diazenyl)-1H-benzo[d]imidazole (13pz)

The reaction was done according to general procedure II using compound **12** (25.0 mg, 141 µmol) and **2pz** (31.4 mg, 282 µmol). Pre-purification was done with column chromatography (CH₂Cl₂: MeOH 98:2). Compound **13pz** was obtained as an orange solid (15.7 mg, 41.2 %) after purification via reversed-phase column chromatography. ¹H NMR (400 MHz, CDCl₃) δ [ppm]: 7.42 (d, *J* = 2.4 Hz, 1H), 7.33 (d, *J* = 8.9 Hz, 1H), 7.29 (d, *J* = 2.3 Hz, 1H), 7.03 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.82 (d, *J* = 2.4 Hz, 1H), 4.12 (s, 3H), 4.04 (s, 3H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)

δ [ppm]: 164.1, 157.4, 155.7, 143.4, 132.2, 131.3, 116.1, 110.7, 102.6, 99.8, 55.9, 40.1, 30.7. **LC-MS analysis** (254 nm): t_r= 8.50 min (*cis*) and 9.17 min (*trans*), ESI-MS: m/z calcd for C₁₃H₁₄N₆O, 271.12; found, 271.10.

5-methoxy-N-methyl-2-nitroaniline (15)

3-Fluoro-4-nitroanisole (2.00 g, 11.7 mmol) was dissolved in EtOH and methylamine (33% in EtOH; 3.49 mL, 28.1 mmol) and triethylamine (1.95 mL, 28.1 mmol) were added. The solution was stirred at rt for 18h. The solution was cooled in an ice bath for 30 min and the red crystals were collected via vacuum filtration, washed with cold EtOH and dried under vacuum (1.96 g, 92.0 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 8.28 (s, 1H), 8.14 (d, J = 9.5 Hz, 1H), 6.24 (dd, J = 9.5, 2.6 Hz, 1H), 6.13 (d, J = 2.6 Hz, 1H), 3.88 (s, 3H), 3.01 (d, J = 5.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ [ppm]: 166.2, 148.8, 129.4, 104.6, 95.0, 55.8, 29.8.

5-methoxy-N1-methylbenzene-1,2-diamine (16)

Compound **15** (1.95 g, 19.7 mmol) was dissolved in THF and Pd/C (10 %wt) was added under argon atmosphere. Then, the flask was equipped with hydrogen and the solution was stirred under hydrogen-atmosphere for 24 h. The mixture was filtered through Celite[®] and the solvent was removed in vacuo. Compound **16** was obtained as a dark oil (1.61 g, quant. yield) was used for the next reaction without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 6.65 (d, *J* = 8.2 Hz, 1H), 6.26 (d, *J* = 2.7 Hz, 1H), 6.19 (dd, *J* = 8.2, 2.7 Hz, 1H), 3.77 (s, 3H), 2.99 (s, 2H), 2.85 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ [ppm]: 155.6, 141.6, 126.8, 117.8, 100.9, 98.5, 55.7, 30.9.

6-methoxy-1-methyl-1H-benzo[d]imidazol-2-amine (17)

Compound **16** (0.510 g, 3.35 mmol) and cyanogen bromide (0.710 g, 6.70 mmol) were dissolved in acetonitrile/water (1:1) and heated to 50°C for 5 h. The reaction was stirred in an ice bath and quenched by addition of 1N NaOH (aq.). The aqueous layer was diluted with brine and extracted with methylene chloride. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude compound was purified by column chromatography using $CH_2Cl_2 + 2\%$ MeOH to obtain compound **17** as a dark purple solid (0.484 g, 81.5 %).

¹**H NMR** (400 MHz, DMSO-d₆) δ [ppm]: 7.00 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 6.55 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.23 (s, 2H), 3.74 (s, 3H), 3.46 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-d₆) δ 154.7, 153.3, 136.3, 135.3, 114.6, 107.3, 93.7, 55.6, 28.4.

(E)-6-methoxy-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (18a)

The reaction was done according to general procedure III using compound **17** (40.0 mg, 0.226 mmol) and nitrosobenzene (48.4 mg, 0.451 mmol). Purification was done using column chromatography with CH2Cl2 + 0.2% MeOH to give compound **18a** as an orange solid (51.1 mg, 85.0 %).

¹**H NMR** (400 MHz, CD₂Cl₂) δ [ppm]: 8.08 – 8.01 (m, 2H), 7.72 (d, *J* = 8.9 Hz, 1H), 7.60 – 7.53 (m, 3H), 6.99 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.90 (d, *J* = 2.4 Hz, 1H), 4.12 (s, 3H), 3.92 (s, 3H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ [ppm]: 158.7,

155.5, 153.9, 137.7, 137.6, 132.8, 129.8, 123.9, 123.1, 115.2, 92.8, 56.4, 30.6. **LC-MS analysis** (254 nm): T_r= 11.20 min (*cis*) and 12.33 min (*trans*), ESI-MS: m/z calcd for C₁₅H₁₄N₄O, 267.12; found, 267.10.

(E)-2-((4-ethoxyphenyl)diazenyl)-6-methoxy-1-methyl-1H-benzo[d]imidazole (18b)

The reaction was done according to general procedure III from compound **17** (39.7 mg, 0.224 mmol) and **2b** (63.4 mg, 0.448 mmol). Purification was done using column chromatography with $CH_2Cl_2 + 0.2\%$ MeOH to give compound **18b** as an orange solid (35.9 mg, 51.2 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 8.06 (d, 2H), 7.75 (d, J = 8.9 Hz, 1H), 7.02 – 6.94 (m, 3H), 6.84 – 6.79 (m, 1H), 4.15 – 4.06 (m, 5H), 3.89 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 162.9, 157.8, 155.3, 147.9, 137.0, 136.9, 126.0, 122.6, 115.0, 114.3, 92.4, 64.1, 55.9, 29.8, 14.8. LC-MS analysis (254 nm): t_r= 12.26 min (*trans*), ESI-MS: m/z calcd for C₁₇H₁₈N₄O₂, 311.15; found, 311.10.

(E)-2-((4-chlorophenyl)diazenyl)-6-methoxy-1-methyl-1H-benzo[d]imidazole (18d)

The reaction was done according to general procedure III from compound **17** (39.7 mg, 0.224 mmol) and **2d** (63.4 mg, 0.448 mmol). Purification was done using column chromatography with $CH_2Cl_2 + 0.2\%$ MeOH to give **18d** as an orange solid (50.7 mg, 75.0 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 8.07 – 7.99 (m, 2H), 7.78 (d, J = 9.0 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.01 (dd, J = 9.0, 2.4 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 4.13 (s, 3H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 158.4, 154.8, 151.8, 138.4, 137.2, 129.7, 124.9, 123.1, 115.3, 92.3, 55.9, 30.0. LC-MS analysis (254 nm): t_r= 12.08 min (cis) and 13.08 min (trans), ESI-MS: m/z calcd for C₁₅H₁₃ClN₄O, 301.08; found, 301.05.

(E)-6-methoxy-1-methyl-2-((1-methyl-1H-pyrazol-3-yl)diazenyl)-1H-benzo[d]imidazole (18pz)

The reaction was done according to general procedure III from compound **17** (35.8 mg, 0.202 mmol) and **2pz** (44.9 mg, 0.404 mmol). Purification was done via reversed-phase flash chromatography using an isocratic gradient of water and MeOH. Compound **18pz** was obtained as an orange solid (44.7 mg, 81.9 %).

¹H NMR (400 MHz, CD₂Cl₂) δ [ppm]: 7.71 (d, *J* = 8.9 Hz, 1H), 7.45 (d, *J* = 2.4 Hz, 1H), 6.97 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.70 (d, *J* = 2.4 Hz, 1H), 4.07 (s, 3H), 4.04 (s, 3H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ [ppm]: 165.2, 158.7, 155.7, 137.7, 132.7, 122.9, 114.8, 96.5, 92.8, 56.4, 40.4, 30.8. LC-MS analysis (254 nm): t_r= 9.43 min (*cis*) and 10.20 min (*trans*), ESI-MS: m/z calcd for C₁₃H₁₄N₆O, 271.12; found, 271.15.

N-methyl-2,4-dinitroaniline (20)

1-Chlor-2,4-dinitrobenzene (3.00 g, 14.8 mmol) was dissolved in EtOH and NEt₃ (2.50 mL, 17.8 mmol) and methylamine (33% in EtOH; 4.43 mL, 35.6 mmol) were added. The reaction was heated to 55°C overnight. The solvent was evaporated and the crude product was partially suspended in a mixture of $CH_2Cl_2/EtOAc/MeOH$ (5:5:1). The solid was collected via vacuum filtration and dried in a desiccator. Compound **20** was obtained as a yellow solid (2.71 g, 92.8 %).

¹**H NMR** (400 MHz, DMSO-d₆) δ [ppm]: 8.86 (d, *J* = 2.8 Hz, 1H), 8.29 (dd, *J* = 9.6, 2.8 Hz, 1H), 7.59 (brs, 1H), 7.15 (d, *J* = 9.7 Hz, 1H), 3.06 (d, *J* = 5.0 Hz, 3H). ¹³**C NMR** (101 MHz, DMSO-d₆) δ [ppm]: 148.1, 134.2, 130.1, 123.6, 115.3, 30.4.

N1-methyl-4-nitrobenzene-1,2-diamine (21)

Compound **20** (2.71 g, 13.8 mmol) was dissolved in MeOH and heated to reflux. Na₂SxH₂O (10.7 g, 137 mmol) and NaHCO₃ (11.6 g, 137 mmol) were dissolved in water and added dropwise over 30 mins. The mixture was heated to reflux for another 30 mins and then cooled to RT. MeOH was evaporated and the aqueous phase was diluted with brine and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give compound **21** as a red solid (1.70 g, 74.3 %). The compound was used for the next step without purification. ¹H NMR (400 MHz, CDCl₃) δ [ppm]: 7.87 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.63 (d, *J* = 2.5 Hz, 1H), 6.55 (d, *J* = 8.9 Hz, 1H), 2.97 (d, *J* = 5.2 Hz, 3H).

1-methyl-5-nitro-1*H*-benzo[*d*]imidazol-2-amine (22)

Compound **21** (500 mg, 2.99 mmol) and cyanogen bromide (950 mg, 8.97 mmol) were dissolved in acetonitrile/water (1:1) and heated to 50°C for 3 h. The reaction was quenched by addition of 1N NaOH (aq.). The aqueous phase was extracted with EtOAc and the combined organic layers were washed with 1 N NaOH and brine. The solvent was removed *in vacuo*. Purification was done using column chromatography with $CH_2Cl_2/MeOH$ 97:3 + 0.1 % NEt₃. Compound **22** was obtained as a dark solid (236 mg, 41.1 %).

¹**H NMR** (400 MHz, DMSO-d₆) δ [ppm]: 7.92 (d, *J* = 2.2 Hz, 1H), 7.88 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 1H), 6.95 (brs, 2H), 3.58 (s, 3H).. ¹³**C NMR** (101 MHz, DMSO-d₆) δ [ppm]: 158.2, 142.7, 141.7, 140.3, 114.6, 109.4, 107.0, 28.9.

(E)-1-methyl-5-nitro-2-(phenyldiazenyl)-1H-benzo[d]imidazole (23a)

The reaction was done according to general procedure II from compound **22** (10.0 mg, 52.0 μ mol) and nitrosobenzene (11.2 mg, 104 μ mol). Purification was done via preparative TLC with petroleum ether/EtOAc 4:1 and yielded **23a** as an orange solid (5.57 mg, 19.6 %).

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (d, *J* = 2.1 Hz, 1H), 8.33 (dd, *J* = 9.0, 2.2 Hz, 1H), 8.19 – 8.12 (m, 2H), 7.68 – 7.55 (m, 4H), 4.27 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 157.5, 153.3, 145.0, 141.4, 139.9, 134.0, 129.6, 124.3, 120.0, 118.8, 110.3, 30.6. **LC-MS analysis** (254 nm): t_r = 9.72min (*cis*) and 11.09 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₁N₅O₂, 282.09; found, 282.05.

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-5-nitro-1H-benzo[d]imidazole (23b)

The reaction was done according to general procedure III from compound **22** (20.0 mg, 104 μ mol) and **2b** (31.5 mg, 208 μ mol). Purification was done via column chromatography with CH₂Cl₂ + 0.5 % MeOH and yielded **23b** as an orange solid (3.75 mg, 11.1 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 8.78 (d, J = 2.1 Hz, 1H), 8.30 (dd, J = 8.9, 2.1 Hz, 1H), 8.18 – 8.11 (m, 2H), 7.54 (d, J = 9.0 Hz, 1H), 7.09 – 7.02 (m, 2H), 4.22 (s, 3H), 4.18 (q, J = 7.0 Hz, 2H), 1.48 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101

MHz, CDCl₃) δ [ppm]: 164.3, 158.1, 147.9, 144.8, 141.5, 140.0, 127.0, 119.6, 118.3, 115.3, 110.0, 64.4, 30.5, 29.8, 14.8. **LC-MS analysis** (254 nm): t_r= 11.73 min (*trans*), ESI-MS: m/z calcd for C₁₆H₁₅N₅O₃, 326.12; found, 326.10.

(E)-2-((3-ethoxyphenyl)diazenyl)-1-methyl-5-nitro-1H-benzo[d]imidazole (23c)

The reaction was done according to general procedure III from compound **22** (25.0 mg, 130 μ mol) and **2c** (39.3 mg, 260 μ mol). The crude solid was recrystallized from CH₂Cl₂/MeOH and yielded **23c** as an orange solid (14.2 mg, 33.6 %).

¹**H NMR** (400 MHz, CD₂Cl₂) δ [ppm]: 8.74 (d, *J* = 2.1 Hz, 1H), 8.31 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.66 – 7.58 (m, 2H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.22 – 7.16 (m, 1H), 4.22 (s, 3H), 4.16 (q, *J* = 6.9 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CD2Cl₂) δ [ppm]: 160.5, 158.1, 155.0, 145.2, 141.9, 140.6, 130.7, 121.3, 120.2, 118.8, 118.4, 111.0, 108.2, 64.6, 31.2, 15.1. **LC-MS analysis** (254 nm): t_r= 11.97 min (*cis*)and 13.08 min (*trans*), ESI-MS: m/z calcd for C₁₆H₁₅N₅O₃, 326.12; found, 326.10.

(E)-2-((4-chlorophenyl)diazenyl)-1-methyl-5-nitro-1H-benzo[d]imidazole (23d)

The reaction was done according to general procedure III from compound **22** (25.0 mg, 130 μ mol) and **2d** (36.8 mg, 260 μ mol). Purification was done via preparative TLC with CH₂Cl₂ + 0.5 % MeOH and yielded **23d** as an orange solid (16.2 mg, 39.4 %).

¹**H NMR** (400 MHz, CD₂Cl₂) δ [ppm]: 8.73 (d, *J* = 2.2 Hz, 1H), 8.30 (dd, *J* = 9.0, 2.0 Hz, 1H), 8.10 – 8.04 (m, 2H), 7.64 – 7.56 (m, 3H), 4.21 (s, 3H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ [ppm]: 158.0, 152.2, 145.2, 141.8, 140.6, 140.4, 130.4, 125.8, 120.3, 118.9, 111.1, 31.2. **LC-MS analysis** (254 nm): t_r= 12.19 min (*cis*) and 13.09 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₀ClN₅O₂, 316.05; found, 316.00.

1-methyl-6-nitro-1H-benzo[d]imidazol-2-amine (25)

N1-methyl-5-nitrobenzene-1,2-diamine (151 mg, 903 μ mol mmol) and cyanogen bromide (197 mg, 1.86 mmol) were dissolved in acetonitrile/water (1:1) and heated to 55°C for 3 h and then continued to stir at RT overnight. The reaction was quenched by addition of 1N NaOH (aq.). The formed precipitate was collected via vacuum filtration and washed with water and CH₂Cl₂ and was dried in a desiccator overnight. Compound **25** was obtained as a yellow solid (104 mg, 59.9 %).

¹**H NMR** (400 MHz, DMSO-d₆) δ [ppm]: 8.05 (d, *J* = 2.3 Hz, 1H), 7.93 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.25 – 7.14 (m, 3H), 3.59 (s, 3H). ¹³**C NMR** (101 MHz, DMSO-d₆) δ [ppm]: 159.6, 149.6, 138.8, 134.6, 117.8, 113.4, 103.5, 28.7.

(E)-1-methyl-6-nitro-2-(phenyldiazenyl)-1H-benzo[d]imidazole (26a)

The reaction was done according to general procedure II using compound **25** (31.9 mg, 166 μ mol) and nitrosobenzene (22.2 mg, 207 μ mol). Purification was done via preparative TLC with CH₂Cl₂ + 2 % EtOAc and compound **26a** was obtained as an orange solid (10.6 mg, 22.7 %).

¹**H NMR** (400 MHz, CDCl₃) δ [ppm]: 8.51 (d, J = 2.2 Hz, 1H), 8.28 (dd, J = 9.0, 2.2 Hz, 1H), 8.20 – 8.13 (m, 2H), 7.98 (d, J = 8.9 Hz, 1H), 7.67 – 7.57 (m, 3H), 4.31 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ [ppm]: 153.4, 146.4, 144.6, 135.4, 146.4, 144.6, 135.4, 146.4, 144.6, 135.4, 146.4, 144.6, 135.4, 146.4, 144.6, 135.4, 146.4,

134.2, 129.7, 124.4, 122.3, 119.7, 107.3, 30.6. **LC-MS analysis** (254 nm): t_r= 11.00 min (*cis*) and 13.12 min (*trans*), ESI-MS: m/z calcd for C₁₄H₁₁N₅O₂, 282.09; found, 282.05.

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-6-nitro-1H-benzo[d]imidazole (26b)

The reaction was done according to general procedure III using compound **25** (29.7 mg, 155 μ mol) and **2b** (46.7 mg, 309 μ mol). Purification was done via preparative TLC with CH₂Cl₂ + 0.25 % MeOH and **So-223** was obtained as an orange solid (1.25 mg, 2.49 %).

¹H NMR (400 MHz, CDCl₃) δ [ppm]: 8.47 (d, J = 2.2 Hz, 1H), 8.26 (dd, J = 9.0, 2.2 Hz, 1H), 8.18 – 8.13 (m, 2H), 7.94 (d, J = 9.0 Hz, 1H), 7.08 – 7.02 (m, 2H), 4.26 (s, 3H), 4.19 (q, J = 7.0 Hz, 2H), 1.49 (t, J = 7.0 Hz, 3H).). ¹³C NMR (101 MHz, CDCl₃) δ [ppm]: 164.29, 147.80, 146.52, 126.93, 121.62, 119.30, 115.19, 106.86, 64.26, 30.27, 14.67. LC-MS analysis (254 nm): t_r= 11.85 min (*cis*) and 12.90 min (*trans*), ESI-MS: m/z calcd for C₁₆H₁₅N₅O₃, 326.12; found, 326.10.

NMR Spectra

(E)-2-(phenyldiazenyl)-1H-benzo[d]imidazole (3a)

S62

(E)-2-((3-ethoxyphenyl)diazenyl)-1H-benzo[d]imidazole (3c)

(E)-2-((4-chlorophenyl)diazenyl)-1H-benzo[d]imidazole (**3d**)

(E)-5-methoxy-2-(phenyldiazenyl)-1H-benzo[d]imidazole (13aH)

(E)-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (8a)

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-1H-benzo[d]imidazole (8b)

(E)-2-((4-chlorophenyl)diazenyl)-1-methyl-1H-benzo[d]imidazole (8d)

(E)-1-methyl-2-((4-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (8e)

(E)-1-methyl-2-((1-methyl-1H-pyrazol-3-yl)diazenyl)-1H-benzo[d]imidazole (8pz)

(E)-5-methoxy-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (13a)

(E)-2-((4-ethoxyphenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13b)

(E)-2-((3-ethoxyphenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13c)

(E)-2-((4-chlorophenyl)diazenyl)-5-methoxy-1-methyl-1H-benzo[d]imidazole (13d)

(E)-5-methoxy-1-methyl-2-((4-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (13e)

(E)-5-methoxy-1-methyl-2-((3-nitrophenyl)diazenyl)-1H-benzo[d]imidazole (13f)

(E)-5-methoxy-1-methyl-2-((1-methyl-1*H*-pyrazol-3-yl)diazenyl)-1*H*-benzo[*d*]imidazole (**13pz**)

(E)-6-methoxy-1-methyl-2-(phenyldiazenyl)-1H-benzo[d]imidazole (18a)

(E)-2-((4-ethoxyphenyl)diazenyl)-6-methoxy-1-methyl-1H-benzo[d]imidazole (18b)

(E)-2-((4-chlorophenyl)diazenyl)-6-methoxy-1-methyl-1H-benzo[d]imidazole (18d)

(*E*)-6-methoxy-1-methyl-2-((1-methyl-1*H*-pyrazol-3-yl)diazenyl)-1*H*-benzo[*d*]imidazole (**18pz**)

(E)-1-methyl-5-nitro-2-(phenyldiazenyl)-1H-benzo[d]imidazole (23a)

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-5-nitro-1H-benzo[d]imidazole (23b)

(*E*)-2-((3-ethoxyphenyl)diazenyl)-1-methyl-5-nitro-1*H*-benzo[*d*]imidazole (**23c**)

(E)-2-((4-chlorophenyl)diazenyl)-1-methyl-5-nitro-1H-benzo[d]imidazole (23d)

(E)-1-methyl-6-nitro-2-(phenyldiazenyl)-1H-benzo[d]imidazole (26a)

(E)-2-((4-ethoxyphenyl)diazenyl)-1-methyl-6-nitro-1H-benzo[d]imidazole (26b)

Computational

General Methods

Theoretical calculations were carried out in Gaussian16.⁵ All geometry optimisations and frequency calculations were performed in the density functional theory (DFT) framework using the hybrid exchange–correlation PBE0⁶ functional together with the GD3BJ version of Grimme's dispersion correction⁷ and the split-valence Pople's 6-31G(d,p) basis set.⁸ All geometry optimisations were carried out in gas phase until convergence, followed by a frequency calculation in order to ensure a true local minimum on the potential energy surface (PES) was achieved. Time-dependant DFT (TD-DFT) calculations were performed at the PBE0/6-31G(d,p)^{6,8} and the CAM-B3LYP/6-31G+(d,p)⁹ levels of theory in the gas phase. The excitation energies and oscillation strengths of the 20 lowest singlet excited states were computed for all available *E* and *Z* conformers. Visualisation and subsequent analysis of the energy-minimised structures was performed using Avogadro 1.2.0 software.

Optimised Geometries

Two conformers were obtained for each of the *E* and *Z* isomers of arylazobenzimidazoles **3a**, **8a**, **8e**, **23a** and **26a**. Four conformers were obtained for each of the *E* and *Z* isomers of arylazobenzimidazoles **13a**, **18a**, and **3pz**. Four available conformers were also identified for *E*-**8pz** whereas *Z*-**8pz** was characterised with three ground state conformations. All *E*-arylazobenzimidazoles conformers were predicted to adopt a planar disposition. The majority of the *Z*-arylazobenzimidazole conformers exhibited twisted geometry with the exception of the two pyrazole analogues **3pz** and **8pz** that demonstrated available planar conformations (1-*Z*-**3pz**, 2-*Z*-**3pz** and 1-*Z*-**8pz**). The free energies are computed relative to the lowest energy conformer of the isomer of the compound. Population of each conformer was obtained according to the Boltzmann distribution. The free energy and population are computed at 25 °C.

		Δ Free energy/		n an ulation (0(
compound	conformation	geometry	kJ mol ⁻¹	population/ %	
2-	1	planar	13.4	0.4	
Sa	2	planar	0	99.6	
	1	planar	17.5	0.08	
2	2	planar	20.2	0.03	
зрz	3	planar	9.13	2.45	
	4	planar	0	97.44	
9-	1	planar	0	72.9	
88	2	planar	2.45	27.1	
0	1	planar	0	80.1	
8e	2	planar	3.45	19.9	
	1	planar	1.51	30.3	
807	2	planar	3.74	12.4	
opz	3	planar	8.99	1.5	
	4	planar	0	55.8	
	1	planar	0	71.2	
13a	2	planar	6.18	5.9	
	3	planar	3.07	20.6	
	4	planar	8.57	2.3	
	1	planar	2.40	20.7	
		planar	2.18	20.7	
18a	2	pianar	0	49.9	
	3	pianar	2.05	21.8	
	4	pianar	4.66	7.6	
	•		•	70.0	
23a	1	pianar	0	70.6	
	2	pianar	2.17	29.4	
	1	planar	0	81.7	
26a	2	planar	3.71	18.3	
	-	1		_0.0	

Table S2. Calculated data for the optimised geometries of *E*-arylazobenzimidazoles considered at the PBE0-D3/6-31G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

	Δ Free energ		∆ Free energy/	y/	
compound	conformation	comormation geometry		population/ %	
2-	1	twisted	0	85.6	
Sd	2	twisted	4.41	14.4	
	1	planar	1.38	35.3	
2	2	planar	0	61.6	
Spz	3	twisted	7.72	2.7	
	4	twisted	12.3	0.4	
8-	1	twisted	0	98.6	
õa	2	twisted	10.5	1.4	
0-	1	twisted	0	99.97	
δe	2	twisted	20.5	0.03	
	1	planar	0	91.4	
8pz	2	twisted	6.30	7.2	
	3	twisted	10.3	1.4	
	1	twisted	0	90.2	
13 a	2	twisted	5.74	8.9	
	3	twisted	11.9	0.8	
	4	twisted	16.3	0.1	
		b	2.65	25.4	
	1	twisted	2.65	25.4	
18a	2	twisted	0	74.1	
	3	twisted	14.9	0.2	
	4	twisted	13.5	0.3	
23a	1	twisted	0	97.2	
	2	twisted	8.83	2.8	
	1	المحفونيية	0	00 1	
26a	2	twisted	U 2 م 7	3.0	
	2	IWISLEU	1.92	5.9	

Table S3. Calculated data for the optimised geometries of Z-arylazobenzimidazoles considered at the PBE0-D3/6-31G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

Cartesian coordinates for all optimised geometries

1-E- 3 a	
-----------------	--

С	-2.65803	0.66738	0.00002
С	-2.83485	-0.74176	-0.00002
Ν	-1.32621	0.99462	-0.00003
С	-0.70517	-0.16271	-0.00008
Ν	-1.56076	-1.23904	-0.00010
Ν	0.64628	-0.47144	-0.00016
Ν	1.40725	0.52926	-0.00015
С	-4.09384	-1.34080	0.00002
С	-5.18570	-0.48718	0.00009
С	-5.03193	0.91363	0.00012
С	-3.78105	1.50466	0.00008
Н	-4.21773	-2.41909	-0.00001
Н	-6.18639	-0.90834	0.00012
Н	-5.91966	1.53853	0.00017
Н	-3.65452	2.58197	0.00011
Н	5.68021	1.98301	-0.00002
С	5.01354	1.12631	0.00001
С	3.63709	1.31622	-0.00007
Н	3.19402	2.30693	-0.00015
С	2.77787	0.21402	-0.00005
С	3.30199	-1.08652	0.00006
Н	2.61621	-1.92645	0.00007
С	4.67500	-1.26815	0.00014
Н	5.08737	-2.27289	0.00022
С	5.53312	-0.16505	0.00011
Н	6.60840	-0.31739	0.00017
н	-1.26195	-2.20044	-0.00010

2-E- 3a				
С	-2.81277	-0.76666	-0.00001	
С	-2.61382	0.63982	0.00005	
Ν	-1.60998	-1.42676	0.00012	
С	-0.71174	-0.46792	0.00003	
Ν	-1.25402	0.79353	0.00016	
Ν	0.64908	-0.71415	-0.00003	
Ν	1.33013	0.34657	-0.00016	
С	-3.67447	1.54374	0.00007	
С	-4.95109	1.00174	-0.00001	
С	-5.16862	-0.38997	-0.00009	
С	-4.11337	-1.28512	-0.00009	
Н	-3.51489	2.61716	0.00015	
Н	-5.80751	1.66920	0.00000	
Н	-6.18826	-0.76232	-0.00013	
Н	-4.27018	-2.35850	-0.00012	
Н	5.48084	2.13651	-0.00002	
С	4.88126	1.23159	-0.00002	
С	3.49454	1.31631	-0.00009	
Н	2.98264	2.27352	-0.00016	
С	2.72215	0.15199	-0.00007	
С	3.34176	-1.10559	-0.00000	
Н	2.71979	-1.99396	-0.00000	
С	4.72482	-1.18126	0.00006	
Н	5.21121	-2.15213	0.00011	
С	5.49716	-0.01680	0.00006	
Н	6.58082	-0.08699	0.00011	
н	-0.69566	1.63207	0.00007	

-Z-**3**a

С	-1.69646	-0.42740	-0.36448
С	-2.48328	0.61848	0.18344
Ν	-0.39440	-0.02243	-0.52694
С	-0.37816	1.21850	-0.09920
Ν	-1.60773	1.66146	0.32456
Ν	0.61642	2.20336	-0.16791
Ν	1.83518	1.94760	-0.24915
С	-3.84061	0.46728	0.46308
С	-4.39880	-0.76772	0.17191
С	-3.63428	-1.81757	-0.37402
С	-2.28661	-1.66471	-0.64863
Н	-4.43459	1.27290	0.88259
Н	-5.45394	-0.93047	0.36903
Н	-4.11878	-2.76665	-0.58130
Н	-1.68975	-2.46807	-1.06684
Н	4.70455	-1.35595	-1.47346
С	3.98181	-0.99842	-0.74634
С	3.33605	0.21353	-0.95686
Н	3.54698	0.82199	-1.83031
С	2.37813	0.65365	-0.04347
С	2.12717	-0.07695	1.12167
Н	1.41212	0.29556	1.84823
С	2.80790	-1.26426	1.34346
Н	2.62069	-1.82745	2.25278
С	3.72328	-1.73804	0.40438
Н	4.24580	-2.67346	0.57935
Н	-1.79612	2.60347	0.62637

-Z-3a

С	-2.81277	-0.76666	-0.00001
С	-2.61382	0.63982	0.00005
Ν	-1.60998	-1.42676	0.00012
С	-0.71174	-0.46792	0.00003
Ν	-1.25402	0.79353	0.00016
Ν	0.64908	-0.71415	-0.00003
Ν	1.33013	0.34657	-0.00016
С	-3.67447	1.54374	0.00007
С	-4.95109	1.00174	-0.00001
С	-5.16862	-0.38997	-0.00009
С	-4.11337	-1.28512	-0.00009
Н	-3.51489	2.61716	0.00015
Н	-5.80751	1.66920	0.00000
Н	-6.18826	-0.76232	-0.00013
Н	-4.27018	-2.35850	-0.00012
Н	5.48084	2.13651	-0.00002
С	4.88126	1.23159	-0.00002
С	3.49454	1.31631	-0.00009
Н	2.98264	2.27352	-0.00016
С	2.72215	0.15199	-0.00007
С	3.34176	-1.10559	-0.00000
Н	2.71979	-1.99396	-0.00000
С	4.72482	-1.18126	0.00006
Н	5.21121	-2.15213	0.00011
С	5.49716	-0.01680	0.00006
Н	6.58082	-0.08699	0.00011
Н	-0.69566	1.63207	0.00007

1-E-**3pz**

С	2.75874	-0.69960	-0.00200
С	2.99866	0.69992	0.00386
Ν	1.41315	-0.96697	-0.00453
С	0.84475	0.21653	-0.00042
Ν	1.74787	1.25378	0.00481
Ν	-0.49098	0.58915	-0.00043
Ν	-1.29909	-0.37728	-0.00553
С	4.28303	1.24181	0.00742
С	5.33613	0.34022	0.00495
С	5.11960	-1.05181	-0.00085
С	3.84296	-1.58600	-0.00436
Н	4.45509	2.31353	0.01188
Н	6.35461	0.71643	0.00755
Н	5.97816	-1.71630	-0.00258
Н	3.66794	-2.65652	-0.00882
Н	-6.12458	-1.40036	1.03375
С	-5.94656	-1.00871	0.02837
Н	-6.76616	-0.34680	-0.25426
С	-4.55047	1.08364	-0.00910
Ν	-4.70799	-0.27022	-0.01743
Н	-5.40301	1.74759	-0.01219
С	-3.20116	1.32653	-0.00233
Ν	-3.55667	-0.92626	-0.01024
С	-2.62288	0.03211	-0.00407
Н	-5.88932	-1.84090	-0.67427
Н	-2.68546	2.27287	-0.00455
Н	1.49185	2.22719	0.00813

€ € 2-E-	3pz	5-5-	
C	-2.79744	-0.63165	-0.00156
c	-2.88331	0.78614	0.00149
N	-1.48921	-1.04414	-0.00191
С	-0.79525	0.07155	0.00081
Ν	-1.58024	1.20006	0.00294
Ν	0.57203	0.30251	0.00190
Ν	1.26817	-0.74591	0.00003
С	-4.10124	1.46466	0.00245
С	-5.24634	0.68350	0.00027
С	-5.18298	-0.72399	-0.00276
С	-3.97228	-1.39420	-0.00370
Н	-4.15509	2.54875	0.00478
Н	-6.21772	1.16855	0.00091
Н	-6.10894	-1.29083	-0.00437
Н	-3.91558	-2.47749	-0.00603
Н	5.33898	2.09868	0.84319
С	5.51156	1.43773	-0.00852
Н	6.51268	1.01056	0.05750
С	4.79460	-0.96951	0.00362
N	4.54384	0.36745	0.00387
Н	5.80414	-1.35321	0.00541
С	3.57092	-1.59398	0.00188
N	3.250/1	0.66263	0.00104
С	2.63984	-0.53121	0.00054
н	5.42040	2.01398	-0.93222
н	3.35120	-2.64996	0.00354
н	-1.21554	2.13849	0.00509

3-*E*-**3pz**

С	-2.87696	-0.81367	-0.00115
С	-2.75423	0.60140	0.00121
Ν	-1.64021	-1.40823	-0.00255
С	-0.79417	-0.40327	-0.00112
Ν	-1.40478	0.82761	0.00117
Ν	0.58004	-0.57577	-0.00188
Ν	1.18900	0.52982	-0.00045
С	-3.86215	1.44663	0.00300
С	-5.10823	0.83709	0.00236
С	-5.25019	-0.56399	0.00003
С	-4.14770	-1.40092	-0.00174
Н	-3.76045	2.52716	0.00480
Н	-5.99933	1.45759	0.00370
Н	-6.24821	-0.99108	-0.00038
Н	-4.24642	-2.48123	-0.00354
Н	5.49557	-1.92680	-0.85422
С	5.60403	-1.26453	0.00690
Н	6.56573	-0.75304	-0.04268
С	4.68273	1.07332	-0.00290
Ν	4.54880	-0.27954	-0.00270
Н	5.65461	1.54425	-0.00428
С	3.40895	1.58948	-0.00186
Ν	3.28642	-0.68537	-0.00061
С	2.57457	0.44894	-0.00064
Н	5.55094	-1.85790	0.92238
Н	3.10439	2.62432	-0.00351
Н	-0.89175	1.69428	0.00242

4-*E*-**3pz**

	-		
С	2.97608	0.72031	0.00367
С	2.69454	-0.67186	-0.00194
Ν	1.81369	1.45040	0.00535
С	0.86127	0.54580	0.00095
Ν	1.32798	-0.74527	-0.00355
Ν	-0.48505	0.86857	0.00083
Ν	-1.21734	-0.16026	-0.00401
С	3.69988	-1.63675	-0.00466
С	5.00670	-1.17171	-0.00161
С	5.30583	0.20441	0.00394
С	4.30490	1.16048	0.00663
Н	3.47645	-2.69874	-0.00894
Н	5.82209	-1.88877	-0.00357
Н	6.34566	0.51618	0.00613
Н	4.52525	2.22268	0.01090
Н	-5.91474	-1.63997	1.01758
С	-5.79246	-1.19891	0.02451
Н	-6.66991	-0.59746	-0.21585
С	-4.58044	1.00479	-0.00815
Ν	-4.62162	-0.35730	-0.01596
Н	-5.48677	1.59305	-0.01096
С	-3.25716	1.36483	-0.00161
Ν	-3.41683	-0.91200	-0.00919
С	-2.57213	0.12535	-0.00313
Н	-5.68522	-1.99767	-0.71080
Н	-2.82103	2.35064	-0.00300
Н	0.72035	-1.54939	-0.00727

С	2.14053	0.55077	-0.00107
С	2.86060	-0.67047	0.00459
Ν	0.78873	0.31265	-0.00620
С	0.66700	-1.00115	-0.00384
Ν	1.89189	-1.63076	0.00248
Ν	-0.38057	-1.91664	-0.00623
Ν	-1.61889	-1.70376	-0.00839
С	4.25483	-0.71612	0.01059
С	4.91553	0.50188	0.01073
С	4.21647	1.72512	0.00512
С	2.83333	1.76724	-0.00081
Н	4.79787	-1.65566	0.01491
Н	6.00112	0.51468	0.01528
Н	4.78069	2.65253	0.00551
Н	2.28931	2.70591	-0.00509
Н	-6.05965	-0.17170	-0.48214
С	-3.23252	1.50241	-0.02273
С	-2.00504	0.89465	-0.01949
Н	-5.88604	1.60314	-0.42889
Ν	-4.16788	0.50975	-0.01719
С	-2.30360	-0.49865	-0.00839
Н	-3.51821	2.54461	-0.03269
Н	-1.02290	1.33594	-0.03102
С	-5.60184	0.66340	0.04734
Ν	-3.64137	-0.69609	-0.00438
н	-5.94488	0.66343	1.08610
Н	1.98758	-2.63340	0.00507

С	-2.62496	-0.72417	-0.00009
С	-1.85498	0.47006	0.00011
Ν	-1.81211	-1.81577	-0.00005
С	-0.57871	-1.32548	0.00013
Ν	-0.55928	0.05357	0.00023
Ν	0.46068	-2.23923	0.00024
Ν	1.70426	-2.04665	0.00021
С	-2.44356	1.73796	0.00014
С	-3.82668	1.77869	-0.00003
С	-4.60863	0.60211	-0.00023
С	-4.02734	-0.65030	-0.00026
Н	-1.84948	2.64633	0.00029
Н	-4.32774	2.74216	-0.00002
Н	-5.69048	0.69272	-0.00036
Н	-4.61886	-1.55963	-0.00041
Н	2.57223	2.93748	-0.89158
С	4.27845	0.36730	-0.00038
С	3.84681	-0.93537	-0.00036
Н	4.11264	2.98800	0.00024
Ν	3.16865	1.14727	0.00001
С	2.43444	-0.85400	0.00003
Н	5.26670	0.80288	-0.00062
Н	4.42948	-1.84264	-0.00056
С	3.09841	2.58839	0.00006
Ν	2.04699	0.43344	0.00026
Н	2.57197	2.93736	0.89158
Н	0.30977	0.59583	0.00038

3-Z-**3pz**

С	1.72707	0.12215	-0.63866
С	2.32558	-0.54708	0.45845
Ν	0.48159	-0.39709	-0.90620
С	0.32335	-1.34031	-0.01051
Ν	1.40442	-1.50021	0.81626
Ν	-0.67563	-2.32454	0.04787
Ν	-1.88279	-2.07397	-0.15171
С	3.58077	-0.20345	0.95290
С	4.23996	0.83486	0.30917
С	3.66584	1.50722	-0.78474
С	2.41476	1.16265	-1.27131
н	4.02827	-0.72160	1.79523
Н	5.22395	1.13346	0.65756
Н	4.21929	2.31412	-1.25535
Н	1.96568	1.67776	-2.11392
Н	-2.97244	2.24022	2.24082
С	-3.65906	0.97538	-0.55490
С	-3.46559	-0.32613	-0.95624
Н	-3.20660	3.21312	0.76514
Ν	-2.75266	1.22140	0.42578
С	-2.37866	-0.76197	-0.17151
Н	-4.36010	1.73144	-0.87648
Н	-3.99224	-0.87923	-1.71770
С	-2.61797	2.41663	1.22164
Ν	-1.96777	0.17942	0.68023
н	-1.56761	2.71076	1.25221
н	1.47542	-2.19477	1.54107

С 2.29407 0.44281 -0.53452 С 0.73053 1.97589 -0.10355 Ν 1.38854 1.43118 -0.88236 С 0.54376 1.45591 0.11120 Ν 0.84386 0.57753 1.12266 Ν 0.25956 -0.52247 2.37124 0.26550 Ν -1.70949 1.98016 С 2.73310 -1.10654 1.32758 С 3.83051 -1.56702 0.61091 С 4.15954 -1.04059 -0.64909 С 3.40294 -0.03588 -1.23506 2.48139 2.30135 Н -1.51484 4.44747 -2.35297 1.03555 Н 5.02770 -1.42959 -1.17220 Н 0.37836 -2.20565 Н 3.65444 Н -5.09185 -1.40623 1.09415 С -2.38778 -1.39074 -0.76766 С -1.43674 -0.40207 -0.73790 Н -4.62546 -2.64055 -0.10468 Ν -3.48112 -0.91117 -0.11482 С -2.07325 0.65970 -0.03861 -1.19699 -2.37519 -2.38213 Н Н -0.45188 -0.43078 -1.17661 С 0.07134 -4.75165 -1.57176 Ν -3.32339 0.33051 0.31324 Н -5.49516 -1.17218 -0.62326 0.31459 0.45313 1.96945 Н

1-E-**8a**

С	2.55073	-0.90085	0.00000
С	2.77123	0.50003	0.00004
Ν	1.21134	-1.17998	-0.00002
С	0.62983	0.00017	0.00001
Ν	1.52127	1.05668	0.00004
Ν	-0.71577	0.32486	0.00000
Ν	-1.49000	-0.66600	-0.00003
С	1.21452	2.46540	0.00007
Н	0.13148	2.57715	0.00006
Н	1.63041	2.94569	-0.89096
Н	1.63040	2.94565	0.89113
С	4.04766	1.06262	0.00007
С	5.11336	0.17636	0.00006
С	4.91592	-1.21950	0.00002
С	3.64755	-1.77256	-0.00001
Н	4.20315	2.13689	0.00009
Н	6.12683	0.56587	0.00008
Н	5.78408	-1.87142	0.00002
Н	3.48889	-2.84569	-0.00003
Н	-5.77478	-2.07985	-0.00011
С	-5.10116	-1.22857	-0.00008
С	-3.72640	-1.42989	-0.00007
Н	-3.29159	-2.42426	-0.00009
С	-2.85695	-0.33547	-0.00004
С	-3.37109	0.96903	-0.00001
Н	-2.68071	1.80503	0.00002
С	-4.74258	1.16242	-0.00002
Н	-5.14612	2.17076	0.00000
С	-5.61025	0.06695	-0.00006
Н	-6.68417	0.22844	-0.00006

2*-E-*8a

С	-2.71268	-0.94418	-0.00013	
С	-2.67192	0.46971	0.00005	
Ν	-1.44602	-1.45240	-0.00015	
С	-0.64986	-0.39955	0.00001	
Ν	-1.34182	0.80495	0.00013	
Ν	0.71411	-0.62313	0.00003	
Ν	1.46291	0.38823	-0.00012	
С	-0.87679	2.17680	0.00042	
Н	0.20871	2.18121	0.00046	
Н	-1.25097	2.69205	0.89092	
Н	-1.25087	2.69240	-0.88992	
С	-3.82591	1.25341	0.00015	
С	-5.03433	0.57333	0.00003	
С	-5.09514	-0.83501	-0.00017	
С	-3.94712	-1.60694	-0.00025	
Н	-3.78663	2.33794	0.00030	
Н	-5.96029	1.14050	0.00009	
Н	-6.06725	-1.31814	-0.00026	
Н	-3.98277	-2.69116	-0.00040	
Н	5.74647	1.84135	-0.00075	
С	5.07708	0.98670	-0.00043	
С	3.70128	1.18180	-0.00045	
Н	3.27042	2.17825	-0.00079	
С	2.83842	0.08323	-0.00006	
С	3.35614	-1.21918	0.00038	
Н	2.66470	-2.05467	0.00069	
С	4.72896	-1.40509	0.00041	
Н	5.13582	-2.41197	0.00076	
С	5.59214	-0.30647	0.00000	
Н	6.66679	-0.46264	0.00004	

2-2-**8a**

1*-Z*-**8a**

С	-1.50921	-0.76466	-0.43141
С	-2.35640	0.25108	0.07743
Ν	-0.24816	-0.27390	-0.65070
С	-0.31989	0.98952	-0.29484
Ν	-1.57380	1.37500	0.13177
Ν	0.61309	2.01485	-0.47880
Ν	1.84596	1.82563	-0.52281
С	-1.97810	2.69295	0.55519
Н	-1.20078	3.39684	0.25714
Н	-2.11079	2.73521	1.64098
Н	-2.92002	2.96182	0.06951
С	-3.69046	0.02038	0.41121
С	-4.16497	-1.26659	0.20852
С	-3.33989	-2.28821	-0.30211
С	-2.01466	-2.05542	-0.62748
Н	-4.32842	0.80428	0.80695
Н	-5.19875	-1.49417	0.44986
Н	-3.75828	-3.28048	-0.43987
Н	-1.37276	-2.83761	-1.01844
Н	4.96069	-1.40332	-1.23624
С	4.18907	-1.00916	-0.58195
С	3.47749	0.12231	-0.96074
Н	3.68326	0.63296	-1.89588
С	2.45888	0.60558	-0.13942
С	2.20880	0.00639	1.09889
Н	1.44471	0.41603	1.75193
С	2.95264	-1.09732	1.48694
Н	2.76559	-1.55729	2.45263
С	3.93195	-1.61943	0.64260
Н	4.50435	-2.48990	0.94808

С	2.17234	0.52669	-0.61769
С	1.75131	-0.07785	0.58774
Ν	1.27132	1.49501	-1.01132
С	0.32890	1.44293	-0.10704
Ν	0.55886	0.53814	0.90563
Ν	-0.77118	2.33221	-0.09044
Ν	-1.94742	1.91702	-0.08582
С	-0.23932	0.27525	2.07672
Н	-0.90507	1.11864	2.26272
Н	0.41932	0.15803	2.94098
Н	-0.84200	-0.62973	1.94956
С	2.48427	-1.07428	1.22637
С	3.66615	-1.46598	0.61077
С	4.09876	-0.88004	-0.59125
С	3.36496	0.11652	-1.21789
Н	2.14857	-1.53485	2.15024
Н	4.26733	-2.24656	1.06681
Н	5.02993	-1.21752	-1.03593
Н	3.69592	0.57556	-2.14346
Н	-4.70090	-1.53690	0.90602
С	-3.84201	-1.19812	0.33501
С	-3.40766	0.11568	0.45164
Н	-3.91569	0.82734	1.09501
С	-2.28271	0.54483	-0.25784
С	-1.63899	-0.32143	-1.15087
Н	-0.80019	0.02711	-1.74398
С	-2.10417	-1.62293	-1.28625
н	-1.61354	-2.29374	-1.98468
С	-3.18961	-2.06986	-0.53417
н	-3.53821	-3.09251	-0.64104

1-E-**8e**

С	-3.68719	-0.88075	-0.00002
С	-3.87611	0.52617	0.00005
Ν	-2.35726	-1.18955	-0.00012
С	-1.74864	-0.02142	-0.00013
Ν	-2.61617	1.05525	-0.00002
Ν	-0.39885	0.26674	-0.00023
Ν	0.35293	-0.74209	-0.00031
С	-2.27953	2.45804	0.00000
Н	-1.19471	2.54896	-0.00007
Н	-2.68540	2.94572	0.89127
Н	-2.68552	2.94577	-0.89119
С	-5.14077	1.11701	0.00016
С	-6.22346	0.25365	0.00021
С	-6.05742	-1.14813	0.00015
С	-4.80362	-1.72957	0.00003
Н	-5.27341	2.19415	0.00022
Н	-7.22841	0.66442	0.00030
Н	-6.94057	-1.77932	0.00019
Н	-4.66827	-2.80574	-0.00002
Н	4.64100	-2.20430	0.00033
С	3.95339	-1.36756	0.00015
С	2.57796	-1.54097	0.00002
Н	2.13049	-2.52904	0.00008
С	1.72564	-0.43162	-0.00017
С	2.25675	0.86729	-0.00027
Н	1.57929	1.71295	-0.00046
С	3.62681	1.04942	-0.00019
Н	4.07605	2.03523	-0.00027
С	4.45415	-0.07213	0.00002
Ν	5.90331	0.12376	0.00015
0	6.31672	1.27262	0.00033
0	6.60752	-0.87314	0.00007

2*-E-*8e

_

Ν	5.89718	-0.24999	-0.00006
0	6.32904	-1.39159	0.00016
0	6.58520	0.75860	-0.00032
Н	-2.47996	2.71133	0.89098
С	3.92610	1.21110	-0.00035
С	4.44524	-0.07707	-0.00003
С	2.54857	1.36507	-0.00031
Н	4.60208	2.05722	-0.00065
С	3.63349	-1.20966	0.00036
С	1.71329	0.24361	0.00007
С	2.26043	-1.04821	0.00043
Н	2.09513	2.35063	-0.00056
Ν	0.33040	0.51536	0.00012
С	-2.08510	2.21264	0.00036
Н	4.09519	-2.18970	0.00065
Ν	-0.38499	-0.52124	-0.00001
Н	-1.00095	2.26300	0.00037
С	-1.75186	-0.35218	-0.00002
Ν	-2.49389	0.82207	0.00013
Н	1.58971	-1.89983	0.00073
С	-3.80682	0.43065	0.00005
С	-4.99375	1.16481	0.00014
Ν	-2.50465	-1.43929	-0.00020
С	-3.78837	-0.98536	-0.00016
С	-6.17018	0.43278	0.00001
Н	-5.00171	2.24985	0.00030
С	-4.99461	-1.70138	-0.00028
С	-6.17218	-0.97859	-0.00020
Н	-7.11972	0.95931	0.00007
Н	-4.98385	-2.78600	-0.00044
Н	-7.12352	-1.50110	-0.00030
Н	-2.47995	2.71161	-0.89012

-Z-**8e**

С	1.98985	0.90036	-0.36067
С	3.16352	0.24091	0.08484
Ν	0.95923	0.00935	-0.48459
С	1.47741	-1.14794	-0.13220
Ν	2.81276	-1.07599	0.20603
Ν	0.92218	-2.42581	-0.17898
Ν	-0.30477	-2.62755	-0.27746
С	3.66988	-2.16263	0.61726
Н	3.13407	-3.09736	0.45605
Н	3.93226	-2.06965	1.67547
Н	4.58494	-2.15689	0.01900
С	4.36423	0.91598	0.31152
С	4.35890	2.27932	0.06914
С	3.20191	2.95192	-0.37859
С	2.01350	2.28123	-0.59897
Н	5.25629	0.40402	0.65754
Н	5.26953	2.84855	0.22818
Н	3.25239	4.02244	-0.55061
Н	1.11905	2.79089	-0.94049
Н	-3.84348	-0.24701	-1.93173
С	-3.17200	-0.46744	-1.11089
С	-2.13452	-1.37571	-1.23955
Н	-1.96767	-1.90235	-2.17266
С	-1.27406	-1.59945	-0.16311
С	-1.49314	-0.97288	1.06886
Н	-0.83476	-1.18495	1.90452
С	-2.54450	-0.08589	1.20878
н	-2.74282	0.42232	2.14458
С	-3.36250	0.16531	0.11188
0	-5.16437	1.31522	-0.72425
Ν	-4.46126	1.11165	0.25401
0	-4.61159	1.64602	1.34265

*-Z-*8e

С	2.89484	-0.09212	-0.66825
С	2.33858	-0.30329	0.61317
Ν	2.41822	1.08242	-1.21188
С	1.57673	1.53060	-0.31840
Ν	1.48867	0.76257	0.82222
Ν	0.88678	2.75468	-0.47329
Ν	-0.35576	2.80840	-0.39178
С	0.75861	1.02636	2.03784
Н	0.45620	2.07364	2.06508
Н	1.40693	0.83283	2.89624
Н	-0.13416	0.39703	2.10726
С	2.67034	-1.39819	1.40731
С	3.57644	-2.30077	0.86776
С	4.13391	-2.11223	-0.40969
С	3.80497	-1.01500	-1.19028
Н	2.23511	-1.55224	2.38959
Н	3.85724	-3.17691	1.44388
Н	4.83887	-2.84547	-0.78881
Н	4.23543	-0.86101	-2.17396
Н	-4.04917	0.70377	1.24281
С	-3.18241	0.67752	0.59375
С	-2.29424	1.73720	0.50757
Н	-2.44730	2.64532	1.08128
С	-1.17145	1.64513	-0.32134
С	-0.97497	0.51918	-1.13275
Н	-0.12747	0.47265	-1.80816
С	-1.87874	-0.52946	-1.07285
Н	-1.76198	-1.41595	-1.68438
С	-2.95651	-0.44166	-0.19889
0	-4.82730	-1.45897	0.66036
Ν	-3.89529	-1.56079	-0.12111
0	-3.68329	-2.52406	-0.83907

1-*E*-**8pz**

С	-2.63426	-0.94016	0.00193
С	-2.91872	0.44895	-0.00244
Ν	-1.28299	-1.15799	0.00413
С	-0.75616	0.04689	0.00124
Ν	-1.69504	1.06191	-0.00280
Ν	0.57214	0.43739	0.00174
Ν	1.39657	-0.51539	0.00526
С	-1.45090	2.48247	-0.00670
Н	-0.37340	2.64009	-0.00633
Н	-1.88817	2.94704	0.88259
Н	-1.88679	2.94188	-0.89933
С	-4.21929	0.95250	-0.00541
С	-5.24394	0.01854	-0.00390
С	-4.98277	-1.36636	0.00044
С	-3.68993	-1.86071	0.00338
Н	-4.42349	2.01865	-0.00874
Н	-6.27412	0.36156	-0.00609
Н	-5.82001	-2.05763	0.00147
Н	-3.48213	-2.92543	0.00672
Н	6.23008	-1.47741	-1.03226
С	6.05217	-1.07955	-0.02934
Н	6.86378	-0.40357	0.24280
С	4.62743	0.99322	0.01107
Ν	4.80373	-0.35802	0.01667
Н	5.47049	1.66918	0.01518
С	3.27473	1.21728	0.00508
Ν	3.66136	-1.02992	0.00860
С	2.71388	-0.08504	0.00447
Н	6.01104	-1.90643	0.68077
Н	2.74879	2.15796	0.00915

2*-E-8pz*

С	-2.70925	-0.85446	-0.00006
С	-2.82008	0.55990	0.00005
Ν	-1.39548	-1.23778	-0.00010
С	-0.72455	-0.10547	-0.00001
Ν	-1.53100	1.01683	0.00009
Ν	0.63835	0.12951	0.00001
Ν	1.34833	-0.90958	-0.00008
С	-1.10339	2.39446	0.00020
Н	-0.01386	2.40754	0.00019
Н	-1.47715	2.90823	0.89128
Н	-1.47715	2.90838	-0.89080
С	-4.04903	1.21979	0.00011
С	-5.18098	0.41969	0.00005
С	-5.09284	-0.98712	-0.00007
С	-3.87108	-1.63726	-0.00012
Н	-4.11948	2.30301	0.00020
Н	-6.16099	0.88721	0.00009
Н	-6.00910	-1.56966	-0.00011
Н	-3.79690	-2.71958	-0.00021
Н	5.40301	1.97516	0.88980
С	5.54753	1.35833	0.00010
Н	6.55844	0.94957	0.00006
С	4.87970	-1.06291	-0.00010
Ν	4.60209	0.26849	0.00001
Н	5.89681	-1.42615	-0.00013
С	3.66890	-1.71234	-0.00015
Ν	3.30264	0.53707	0.00003
С	2.71638	-0.66899	-0.00006
Н	5.40301	1.97531	-0.88951
Н	3.47086	-2.77259	-0.00023

3-*E*-**8pz**

С	-2.75233	-0.99711	-0.00189
С	-2.79025	0.41670	0.00132
Ν	-1.45948	-1.43430	-0.00298
С	-0.72137	-0.34016	-0.00075
Ν	-1.48087	0.82504	0.00205
Ν	0.65471	-0.48886	-0.00140
Ν	1.33027	0.57475	-0.00241
С	-1.09674	2.22173	0.00611
Н	-0.01350	2.29003	0.00941
Н	-1.50388	2.71272	0.89604
Н	-1.49806	2.71664	-0.88431
С	-3.98604	1.13482	0.00324
С	-5.15536	0.38888	0.00177
С	-5.13769	-1.02027	-0.00146
С	-3.94805	-1.72704	-0.00333
Н	-4.00715	2.21993	0.00563
Н	-6.11130	0.90400	0.00309
Н	-6.08125	-1.55717	-0.00250
Н	-3.92334	-2.81162	-0.00580
Н	5.45356	-2.18752	-0.84849
С	5.60858	-1.53219	0.01086
Н	6.60455	-1.09108	-0.03948
С	4.85644	0.86515	-0.00664
Ν	4.62676	-0.47438	-0.00199
Н	5.85930	1.26600	-0.00958
С	3.62229	1.47050	-0.00728
Ν	3.33793	-0.78927	0.00144
С	2.70877	0.39241	-0.00235
н	5.51295	-2.11800	0.92781
Н	3.39318	2.52472	-0.01241

4-*E*-**8pz**

С	2.88824	-0.89796	-0.00311
С	2.76220	0.51086	0.00042
Ν	1.65406	-1.48164	-0.00346
С	0.79660	-0.47837	-0.00024
Ν	1.41422	0.76583	0.00222
Ν	-0.55380	-0.77981	0.00028
Ν	-1.34678	0.20008	0.00384
С	0.86957	2.10947	0.00589
Н	-0.21483	2.05616	0.00610
Н	1.21506	2.64703	-0.88300
Н	1.21552	2.64242	0.89738
С	3.86686	1.36247	0.00152
С	5.11462	0.75699	-0.00105
С	5.26015	-0.64473	-0.00458
С	4.16037	-1.48453	-0.00565
Н	3.76179	2.44263	0.00426
Н	6.00449	1.37929	-0.00030
Н	6.25951	-1.06884	-0.00648
Н	4.26185	-2.56464	-0.00836
Н	-6.13076	1.35760	-1.01476
С	-5.98472	0.91473	-0.02569
Н	-6.81943	0.25033	0.20082
С	-4.62157	-1.19867	0.00859
Ν	-4.75838	0.15688	0.01461
Н	-5.48449	-1.84903	0.01182
С	-3.27610	-1.46533	0.00290
Ν	-3.59436	0.79456	0.00758
С	-2.67987	-0.18113	0.00305
Н	-5.94018	1.71078	0.71916
Н	-2.77125	-2.41777	0.00544

2-2-8pz

1*-Z*-**8pz**

С	-1.94486	-0.84694	-0.12602
С	-2.72596	0.31837	0.05742
Ν	-0.62022	-0.51751	-0.23512
С	-0.57596	0.79849	-0.12768
Ν	-1.83558	1.35436	0.04179
Ν	0.43369	1.74173	-0.22575
Ν	1.67996	1.57892	-0.23442
С	-2.15961	2.75366	0.18046
Н	-1.24701	3.32339	0.01165
Н	-2.54376	2.96143	1.18405
Н	-2.91628	3.03461	-0.55791
С	-4.11257	0.27568	0.20876
С	-4.70237	-0.97771	0.16431
С	-3.94053	-2.14867	-0.02110
С	-2.56499	-2.10141	-0.16794
Н	-4.70180	1.17559	0.35307
Н	-5.77920	-1.06110	0.27518
Н	-4.44934	-3.10730	-0.04818
Н	-1.97388	-2.99997	-0.31118
Н	6.19865	0.21332	-0.38370
С	3.42863	-1.53613	0.13037
С	2.17718	-0.99053	0.01886
Н	6.09883	-1.55187	-0.14543
Ν	4.31852	-0.50414	0.07539
С	2.41335	0.40991	-0.09742
Н	3.75963	-2.55973	0.23334
Н	1.21826	-1.47861	-0.01242
С	5.75322	-0.58135	0.21421
Ν	3.73994	0.67017	-0.05956
Н	6.04861	-0.45465	1.25989

С	-1.58131	-0.53574	-0.73689
С	-2.24105	0.30774	0.19063
Ν	-0.36128	-0.00975	-1.08546
С	-0.28345	1.10575	-0.39883
Ν	-1.39473	1.37591	0.36322
Ν	0.66105	2.13080	-0.54689
Ν	1.88485	1.91243	-0.66817
С	-1.59622	2.52137	1.21332
Н	-0.88885	3.29604	0.91408
Н	-1.43177	2.26966	2.26602
Н	-2.61584	2.89560	1.08882
С	-3.48555	0.00038	0.73484
С	-4.07418	-1.18306	0.31014
С	-3.44012	-2.02919	-0.61794
С	-2.19840	-1.72046	-1.15128
Н	-3.97564	0.65069	1.45277
Н	-5.04690	-1.46245	0.70334
Н	-3.93850	-2.94553	-0.91955
Н	-1.70456	-2.37032	-1.86612
Н	3.10141	-1.67908	2.66784
С	3.82023	-1.04730	-0.33130
С	3.57509	0.11597	-1.02357
Н	3.44349	-2.94459	1.45950
Ν	2.89838	-1.11244	0.66350
С	2.44553	0.65942	-0.37888
Н	4.56658	-1.81750	-0.45882
Н	4.09618	0.50872	-1.88224
С	2.79626	-2.10254	1.70709
Ν	2.05613	-0.08410	0.65853
Н	1.76260	-2.44526	1.77727

3*-Z*-**8pz**

С	2.28459	0.37469	-0.72667
С	1.96313	-0.07557	0.57346
Ν	1.38295	1.33713	-1.14171
С	0.54013	1.43327	-0.14847
Ν	0.83646	0.63452	0.93308
Ν	-0.52514	2.36003	-0.08962
Ν	-1.71355	1.97091	-0.07543
С	0.10700	0.50414	2.16884
Н	-0.55321	1.36287	2.29335
Н	0.80943	0.48016	3.00593
Н	-0.49633	-0.40978	2.17337
С	2.71060	-1.04041	1.24249
С	3.80679	-1.55814	0.56350
С	4.14121	-1.12437	-0.73016
С	3.39174	-0.15959	-1.38878
Н	2.45078	-1.38079	2.24007
Н	4.41666	-2.31772	1.04296
Н	5.00741	-1.55559	-1.22268
Н	3.64770	0.18156	-2.38637
Н	-5.07482	-1.35859	1.04462
С	-2.35737	-1.49004	-0.78451
С	-1.41412	-0.49465	-0.84370
Н	-4.59736	-2.68536	-0.04628
Ν	-3.46361	-0.95614	-0.19932
С	-2.06872	0.62707	-0.26421
Н	-2.33172	-2.51935	-1.11198
Н	-0.42452	-0.55840	-1.26789
С	-4.73053	-1.60648	0.03986
Ν	-3.32088	0.32389	0.10331
н	-5.47444	-1.27082	-0.68723

*-E-***13**a

С	-1.92640	-0.31704	-0.00010
С	-1.95152	1.09789	-0.00008
Ν	-0.64053	-0.77706	-0.00003
С	0.10065	0.31408	0.00003
Ν	-0.63723	1.48050	0.00000
Ν	1.47540	0.45070	0.00014
Ν	2.10951	-0.63639	0.00003
С	-0.14170	2.83410	0.00007
Н	0.94646	2.79672	0.00009
Н	-0.48834	3.36655	0.89116
Н	-0.48831	3.36663	-0.89097
С	-3.14703	1.81985	-0.00013
С	-4.31746	1.08872	-0.00019
С	-4.31083	-0.32848	-0.00021
С	-3.12556	-1.04697	-0.00018
Н	-3.16655	2.90499	-0.00010
Н	-5.28356	1.58187	-0.00021
0	-5.54797	-0.88912	-0.00033
Н	-3.09092	-2.12896	-0.00023
Н	6.16764	-2.60970	-0.00048
С	5.61387	-1.67595	-0.00027
С	4.22456	-1.69192	-0.00024
Н	3.66112	-2.61949	-0.00042
С	3.50823	-0.49151	0.00002
С	4.19266	0.73234	0.00028
Н	3.62026	1.65315	0.00050
С	5.57779	0.74098	0.00025
Н	6.11211	1.68661	0.00045
С	6.29181	-0.46019	-0.00002
Н	7.37769	-0.44355	-0.00004
С	-5.61735	-2.29482	0.00064
Н	-6.67823	-2.54800	0.00107
Н	-5.14273	-2.72169	0.89372
Н	-5.14316	-2.72296	-0.89208

-E-13a

С	1.83364	-0.52763	-0.00002	
С	1.92633	0.88848	0.00003	
Ν	0.52333	-0.92403	-0.00003	
С	-0.16053	0.20097	0.00001	
Ν	0.62988	1.33272	0.00005	
Ν	-1.52963	0.40381	0.00001	
Ν	-2.21201	-0.65267	-0.00003	
С	0.19966	2.70786	0.00009	
Н	-0.88905	2.72345	0.00009	
Н	0.57144	3.22365	-0.89089	
Н	0.57144	3.22359	0.89111	
С	3.14940	1.54946	0.00006	
С	4.29563	0.76611	0.00003	
С	4.21918	-0.64522	-0.00002	
С	2.99488	-1.30196	-0.00004	
Н	3.22016	2.63252	0.00010	
Н	5.26142	1.25674	0.00005	
0	5.31702	-1.44915	-0.00004	
Н	2.95526	-2.38485	-0.00008	
Н	-6.35367	-2.44323	-0.00010	
С	-5.75874	-1.53519	-0.00006	
С	-4.37149	-1.61306	-0.00006	
Н	-3.84965	-2.56465	-0.00009	
С	-3.60299	-0.44550	-0.00002	
С	-4.23166	0.80785	0.00002	
Н	-3.61855	1.70206	0.00005	
С	-5.61496	0.87814	0.00002	
Н	-6.10684	1.84649	0.00005	
С	-6.38151	-0.29030	-0.00002	
Н	-7.46557	-0.22530	-0.00002	
С	6.58486	-0.84198	-0.00002	
Н	6.74293	-0.22380	0.89376	
Н	6.74293	-0.22374	-0.89375	
н	7.31034	-1.65664	-0.00005	

С	-2.03688	-0.46967	-0.00009
С	-1.84420	0.92860	-0.00004
Ν	-0.83448	-1.10979	-0.00011
С	0.07365	-0.14668	-0.00007
Ν	-0.48552	1.12219	-0.00003
Ν	1.40366	-0.51494	-0.00007
Ν	2.25965	0.40864	0.00004
С	0.12320	2.43645	-0.00000
Н	1.20301	2.32445	-0.00005
Н	-0.19353	2.98906	0.89043
Н	-0.19361	2.98913	-0.89036
С	-2.91714	1.82269	-0.00002
С	-4.18468	1.27544	-0.00005
С	-4.39482	-0.12601	-0.00007
С	-3.33140	-1.01410	-0.00012
Н	-2.77455	2.89840	0.00002
Н	-5.06478	1.90966	-0.00004
Н	-3.45896	-2.08915	-0.00017
Н	6.67781	1.37953	0.00029
С	5.91805	0.60406	0.00018
С	4.57230	0.94997	0.00017
Н	4.25399	1.98790	0.00028
С	3.59268	-0.04614	0.00003
С	3.96396	-1.39776	-0.00011
Н	3.18431	-2.15159	-0.00022
С	5.30783	-1.73428	-0.00011
Н	5.60099	-2.77999	-0.00022
С	6.28733	-0.73805	0.00003
Н	-7.07070	-1.96137	0.00048
С	-5.98381	-1.87107	0.00042
0	-5.70286	-0.49206	-0.00018
Н	-5.57945	-2.36501	0.89359
Н	-5.57946	-2.36577	-0.89233
н	7.33818	-1.01206	0.00004

С	-1.95179	-0.71216	-0.00009
С	-1.83435	0.69825	-0.00012
Ν	-0.71252	-1.28554	-0.00008
С	0.13809	-0.27448	-0.00008
Ν	-0.48614	0.96392	-0.00011
Ν	1.48823	-0.57095	-0.00006
Ν	2.29045	0.39862	0.00005
С	0.04914	2.30909	-0.00016
Н	1.13345	2.25813	-0.00038
Н	-0.29777	2.84369	0.89025
Н	-0.29815	2.84376	-0.89039
С	-2.94911	1.52895	-0.00014
С	-4.19684	0.91846	-0.00014
С	-4.32817	-0.48855	-0.00014
С	-3.21144	-1.31436	-0.00008
Н	-2.86436	2.61080	-0.00015
Н	-5.08109	1.54440	-0.00014
Н	-3.32661	-2.39187	-0.00009
Н	6.64675	1.61734	0.00035
С	5.93181	0.80039	0.00023
С	4.56868	1.06986	0.00021
Н	4.19221	2.08812	0.00032
С	3.64730	0.01978	0.00006
С	4.09371	-1.30884	-0.00008
Н	3.35767	-2.10533	-0.00020
С	5.45439	-1.56898	-0.00006
Н	5.80616	-2.59641	-0.00017
С	6.37591	-0.51884	0.00010
Н	-6.76387	0.29590	-0.89320
С	-6.69707	-0.33868	0.00058
0	-5.53128	-1.12427	-0.00012
н	-6.76281	0.29595	0.89440
н	-7.53355	-1.03885	0.00110
н	7.44043	-0.73315	0.00010

2*-Z-13a*

С	-1.15604	0.04104	-0.26518
С	-1.64916	1.31090	0.11452
Ν	0.18708	0.10362	-0.51561
С	0.50691	1.36452	-0.30130
Ν	-0.56647	2.14956	0.05994
Ν	1.69792	2.04061	-0.56805
Ν	2.81482	1.48404	-0.62676
С	-0.55385	3.56577	0.33106
Н	0.39832	3.96665	-0.01661
Н	-0.66259	3.76253	1.40242
Н	-1.37387	4.05023	-0.20610
С	-2.99000	1.51548	0.44651
С	-3.82518	0.41885	0.37580
С	-3.34807	-0.85835	-0.00946
С	-2.01605	-1.06536	-0.33392
Н	-3.36942	2.48751	0.74479
Н	-4.87941	0.50466	0.61609
0	-4.30014	-1.82650	-0.02366
Н	-1.62240	-2.03012	-0.62743
Н	4.75731	-2.57973	-1.22737
С	4.17976	-1.93239	-0.57435
С	3.82259	-0.66111	-1.00645
Н	4.11928	-0.29219	-1.98296
С	3.04756	0.15700	-0.18439
С	2.69976	-0.26648	1.10199
Н	2.13252	0.39303	1.75103
С	3.09614	-1.52071	1.54004
Н	2.83422	-1.84572	2.54255
С	3.82171	-2.36443	0.69965
Н	4.12128	-3.34909	1.04529
С	-3.89659	-3.12080	-0.40161
Н	-4.78980	-3.74487	-0.35488
Н	-3.13790	-3.52300	0.28238
Н	-3.49688	-3.13643	-1.42389

С	-1.04696	-0.04634	-0.36369
С	-1.55779	1.18982	0.10751
Ν	0.29894	0.05417	-0.60714
С	0.59764	1.29840	-0.30115
Ν	-0.48347	2.04450	0.11390
Ν	1.78324	2.00444	-0.52583
Ν	2.90850	1.46626	-0.57763
С	-0.48783	3.43783	0.48263
Н	0.45800	3.87510	0.16209
Н	-0.59701	3.55984	1.56520
Н	-1.31490	3.94817	-0.01891
С	-2.89474	1.35208	0.45051
С	-3.72830	0.25109	0.30247
С	-3.23379	-0.98434	-0.17161
С	-1.89472	-1.14446	-0.50825
Н	-3.28579	2.29561	0.81758
Н	-4.77566	0.35335	0.55936
0	-4.01380	-2.08792	-0.32772
Н	-1.53099	-2.10011	-0.86687
Н	4.95632	-2.53617	-1.22453
С	4.34124	-1.92104	-0.57478
С	3.97657	-0.64311	-0.97964
Н	4.30361	-0.23650	-1.93114
С	3.15264	0.13230	-0.16370
С	2.76300	-0.33886	1.09378
Н	2.15863	0.28846	1.74125
С	3.16683	-1.59906	1.50698
Н	2.87207	-1.96194	2.48705
С	3.94132	-2.40095	0.66931
Н	4.24558	-3.39105	0.99460
С	-5.37819	-1.98785	-0.00335
Н	-5.80887	-2.97035	-0.20108
Н	-5.89253	-1.24158	-0.62330
н	-5.53003	-1.73821	1.05520

3*-Z-13a*

С	-1.52166	-0.71253	-0.34120
С	-0.98350	-0.29306	0.89145
Ν	-0.61485	-1.49676	-1.02010
С	0.44257	-1.51014	-0.24644
Ν	0.28860	-0.82861	0.93740
Ν	1.59767	-2.26792	-0.54372
Ν	2.72977	-1.74464	-0.58868
С	1.21562	-0.70147	2.03332
Н	1.96489	-1.49146	1.97291
Н	0.67365	-0.81094	2.97621
Н	1.72265	0.26863	2.01229
С	-1.70795	0.49060	1.78758
С	-2.98657	0.85744	1.40879
С	-3.53792	0.45024	0.17359
С	-2.81723	-0.33717	-0.71586
Н	-1.29445	0.81694	2.73658
Н	-3.60266	1.47545	2.05284
Н	-3.21689	-0.66902	-1.66574
Н	5.32669	1.71963	0.73829
С	4.42565	1.41007	0.21784
С	4.10965	0.06105	0.12342
Н	4.75190	-0.70403	0.54850
С	2.93405	-0.33810	-0.51811
С	2.11248	0.61200	-1.13864
Н	1.22806	0.29894	-1.68350
С	2.45678	1.95542	-1.06816
Н	1.82687	2.69285	-1.55599
С	3.59845	2.35980	-0.37755
Н	-6.40953	0.96204	-1.25161
С	-5.41360	0.51731	-1.26052
0	-4.80373	0.89275	-0.04960
Н	-4.85717	0.89516	-2.12838
Н	-5.50577	-0.57331	-1.34622
Н	3.85224	3.41389	-0.32056

-1.41496	-0.89512	-0.53017
-1.01313	-0.38106	0.72401
-0.40547	-1.65926	-1.08091
0.57207	-1.57042	-0.21626
0.27696	-0.84048	0.91088
1.79013	-2.27587	-0.35825
2.88924	-1.68613	-0.35826
1.09812	-0.59553	2.06877
1.89906	-1.33423	2.11303
0.48727	-0.69440	2.97000
1.54172	0.40498	2.03510
-1.85105	0.40377	1.50236
-3.11678	0.68420	0.99634
-3.52716	0.18290	-0.25469
-2.68258	-0.60955	-1.02841
-1.54194	0.80224	2.46352
-3.78560	1.30365	1.58131
-3.01804	-0.99062	-1.98583
5.14803	2.02582	0.91435
4.31635	1.62180	0.34547
4.09211	0.25148	0.32547
4.73977	-0.43822	0.85779
3.00328	-0.26765	-0.38009
2.18311	0.58008	-1.13570
1.37102	0.17182	-1.72793
2.43837	1.94516	-1.13685
1.81053	2.60351	-1.72922
3.48859	2.47095	-0.38577
-5.27442	2.22128	0.12684
-5.65677	1.20714	-0.05092
-4.75254	0.42900	-0.79402
-6.56582	1.27120	-0.65057
-5.89761	0.74334	0.91494
3.67270	3.54095	-0.38677
	-1.41496 -1.01313 -0.40547 0.57207 0.27696 1.79013 2.88924 1.09812 1.89906 0.48727 1.54172 -1.85105 -3.11678 -3.52716 -2.68258 -1.54194 -3.78560 -3.01804 5.14803 4.31635 4.09211 4.73977 3.00328 2.18311 1.37102 2.43837 1.81053 3.48859 -5.27442 -5.65677 -4.75254 -6.56582 -5.89761 3.67270	-1.41496-0.89512-1.01313-0.38106-0.40547-1.659260.57207-1.570420.27696-0.840481.79013-2.275872.88924-1.686131.09812-0.595531.89906-1.334230.48727-0.694401.541720.40498-1.851050.40377-3.116780.68420-3.527160.18290-2.68258-0.60955-1.541940.80224-3.785601.30365-3.01804-0.990625.148032.025824.316351.621804.092110.251484.73977-0.438223.00328-0.267652.183110.580081.371020.171822.438371.945161.810532.603513.488592.47095-5.274422.22128-5.656771.20714-4.752540.42900-6.565821.27120-5.897610.743343.672703.54095

*-E-*18a

С	1.73366	-0.95684	-0.00005
С	1.97032	0.44262	-0.00004
Ν	0.39187	-1.22367	-0.00016
С	-0.17878	-0.03913	-0.00006
Ν	0.72755	1.01071	-0.00008
Ν	-1.51803	0.30007	-0.00011
Ν	-2.30776	-0.67988	-0.00013
С	0.43706	2.42230	-0.00015
Н	-0.64470	2.54631	-0.00038
Н	0.85882	2.89824	-0.89095
Н	0.85845	2.89827	0.89080
С	3.24414	0.99797	-0.00000
С	4.31250	0.10508	0.00002
С	4.10414	-1.29382	-0.00000
С	2.82651	-1.82803	-0.00004
Н	3.43363	2.06542	-0.00003
0	5.54408	0.67592	0.00004
Н	4.95431	-1.96514	-0.00002
Н	2.66829	-2.90117	-0.00008
Н	-6.61555	-2.02344	0.00009
С	-5.92825	-1.18308	0.00008
С	-4.55699	-1.40685	-0.00001
Н	-4.13878	-2.40833	-0.00008
С	-3.66894	-0.32724	-0.00002
С	-4.16254	0.98530	0.00006
Н	-3.45865	1.80997	0.00005
С	-5.53076	1.20116	0.00016
Н	-5.91746	2.21615	0.00022
С	-6.41660	0.12045	0.00017
Н	-7.48776	0.29946	0.00024
С	6.67055	-0.16879	0.00025
Н	7.54029	0.48943	0.00032
Н	6.70263	-0.80497	-0.89340
Н	6.70233	-0.80470	0.89410

-E-18a

С	1.71995	-1.19100	0.00005
С	2.03389	0.18925	-0.00004
Ν	0.36769	-1.38315	0.00015
С	-0.13899	-0.16840	0.00006
Ν	0.82715	0.82722	-0.00003
Ν	-1.45466	0.24665	0.00008
Ν	-2.30187	-0.68478	0.00017
С	0.61552	2.25264	0.00009
Н	-0.45790	2.43547	-0.00079
Н	1.06247	2.70513	-0.89076
Н	1.06095	2.70486	0.89185
С	3.34074	0.68409	-0.00009
С	4.35093	-0.27080	-0.00007
С	4.06184	-1.65851	0.00002
С	2.76694	-2.12638	0.00007
Н	3.54501	1.74767	-0.00013
0	5.67368	0.02495	-0.00013
Н	4.90658	-2.33894	0.00006
Н	2.54942	-3.18901	0.00017
Н	-6.68327	-1.76539	-0.00035
С	-5.94654	-0.96800	-0.00022
С	-4.59132	-1.27436	-0.00010
Н	-4.23469	-2.29940	-0.00013
С	-3.63923	-0.25069	0.00006
С	-4.05301	1.08916	0.00013
Н	-3.30081	1.87000	0.00029
С	-5.40570	1.38751	0.00002
Н	-5.73015	2.42411	0.00009
С	-6.35544	0.36260	-0.00016
Н	-7.41382	0.60602	-0.00024
С	6.03738	1.38401	-0.00007
Н	7.12761	1.40864	-0.00022
Н	5.66466	1.90133	0.89378
Н	5.66451	1.90149	-0.89378

С	-1.86656	1.37337	-0.00005
С	-1.96811	-0.03562	0.00004
Ν	-0.55974	1.75507	-0.00004
С	0.13318	0.63014	0.00004
Ν	-0.68156	-0.50124	0.00010
Ν	1.50720	0.71308	0.00006
Ν	2.15423	-0.36876	-0.00009
С	-0.35379	-1.91178	0.00025
Н	0.72649	-2.02101	0.00064
Н	-0.77565	-2.38883	-0.89058
Н	-0.77633	-2.38877	0.89078
С	-3.18683	-0.71810	0.00006
С	-4.32799	0.07742	0.00000
С	-4.25024	1.49315	-0.00010
С	-3.03904	2.14641	-0.00012
Н	-3.23284	-1.79993	0.00012
Н	-2.97968	3.22947	-0.00019
Н	6.27717	-2.23038	-0.00034
С	5.69395	-1.31464	-0.00020
С	4.30581	-1.37539	-0.00022
Н	3.78044	-2.32549	-0.00038
С	3.55209	-0.19887	-0.00005
С	4.19501	1.04677	0.00015
Н	3.58798	1.94547	0.00028
С	5.57949	1.09877	0.00016
Н	6.08185	2.06167	0.00031
С	6.33268	-0.07781	-0.00001
Н	-5.30523	-2.26665	-0.89393
С	-5.75002	-1.81039	-0.00004
0	-5.59044	-0.41187	-0.00002
Н	-6.82476	-1.99460	-0.00001
Н	-5.30518	-2.26670	0.89381
Н	7.41746	-0.02657	-0.00001
н	-5.18691	2.03981	-0.00015

С	1.86499	1.15468	-0.00001
С	1.89515	-0.26123	-0.00003
Ν	0.57681	1.60181	0.00000
С	-0.16906	0.51275	-0.00002
Ν	0.58461	-0.65963	-0.00005
Ν	-1.53861	0.66736	-0.00001
Ν	-2.23849	-0.38042	0.00001
С	0.18811	-2.05257	-0.00007
Н	-0.89592	-2.11033	-0.00021
Н	0.58787	-2.54915	0.89012
Н	0.58811	-2.54917	-0.89015
С	3.07631	-0.99222	-0.00004
С	4.26190	-0.26013	-0.00004
С	4.25791	1.15462	-0.00001
С	3.06966	1.86421	0.00000
Н	3.11324	-2.07555	-0.00005
Н	3.06438	2.94899	0.00002
Н	-6.44869	-2.03480	0.00008
С	-5.82060	-1.14927	0.00005
С	-4.43719	-1.27900	0.00005
Н	-3.95950	-2.25391	0.00007
С	-3.62625	-0.14121	0.00002
С	-4.20613	1.13498	-0.00002
Н	-3.55502	2.00226	-0.00004
С	-5.58627	1.25575	-0.00001
Н	-6.04030	2.24234	-0.00003
С	-6.39683	0.11788	0.00002
Н	6.75860	0.29535	-0.89387
С	6.63513	-0.32886	0.00009
0	5.39747	-1.00133	0.00003
Н	7.39975	-1.10657	0.00022
Н	6.75844	0.29553	0.89394
Н	-7.47767	0.22296	0.00001
н	5.19575	1.69661	0.00001

-Z-18a

С	-0.89704	-0.35966	-0.47065
С	-1.59058	0.78254	0.00474
Ν	0.43632	-0.08497	-0.62761
С	0.55885	1.17296	-0.26884
Ν	-0.63846	1.76021	0.10362
Ν	1.64997	2.03354	-0.39559
Ν	2.83767	1.64814	-0.42886
С	-0.84338	3.12558	0.51868
Н	0.05850	3.68964	0.28068
Н	-1.03796	3.18520	1.59439
Н	-1.69390	3.55071	-0.02146
С	-2.95343	0.78380	0.27494
С	-3.63563	-0.40813	0.04381
С	-2.96776	-1.55856	-0.43544
С	-1.60722	-1.54137	-0.69461
Н	-3.49105	1.64983	0.64407
0	-4.96558	-0.37462	0.31238
Н	-3.52317	-2.47332	-0.60322
Н	-1.09502	-2.42509	-1.05980
Н	5.36323	-2.03599	-1.26817
С	4.67040	-1.53868	-0.59607
С	4.15637	-0.29339	-0.93605
Н	4.44190	0.20306	-1.85784
С	3.23652	0.32915	-0.09244
С	2.89350	-0.25787	1.12934
Н	2.20887	0.25319	1.79882
С	3.44324	-1.48175	1.47865
Н	3.18415	-1.93312	2.43177
С	4.31926	-2.13452	0.61200
Н	4.73917	-3.09716	0.88721
С	-5.71927	-1.54398	0.09513
Н	-6.74584	-1.29528	0.36698
Н	-5.37321	-2.37406	0.72413
Н	-5.69245	-1.85579	-0.95670

-Z-18a

-0.83450	-0.58931	-0.47761
-1.65270	0.49025	-0.07013
0.46981	-0.19293	-0.58757
0.45929	1.08235	-0.26509
-0.80660	1.55738	0.03871
1.46154	2.04497	-0.36352
2.68364	1.78306	-0.38005
-1.16141	2.90698	0.40094
-0.30190	3.54611	0.19919
-1.42413	2.97307	1.46173
-2.01304	3.23903	-0.19970
-3.02863	0.37521	0.14520
-3.57475	-0.88378	-0.07703
-2.77516	-1.97832	-0.49114
-1.41963	-1.84627	-0.69412
-3.62580	1.22079	0.46333
-4.88840	-1.17797	0.07763
-3.27706	-2.92819	-0.64060
-0.80960	-2.68603	-1.00894
5.56883	-1.62133	-1.24510
4.82683	-1.20321	-0.57152
4.19177	-0.01216	-0.90169
4.43032	0.51999	-1.81693
3.21063	0.50649	-0.05682
2.92296	-0.12540	1.15680
2.18636	0.30643	1.82682
3.59103	-1.29168	1.49662
3.37362	-1.77737	2.44328
4.53211	-1.84416	0.62841
5.04493	-2.76296	0.89589
-5.74531	-0.13979	0.48752
-6.74333	-0.57455	0.55078
-5.75588	0.68440	-0.23771
-5.46002	0.25384	1.47194
	-0.83450 -1.65270 0.46981 0.45929 -0.80660 1.46154 2.68364 -1.16141 -0.30190 -1.42413 -2.01304 -3.02863 -3.57475 -2.77516 -1.41963 -3.62580 -4.88840 -3.27706 -0.80960 5.56883 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.82683 4.53211 5.04032 3.37362 4.53211 5.04493 -5.74531 -6.74333 -5.75588 -5.46002	-0.83450 -0.58931 -1.65270 0.49025 0.46981 -0.19293 0.45929 1.08235 -0.80660 1.55738 1.46154 2.04497 2.68364 1.78306 -1.16141 2.90698 -0.30190 3.54611 -1.42413 2.97307 -2.01304 3.23903 -3.02863 0.37521 -3.57475 -0.88378 -2.77516 -1.97832 -1.41963 -1.84627 -3.62580 1.22079 -4.88840 -1.17797 -3.27706 -2.92819 -0.80960 -2.68603 5.56883 -1.62133 4.82683 -1.20321 4.19177 -0.01216 4.43032 0.51999 3.21063 0.50649 2.92296 -0.12540 2.18636 0.30643 3.59103 -1.29168 3.37362 -1.77737 4.53211 -1.84416 5.04493 -2.76296 -5.74531 -0.13979 -6.74333 -0.57455 -5.75588 0.68440 -5.46002 0.25384

3*-Z-18a*

С	-1.32611	-1.30309	-0.60489
С	-1.11321	-0.40738	0.46782
Ν	-0.21748	-2.10410	-0.79316
С	0.64157	-1.67721	0.09298
Ν	0.16313	-0.67148	0.91204
Ν	1.90740	-2.27531	0.28026
Ν	2.96059	-1.60555	0.25556
С	0.80661	-0.03927	2.03599
Н	1.62758	-0.66487	2.38768
Н	0.08285	0.07020	2.84788
Н	1.20302	0.94417	1.76367
С	-2.07113	0.49727	0.90287
С	-3.28451	0.50112	0.21511
С	-3.51857	-0.37712	-0.86242
С	-2.54680	-1.27905	-1.27560
Н	-1.91501	1.19185	1.72059
Н	-2.73090	-1.95816	-2.10132
Н	4.83364	2.48975	0.72859
С	4.10468	1.88221	0.20123
С	3.95820	0.53981	0.52505
Н	4.56792	0.07007	1.29062
С	2.99793	-0.23648	-0.12945
С	2.23759	0.31329	-1.16982
Н	1.53048	-0.30228	-1.71583
С	2.41743	1.64772	-1.50935
Н	1.83600	2.07377	-2.32113
С	3.33298	2.43862	-0.81652
Н	-5.33293	1.73111	-1.05412
С	-5.44082	1.46640	0.00571
0	-4.19552	1.40707	0.65850
Н	-5.98671	0.51729	0.08291
Н	-6.01041	2.24700	0.51178
Н	3.45745	3.48356	-1.08368
н	-4.46945	-0.35603	-1.38085

	0		
4 <i>-Z</i> -	18a		
С	-1.34079	-1.50767	-0.50948
С	-1.20684	-0.41429	0.36922
Ν	-0.21417	-2.30107	-0.47052
С	0.58642	-1.68518	0.35891
Ν	0.04292	-0.54869	0.92901
Ν	1.84864	-2.19851	0.72614
Ν	2.88772	-1.51101	0.63957
С	0.60177	0.30486	1.94682
Н	1.41305	-0.21568	2.45643
Н	-0.17200	0.54089	2.68235
Н	0.99367	1.23163	1.51562
С	-2.20416	0.54125	0.56889
С	-3.36926	0.37007	-0.17393
С	-3.52220	-0.71390	-1.06720
С	-2.52464	-1.65183	-1.24199
н	-2.06643	1.37353	1.24811
Н	-2.64856	-2.48611	-1.92412
Н	4.65441	2.65400	0.42791
С	3.97095	1.93603	-0.01485
С	3.82554	0.67731	0.55354
Н	4.39238	0.38132	1.43084
С	2.92344	-0.23823	0.00470
С	2.22354	0.07982	-1.16670
Н	1.56321	-0.64891	-1.62505
С	2.40320	1.32855	-1.74689
н	1.86931	1.57315	-2.66001
С	3.25861	2.26407	-1.16630
н	-4.22320	1.97821	1.80406
С	-4.35247	2.30430	0.76344
0	-4.43386	1.21028	-0.11603
Н	-3.52771	2.97846	0.49618
Н	-5.29705	2.84167	0.67160
Н	3.38379	3.24092	-1.62334
Н	-4.45839	-0.78125	-1.61082

*-E-*23a

С	-1.64006	-0.33335	0.00004
С	-1.68019	1.08627	-0.00002
Ν	-0.34722	-0.78200	0.00004
С	0.37755	0.31299	-0.00002
Ν	-0.37324	1.47683	-0.00006
Ν	1.75563	0.46508	-0.00005
Ν	2.38953	-0.62055	-0.00001
С	0.11405	2.83595	-0.00013
Н	1.20221	2.80477	-0.00015
Н	-0.23578	3.36417	0.89156
Н	-0.23581	3.36409	-0.89187
С	-2.87443	1.81034	-0.00003
С	-4.04696	1.07893	0.00002
С	-4.00385	-0.32650	0.00009
С	-2.83061	-1.06063	0.00010
Н	-2.89145	2.89495	-0.00008
Н	-2.84894	-2.14300	0.00015
Н	6.43219	-2.61750	0.00001
С	5.88319	-1.68121	-0.00003
С	4.49400	-1.68920	0.00000
Н	3.92458	-2.61301	0.00005
С	3.78696	-0.48305	-0.00004
С	4.47648	0.73833	-0.00011
Н	3.90982	1.66261	-0.00015
С	5.86099	0.73828	-0.00014
Н	6.40198	1.67984	-0.00019
С	6.56651	-0.46853	-0.00009
Н	7.65241	-0.45812	-0.00011
0	-6.30173	-0.39001	0.00013
0	-5.23088	-2.26996	0.00020
Ν	-5.27275	-1.04976	0.00014
Н	-5.01588	1.56208	0.00002

-E-23a

Ν	5.44971	-0.71133	-0.00004
0	5.58963	-1.92413	0.00081
0	6.36859	0.09455	-0.00080
Н	-0.04666	2.94408	-0.89040
С	-6.17592	0.67457	-0.00013
С	-6.57450	-0.65919	-0.00009
С	-4.82281	0.98933	-0.00009
Н	-6.91809	1.46659	-0.00017
С	-5.61943	-1.67931	0.00002
С	-3.86816	-0.03097	-0.00002
С	-4.26849	-1.37452	0.00005
Н	-4.48058	2.01952	-0.00012
Ν	-2.52616	0.39257	0.00000
С	-0.36982	2.39678	0.00035
Н	-5.93764	-2.71741	0.00010
Ν	-1.68961	-0.54625	0.00000
Н	-1.45036	2.29588	-0.00014
С	-0.35072	-0.19456	0.00001
Ν	0.22560	1.07364	0.00010
Н	-3.50717	-2.14680	0.00014
С	1.57685	0.86776	0.00007
С	2.65103	1.76093	0.00011
Ν	0.53950	-1.16534	-0.00012
С	1.75206	-0.53807	-0.00007
С	3.91903	1.21063	0.00001
Н	2.50884	2.83611	0.00032
С	3.03574	-1.08449	-0.00020
С	4.08742	-0.18542	-0.00012
Н	4.80533	1.83274	0.00014
Н	3.21252	-2.15254	-0.00036
Н	-0.04743	2.94345	0.89176
Н	-7.63151	-0.90887	-0.00033

1-Z-**23**a

С	-0.91949	0.14218	-0.37697
С	-1.30006	1.41477	0.12371
Ν	0.41581	0.12636	-0.68958
С	0.83320	1.33462	-0.39496
Ν	-0.16114	2.16922	0.07779
Ν	2.06044	1.93601	-0.70186
Ν	3.14078	1.31370	-0.72932
С	-0.01852	3.55706	0.45016
Н	0.92829	3.91814	0.04770
Н	-0.02121	3.67548	1.53795
Н	-0.84022	4.13701	0.02270
С	-2.59993	1.70407	0.54186
С	-3.53001	0.68605	0.43902
С	-3.14990	-0.57050	-0.06163
С	-1.86510	-0.87685	-0.47758
Н	-2.87778	2.67831	0.92949
Н	-1.61993	-1.86135	-0.85501
Н	4.92768	-2.84668	-1.02021
С	4.34581	-2.14367	-0.43236
С	4.08057	-0.87729	-0.93721
Н	4.45219	-0.56472	-1.90755
С	3.29614	0.00963	-0.19893
С	2.85226	-0.33683	1.08126
Н	2.28890	0.37903	1.67163
С	3.15958	-1.58727	1.59459
Н	2.82658	-1.85454	2.59276
С	3.88952	-2.50020	0.83387
Н	4.11750	-3.48180	1.23750
Ν	-4.17004	-1.61258	-0.14352
0	-5.30103	-1.32925	0.22271
0	-3.83232	-2.70464	-0.57266
Н	-4.56053	0.82856	0.73900

-1.23572	-0.85583	-0.41915
-0.77975	-0.41612	0.84720
-0.25459	-1.58257	-1.05967
0.75816	-1.54556	-0.23684
0.50779	-0.88330	0.94864
1.96302	-2.25528	-0.45163
3.06660	-1.67684	-0.48830
1.39179	-0.69790	2.07459
2.17296	-1.45820	2.05211
0.82306	-0.81444	2.99994
1.85788	0.29180	2.04974
-1.57166	0.32947	1.71913
-2.85058	0.64152	1.29066
-3.29629	0.20802	0.03359
-2.52235	-0.53837	-0.84255
-1.20972	0.66550	2.68491
-3.52664	1.22359	1.90407
-2.91300	-0.85206	-1.80218
5.39907	1.97199	0.82277
4.54287	1.59278	0.27380
4.31414	0.22494	0.20658
4.98110	-0.48752	0.68185
3.19307	-0.26103	-0.47223
2.34556	0.61749	-1.15957
1.51337	0.23526	-1.74084
2.60597	1.98099	-1.11606
1.95977	2.66456	-1.65779
3.68776	2.47249	-0.38695
-5.03141	0.19177	-1.47299
-4.65147	0.56700	-0.37484
-5.32499	1.22298	0.40616
3.87609	3.54109	-0.35251
	-1.23572 -0.77975 -0.25459 0.75816 0.50779 1.96302 3.06660 1.39179 2.17296 0.82306 1.85788 -1.57166 -2.85058 -3.29629 -2.52235 -1.20972 -3.52664 -2.91300 5.39907 4.54287 4.31414 4.98110 3.19307 2.34556 1.51337 2.60597 1.95977 3.68776 -5.03141 -4.65147 -5.32499 3.87609	-1.23572-0.85583-0.77975-0.41612-0.25459-1.582570.75816-1.545560.50779-0.883301.96302-2.255283.06660-1.676841.39179-0.697902.17296-1.458200.82306-0.814441.857880.29180-1.571660.32947-2.850580.64152-3.296290.20802-2.52235-0.53837-1.209720.66550-3.526641.22359-2.91300-0.852065.399071.971994.542871.592784.314140.224944.98110-0.487523.19307-0.261032.345560.617491.513370.235262.605971.980991.959772.664563.687762.47249-5.031410.19177-4.651470.56700-5.324991.222983.876093.54109

1-E- 26 a	
------------------	--

С	-1.46164	-1.09227	-0.00014
С	-1.75535	0.29809	-0.00013
Ν	-0.11345	-1.29912	-0.00013
С	0.40473	-0.08730	-0.00020
Ν	-0.53589	0.92016	-0.00023
Ν	1.73475	0.30411	-0.00038
Ν	2.54821	-0.65463	-0.00039
С	-0.30407	2.34520	-0.00052
Н	0.77141	2.51339	-0.00054
Н	-0.74546	2.80036	0.89076
Н	-0.74545	2.80001	-0.89199
С	-3.05007	0.79740	-0.00004
С	-4.05110	-0.16193	0.00008
С	-3.80687	-1.54646	0.00008
С	-2.51096	-2.02264	-0.00010
Н	-3.30066	1.85098	0.00005
Н	-4.65857	-2.21505	0.00017
Н	-2.29726	-3.08551	-0.00003
Н	6.87744	-1.91475	0.00025
С	6.17314	-1.08894	0.00023
С	4.80678	-1.33955	-0.00004
Н	4.40752	-2.34864	-0.00023
С	3.89988	-0.27537	-0.00008
С	4.36524	1.04786	0.00015
Н	3.64568	1.85880	0.00010
С	5.72841	1.28968	0.00041
Н	6.09658	2.31124	0.00058
С	6.63387	0.22460	0.00046
Н	7.70124	0.42461	0.00066
0	-5.63050	1.50653	0.00043
0	-6.31651	-0.54586	0.00023
Ν	-5.43483	0.29932	0.00027

Ν	5.29983	0.69941	0.00000
0	6.31362	0.01885	0.00001
0	5.28414	1.92212	-0.00000
Н	-0.67355	2.08183	-0.88382
С	-5.90640	1.33387	-0.00003
С	-6.57483	0.11267	0.00000
С	-4.51751	1.35849	-0.00003
Н	-6.46681	2.26340	-0.00005
С	-5.85443	-1.08489	0.00003
С	-3.79727	0.16089	-0.00001
С	-4.46964	-1.06944	0.00002
Н	-3.96534	2.29305	-0.00006
Ν	-2.39781	0.29757	-0.00002
С	-0.07309	1.86472	0.00003
Н	-6.38309	-2.03328	0.00005
Ν	-1.77046	-0.79376	0.00001
Н	-0.67361	2.08179	0.88386
С	-0.39201	-0.68239	0.00000
Ν	0.35978	0.48127	0.00002
Н	-3.88662	-1.98386	0.00004
С	1.67114	0.07154	0.00001
С	2.86639	0.77926	0.00001
Ν	0.33884	-1.78142	-0.00001
С	1.62879	-1.34685	-0.00001
С	4.01571	0.00495	-0.00000
Н	2.94628	1.85923	0.00002
С	2.81985	-2.08756	-0.00002
С	4.01626	-1.40069	-0.00002
Н	2.78612	-3.17119	-0.00003
Н	4.96984	-1.91331	-0.00002
Н	0.81625	2.49620	0.00007
н	-7.66048	0.08945	0.00000

-Z-**26a**

-0.66756	-0.38671	-0.68882
-1.34792	0.70494	-0.08678
0.65095	-0.08115	-0.88263
0.77382	1.14555	-0.42053
-0.39876	1.68693	0.04918
1.86305	2.01560	-0.55757
3.04975	1.63471	-0.52107
-0.58938	3.01610	0.57982
0.27302	3.61999	0.29587
-0.67810	2.99643	1.67021
-1.49595	3.45255	0.15352
-2.69325	0.66356	0.24655
-3.34118	-0.52389	-0.06183
-2.70894	-1.62492	-0.66275
-1.36629	-1.56499	-0.98266
-3.23462	1.47740	0.71288
-3.30189	-2.50891	-0.86133
-0.85506	-2.40206	-1.44447
5.72659	-2.00929	-0.88750
4.94832	-1.50292	-0.32515
4.46358	-0.27914	-0.76779
4.85267	0.19484	-1.66295
3.43370	0.34977	-0.06686
2.95085	-0.20076	1.12488
2.18995	0.32295	1.69513
3.47202	-1.40122	1.58205
3.10856	-1.82436	2.51343
4.45681	-2.06447	0.85054
4.85393	-3.00904	1.20912
-4.75943	-0.62854	0.26236
-5.29420	0.33863	0.78583
-5.32902	-1.67472	-0.00708
	-0.66756 -1.34792 0.65095 0.77382 -0.39876 1.86305 3.04975 -0.58938 0.27302 -0.67810 -1.49595 -2.69325 -3.34118 -2.70894 -1.36629 -3.23462 -3.30189 -0.85506 5.72659 4.94832 4.46358 4.85267 3.43370 2.95085 2.18995 3.47202 3.10856 4.45681 4.85393 -4.75943 -5.29420 -5.32902	-0.66756-0.38671-1.347920.704940.65095-0.081150.773821.14555-0.398761.686931.863052.015603.049751.63471-0.589383.016100.273023.61999-0.678102.99643-1.495953.45255-2.693250.66356-3.34118-0.52389-2.70894-1.62492-1.36629-1.56499-3.234621.47740-3.30189-2.50891-0.85506-2.402065.72659-2.009294.94832-1.502924.46358-0.279144.852670.194843.433700.349772.95085-0.200762.189950.322953.47202-1.401223.10856-1.824364.45681-2.064474.85393-3.00904-4.75943-0.62854-5.294200.33863-5.32902-1.67472

-Z-26a

С	-1.06175	-1.50185	-0.54811
С	-0.97097	-0.49595	0.44555
Ν	0.10245	-2.22915	-0.60131
С	0.87698	-1.66232	0.29130
Ν	0.29151	-0.63014	0.98328
Ν	2.14978	-2.16693	0.64296
Ν	3.18120	-1.47333	0.55199
С	0.85288	0.17703	2.04001
Н	1.67326	-0.36312	2.51345
Н	0.08372	0.36671	2.79201
Н	1.22938	1.12775	1.65036
С	-2.00397	0.38237	0.72639
С	-3.14812	0.21536	-0.04364
С	-3.27954	-0.76541	-1.03745
С	-2.23494	-1.63417	-1.29807
Н	-1.95981	1.16386	1.47483
Н	-4.21219	-0.81797	-1.58507
Н	-2.31360	-2.40197	-2.05947
Н	4.83123	2.73867	0.47443
С	4.16603	2.01721	0.01059
С	4.07140	0.73142	0.52597
Н	4.65915	0.41701	1.38268
С	3.18890	-0.18624	-0.05081
С	2.46319	0.15443	-1.19958
Н	1.82876	-0.57894	-1.68572
С	2.59420	1.43208	-1.72776
Н	2.04353	1.69743	-2.62476
С	3.42610	2.36902	-1.11647
0	-4.13021	1.97185	1.06299
Ν	-4.26643	1.11868	0.19697
0	-5.27332	0.97200	-0.47862
Н	3.51291	3.36800	-1.53241

Time-Dependent DFT

Table S4. TD-DFT excitation energies in nm and corresponding oscillator strengths for the n- π^* and π - π^* transitions of *E*-arylazobenzimidazoles calculated at the PBE0/6-31G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

compound	conformation	n- $\pi^* \lambda_{max}$ /	f	π-π* λ _{max} /	f
compound	comormation	nm	I	nm	I
20	1	484	0	370	0.6831
Ja	2	454	0	364	0.5375
	1	459	0	356	0.7267
207	2	481	0	358	0.6918
Spz	3	454	0	353	0.503
	4	433	0	352	0.5068
85	1	488	0	363	0.5747
08	2	485	0	363	0.8514
80	1	514	0	400	0.8496
50	2	509	0	395	1.059
	1	462	0	350	0.5216
807	2	485	0	353	0.5703
002	3	485	0	353	0.8003
	4	462	0	351	0.7990
	1	486	0	372	0.6021
13a	2	489	0	374	0.8595
	3	485	0	360	0.7894
	4	487	0	363	0.9612
	1	488	0	419	0.5883
18a	2	485	0	406	0.8194
	3	480	0	393	1.0179
	4	483	0	401	0.8207
23a	1	495	0	366	0.8568
	2	491	0	359	1.0233
26a	1	499	0	371	0.8648
_00	2	489	0	362	0.6316

Table S5. TD-DFT excitation energies in nm and corresponding oscillator strengths for the n- π^* and π - π^* transitions of *Z*-arylazobenzimidazoles calculated at the PBE0/6-31G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

compound	conformation	n-π* λ _{max} /	f	π-π* λ _{max} /	f
		nm		nm	
3a	1	508	0.0667	325	0.2168
54	2	481	0.0467	323	0.3610
	1	510	0.0014	333	0.7739
20-	2	532	0.0014	351	0.6129
Spz	3	486	0.0809	332	0.1338
	4	459	0.03	257	0.2684
82	1	509	0.0724	331	0.285
od	2	489	0.044	278	0.1131
80	1	496	0.0535	339	0.3885
oe	2	522	0.0674	278	0.2921
	1	518	0.0043	338	0.7612
8pz	2	488	0.0810	338	0.1538
	3	464	0.0280	257	0.2686
	1	511	0.0846	344	0.2255
13a	2	511	0.0835	342	0.2596
	3	501	0.0648	279	0.1235
	4	493	0.0547	276	0.0965
	1	513	0.0936	328	0.2364
18 a	2	512	0.0928	367	0.2334
	3	509	0.0707	278	0.159
	4	511	0.0742	278	0.1382
23 a	1	514	0.0747	310	0.1978
	2	480	0.0373	280	0.2316
26a	1	515	0.092	330	0.2186
	2	479	0.042	308	0.2295

Table S6. TD-DFT excitation energies in nm and corresponding oscillator strengths for the $n-\pi^*$ and $\pi -\pi^*$ transitions of *E*-arylazobenzimidazoles calculated at the CAM-B3LYP/6-31+G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

compound	conformation	n-π* λ _{max} / nm	f	π-π* λ _{max} / nm	f
2-	1	452	0	348	0.9823
3a	2	427	0	353	0.9619
	1	433	0	338	0.9672
3.5-	2	452	0	340	0.9503
Spz	3	430	0	345	0.918
	4	412	0	343	0.9213
80	1	459	0	354	0.9485
ba	2	455	0	349	1.0118
80	1	473	0	378	1.0411
86	2	469	0	370	1.134
	1	440	0	343	0.9317
8pz	2	459	0	346	0.9176
	3	458	0	341	0.9645
	4	438	0	340	0.9734
	1	457	0	370	0.9434
13a	2	460	0	365	0.7712
	3	455	0	374	0.7255
	4	458	0	335	0.6816
	1	450	0	280	0.9917
	2	458	0	380	0.8817
18a	2	455	0	377	1.0061
	3	450	0	370	1.0961
	4	453	0	369	1.1017
	1	462	0	240	1 0013
23a	2	403 459	0	340	1.0013
	۲		0	540	1.0330
	1	466	0	350	1.1499
26a	2	455	0	347	1,1376

compound	conformation	n-π* λ _{max} / nm	f	π-π* λ _{max} / nm	f
20	1	489	0.0561	315	0.2253
Sa	2	466	0.0394	304	0.265
	1	484	0.0018	318	0.846
2	2	506	0.0018	336	0.6814
3pz	3	471	0.0625	314	0.1798
	4	439	0.0212	249	0.2887
	1	493	0.0606	317	0.2051
8a	2	464	0.0317	262	0.2091
	1	476	0.0439	320	0.2909
8e	2	481	0.0462	272	0.2386
	1	496	0.0047	323	0.8164
8pz	2	472	0.0627	318	0.1419
	3	442	0.0198	252	0.3003
	1	494	0.0693	330	0.336
120	2	495	0.0668	317	0.2989
139	3	469	0.0408	264	0.1982
	4	464	0.0345	263	0.1921
	1	495	0.0734	338	0.276
185	2	494	0.0753	333	0.3723
104	3	473	0.0448	263	0.2219
	4	476	0.0477	262	0.2010
226	1	496	0.0606	313	0.184
23a	2	458	0.0278	262	0.2514
264	1	496	0.0726	318	0.2995
26a	2	457	0.0312	297	0.278

Table S7. TD-DFT excitation energies in nm and corresponding oscillator strengths for the $n-\pi^*$ and $\pi -\pi^*$ transitions of *Z*-arylazobenzimidazoles calculated at the CAM-B3LYP/6-31+G(d,p) level of theory in the gas phase. The lowest energy conformers are highlighted.

References

[1] Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J.; Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches Offering Quantitative Isomerization and Long Thermal Half-Lives. *J. Am. Chem. Soc.* **2014**, *136* (34), 11878-11881.

[2] Heath, H. A New Sensitive Chemical Actinometer - Ii. Potassium Ferrioxalate as a Standard Chemical Actinometer. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* **1997**, *235* (1203), 518-536.

[3] Stranius, K.; Borjesson, K. Determining the Photoisomerization Quantum Yield of Photoswitchable Molecules in Solution and in the Solid State. *Sci. Rep.* **2017**, *7*, 41145.

[4] Fischer, E. Calculation of Photostationary States in Systems A .Dblarw. B When Only a Is Known. *The Journal of Physical Chemistry* **1967**, *71* (11), 3704-3706.

[5] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, 2016.

[6] Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The Pbe0 Model. *The Journal of Chemical Physics* **1999**, *110* (13), 6158-6170.

[7] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (Dft-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15).

[8] Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-Consistent Molecular Orbital Methods. Xxiii. A Polarization-Type Basis Set for Second-Row Elements. *J. Chem. Phys.* **1982**, 77 (7), 3654-3665.

[9] Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). *Chem. Phys. Lett.* **2004**, *393* (1-3), 51-57.