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Supplementary Notes

1. Supplementary experiment on materials extrapolation to hit five extreme targets 

except for MW and DRD2. This note describes a supplementary experiment to the section in 

the manuscript: Materials extrapolation to hit multiple extreme target properties. Here, we 

conducted an experiment to generate molecules that hit five target properties: calculated 

octanol-water partition coefficient (logP)1, topological polar surface area (TPSA)2, quantitative 

estimates of drug-likeness (QED)3, number of hydrogen bond acceptor (HBA), number of 

hydrogen bond donor (HBD). In this experiment, molecular weight (MW) and drug activity or 

dopamine receptor D2 (DRD2)4 which caused problems in the performance evaluation were 

excluded. Here, MOSES5 data sets were used for the training and test of GCT6. The training 

data contains 1,584,664 molecules and the test data contains 176,074 molecules. PubChem7 

anticancer set, which covers a wider range than the MOSES data sets, was adopted to select 

extrapolated targets M1 to M10 (Supplementary Figure 1a). Targets M1 to M5 were selected 

from anticancer samples deviating from the TPSA-logP distribution of the training data and 

targets M6 to M10 were selected from samples deviating from the TPSA-QED distribution.

Before conducting the materials extrapolation, we evaluated the original target-hitting 

performance for GCT on the MOSES test data set whose distribution is similar to the trained 

data. To this end, the root mean squared error of each target property  ( ) for GCT was 𝑖 𝑅𝑀𝑆𝐸𝑖

analysed to set the target bound of the target property  as  (Supplementary Table 5). 𝑖 ± 𝑅𝑀𝑆𝐸𝑖

  The experimental results on materials extrapolation and interpolation are depicted in 

Supplementary Figure 1. Since the number of attempted molecular generation for materials 

interpolation and extrapolation is not the same, we rescaled the results based on 10,000 trials 

for easy comparison. The results are summarized in the left-hand side of Supplementary Figure 



1b. In the experiment of materials interpolation, GCT discovered 5,365 five target-hitting 

molecules out of 10,000 trials for materials interpolation (target M0 in Supplementary Figure 

1b). However, GCT failed to discover the five target-hitting molecules for all extrapolated 

targets, except for only six trials for the target M9—which is the closest target from the trained 

region. In contrast, AI-driven combinatorial chemistry worked well on materials extrapolation. 

It generated target-hitting molecules for all the extrapolated targets except the target M6. We 

believe that the cause lies in the way the fragments set was constructed. The x-makers shown 

in Supplementary Figure 1c denote the MWs of the reference molecules for the target M1 to 

M10. The other o-markers denote the MWs of molecular fragments constituting the fragments 

set. The problem is that the MW of the target M6 is 167 Da. It is significantly smaller than the 

other MWs of extrapolated targets. Note that the logP, TPSA, HBA, and HBD are scores that 

are calculated by summing each score of molecular fragments constituting the molecule. 

Hence, the descriptors have very large correlations with molecular size. It means that it is 

highly correlated with MW. Therefore, the combinations of properties are likely to be found 

only in materials with a certain level of MW. Since the MW of 167 Da is a level that can be 

composed of one or two molecular fragments in the fragments set, it might be difficult to 

complete target-hitting materials with a randomly selected initial fragment. In addition, the 

reference molecule of the target M6 was the only molecule that are not completely fragmented 

into molecular fragments with the used fragments set. Therefore, the fragment set should be 

designed with smaller fragments if the targets are smaller.

2. Size of the fragment set. We selected the size of the fragment set according to the result of 

the performance benchmark. To this end, we trained our model with various sizes of the 

fragment sets on a randomly sampled target (MW: 321.35, logP: 0.653, QED: 0.830, TPSA: 



73.74, HBA: 4, HBD: 1). By subsampling BRICS8 40k fragments in the order of their 

appearance in the MOSES database5, eight fragment sets with various sizes were constructed: 

~40k fragments (41,153), ~20k fragments (21,477), ~12k fragments (12,768), ~8k fragments 

(8,835), ~6k fragments (6,434), ~2k fragments (2,547), ~0.5k fragments (565), ~0.2k 

fragments (166).

To select the efficient size of the fragment set, we compared the ratio of unique molecules 

after generating 3,000 molecules with the various fragment sets. As the results, we confirmed 

that the uniqueness ratio according to the size of the fragment sets as follows: ~40k fragments 

(98.87%), ~20k fragments (96.1%), ~12k fragments (93.73%), ~8k fragments (90.87%), ~6k 

fragments (88.47%), ~2k fragments (74.7%), ~0.5k fragments (38.83%), and ~0.2k fragments 

(16%). In addition, we compared the rewards achieved for each size of the fragment set 

(Supplementary Figure 2). Considering both results of the uniqueness ratio and the reward, we 

decided to use a fragment set with a size of around 2k.

More precisely, we used a fragment set of 2,207 BRICS fragments which appear more than 

100 times in the curated ChEMBL training dataset4 for the experiments in the manuscript. In 

the case of the supplementary experiment (Supplementary Note 1), we used a fragment set of 

2,547 BRICS fragments which appear more than 150 times in the MOSES training dataset5.

3. Benchmark on reinforcement learning algorithms and action masking. There are many 

kinds of algorithms in reinforcement learning. We benchmarked the performance of state-of-

the-art RL algorithms on our materials extrapolation problem. In addition, we benchmarked 

performance according to whether or not action masking was applied. To this end, we 

introduced a scoring metric as follows: 



𝑆𝑐𝑜𝑟𝑒 =  ∑
𝑦 ∈ 𝑝𝑟𝑜𝑝.
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where  and  denote the value of generated molecule’s property  and the value of the 𝑦𝑔𝑒𝑛. 𝑦𝑡𝑟𝑔. 𝑦

target property , respectively. Here, is a set of logP, TPSA, QED, HBA, HBD, and 𝑦 𝑝𝑟𝑜𝑝. 

MW. We calculated the average score for 10,000 molecules generated by each algorithm. The 

results are shown in Supplementary Figure 3. As shown in the results, the proximal policy 

optimization (PPO)9 algorithm with action masking showed the best performance for our 

problem. Hence, we used the PPO algorithm with action masking to train our models. 

4. Parameter setting for QuickVina2. Configuration for molecular docking simulation with 

QuickVina210 is summarized in Supplementary Table 6. Here, the concept of exhaustiveness 

factor is similar to the concept of the population of the genetic algorithm. As the value of the 

exhaustiveness factor increases, the possibility of deriving an accurately optimized 

conformation increases. However, as the value of the exhaustiveness factor increases, the 

calculation time increases linearly. Hence, a strategy of the step increase for the exhaustiveness 

factor was adopted. The exhaustiveness factor is initially set to 1, and if two or more molecules 

with a docking score less than -12.5 are generated, the value is set to 2. Thereafter, if two or 

more of the generated molecules’ docking scores are less than -14, the exhaustiveness factor is 

set to 4. After that, if two or more molecules with a docking score less than -15.5 are generated, 

the value is set to 8.

5. Active molecules of protein docking problem. As a result of generating 10,000 molecules 

with a low docking score for the 5-HT1B receptor, 23 molecules matched the molecular 



structure present in the ChEMBL11 database. When investigating their pharmaceutical activity 

in the PubChem Bioassay database7, five out of the 23 molecules (21.7%) were the molecules 

that have been reported as pharmaceutically active molecules for specific targets. Except for 

the CHEMBL1726441 which is stated in the manuscript, the detailed information for the active 

molecules is described in Supplementary Table 7.

  When analyzing the ratio of pharmaceutical activity for a set of 10,000 randomly sampled 

molecules from the ChEMBL11 database, it was 9.6% (961 out of 10,000 molecules); we 

achieved 21.7% (five out of 23 molecules). Considering the above results, we believe that some 

of the generated molecules whose drug activity is identified may also have potential medicinal 

effects.

6. Determination of the maximum number of fragments to use in HIV-related targets. Of 

the all cases, we limited the maximum number of fragments to less than six. This is because 

the total molecular weight of the generated molecule becomes too large to be used as a drug if 

a greater number of fragments is used. In general, a molecule with a molecular weight between 

200 and 600 Da is used for drugs12. Note that the average molecular weight of the fragments 

constituting the fragment set is about 110 Da. Therefore, if more than six fragments are used, 

it may be too large for a drug. The predicted pIC50 values for three HIV-related targets are 

summarized in Supplementary Table 8.

7. Model accuracy of prediction model. For the experiment on Materials extrapolation to hit 

multiple extreme target properties, 7 target properties were considered: logP, TPSA, QED, 

HBA, HBD, MW, and DRD2 activity. All properties except for DRD2 activity were calculated 



using RDKit. Using RDKit, HBA, HBD, and MW are values that are directly calculated once 

the molecule is defined, while logP is computed based on the Wildman-Crippen method1, and 

TPSA is determined using the summation of fragment contributions2. RDKit calculates the 

Quantitative Estimation of Drug-likeness (QED) using a method that considers logP, TPSA, 

HBA, HBD, and MW. Lastly, DRD2 activity is predicted using the QSAR model introduced 

in the reference paper4 which is made using the support vector machine classification model. 

According to the reference paper, the QSAR model performance on active molecules of the 

test set shows that it misclassifies 10% of all cases as inactive.

For the Application to the discovery of protein docking molecules, QVina2 was used to 

predict the docking score of a molecule. In terms of model accuracy, it can depend on the 

specific target and parameter used in the program. Compared to Vina, it has Pearson’s 

correlation coefficient(r) of 0.967, and the comparison of predicted binding energy can be seen 

in the reference paper10.

For the Application to discovery of HIV inhibitors, the QSAR model from the reference paper 

was used, which aims to predict the pIC50 value of each HIV-related target. The performance 

of the model can be found on the ESI† Table S10, which was analyzed from the reference 

paper13.

Based on the accuracy of the evaluation model, it is possible to narrow down the candidates 

more precisely within the chemical space that one aims to explore. Hence, the accuracy of 

evaluators affects how precisely narrow down the search space.



Supplementary Figures 

Supplementary Figure 1. Results for a supplementary experiment to generate the five 

target-hitting molecules. a, Distribution of MOSES5 training set and the extrapolation targets 

M1 to M10. b, Results comparison of AI-driven combinatorial chemistry and GCT. The left 

table shows the number of molecules that hit the target bounds. Each blue-red line in the right 

parallel coordinates plot indicates a molecule within the target bounds (green) of logP, TPSA, 

QED, HBA, and HBD at the same time. Blue-red lines were colored according to the log-scale 

score. The yellow line indicates each target. c, MW distribution of fragments in the fragments 

set and extrapolated targets. d, A molecular generation path example for target M2.



Supplementary Figure 2. The performance by the number of fragments constituting a 

fragment set. The fragment set consists of the fragments derived from the MOSES dataset.  

3,000 molecules were generated with various sizes of fragment sets, and a box plot was drawn 

for unique molecules. The mean reward for each outcome is represented numerically, while the 

box is set with percentiles 25 and 75, and the whiskers extend to the 5th and 95th percentiles.



Supplementary Figure 3. Benchmark results for model performance. a, Results according 

to the type of reinforcement learning algorithms. b, Results according to the presence of action 

masking.
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Supplementary Figure 4. The learning curve of the model. The graph illustrates changes in 

rewards according to training iterations.



Supplementary Figure 5. The performance by the number of fragments used for HIV 

inhibitor discovery. For 10,000 generated molecules for each case, pIC50 for each case was 

compared by setting the maximum fragments from 4 to 9. The mean of predicted pIC50 value 

for each outcome is represented numerically, while the box is set with percentiles 25 and 75, 

and the whiskers extend to the 5th and 95th percentiles.



Supplementary Figure 6. Synthetic Accessibility (SA) score of each experiment. a, 

Materials extrapolation to hit multiple extreme target properties. b, Application to the 

discovery of protein docking molecules. c, Application to discovery of HIV inhibitors. The 

mean SA score for each outcome is represented numerically, while the box is set with 

percentiles 25 and 75, and the whiskers extend to the 5th and 95th percentiles.



Supplementary Figure 7. Top 10 molecular structures with low docking score.



Supplementary Figure 8. Top 10 molecular structures with high pIC50 value for CCR5.



Supplementary Figure 9. Top 10 molecular structures with high pIC50 value for INT.



Supplementary Figure 10. Top 10 molecular structures with high pIC50 value for RT.



Supplementary Tables

Supplementary Table 1. Extrapolation targets sampled from a data set of PubChem 

SARS-CoV-2 clinical trials.

Target SMILES
C10 CCCCCCCCCCCC(=O)CC(=O)N[C@@H]1[C@H]([C@@H]([C@H](O[C@@H]1OP(=O)(O)O)CO[C@H

]2[C@@H]([C@H]([C@@H]([C@H](O2)COC)OP(=O)(O)O)OCC[C@@H](CCCCCCC)OC)NC(=O)CCC
CCCCCC/C=C\\CCCCCC)O)OCCCCCCCCCC

C9 CC1=CC2=C(C=C1C)N(C=N2)[C@@H]3[C@@H]([C@@H]([C@H](O3)CO)OP(=O)([O-
])O[C@H](C)CNC(=O)CC[C@@]\\4([C@H]([C@@H]5[C@]6([C@@]([C@@H](C(=N6)/C(=C\\7/[C@@
]([C@@H](C(=N7)/C=C\\8/C([C@@H](C(=N8)/C(=C4\\[N-
]5)/C)CCC(=O)N)(C)C)CCC(=O)N)(C)CC(=O)N)/C)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O

C8 C[C@H]1[C@H]([C@H]([C@@H]([C@@H](O1)O[C@H]2[C@@H]([C@H](OC([C@@H]2NC(=O)C)O)
CO)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O[C@H]4[C@H]([C@H]([C@@H]([C@H](O4)
CO[C@@H]5[C@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)O)O)O[C@H]6[C@@H]([C@H]([C@@H]
(CO6)O)O)O)O)NC(=O)C)O)O)O

C7 C[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N2CCC[C@H]2C(=O)N[C@H](C(=O)N[
C@H](C(=O)N[C@@H](CSSC[C@@H](C(=O)NCC(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)
N[C@H](C(=O)N3CCC[C@H]3C(=O)N[C@H](C(=O)NCC(=O)N1)CCC(=O)O)[C@@H](C)O)CCC(=O)O
)CCCNC(=N)N)CCC(=O)N)N)C(=O)O)CC4=CC=C(C=C4)O)CC5=CNC6=CC=CC=C65)CCCCN)C)CCC(
=O)O

C6 CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C
O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H
](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=
O)[C@H](CCC(=O)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(C)C)N
C(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O
)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC3=CC=CC
=C3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)NC(=O)[C@
H](CC4=CN=CN4)N

C5 CCC(C)C1C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCCCCC(C(=O)NC(C(=O)N1)CCCN)NC(=O)
C(C(C)CC)NC(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)NC(=O)C2CSC(=N2)C(C(C)CC)N)CC(=O)N)CC(=O
)O)CC3C=NC=N3)CC4=CC=CC=C4

C4 CC(C)C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)
N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=
O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C
(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C
)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC
CN)C(=O)O)NC(=O)[C@H](CCCCN)N

C3 CC[C@@H](C)[C@@H](C(=N[C@H](CS)C(=N[C@@H](C(C)O)C(=N[C@@H](CCCNC(=N)N)[C]=O)O
)O)O)N=C([C@H](CS)N=C([C@H](CCCNC(=N)N)N=C([C@H](CS)N=C([C@@H](C(C)C)N=C(CN=C([
C@H](CCCNC(=N)N)N=C([C@H](CCCNC(=N)N)N=C([C@H](CS)N=C([C@H](CC(C)C)N=C([C@H](C
S)N=C(C(CCCNC(=N)N)N=C([C@H](CS)N=C([C@@H](CC1=CC=CC=C1)N=C(CN)O)O)O)O)O)O)O)O
)O)O)O)O)O)O

C2 CC[C@H](C)[C@@H](C(=N[C@@H]([C@@H](C)O)C(=N[C@@H](CS)C(=N[C@@H](C(C)C)C(=N[C
@@H](CCCNC(=N)N)C(=N[C@@H](CCCNC(=N)N)C(=N[C@@H](C)C(=N[C@@H](CC1=CC=CC=C1
)C(=O)O)O)O)O)O)O)O)O)N=C([C@H](CO)N=C([C@@H]2CCCN2C(=O)[C@H](C)N=C(CN=C([C@H](
CC(C)C)N=C([C@H](CCCCN)N=C([C@H](CCCCN)N=C([C@H](CCSC)N=C([C@H](CCCNC(=N)N)N=
C([C@H](CC3=CNC4=CC=CC=C43)N=C([C@H](CCC(=N)O)N=C([C@H](CC5=CNC6=CC=CC=C65)N
=C([C@H](CCCNC(=N)N)N=C([C@H](CCCNC(=N)N)N=C([C@H](CS)N=C([C@H](CCCCN)N=C([C@
H](CC7=CC=CC=C7)N)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O

C1 CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@
H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C



@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(=O)O)C
(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCC(=
O)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@
H](CCC(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC
(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(=O)O)NC(=O)[C@
H](CO)NC(=O)C



Supplementary Table 2. Materials extrapolation for ChEMBL database with cRNN. 

Simplified molecular-input line-entry system (SMILES)14-16 is a line-notated molecular 

representation. The SMILESa-n are summarized in Supplementary Table 4.

Targe
t

Generated
SMILES

# of mols. 
generated

logP TPSA QED HBA HBD MW DRD2

cRNN[4]
Targe

t
-18.09 1456.35 0.0251 49 49 3106.50 0.0100

S 421 0.1128 0.00 0.3564 0 0 34.083 0.0000

C10

SO 1 0.3892 20.23 0.3005 1 2 50.082 0.0000
Targe

t
11.22 1336.9 0.0073 40 51 3123.68 0.1638C9

None
Targe

t
3.4797 926.85 0.0192 31 40 2086.96 0.0315C8

None
C7 Targe

t
6.4769 775.42 0.0290 27 27 2467.83 0.0005

None
C6 Targe

t
-1.77 526.91 0.0391 20 16 1421.75 0.2229

SMILESa 1 2.2083 460.53 0.0122 17 15 1339.07 0.2304
SMILESb 1 0.4676 477.46 0.0147 22 15 1334.75 0.1872
SMILESc 1 0.7446 474.37 0.0393 21 15 1371.59 0.1136
SMILESd 1 2.3708 421.51 0.0254 16 13 1279.72 0.2207
SMILESe 1 0.3763 460.29 0.0186 18 14 1355.71 0.2734
SMILESf 1 0.9282 428.74 0.0188 23 13 1356.50 0.2532

C5 Targe
t -14.62 1447.9 0.0111 48 51 3324.74 0.0679

None
C4 Targe

t
-7.83 810.5 0.0154 28 27 1921.81 0.2455

S 9,836 0.1128 0.00 0.3564 0 0 34.08 0.0000
C3 Targe

t
-12.15 483.41 0.0682 29 18 1026.38 0.0007

SMILESg 1 -10.29 476.94 0.0198 27 18 832.76 0.0129
SMILESh 1 -13.12 565.83 0.0338 29 21 924.00 0.0520
SMILESi 1 -14.13 568.17 0.0114 31 22 916.87 0.0276
SMILESj 1 -10.05 533.43 0.0107 30 20 956.94 0.0390
O 3,018 -0.8247 31.5 0.3277 0 0 18.02 0.0007

C2 Targe
t

3.3153 464.92 0.0610 19 9 1269.63 0.0422

None
C1 Targe

t
13.6112 293.63 0.0129 15 7 1312.84 0.0151

SMILESk 1 12.8784 272.75 0.0101 14 8 1170.10 0.0246
SMILESl 1 11.8235 255.42 0.0095 13 7 1179.52 0.0423
SMILESm 1 11.6254 247.89 0.0044 13 9 1137.46 0.0930
SMILESn 1 13.2309 247.5 0.0049 12 9 1145.41 0.0251
C 1,340 0.6361 0 0.3598 0 0 16.04 0.0001
CS 119 0.546 0 0.3795 0 1 48.11 0.0000
S 77 0.1128 0.00 0.3564 0 0 34.08 0.0000
S=O 1 -0.3363 17.07 0.3724 2 0 48.07 0.0000
SO 1 0.3892 20.23 0.3005 1 2 50.08 0.0000
SS 246 0.7610 0 0.3025 0 2 66.15 0.0001





Supplementary Table 3. Materials extrapolation for ChEMBL database with GCT. 

SMILESo-u are summarized in Supplementary Table 4.

Targe
t

Generated
SMILES

# of mols. 
generated

logP TPSA QED HBA HBD MW DRD2

GCT[6]
C10 Targe

t
-18.09 1456.35 0.0251 49 49 3106.50 0.0100

None
Targe

t
11.22 1336.9 0.0073 40 51 3123.68 0.1638C9

None
Targe

t
3.4797 926.85 0.0192 31 40 2086.96 0.0315C8

None
C7 Targe

t
6.4769 775.42 0.0290 27 27 2467.83 0.0005

None
C6 Targe

t
-1.77 526.91 0.0391 20 16 1421.75 0.2229

C5 Targe
t -14.62 1447.9 0.0111 48 51 3324.74 0.0679

None
C4 Targe

t
-7.83 810.5 0.0154 28 27 1921.81 0.2455

None
C3 Targe

t
-12.15 483.41 0.0682 29 18 1026.38 0.0007

SMILESo 1 -6.6307 360.53 0.0284 21 16 992.43 0.0346
SMILESp 1 -7.3916 409.53 0.0418 27 17 1011.58 0.0889
SMILESq 1 -7.4463 411.61 0.0233 29 17 997.59 0.0671

C2 Targe
t

3.3153 464.92 0.0610 19 9 1269.63 0.0422

None
C1 Targe

t
13.6112 293.63 0.0129 15 7 1312.84 0.0151

SMILESr 1 17.1370 71.06 0.1302 8 1 1007.17 0.0155
SMILESs 1 10.2772 114.65 0.2391 8 2 724.12 0.0001
SMILESt 1 8.3365 128.45 0.1319 11 4 765.92 0.0164
SMILESu 1 12.7473 144.57 0.0307 8 2 949.66 0.0015



Supplementary Table 4. Discovered materials from cRNN and GCT. The molecules 

summarized in this table are referred to in Supplementary Table 2 and Supplementary Table 3.

Index SMILES
a SC1n(C2=NCNS2(=O)=O)NC(C#N)C1Cc1ccc(CN(NCCCNC(N2CCC3N(C(C=CC4(N)CC(N(C(CCCCC)=O)

C)CC(C(=O)N)N4C(Nc4ccc(Cl)c(NC(=NCC)N)c4)=O)C3CCCCNC(NC)=O)C2=N)=O)(=O)C)cc1NC(N)=O
b S(CSC2=CCC(=NCCNC3C(O)OC(CN)=C(N)C3N)C(=O)NC3N(CCCCNC(=O)C4CCC(C)CN4CCCOC(=O)

NC(C)C(OC)=CC45CSC(C)(C)N5C(=O)N4)C(=O)NC(C)CC2(C(=O)N)C3C#N)(=O)C(CCCCCCC)(N)NC(=
N)N

c Sc1c(N=C(C2C(=O)N3C(C(=O)NC4C(=O)NC(CCCN)N(C(=O)C(CC(C)C)C(=O)NC(C(C)C)C(=O)N5CCCC
5)N4C(=O)C4N(O)CCCC4)CCCCC2)C3)ccc(NC(=O)N2C3C(O)C(C2=O)C(O)C2(C(C(=O)O)=C(OC(C#N)C
)CC2)NC3=N)c1NC(=N)NC

d Sc1c(N=C(C(C(N=c2ccc(Br)c[nH]2)=NS(C2C(=O)C(N3C(=O)N(CC(C)C)CCCNCCNC(=O)NCCNC(=O)N3)
C=CC3CN(C)CCC23)[O-])=O)N)c(=O)c2c1n(CCCC(CC(CC(O)=O)C)NC(N)=N)c(Cl)c2[N+](=O)[O-]

e Sc1c(CN=C(N)N)cc2c(c1)OC(C)C=CC(OC)C(C)OC(=O)C(C)=NC(=O)C1CC(C)NC(=O)C3(Cc4cc(ccc4)C[N
+]45CCCCC=CC[N+](C)CC[N+](CCN=C(N)N)CCCCCN4CC(C(CN=NNC(N)=N)C1O)C(O)C3O)NC5NC(=
O)N=C2N=C

f S(CSSCCN(c2ccccc2)C2=CC(=O)C(Nc3ccc(S(=O)(N)=O)cc3)=C(C)C(=O)NC(CBr)C(=O)NCCCCCNCCCN
C(=O)C(S(=O)(O)=O)=CCC1C=CC[N+]1(C)C(=NS(=O)(N)=O)C2(O)C(O)(C)C(O)=O)C(O)(C)NC

g NOCC(O)COC(OC)(C=C(C)OC(C)O)OC(COC(O)C(O)O)C(O)C(O)C(OC(O)C(CO)O)(O)OC(C(O)C(O)C2O
C(N)(C)N=C2N)C(O)O

h NOCCC(NC(O)C(N)C(NCC(O)C(N)CO)O)OC(C(ON=c1c(=C2N(C(N)C(N)=O)C(CO)(N)C(O)C(CO)N2)C(
N)C(N2COCC2N2C(N)=NN=C2N)=N1)CNC)N

i NOC1SC2N(NN2)C1C(O)OC(C(C(N)C(O)O)O)OC(O)C(C(O)C(C(O)C(CO)O)OC(C(O)O)C(C(O)C(C)(C(O)
CO)O)ON(C(=O)C(N)C(N)=O)N)CC#N

j NCC1SSC(SC2NC(N)=NC(CO)C2NC(O)=O)C(O)C1(O)C(C(=O)C(=C(C(O)O)C(C(C(C(C(C(=O)O)O)OC)O
)O)O)OC(O)C(O)O)(N)OCCNC3=NN3N=O

k SNS(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCS(=O)(=O)N=C(NSNc1ccc(S(=O)(=O)NCCOC(=O)
N)c(C(O)=O)c1)c1cc(Cl)c(O)cc1CCC)(=O)=O

l SNS2(SSSCCC(C(=O)NC#N)=NC(SSC(C(=O)N)Cc3ccc(Cl)cc3)C(Cl)C(C)(C)C(=O)Nc3cc(C(C)C)c(S(=O)(
O)=O)cc3CC=CC=C(C)CCCCC=CC2=NC(=N[N+](C)=N)C)C

m SNS(CSCCSSCC(C(N=Cc1ccc(Cl)cc1Cl)=NOC(CCCC)(CCCCCCCCCCCCCC)N)c1ccc(C(N)=O)cc1NC(NC
(=O)C(CC)CC(=O)O)C=CC(=O)O)(=O)C

n SNNS(=O)(OCCCCCCCCCCCCCCCCCCCCCCCCCCC[N+](CCCOc1cc(Cl)c(Cl)c(C(CNC(=O)C(C)C[N+](
O)[O-])c2ccc(N)cc2)c1)(c1ccc(O)cc1)C[N+](=O)[O-])O

o COC1OC(C(C)C(O)C(O)CONC(=SBr)C(OC2)C(NC(=O)CBr)C(O)C(O)C2OC2OC(O)C(Br)C(O)C(O)C(O)C(
O)C(NO)O)OC12O

p COC1OC(C(C)O)C(c2)C(NNC(=O)NN2Br)C(OC2OC(CC(O)C(O)C(O)C(O)C(O)COc2(Br)C(O)C2OOO)Oc2
N(CC(NO)C(O)CNO)C2O1)C2O

q COC1OC(C(Br)C(Br)CO)OC(C2OC(OCC(O)(C(O)C(O)C(O)C(O)C(O)CO)OC2O)OC(NC2SSCC(ONO)O2)
C(O)C(NO)O)OC1O

r CC1CCCCCCC(=O)OCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(=O)C(OSCc1)COc1C(Br)ccc(Br)cc1
OS

s CC1CCCCCCC(=O)OCCCCCCCCCCCCCCCCCCCCCCCCCC(=O)C(O)C(=NC)C(O)COCCOc1
t CC1CCCCCC(=O)CCCCCCCC(=O)CCCC(=NC(=S)SSc2ccc(Br)cc2O)C(O)CCNC(O)COs1
u O=C(O)CCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCC(=N)c1ccc(OCCBr)cc1OC(=O)N=C(Br)c1OCc1Br



Supplementary Table 5.  for materials interpolation for the MOSES database 𝑅𝑀𝑆𝐸𝑖

with GCT.

Property 𝑖  for GCT6𝑅𝑀𝑆𝐸𝑖

logP 0.214
TPSA 3.225
QED 0.037
HBA 0.180
HBD 0.106



Supplementary Table 6. Parameter settings for QuickVina2.

Parameter Configuration
Exhaustiveness Changes over time, from 1 to 8
Modes 10
CPU per subprocess 1
Box center -26.602, 5.277, 17.898
Box size 22.5, 22.5, 22.5



Supplementary Table 7. The structure and role of molecules found to be active in the 

database among the molecules generated through our methodology.

Target NameMolecular Structure 
(ChEMBL ID) Target Organism

Function

Latent membrane protein 1
O

OH

CHEMBL412355

Human herpesvirus 4
(strain B95-8)

Regulates its expression and the expression of human genes17. 
Induces many changes associated with Epstein-Barr virus (EBV) 
infection and activation of primary B cells18. It is expressed in 
most EBV-related human cancers, such as various malignant 
EBV-related lymphoproliferative diseases19.

Penicillium chrysogenum
F

Cl Cl

CHEMBL2261013 Penicillium chrysogenum

Penicillium chrysogenum is a species of fungus in the genus 
penicillium and is the source of penicillin. Plus, the airborne 
asexual spores of penicillium chrysogenum are important human 
allergens. Vacuolar and alkaline serine proteases are associated 
with major allergenic proteins20.

TAR DNA-binding
protein 43 (TDP-43)

O
S

O
Cl

Cl

N

CHEMBL1583499
Homo sapiens

TDP-43 is a transcription inhibitor that binds to TAR DNA 
integrated into chromosomes and inhibits HIV-1 transcription21 
and thus may have efficacy in inhibiting HIV disease. Moreover, 
several neurodegenerative diseases, including amyotrophic 
lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, 
and limbic predominant age-related TDP-43 encephalopathy, 
share the common trait of the accumulation of TDP-43 
aggregates in the central nervous system22.

Sporosarcina pasteurii

O

OH

N+

O

-O

CHEMBL99068
Unchecked

It has effects of inhibiting the urase of sporosarcina pasteurii 
CCM 205623. Urase is found in plant reservoirs and soils, which 
hydrolyze or decompose urea with water to form ammonium. 
The urease inhibitor can protect the process of ammonia 
volatilization24.



Supplementary Table 8. The pIC50 comparison by the number of fragments of 3,000 

generated molecules of each termination conditions. The case of showing the best 

performance for each condition is indicated in blue bold text.

Steps CCR5 INT RT
maximum median maximum median maximum median

4 steps 8.81 7.75 7.29 6.62 7.91 7.26
5 steps 8.93 8.20 7.10 6.42 7.94 7.36
6 steps 9.05 8.51 7.06 6.28 7.84 7.28
7 steps 9.31 8.57 7.29 6.42 7.92 7.35
8 steps 9.12 8.42 7.10 6.39 7.77 7.22
9 steps 9.11 8.44 7.28 6.40 7.81 7.07



Supplementary Table 9. Comparison with other methods. We compared our model against 

a few other models. The best case in each section was marked in blue bold. Our proposed model 

has produced compounds with the highest maximum pIC50 scores in two of the three domains, 

demonstrating that it outperforms others. The benchmark results of GCPN24, JT-VAN25, 

MSO26, PGFS27 were borrowed from ref. 27.

Method CCR5 INT RT
GCPN25 8.20 (8.62) 6.45 7.42 (7.45)

JT-VAE26 8.15 (8.23) 7.25 7.58
MSO27 8.68 (8.77) 7.28 7.76
PGFS13 9.05 7.5 7.89

RL (Ours) 9.11 7.17 8.01



Supplementary Table 10. Performance evaluation of trained QSAR models for predicting 

HIV-related targets using cross-validation13. R2 refers to coefficient of determination, MAE 

refers to mean absolute error, and Range refers to range of the values in the dataset.

Dataset R2 MAE Range
aggregated average aggregated average

CCR5 0.72 0.69 ± 0.03 0.51 0.54 ± 0.02 4.04-10.30
HIV-INT 0.69 0.65 ± 0.04 0.45 0.48 ± 0.03 4.00-8.15
HIV-RT 0.55 0.52 ± 0.05 0.51 0.53 ± 0.03 4.00-8.66
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