Supporting Information for

Facile synthesis of 1,2-aminoalcohols via $\alpha-\mathbf{C}-\mathbf{H}$ aminoalkylation of alcohols by photoinduced hydrogen-atom transfer catalysis

Joaquim Caner, ${ }^{\dagger}$ Akira Matsumoto, ${ }^{*, \dagger}$ and Keiji Maruoka*, ${ }^{\dagger,}$,
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
${ }^{\dagger}$ School of Chemical Engineering and Light Industry, Guangdong University of Technology,
Guangzhou, 510006, China

Email: matsumoto.akira.3c@kyoto-u.ac.jp; maruoka.keiji.4w@kyoto-u.ac.jp

Table of Contents

1. General Information S03
2. Preparation of Catalysts and Substrates S05
2.1. Photoredox Catalysts and Hydrogen-Atom Transfer (HAT) Catalysts S05
2.2. Imines (Radical Acceptors) S07
2.3. Alcohols (Substrates) S17
3. Investigations on Reaction Conditions S23
3.1. Screening of Imines S23
3.2. Screening of N-Sulfinyl α-Iminoesters S24
3.3. Screening of Reaction Time S24
3.4. Screening of Solvents S25
3.5. Screening of Equivalents of EtOH S26
3.6. Screening of Photoredox Catalysts S27
3.7. Comparison with Other Hydrogen Atom Transfer (HAT) Catalysts S27
3.8. Comparison with Reported Conditions S28
3.9. Control Experiments S29
4. General Procedure for Synthesis of 1,2-Aminoalcohols S30
5. Reactions of Enantiomerically Enriched N-Sulfinyl $\boldsymbol{\alpha}$-Iminoesters S47
5.1. Preparation of Enantiomerically Enriched N-Sulfinyl α-Iminoesters S47
5.2. Reactions of $(R)-1 \mathbf{k}$ and $(S)-1 \mathbf{k}$ with Cyclopentanol S51
5.3. Reactions of $(R)-1 \mathbf{k}$ and $(S)-1 \mathbf{k}$ with Ethanol S56
6. Mechanistic Studies S64
6.1. Cyclic Voltammetry S64
6.2. Fluorescence Quenching Studies S66
7. References S68
8. Spectral Data Collection S69

1. General Information

Materials

Dry solvents were purchased and used as received: dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), acetone were purchased as "Super Dehydrated" grade from FUJIFILM Wako Pure Chemical Co., Inc. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and acetonitrile (MeCN) were purchased as "Dehydrated -Super${ }^{2}$-" and "Dehydrated -Super-" grade respectively from Kanto Chemical Co., Inc. Commercially available reagents were purchased from TCI, FUJIFILM Wako, Merck Sigma-Aldrich, Nacalai tesque, CombiBlocks or BLDpharm, and used as received for the reactions unless otherwise noted.

Methods

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-ECA500 (500 MHz) or JEOL JNM-FX400 (400 MHz) spectrometer. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as follows: chemical shifts in ppm relative to tetramethylsilane as an internal standard (0.00 ppm) in CDCl_{3} or $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$, integration, multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants (Hz), and assignment. ${ }^{13} \mathrm{C}-$ NMR spectra were recorded on a JEOL JNM-ECA500 $(126 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in ppm relative to the residual solvent as an internal standard: CDCl_{3} (77.16 ppm), DMSO-d $\mathrm{d}_{6}(39.52 \mathrm{ppm}) .{ }^{19} \mathrm{~F}$-NMR spectra were recorded on a JEOL JNM-ECA500 (471 MHz) or JEOL JNM-FX400 (376 MHz) spectrometer with complete proton decoupling. Chemical shifts for ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ are reported in ppm from benzotrifluoride (63.7 ppm) resonance as an external standard. High-resolution mass spectrometry (HRMS) was performed on a Thermo Exactive plus (ESI) spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Silica gel $60 \mathrm{~F}_{254}$) were used, and compounds were visualized with a UV light at 254 nm or 365 nm . Further visualization was achieved mainly by basic aqueous KMnO_{4} solution stain or phosphomolybdic acid stain (PMA). The products were purified by flash column chromatography on neutral silica gel (Kanto Chemical Co. Inc., Silica gel 60N, particle size $40-50 \mu \mathrm{~m}$). Further purification by preparative thin layer chromatography (PLC) was performed using Merck PLC plates (PLC silica gel $60 \mathrm{~F}_{254}, 0.5 \mathrm{~mm}$) if necessary.

Diastereomeric ratios were determined by high-performance liquid chromatography (HPLC) analysis using Shimadzu 20A instruments, and chiral column [DAICEL, CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250$
mm] with hexane and 2-propanol $(i \mathrm{PrOH})$ mixture as an eluent. Cyclic voltammetry was performed on an electrochemical analyzer ALS model 760D (BAS Inc.). Stern-Volmer quenching experiments were conducted on a Shimadzu RF-6000 spectrofluorophotometer.

Photochemical Reaction Set-up

Unless otherwise noted, the photochemical reactions were run using a stick-type blue LED (TechnoSigma PER-448, $\lambda_{\max }=448 \mathrm{~nm}$, radiant flux $=0.68 \mathrm{~W}$), which was inserted into a reaction vessel (Schlenk tube with three-way stopcock on side, $18 \times 125 \mathrm{~mm}$) and connected with a light source device (Techno-Sigma PER-AMP-N4) (Figure S1). The reaction vessel was kept in a temperature-controlled reactor (Techno-Sigma, UCR-80 Nh) and the temperature was set to $25^{\circ} \mathrm{C}$ during the reaction.

Figure S1. A) Solid reagents were weighed in microtubes and liquid reagents were dissolved in the solvent under argon atmosphere in a separated vial. B) Solids and a magnetic stirring bar (crosshead type) were placed in a Schlenk tube with a three-way stopcock on side and a LED light source (Techno-Sigma, PER-448 on NMR tube) was inserted into a Schlenk tube, which was capped with a rubber septum and covered with parafilm. The Schlenk tube was degassed via vacuum evacuation and subsequent backfill with argon for three times through the three-way stopcock (under vacuum in the snapshot). C) The solution of liquid reagent in the solvent was transferred via syringe to the Schlenk tube through a septum equipped in the three-way stopcock under positive argon pressure. D) The reaction mixture was irradiated in a temperature-controlled reactor equipped with an aluminum block at $25^{\circ} \mathrm{C}$.

2. Preparation of Catalysts and Substrates

2.1. Photoredox Catalysts and Hydrogen-Atom Transfer (HAT) Catalysts

All photoredox catalysts and hydrogen-atom transfer catalysts are commercially available or made by known methods:

Commercially available: Mes-Acr ${ }^{+}$, $\left\{\operatorname{Ir}\left[\mathbf{d F}\left(\mathbf{C F}_{3}\right) \mathbf{p p y}\right]_{2}\left(\right.\right.$ dtbpy $\left.\left.^{2}\right)\right\} \mathbf{P F}_{6}, \operatorname{Ir}(\mathbf{d F p p y}) \mathbf{3}$, Quinuclidine, $\left({ }^{n} \mathrm{Bu}\right){ }_{4} \mathrm{NBr}$.

The following compounds were synthesized according to previously reported methods: (Ph- ${ }^{-}$BuAcrMes) $,{ }^{+[1]} \mathbf{4 C z I P N},{ }^{[2]}$ DABCO $^{+},{ }^{[3]}$ DABCO $^{+}(\mathrm{Br}),{ }^{[3]}$ 2,6-Cl2-Pyr-Ox. ${ }^{[4]}$

1-(Naphthalen-1-ylmethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium tetrafluoroborate (DABCO ${ }^{+}(\mathrm{Br})$)

To a solution of 1-(bromomethyl)naphthalene $(1.15 \mathrm{~g}, 5.2 \mathrm{mmol})$ in acetone (20 mL) was added 1,4diazabicyclo[2.2.2]octane (DABCO, $1.19 \mathrm{~g}, 10.5 \mathrm{mmol}$) in one portion at r.t., and the mixture was stirred vigorously for 6 h under argon atmosphere. The resultant white solid was filtered, triturated repeatedly with $\mathrm{Et}_{2} \mathrm{O}$ and EtOAc to remove the excess amount of DABCO , and dried under vacuum. The process furnished $1.55 \mathrm{~g}(95 \%$ yield $)$ of $\mathbf{D A B C O}^{+}(\mathbf{B r})$ as a white solid.

$\mathbf{D A B C O}^{+}(\mathbf{B r})$, new compound.
${ }^{1} \mathbf{H}-$ NMR (500 MHz, DMSO-d6) $\delta 8.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (126 MHz, DMSO-d $\mathbf{6}$) $\delta 133.8,133.7,132.9,131.3,129.0,127.3,126.3$, $125.3,124.1,123.4,62.8,51.7,44.8$.

HRMS ESI [M-Br] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2}{ }^{+}: 253.1699$, found 253.1699.

2.2. Imines (Radical Acceptors)

The following compounds were synthesized according to previously reported methods: $\mathbf{1 a},{ }^{[5]} \mathbf{1 b},{ }^{[6]} \mathbf{1 c},{ }^{[7]}$ $\mathbf{1 d},{ }^{[8]} \mathbf{1 e} .{ }^{[9]}$

Racemic N-sulfinyl α-iminoesters were synthesized from the corresponding racemic sulfinamides according to the reported method: ${ }^{[10]}(\pm) \mathbf{- 1 f},(\pm) \mathbf{- 1 g},(\pm) \mathbf{- 1 h},(\pm) \mathbf{- 1 i},(\pm) \mathbf{- 1} \mathbf{j},(\pm) \mathbf{- 1 k},(\pm) \mathbf{- 1 \mathbf { l }}$.

2.2.1. Racemic Sulfinamides ((\pm)-s1-6) as Precursors for N-Sulfinyl α-Iminoesters

$$
(\pm) \text {-Sulfinamides prepared in this work for the synthesis of } N \text {-sulfinyl } \alpha \text {-iminoesters: }
$$

(\pm)-s4

(\pm)-s5

$(\pm)-\mathrm{s} 6$

Racemic sulfinamides were prepared according to the reported methods for the reduction of aromatic sulfonyl chlorides with $\mathrm{Na}_{2} \mathrm{SO}_{3}(\text { Method } \mathbf{A})^{[11]}$ or $\mathrm{NaBH}_{4}\left(\right.$ Method B) ${ }^{[12]}$ to give the corresponding sulfinic acids $((\pm)$-o), followed by the condensation with ammonia via the sulfinyl chloride intermediates: ${ }^{[13]}$

Method A

Step 1: ${ }^{[11 \mathrm{a}]}$ Sodium sulfinate ($20 \mathrm{mmol}, 2$ equiv.) and sodium bicarbonate ($20 \mathrm{mmol}, 2$ equiv.) were dissolved in distilled water (10 mL) and the corresponding aryl sulfonyl chloride ($10 \mathrm{mmol}, 1$ equiv.) was added. The reaction mixture was stirred for 4 to 6 h at $85^{\circ} \mathrm{C}$. After cooling down to r.t., the mixture was cooled at $0^{\circ} \mathrm{C}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to adjust the $\mathrm{pH}<2$. After 1 h at $0^{\circ} \mathrm{C}$ (a white precipitate of sulfinic acid was formed), 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, and after decantation, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator to furnish the desired sulfinic acid (\pm)-o as a colorless powder, which was used without further purification in the next step.
Step 2: ${ }^{[13]}$ Aryl sulfinic acid $\left((\pm)-\mathbf{o}, 1\right.$ equiv.) was suspended in toluene at $0^{\circ} \mathrm{C}(0.5 \mathrm{M})$. DMF (few drops) and oxalyl chloride (1.05 equiv.) were added dropwise sequentially. After 10 min at $0^{\circ} \mathrm{C}$ the reaction mixture was stirred at r.t. for 1 h . The freshly prepared solution of sulfinic chloride was transferred dropwise (using a syringe) to $1: 1$ mixture of $\mathrm{EtOAc} / 25 \mathrm{w} / \mathrm{w} \%$ ammonia aq. ($2.5 \mathrm{~mL} / \mathrm{mmol}$ of initial (\pm)-
o) at $0^{\circ} \mathrm{C}$. After 10 min at $0^{\circ} \mathrm{C}$ the reaction mixture was stirred at r .t. for 2 h and then diluted with EtOAc. After decantation, the organic phase was washed with brine and the combined aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and/or CHCl_{3} several times. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator to afford the desired aryl sulfinamide (\pm)-s.

(\pm)-4-(Trifluoromethyl)benzenesulfinamide ((\pm)-s2) [CAS: 2282706-55-0]

Method A, Step 1: 4-(Trifluoromethyl)benzenesulfonyl chloride ($2.48 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided 1.41 g (61% yield) of $(\pm)-4$-(trifluoromethyl)benzenesulfinic acid $((\pm)-\mathbf{o 2})$ as a white solid.

Method A, Step 2: (\pm)-4-(Trifluoromethyl)benzenesulfinic acid (\pm)-02, $626 \mathrm{mg}, 3.0 \mathrm{mmol}$) furnished $534 \mathrm{mg}(86 \%$ yield) of (\pm)-s2 as a white solid.

(\pm)-s2 is a known compound in literature and its spectral data are in good agreement with literature values. ${ }^{[14]}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ (br s, 2H).
${ }^{19}$ F-NMR (471 MHz, CDCl 3) δ-62.7.
(\pm)-2,4,6-Trimethylbenzenesulfinamide ((\pm)-s3) [CAS: 137280-49-0]
Method A: Step 1: 2-Mesitylenesulfonyl chloride ($2.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided $1.32 \mathrm{~g}(71 \%$ overall yield) of (\pm)-2,4,6-trimethylenzenesulfinic acid $((\pm)-\mathbf{0 3})$ as a white solid.

Method A: Step 2: (\pm)-2,4,6-trimethylenzenesulfinic acid $((\pm)-\mathbf{0 3}, 1.29 \mathrm{~g}, 7.0 \mathrm{mmol})$ furnished 1.06 g (83% yield) of (\pm)-s3 as a white solid.

(\pm)-s3 is a known compound in literature and its spectral data are in good agreement with literature values. ${ }^{[15]}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.86(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.

(\pm)-2-(Trifluoromethylbenzenesulfinamide ((\pm)-s4)

Method A, Step 1: 2-(Trifluoromethyl)-benzenesulfonyl chloride ($1.55 \mathrm{~mL}, 10.0 \mathrm{mmol}$) provided 1.84 $\mathrm{g}(88 \%$ yield) of (\pm)-2-(trifluoromethyl)benzenesulfinic acid ($(\pm)-\mathbf{0 4})$ as a white solid.

Method A, Step 2: (\pm)-2-(Trifluoromethyl)benzenesulfinic acid ($(\pm)-\mathbf{o 4}, 1.27 \mathrm{~g}, 6.0 \mathrm{mmol})$ furnished $1.15 \mathrm{~g}(91 \%$ yield $)$ of $(\pm)-\mathbf{s 4}$ as a white solid.

	(\pm)-s4, new compound.

(\pm)-2,6-Difluorobenzenesulfinamide ((\pm)-s5)

The target sulfinamide was prepared according to Method A with slight modifications in Step 1.

Step 1: ${ }^{[11 \mathrm{~b}]}$ Sodium sulfinate ($4.54 \mathrm{~g}, 36 \mathrm{mmol}, 3$ equiv.) was dissolved in distilled water (24 mL) and 2,6-difluorobenzenesulfonyl chloride ($1.6 \mathrm{~mL}, 12 \mathrm{mmol}, 1$ equiv.) was added. Then, the reaction mixture was stirred for 5.5 h at $80^{\circ} \mathrm{C}$. After cooling down to r.t., the mixture was cooled at $0^{\circ} \mathrm{C}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added to adjust the $\mathrm{pH}<2$. After 1 h at $0^{\circ} \mathrm{C}$ (a white precipitate of $(\pm)-\mathbf{0 5}$ was formed), 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and after decantation, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ several times. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure using a rotary evaporator to provide $2.14 \mathrm{~g}(86 \%$ yield) of $(\pm)-\mathbf{0 5}$ as an off-white solid, which was used without further purification in the next step.
Step 2: ${ }^{[13]}$ Same as described in Method A. (\pm)-2,6-Difluorobenzesulfinic acid ((\pm)-05, $1.80 \mathrm{~g}, 10.1$ $\mathrm{mmol})$ furnished $1.79 \mathrm{~g}(87 \%$ yield $)$ of $(\pm)-\mathrm{s} 5$ as a white solid.

$$
(\pm)-\mathbf{s 5}, \text { new compound. }
$$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6) $\delta 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8.6 \mathrm{~Hz}), 6.70(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d6) $\delta 158.8\left(\mathrm{dd}, J_{C-F}=250.7,7.2 \mathrm{~Hz}\right.$), $133.1\left(\mathrm{t}, J_{C-F}=10.8\right.$
$\mathrm{Hz}), 124.9\left(\mathrm{t}, J_{C-F}=19.2 \mathrm{~Hz}\right), 112.9\left(\mathrm{dd}, J_{C-F}=20.4,3.6 \mathrm{~Hz}\right)$.
${ }^{19}$ F-NMR (377 MHZ, DMSO-d6) $\delta-113.5$.
HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{NOS}^{+}: 178.0133$, found 178.0132.

Method B

Step 1: ${ }^{[12]}$ The corresponding aryl sulfonyl chloride (1 equiv.) was dissolved in THF $(0.17 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. NaBH_{4} (8 equiv.) was added in 3 portions over 15 min and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h. After removal of THF under reduced pressure using a rotary evaporator, water ($2 \mathrm{~mL} / \mathrm{mmol}$) was added carefully at $0^{\circ} \mathrm{C}$. The mixture was then quenched with HCl aq. $(1 \mathrm{~N})$ and the pH was adjusted to <2 with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$. The acidic solution was extracted with CHCl_{3} and/or $\mathrm{Et}_{2} \mathrm{O}$ several times and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure using a rotary evaporator to furnish the desired sulfinic acid $((\pm)-\mathbf{o})$ as a white powder, which was used without further purification in the next step.
Step 2: ${ }^{[13]}$ Same as described in Method A.

(\pm)-4-Methylbenzenesulfinamide ((\pm)-s1) [CAS: 6873-55-8]

Method B, Step 1: 4-methylbenzenesulfonyl chloride ($1.09 \mathrm{~g}, 5.7 \mathrm{mmol}$) provided 720 mg (81% yield) of (\pm)-4-methylenzenesulfinic acid $((\pm)-\mathbf{0 1})$ as a white solid.
Method B, Step 2: (\pm)-4-methylenzenesulfinic acid $((\pm)-\mathbf{o 1}, 703 \mathrm{mg}, 4.5 \mathrm{mmol})$ furnished $560 \mathrm{mg}(80 \%$ yield) of (\pm)-s1.

(\pm)-s1 is a known compound in literature and its spectral data are in good agreement with literature values. ${ }^{[16]}$
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.63(\mathrm{~d}, J=8,3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35$ (br s, 2H), 2.42 (s, 3H).

(\pm)-2,6-Dichlorobenzenesulfinamide (\pm)-s6)

Method B, Step 1: 2,6-Dichlorobenzenesulfonyl chloride ($1.03 \mathrm{~g}, 4.2 \mathrm{mmol}$) provided $712 \mathrm{mg}(81 \%$ yield) of $(\pm)-2,6$-dichlorobenzenesulfinic acid $((\pm)-\mathbf{0 6})$ as a colorless solid.
Method B, Step 2: (\pm)-2,6-Dichlorobenzenesulfinic acid ((\pm)-06, $680 \mathrm{mg}, 3.2 \mathrm{mmol})$ furnished 501 mg (74% yield) of (\pm)-s6 as an off-white solid.

(\pm)-s6, new compound.

${ }^{13} \mathbf{C - N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d $\mathbf{6}) \delta 141.8,132.2,132.0,130.2$.
HRMS ESI $[\mathbf{M + N a}]^{+}$calculated for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NNaOS}^{+}: 231.9361$, found 231.9361.
Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm}$ x 250 mm . Isocratic: Hexanes $/ i \operatorname{PrOH} 80: 20,40^{\circ} \mathrm{C}$, flow rate: $\left.1.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}\right)$: Retention time $=11.3$ $\min ((S)$-s6, $50.0 \%), 13.6 \min ((R)$-s6, $50.0 \%)$.

Chromatogram of (\pm)-s6:

Entry	Retention time (min)	Area	Area (\%)
1	11.265	12592005	49.958
2	13.596	12613403	50.042
Total		25205409	100

2.2.2. Racemic N-Sulfinyl α-Iminoesters
$\underline{\text { Method C }}{ }^{[10]}$

$(\pm)-s 1-6$
1.0 equiv
(\pm)-1f-k

In a round bottom flask, $4 \AA \mathrm{MS}(1 \mathrm{~g} / \mathrm{mmol}$ of $(\pm)-\mathbf{s})$ was activated by heating with a heat gun. After cooling at r.t., sulfinamide $\left((\pm)\right.$-s, 1 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$ were added under argon atmosphere. Ethyl glyoxylate (1 equiv., $47 \mathrm{w} / \mathrm{w} \%$ solution in toluene) and pyrrolidine ($10 \mathrm{~mol} \%$) were added to the solution via syringe and the mixture was stirred overnight. Then, the reaction solution was filtered through a short pad of Celite ${ }^{\circledR}$ and the solvent was removed under reduced pressure using a rotary evaporator. The residue was purified by flash column chromatography on silica-gel (hexanes/EtOAc 95:5 to $8: 2$) to afford the desired compound.

(\pm)-Ethyl (\boldsymbol{E})-2-((tolylsulfinyl)imino)acetate ((\pm)-1f) [CAS: 1533401-88-5]

Method C: (\pm)-4-Toluenesulfinamide ($(\pm)-\mathbf{s} 1,466 \mathrm{mg}, 3.0 \mathrm{mmol})$ and ethyl glyoxylate $(47 \mathrm{w} / \mathrm{w} \%$ solution in toluene, $630 \mu \mathrm{~L}$) provided $718 \mathrm{~g}(77 \%$ yield) of (\pm)-1f as an off-white solid.
(\pm)-1f is a known compound in literature and its spectral data are in good agreement
 with literature values. ${ }^{[10]}$
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}), 4.35(\mathrm{qd}, J=7.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.4,153.2,142.7,139.3,130.2,124.8,62.7,21.6$, 14.1.

(\pm)-Ethyl (E)-2-(((4-(trifluoromethyl)phenyl)sulfinyl)imino)acetate ((\pm) - $\mathbf{1 g}$)

Method C: (\pm)-4-(Trifluoromethyl)benzenesulfinamide ((\pm)-s2, $420 \mathrm{mg}, 2.0 \mathrm{mmol})$ and ethyl glyoxylate ($47 \mathrm{w} / \mathrm{w} \%$ solution in toluene, $400 \mu \mathrm{~L}$) provided 282 mg (48% yield) of $(\pm) \mathbf{- 1 g}$ as a colorless solid.

	(\pm)-1g, new compound.
	$\begin{aligned} & { }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \\ & \mathrm{Hz}, 2 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \\ & { }^{13} \mathbf{C} \text {-NMR }\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.0,154.1,146.4,134.0\left(\mathrm{q}, J_{C-F}=32.8 \mathrm{~Hz}\right), 126.0 \\ & \left(\mathrm{q}, J_{C-F}=32.8 \mathrm{~Hz}\right), 125.5,123.5\left(\mathrm{q}, J_{C-F}=272.3 \mathrm{~Hz}\right. \text {, only the two main peaks are } \\ & \text { observed }), 63.0,14.1 . \\ & { }^{\mathbf{1 9}} \mathbf{F} \text {-NMR }\left(\mathbf{3 7 7} \mathbf{~ M H Z}, \mathbf{C D C l}_{3}\right) \delta-62.9 . \\ & \text { HRMS ESI }[\mathbf{M}+\mathbf{H}]^{+} \text {calculated for } \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 294.0406 \text {, found } 294.0404 . \end{aligned}$

(\pm)-Ethyl (E)-2-(((4-(trifluoromethyl)phenyl)sulfinyl)imino)acetate ($(\pm)-1 \mathrm{~h})$

Method C: (\pm)-2-(Trifluoromethyl)benzenesulfinamide ($(\pm)-\mathbf{s 4} 4,419 \mathrm{mg}, 2.0 \mathrm{mmol})$ and ethyl glyoxylate ($47 \mathrm{w} / \mathrm{w} \%$ solution in toluene, $400 \mu \mathrm{~L}$) provided 324 mg (55% yield) of (\pm) - 1 h as a yellowish wax-oil.

> | (\pm)-1h, new compound. |
| :--- |
| ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H})$, |
| $7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. |
| ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.1,153.9,141.7,133.3,132.0,128.0\left(\mathrm{q}, J_{C-F}=33.2\right.$ |
| $\mathrm{Hz}), 126.8\left(\mathrm{q}, J_{C-F}=5.2 \mathrm{~Hz}\right), 123.3\left(\mathrm{q}, J_{C-F}=274.7 \mathrm{~Hz}\right), 62.6,13.8$. |
| ${ }^{19} \mathbf{F}-\mathbf{N M R}\left(\mathbf{4 7 1} \mathbf{~ M H Z}, \mathbf{C D C l}_{3}\right) \delta-56.9$. |
| HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 294.0406$, found 294.0405. |

(土)-Ethyl (E)-2-((mesitylsulfinyl)imino)acetate ((\pm)-1i) [CAS: 2549158-51-0]

Method C: (\pm)-2,4,6-Trimethylbenzenesulfinamide ((\pm)-s3, $916 \mathrm{mg}, 5.0 \mathrm{mmol}$) and ethyl glyoxylate (47 $\mathrm{w} / \mathrm{w} \%$ solution in toluene, 1.0 mL$)$ provided $1.01 \mathrm{~g}(76 \%$ yield $)$ of $(\pm)-\mathbf{1 i}$ as a colorless solid.

> (\pm)-1i has a CAS RN.
> ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 3 \mathrm{H})$.
> ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.5,154.0,142.6,138.9,133.1,131.2,62.7,21.2$, 19.0, 14.2 .
> HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 268.1002$, found 268.0998 .

(\pm)-Ethyl (E)-2-(((2,6-difluorophenyl)sulfinyl)imino)acetate ((\pm)-1j)

Method C: (\pm)-2,6-Difluorobenzenesulfinamide ($(\pm$)-s5, $357 \mathrm{mg}, 2.0 \mathrm{mmol}$) and ethyl glyoxylate (47 $\mathrm{w} / \mathrm{w} \%$ solution in toluene, $400 \mu \mathrm{~L}$) provided $279 \mathrm{mg}(53 \%$ yield $)$ of $(\pm)-\mathbf{1} \mathbf{j}$ as an off-white solid.

[^0]

(\pm)-Ethyl (E)-2-(((2,6-dichlorophenyl)sulfinyl)imino)acetate ((\pm)-1k)

Method C: (\pm)-2,6-Dichlorobenzenesulfinamide $((\pm)$-s6, $1.470 \mathrm{~g}, 7.0 \mathrm{mmol})$ and ethyl glyoxylate (47 $\mathrm{w} / \mathrm{w} \%$ solution in toluene, 1.5 mL$)$ provided $1.38 \mathrm{~g}(67 \%$ yield $)$ of $(\pm)-1 \mathrm{k}$ as a colorless solid.

	(\pm)-1k, new compound.
	${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.34$ (s, 1H), 7.37 (br s, 3H), 4.46-4.36 (m, 2H), 1.39 $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.1,156.5,136.1,135.3,133.6,130.6,63.0,14.2$. HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+}: 293.9753$, found 293.9754 .

(\pm)-Benzyl (E)-2-(((2,6-dichlorophenyl)sulfinyl)imino)acetate ((\pm)-11)

Step 1: ${ }^{[17]}$ To an oven-dried, 2-neck 50 mL round bottom flask equipped with a magnetic stir bar was added dibenzyl L-tartrate ($661 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.), followed by $15 \mathrm{~mL}^{\mathrm{m}}$ of $\mathrm{Et}_{2} \mathrm{O}$ under argon atmosphere. Once dissolved, $\mathrm{H}_{5} \mathrm{IO}_{6}(456 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.) was added in one portion at r.t. The reaction was complete in 2 h as judged by TLC (Hexanes/EtOAc 1:1). The reaction mixture was filtered over Celite ${ }^{\circledR}$ and the residue was washed with extra $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure using a rotary evaporator to give the crude residue of $\mathbf{i 1}$, which was used without further purification in the next step.
Step 2: The crude residue of $\mathbf{i 1}$ was transferred to a 50 mL round bottom flask together with 2 g of $4 \AA$ MS. After purge and backfill with argon, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, $\mathbf{s 6}$ ($420 \mathrm{mg}, 2.0 \mathrm{mmol}, 1$ equiv.), and pyrrolidine $(9 \mathrm{~mol} \%, 15 \mu \mathrm{~L})$ were sequentially added. The resulting mixture was stirred for 2 days at r.t., and the solution was filtered over Celite ${ }^{\circledR}$. The filter cake was washed several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the desired product was not detected by TLC. The combined organic phases were concentrated under reduced pressure using a rotary evaporator, and the crude oil was purified by flash column chromatography on silica-gel (hexanes/EtOAc 95:5 to 8:2) to afford the desired compound (\pm)-11 (400 $\mathrm{mg}, 56 \%$ yield) as a white solid.

	(\pm)-11, new compound.
	$\begin{aligned} & { }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 8 \mathrm{H}), 5.36(\mathrm{dd}, J=17.6, \\ & 12.2 \mathrm{~Hz}, 2 \mathrm{H}) . \\ & { }^{13} \mathbf{C} \mathbf{C N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.9,156.2,136.0,135.2,134.5,133.6,130.6, \\ & 129.0,128.9,128.8,68.5 . \end{aligned}$ HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+}: 355.9909$, found 355.9912 .

2.3. Alcohols (Substrates)

Commercially available: a1, a2, a3, a4, a5, a6, a7, a8, a9, a12, a18, a19, a20, a21, a22, a23, r1, r2, r3. The following compounds were synthesized and/or characterized according to previous literatures: a9, a10, a12, a13, a14, a15, a16, a23, a24.

4-Hydroxybutyl acetate (a9) [CAS: 35435-68-8]

To a stirred solution of 1,4-butanediol ($1.8 \mathrm{~mL}, 20 \mathrm{mmol}$, 2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 1\right.$ equiv.). After $10 \mathrm{~min},\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(950 \mu \mathrm{~L}, 10 \mathrm{mmol}, 1$ equiv.) and DMAP ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$, cat.) were added to the solution, and the resultant mixture was stirred at r.t. overnight. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and after decantation, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator. Purification of the crude residue by flash chromatography on silica-gel (hexanes/EtOAc $75: 25$ to 50:50) afforded 830 mg (63% yield) of the title compound $\mathbf{a 9}$ as a colorless oil.
a9 is a known compound in literature, and its spectral data are in good agreement
 with literature values. ${ }^{[18]}$
${ }^{1} \mathbf{H}-$ NMR (500 MHz, CDCl $_{3}$) $\delta 4.11(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.06(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

4-((tert-Butylsilyl)oxy)butan-1-ol (a10) [CAS: 87184-99-4]

To a stirred solution of 1,4-butanediol ($1.8 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ equiv.) and tert-butyldimethylsilyl chloride ($1.51 \mathrm{~g}, 10.0 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1$ equiv.). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and after decantation, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator. Purification of the residue by flash chromatography on silicagel (hexanes/EtOAc 90:10) afforded 1.84 g (90% yield) of the title compound $\mathbf{a 1 0}$ as a colorless oil.

	$\mathbf{a 1 0}$ is a known compound in literature, and its spectral data are in good agreement with literature values. ${ }^{[19]}$
TB	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 3.69-3.63(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.67-$ $1.62(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

Method D

To a solution of p-substituted benzoic acid ($10 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added DMF ($50 \mu \mathrm{~L}$, cat.) and oxalyl chloride ($1.0 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was allowed to warm at r.t. and stirred for 3 to 4 h . The freshly prepared solution of the corresponding p-substituted benzoyl chloride was transferred dropwise to a solution of 1,4-butanediol ($2.6 \mathrm{~mL}, 30 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}\left(4 \mathrm{~mL}, 28 \mathrm{mmol}\right.$, 2.8 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ using a syringe. After 15 min , the reaction mixture was stirred at r.t. overnight. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and after decantation, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator. The residue was purified by flash column chromatography on silica-gel (hexanes/EtOAc 75:25 to 50:50) to furnish the corresponding alcohol.

4-Hydroxybutyl 4-chlorobenzoate (a12) [CAS: 356070-05-8]

Method D: 4-Chlorobenzoic acid ($1.57 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided $1.33 \mathrm{~g}(58 \%$ yield $)$ of $\mathbf{a 1 2}$ as a colorless oil.

a12 is a known compound in literature and its spectral data ware in good agreement with literature values. ${ }^{[20]}$
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.97$ (dt, $J=9.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (dt, $J=$ $9.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=10.5,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.90-1.84 (m, 2H), 1.75-1.70 (m, 2H), 1.47 (br s, 1H).

4-Hydroxybutyl 4-bromobenzoate (a13) [CAS: 1009630-64-1]
Method D: 4-Bromobenzoic acid ($2.01 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided 1.62 g (59% yield) of $\mathbf{a 1 3}$ as a yellowish oil.
$\mathbf{a 1 3}$ is a known compound in literature and its spectral data are in good agreement with literature values. ${ }^{[21]}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 ~ \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H})$,
$4.37-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$,
$\mathrm{OH}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

4-Hydroxybutyl 4-methoxybenzoate (a14) [CAS: 616236-46-5]
Method D: p-Anisic acid ($1.55 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided $1.2 \mathrm{~g}(52 \%$ yield) of a14 as a colorless solid.
a14 has a CAS RN.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.99(\mathrm{dt}, J=9.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dt}, J$ $=9.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=11.6$,
 $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathbf{C - N M R}(126 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 166.6,163.4,131.7,122.7,113.7,64.6$, 55.5, 29.4, 25.4.

HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{4}{ }^{+}: 247.0941$, found 247.0939.

4-Hydroxybutyl 4-(trifluoromethyl)benzoate (a15)

Method D: 4-(Trifluoromethyl)benzoic acid ($1.88 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided 1.78 g (68% yield) of a15 as a pale yellowish oil.

a15, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.17-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.64(1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}(126 ~ M H z, ~ C D C l 3) ~ \delta 164.6, ~ 133.5\left(q, J_{C-F}=32.8 \mathrm{~Hz}\right), 132.6$, $129.0,124.5\left(\mathrm{q}, J_{C-F}=3.6 \mathrm{~Hz}\right) 122.7\left(\mathrm{q}, J_{C-F}=272.9 \mathrm{~Hz}\right), 64.5,61.3,28.2$, 24.3.
${ }^{19}$ F-NMR (471 MHz, CDCl 3) δ-63.0.
HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3}{ }^{+}: 285.0709$, found 285.0709.

1-Phthalimido-6-hexanol, (a16) [CAS: 63945-11-9]

6-Amino-1-hexanol ($1.18 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) and phthalic anhydride ($1.48 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) were refluxed overnight in toluene (35 mL) with a Dean Stark water trap. The reaction mixture was cooled at r.t., diluted with EtOAc, washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure using a rotary evaporator, the crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 1:1) to furnish 2.23 g (90% yield) of $\mathbf{a} 16$ as a white solid.
a16 is a known compound in literature and its spectral data are in good

agreement with literature values. ${ }^{[22]}$ | $\left.{ }^{1} \mathbf{H - N M R ~ (5 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H})$, |
| :--- |
| $3.70-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ |
| $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.45-1.34(\mathrm{~m}, 4 \mathrm{H})$. |
| ${ }^{13} \mathbf{C} \mathbf{- N M R ~ (1 2 6 ~ \mathbf { M H z } , \mathbf { C D C l } 3)} \delta 168.6,134.0,132.3,123.3,62.8,38.0$, |
| $32.7,28.7,26.6,25.3$ |

$\underline{\text { Method E }}$

To a solution of p-substituted benzoic acid (10 mmol , 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added DMF ($50 \mu \mathrm{~L}$, cat.) and oxalyl chloride ($1.0 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was allowed to warm at r.t. and stirred for 3 to 4 h . The freshly prepared solution of the corresponding p-substituted benzoyl chloride was transferred dropwise to a solution of 1,3-butanediol ($1.1 \mathrm{~mL}, 12 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($4 \mathrm{~mL}, 28 \mathrm{mmol}$, 2.8 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ using a syringe. After 15 min , the reaction mixture was stirred at r.t. overnight. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and after decantation, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under
reduced pressure using a rotary evaporator. The residue was purified by flash column chromatography on silica-gel (hexanes/EtOAc 75:25 to 50:50) to furnish the desired compound.

3-Hydroxybutyl 4-chlorobenzoate, (a23) [CAS: 1808114-86-4]
Method E: 4-Chlorobenzoic acid ($1.58 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided $1.87 \mathrm{~g}(82 \%$ yield) of $\mathbf{a} 23$ as a colorless oil.

$\left.{ }^{1} \mathbf{H}-\mathbf{N M R ~ (5 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$
$8.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 1 \mathrm{H})$,
agreement with literature values. ${ }^{[23]}$
$1.98(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}$,
$J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

3-Hydroxybutyl 4-bromobenzoate, (a24) [CAS: 2821895-18-3]
Method E: 4-Bromobenzoic acid ($1.55 \mathrm{~g}, 10.0 \mathrm{mmol}$) provided $1.91 \mathrm{~g}(70 \%$ yield) of $\mathbf{a} 24$ as a colorless oil.

	a24 is a known compound in literature, and its spectral data are in good agreement with literature values. ${ }^{[23]}$
	$\begin{aligned} & { }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 4.61- \\ & 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), \\ & 1.94-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) . \end{aligned}$

3. Investigations on Reaction Conditions

Optimization Procedure

To an oven-dried three-way key Schlenk tube equipped with a magnetic stir bar were added Mes-Acr ${ }^{+}$ ($4.1 \mathrm{mg}, 10 \mu \mathrm{~mol}$), $\mathbf{D A B C O}^{+}(6.8 \mathrm{mg}, 20 \mu \mathrm{~mol})$, and imine $\mathbf{1}(0.2 \mathrm{mmol}, 1$ equiv.). The tube was capped with a rubber septum equipped with LED light source (Techno-Sigma, PER-AMP, 448 nm). The cap was sealed with parafilm, and the tube was degassed via vacuum evacuation and subsequent backfill with argon for three times. Then, a solution of $\mathrm{EtOH}(70 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.) in 2 mL of MeCN was added under argon via syringe through the three-way key. The tube was set to an aluminum block in a temperature-controlled reactor (Techno-Sigma, UCR-80 Nh) and the reaction solution was stirred under irradiation of blue LED while keeping the temperature at $25^{\circ} \mathrm{C}$. After being stirred for the indicated time, the solvent was removed under reduced pressure using a rotary evaporator. The conversion and yield were calculated based on the integration of ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) using 1,1,2,2tetrachloroethane as an internal standard. The syn/anti ratio of 1,2-aminoalcohol product 2 was evaluated based on its $\alpha-\mathrm{CH}$ or $\beta-\mathrm{CH}$ proton if possible, or the NH proton if not possible.

3.1. Screening of Imines

Reactions were carried out according to the Optimization Procedure using imines 1a-f for 11 h .
Table S1. Screening of imines. ${ }^{[a]}$

2a': tert-butyl ((4-chlorophenyl)(ethoxy)methyl)carbamate:

[a] Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. N.D. $=$ Not Detected.

3.2. Screening of N-Sulfinyl α-Iminoesters

Reactions were carried out according to the Optimization Procedure using imines (\pm)-1f-k for 11 h .

Table S2. Screening of N-sulfinyl α-iminoesters. ${ }^{[a]}$

[a] Conversions, yields, and the ratios of isomers were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yield was shown in parentheses. Syn/anti selectivity of the $\mathbf{1 , 2}$-aminoalcohol moiety was $<\mathbf{1 . 3}: 1$ in all cases.
[b] The peaks of different isomers partially overlap.

3.3. Screening of Reaction Time

Reactions were carried out according to the Optimization Procedure using imine (\pm)-1k for different reaction times.

Table S3. Screening of reaction time. ${ }^{[a]}$

$(\pm)-1 \mathbf{k}(0.2 \mathrm{mmol}) \quad(6$ equiv)

2k (relative configuration)

entry	time (h)	conv. of $(\pm)-1 \mathrm{k}(\%)$	$2 \mathrm{k}(\%)$	major : minor
$\mathbf{1}$	11	>99	$70(67)$	$>19: 1$
$\mathbf{2}$	6	>99	$84(83)$	$>19: 1$
$\mathbf{3}$	3	85	62	$>19: 1$

[a] Conversions, yields, and the ratios of isomers were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields were shown in parentheses. Syn/anti selectivity of the 1,2 -aminoalcohol moiety was $<1.3: 1$ in all cases.

3.4. Screening of Solvents

Reactions were carried out according to the Optimization Procedure using imine (\pm)-1k for 6 h in the indicated solvent.

Table S4. Screening of solvents. ${ }^{[a]}$

entry	solvent	conv. of $(\pm)-1 \mathrm{k}(\%)$	$2 \mathrm{k}(\%)$	major : minor
$\mathbf{1}$	Acetone	96	64	$>19: 1$
$\mathbf{2}$	MeCN	>99	$84(83)$	$>19: 1$
$\mathbf{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	70	41	$>19: 1$
$\mathbf{4}$	DMA	69	34	N.D.
$\mathbf{5}$	DMF	67	23	N.D.

[a] Conversions, yields, and the ratios of isomers were determined by ${ }^{1} \mathrm{H}$ NMR using $1,1,2,2$-teterachloroethane as an internal standard. Isolated yield was shown in parentheses. Syn/anti selectivity of the 1,2 -aminoalcohol moiety was $<1.3: 1$ in all cases. N.D. $=$ Not Detected.

3.5. Screening of Equivalents of EtOH

Reactions were carried out according to the Optimization Procedure using imine (\pm)- $\mathbf{1 k}$ for 6 h with different amounts of EtOH.

Table S5. Screening of equivalents of EtOH. ${ }^{[a]}$

	$(\pm)-1 \mathrm{k}(0.2 \mathrm{mmol})$	$\begin{aligned} & \text { EtOH } \begin{array}{l} \begin{array}{l} \text { Mes-Acr }^{+}(5 \mathrm{~mol} \%) \\ \text { DABCO }^{+}(10 \mathrm{~mol} \%) \end{array} \\ \hline \text { (X equiv) } \end{array} \begin{array}{l} \text { MeCN }(0.1 \mathrm{M}), 25^{\circ} \mathrm{C} \\ \text { Blue LED }(448 \mathrm{~nm}, 0 \end{array} \\ & \text { + } \end{aligned}$		
entry	X equiv.	conv. of (土)-1k (\%)	2k (\%)	major : minor
1	12	>99	70	>19:1
2	6	>99	84 (83)	>19:1
3	3	99	83 (82)	>19:1
$4^{[b]}$	3	82	47	>19:1
5	1.5	87	45	>19:1

[a] Conversions, yields, and the ratios of isomers were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields were shown in parentheses. Syn/anti selectivity of the 1,2-aminoalcohol moiety was $<\mathbf{1 . 3 : 1}$ in all cases.
[b] The reaction was run for 3 h .

3.6. Screening of Photoredox Catalysts

Reactions were carried out according to the Optimization Procedure using imine (\pm) $\mathbf{- 1 k}$ and the indicated photoredox catalyst instead of Mes-Acr ${ }^{+}$for 6 h. For Iridium photoredox catalyst, the amount was $1 \mathrm{~mol} \%$ instead of $5 \mathrm{~mol} \%$.

Table S6. Screening of photoredox catalysts. ${ }^{[a]}$

$(\pm)-\mathbf{1 k}(0.2 \mathrm{mmol}) \quad$ (6 equiv)
2k (relative configuration)

[a] Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. N.D. $=$ Not Detected.

3.7. Comparison with Other Hydrogen Atom Transfer (HAT) Catalysts

Reactions were carried out according to the Optimization Procedure using imine $(\pm) \mathbf{- 1 k}$ and the indicated HAT catalyst instead of $\mathbf{D A B C O}{ }^{+}$for 6 h .

Table S7. Comparison with other HAT catalysts. ${ }^{[a]}$

$(\pm)-1 \mathbf{k}(0.2 \mathrm{mmol}) \quad$ (6 equiv)
$\mathbf{2 k}$ (relative configuration)

DABCO ${ }^{+}$
conv of 1: >99\%
yield of 2: 84%

DABCO ${ }^{+}$(Br) conv of 1: >21\% yield of 2: 7\%

$\left({ }^{(} \mathrm{Bu}\right){ }_{4} \mathrm{NBr}$ conv of 1: >54\% yield of 2: N.D.

Quinuclidine conv of 1: >93\% yield of 2: $<5 \%$

2,6-Cl \mathbf{L}_{2}-Pyr-Ox
conv of 1: >29\%
yield of 2: $<5 \%$
[a] Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. N.D. $=$ Not Detected.

3.8. Comparison with Other Conditions

Reactions were carried out according to other conditions for radical addition to imine derivatives via HAT catalysis. ${ }^{[24]-[26]}$

Figure S2. Reactions under other HAT catalysis conditions.

3.9. Control Experiments

Reactions were carried out according to the Optimization Procedure using imine (\pm)-1k for 6 h without one of the key components. The dark reaction was performed in a Schlenk tube covered with aluminum foil to avoid the incidence of ambient light.

Table S8. Control experiments. ${ }^{[a]}$

entry	variations from standard conditions	conv. of (\pm)-1k (\%)	yield of 2 k (\%)
1	none	>99	84 (83)
2	without Mes-Acr ${ }^{+}$	11	N.D.
3	without DABCO ${ }^{+}$	32	N.D.
4	without light	3	N.D.

[a] Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yield was shown in parentheses. N.D. $=$ Not Detected.

4. General Procedure for Synthesis of 1,2-Aminoalcohols

General Procedure

To an oven-dried three-way key Schlenk tube equipped with a magnetic stir bar were added Mes-Acr ${ }^{+}$ $(4.1 \mathrm{mg}, 10 \mu \mathrm{~mol}), \mathbf{D A B C O}^{+}(6.8 \mathrm{mg}, 20 \mu \mathrm{~mol})$, and $(\pm)-\mathbf{1}(0.2 \mathrm{mmol}, 1$ equiv.). The tube was capped with a rubber septum equipped with LED light source (Techno-Sigma, PER-AMP, 448 nm). The cap was sealed with parafilm, and the tube was degassed via vacuum evacuation and subsequent backfill with argon for three times. Then, a solution of alcohol (3 or 6 equiv.) in 2 mL of MeCN was added under argon via syringe through the three-way key. The Schlenk tube was set to an aluminum block in a temperaturecontrolled reactor (Techno-Sigma, UCR-80 Nh) and the reaction solution was stirred under irradiation of blue LED while keeping the temperature at $25^{\circ} \mathrm{C}$. After being stirred for 6 h , the solvent was removed under reduced pressure. The conversions, yields, and ratios of isomers were calculated based on the integration of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ using 1,1,2,2-tetrachloroethane as an internal standard. The solvent was removed once again under reduced pressure and the crude product was purified by flash column chromatography on silica-gel (hexanes/EtOAc) to afford the desired 1,2-aminoalcohol product.

NOTE: The stereochemistry of the α-carbon relative to the chiral sulfur center in the product was fully controlled in all cases (major: minor $>19: 1$), whereas the syn/anti selectivity of the 1,2-aminoalcohol moiety was low ($<2.6: 1$).

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxybutanoate (2k)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol (a1, $35 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to $1: 1$) to yield the title compound $\mathbf{2 k}$ ($55.6 \mathrm{mg}, 82 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

[^1]
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 171.0,170.6,140.0$, $139.7,133.7,133.6,132.3,130.4,130.3,68.8,68.6,63.2,63.1,62.4,62.3,19.9,18.7$, 14.2.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}^{+}: 340.0172$, found 340.0180 .

Ethyl (((2,6-dichlorophenyl)sulfinyl)amino)-3-propioate (3)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and methanol ($\mathbf{a} 2,50 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 3 ($43.7 \mathrm{mg}, 67 \%$ yield) as a colorless oil.

3, new compound.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=$

$6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.27-4.21(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{dd}, J=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=$ $11.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 170.4,139.5,133.8,132.3,130.4,63.8,62.5,59.3$, 14.2.

HRMS ESI $[\mathbf{M}+\mathbf{K}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{KNO}_{4} \mathrm{~S}^{+}: 363.9574$, found 363.9579.

Ethyl (((2,6-dichlorophenyl)sulfinyl)amino)-3-propioate-3,3- $\boldsymbol{d}_{\mathbf{2}}$ (3-d $\mathbf{d}_{\mathbf{2}}$)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and methanol-d $\mathbf{d}_{3}\left(\mathbf{a} 2 \mathbf{- d}_{3}, 50 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6\right.$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 75:25 to 40:60) to yield the title compound 3-d $\mathbf{2}$ (41.7 mg , 64% yield) as a colorless waxy solid.

	3-d2, new compound.
	$\begin{aligned} & { }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \\ & \left.{ }^{1} \mathrm{H}, \mathrm{NH}\right), 4.27-4.21(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \\ & { }^{13} \mathbf{C}-\mathrm{NMR} \quad\left(\mathbf{1 2 6} \quad \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \quad \delta 170.4,139.5,133.8,132.3,130.4,62.5,59.2,14.2,(1 \mathrm{C} \\ & \text { missed, } \left.-\mathrm{CD}_{2}-\right) . \end{aligned}$ $\text { HRMS ESI }[\mathbf{M}+\mathbf{N a}]^{+} \text {calculated for } \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 349.9960 \text {, found } 349.9967 .$

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxyhexanoate (4)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-butanol (a3, $110 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $4(55.8 \mathrm{mg}, 73 \%$ yield, syn/anti ratio $=1.1: 1)$ as a colorless oil.

4, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.32(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.53 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.47 \mathrm{H}, \mathrm{NH})$, $4.28-4.18$ (m, 2H), 4.14 (dd, $J=8.0,4.5 \mathrm{~Hz}, 0.53 \mathrm{H}), 4.05(\mathrm{dd}, J=7.4,2.9 \mathrm{~Hz}$, $0.47 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 0.53 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 0.47 \mathrm{H}), 2.33$ (br s, $0.47 \mathrm{H}, \mathrm{OH}), 2.13$ (br s $0.53 \mathrm{H}, \mathrm{OH}), 1.58-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l} 3)$ (mixture of syn/anti isomers) $\delta 171.2,170.7,140.1$, $139.7,133.8,133.6,132.21,132.19,130.33,130.28,72.7,72.2,62.3,62.2,61.6$, $35.9,35.0,18.9,18.8,14.2,14.0,13.9$.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 390.0304, found 390.0309 .

Ethyl 2-((-(2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-4-methylpentanoate (5)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-ethylpropanol ($\mathbf{a 4}, 55 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound 5 ($44.9 \mathrm{mg}, 61 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

5, new compound.
 $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NH}), 6.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.43 \mathrm{H}, \mathrm{NH}), 4.28-4.17(\mathrm{~m}, 3 \mathrm{H}), 3.61-$ $3.58(\mathrm{~m}, 0.67 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 0.37 \mathrm{H}), 2.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.36 \mathrm{H}, \mathrm{OH}), 2.08(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 0.63 \mathrm{H}, \mathrm{OH}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 3 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 171.6,171.4,140.2$, $139.9,133.7,133.6,132.2,130.33,130.30,78.9,78.1,62.4,62.2,60.1,59.9,30.6$, 19.4, 19.1, 18.6, 17.8, 14.21, 14.16.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 390.0304$, found 390.0309.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-4-ethyl-3-hydroxyhexanoate (6)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-ethyl-butanol ($\mathbf{a 5}, 150 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $6(45.7 \mathrm{mg}, 58 \%$ yield, syn/anti ratio $=1.2: 1$) as a colorless oil.

	6, new compound.
	${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.29(\mathrm{~m}, 3 \mathrm{H})$, 6.12 (d, $J=8.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NH}), 6.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NH}), 4.27-4.19(\mathrm{~m}$, $3 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 0.55 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 0.45 \mathrm{H}), 2.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{OH})$, $2.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{OH}), 1.62-1.33(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 3 \mathrm{H}), 0.91-0.86$ ($\mathrm{m}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 171.8,171.7,140.2$, $140.0,133.70,133.66,132.23,132.18,130.3,75.3,74.1,62.3,62.1,60.0,59.9$, $42.4,42.0,21.7,21.1,20.4,20.1,14.22,14.17,10.9,10.8,10.5,10.4$. HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 418.0617, found 418.0623 .

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-5,5-dimethylhexanoate (7)

The reaction was conducted according to the General Procedure using (\pm)-1k ($59.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 3,3-dimethyl-1-butanol ($\mathbf{a 6}, 75 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to $1: 1$) to yield the title compound 7 ($56.8 \mathrm{mg}, 71 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

7, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NH}), 6.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.43 \mathrm{H}$, NH), 4.30-4.17 (m, 2H), 4.15-4.08 (m, 1H), 4.05 (br s, 0.43H), 3.98 (dd, $J=7.4$, $3.5 \mathrm{~Hz}, 0.57 \mathrm{H}), 2.23(\mathrm{br} \mathrm{s}, 0.43 \mathrm{H}, \mathrm{OH}), 2.07(\mathrm{br} \mathrm{s}, 0.57 \mathrm{H}, \mathrm{OH}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{~s}, 5 \mathrm{H}), 0.93(\mathrm{~s}, 4 \mathrm{H})$.

${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ (mixture of syn/anti isomers) $\delta 171.0,170.7,140.2$, $139.7,133.8,133.6,132.2,130.4,130.3,70.6,70.4,63.8,63.6,62.4,62.2,47.6$, $46.4,30.3,30.2,30.1,30.0,29.8,14.2$.
HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 418.0617, found 418.0622 .

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-4,4-dimethylpentanoate (8)
The reaction was conducted according to the General Procedure using (\pm)-1k ($59.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2,2-dimethyl-1-propanol (a7, $54.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{8}(40.7 \mathrm{mg}$, 53% yield, syn/anti ratio $=2.6: 1$) as a colorless oil.

8, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.28 \mathrm{H}, \mathrm{NH}), 6.07(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.72 \mathrm{H}$, NH), 4.28-4.16 (m, 3H), $3.61(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 0.72 \mathrm{H}), 3.49(\mathrm{dd}, J=9.5,4.0$ $\mathrm{Hz}, 0.28 \mathrm{H}), 2.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.28 \mathrm{H}, \mathrm{OH}), 2.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.72 \mathrm{H}, \mathrm{OH}), 1.31-$ $1.28(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 6.5 \mathrm{H}), 0.96(\mathrm{~s}, 2.5 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 172.4,134.0,133.7$, $132.3,132.2,130.3,82.1,78.6,62.3,62.1,59.0,58.7,35.6,35.4,26.4,26.2,14.2$, 14.0.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 404.0461$, found 404.0467.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-5-phenylpentanoate (9)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($59.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 3-phenyl-1-propanol ($\mathbf{a 8}, 83 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 9 ($44.7 \mathrm{mg}, 52 \%$ yield, syn/anti ratio $=1.1: 1$) as a colorless oil.

$$
\begin{aligned}
& \hline \text { 9, new compound. } \\
& { }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { (mixture of syn/anti isomers) } \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), \\
& 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{NH}), 6.03(\mathrm{~d},
\end{aligned}
$$

$J=7.7 \mathrm{~Hz}, 0.48 \mathrm{H}, \mathrm{NH}), 4.26-4.14(\mathrm{~m}, 2.48 \mathrm{H}), 4.08(\mathrm{dd}, J=7.4,3.2 \mathrm{~Hz}, 0.52 \mathrm{H})$, $4.00(\mathrm{br} \mathrm{s}, 0.52 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 0.48 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (d, $J=7.4 \mathrm{~Hz}, 0.48 \mathrm{H}, \mathrm{OH}), 2.17(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{OH}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ (mixture of syn/anti isomers) $\delta 171.1,170.6$, $141.33,141.30,140.0,139.6,133.8,133.7,132.3,130.4,130.3,128.6,128.5$, $126.2,72.1,71.8,62.5,62.4,62.3,61.7,35.4,34.5,31.8,14.19,14.17$.
HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 452.0461, found 452.0465 .

Ethyl 6-acetoxy-2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxyhexanoate (10)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 4-hydroxybutyl acetate ($\mathbf{a} 9,79.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{1 0}$ (54.5 $\mathrm{mg}, 64 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

	10, new compound.
	${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.36$ (m , $2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.56 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $0.44 \mathrm{H}, \mathrm{NH}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=7.9,4.4 \mathrm{~Hz}, 0.56 \mathrm{H}), 4.11-4.02$ $(\mathrm{m}, 3 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 0.44 \mathrm{H}), 2.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.44 \mathrm{H}, \mathrm{OH}), 2.40(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 0.56 \mathrm{H}, \mathrm{OH}), 2.04(\mathrm{~s}, 1.8 \mathrm{H}), 2.02(\mathrm{~s}, 1.2 \mathrm{H}), 1.89-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.32-$ $1.23(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) δ 171.24, 171.23, $171.0,170.5,139.9,139.5,133.8,133.6,132.3,130.4,130.3,72.6,72.0$, $64.21,64.16,62.4,62.34,62.32,61.8,30.4,29.3,25.0,24.9,21.0,14.2$. HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{6} \mathrm{~S}^{+}: 448.0359$, found 448.0366.

Ethyl 6-((tert-butyldimethylsilyl)oxy)-2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxyhexanoate (11)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-((tert-butyldimethylsilyl)oxy)butan-1-ol (a10, $124.3 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was
purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 11 ($29.8 \mathrm{mg}, 30 \%$ yield, syn/anti ratio $=1.2: 1$) as a colorless oil.

Ethyl 8-chloro-2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxyoctanoate (12)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 6-chloro-1-hexanol (a11, $85 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{1 2}$ ($54.5 \mathrm{mg}, 63 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

	12, new compound.
	${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.40-7.35$ (m, $2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NH}), 6.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $0.43 \mathrm{H}, \mathrm{NH}), 4.29-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=7.7,4.3 \mathrm{~Hz}, 0.43 \mathrm{H}), 4.05(\mathrm{dd}, J$ $=7.4,2.9 \mathrm{~Hz}, 0.57 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 0.57 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 0.43 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 2 \mathrm{H})$, 2.32 (br s, $0.43 \mathrm{H}, \mathrm{OH}), 2.08(\mathrm{br} \mathrm{s}, 0.57 \mathrm{H}, \mathrm{OH}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.38$ (m, 6H), 1.32-1.28 (m, 3H). ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) δ 171.1, 170.6, $140.1,139.6,133.8,133.6,132.3,130.40,130.36,72.8,72.4,62.5,62.3,61.7$, $45.0,33.7,32.7,32.5,26.8,26.7,25.0,24.9,14.2$.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 452.0227, found 452.0235.

5-(((2,6-Dichlorophenyl)sulfinyl)amino)-6-ethoxy-4-hydroxy-6-oxohexyl 4-chlorobenzoate (13)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 4-hydroxybutyl 4-chlorobenzoate ($\mathbf{a 1 2}, 137.9 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound $\mathbf{1 3}$ $(71.9 \mathrm{mg}, 69 \%$ yield, syn/anti ratio $=1.3: 1)$ as a colorless oil.

13, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.96-7.92$ (m, $2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.56 \mathrm{H}, \mathrm{NH})$, $6.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.44 \mathrm{H}, \mathrm{NH}), 4.36-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.15$ (dd, $J=8.0,4.6 \mathrm{~Hz}, 0.56 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.93$ (m, 0.44H), 2.66 (br s, $0.44, \mathrm{OH}), 2.43(\mathrm{br} \mathrm{s}, 0.56 \mathrm{H}, \mathrm{OH}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of syn/anti isomers) $\delta 170.9,170.5$, $165.81,165.79,139.9,139.5,139.4,133.8,133.6,132.28,132.26,131.1$, $131.0,130.4,130.3,128.8,128.7,72.5,72.1,64.94,64.87,62.5,62.39$, $62.37,61.9,30.4,29.3,25.1,25.0,14.2$.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NNaO}_{6} \mathrm{~S}^{+}$: 544.0126 , found 544.0131.

5-(((2,6-Dichlorophenyl)sulfinyl)amino)-6-ethoxy-4-hydroxy-6-oxohexyl 4-bromobenzoate (14)

 The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 4-hydroxybutyl 4-bromobenzoate ($\mathbf{a 1 3}, 164.7 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound $\mathbf{1 4}$ $(74.6 \mathrm{mg}, 66 \%$ yield, syn/anti ratio $=1.4: 1)$ as a colorless oil.14, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.90-7.84$ (m, $2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.58 \mathrm{H}, \mathrm{NH})$, $6.05(\mathrm{~d} J=8.0 \mathrm{~Hz}, 0.42 \mathrm{H}, \mathrm{NH}), 4.36-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.17-$

$4.14(\mathrm{~m}, 0.58 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 0.42 \mathrm{H}), 2.67$ (br s, 0.42 H , $\mathrm{OH}), 2.44(\mathrm{br} \mathrm{s}, 0.58 \mathrm{H}, \mathrm{OH}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 170.9,170.5$, 165.93, 165.91, 139.9, 139.4, 133.7, 133.6, 132.27, 132.25, 131.8, 131.2, $131.1,130.4,130.3,129.2,128.1,72.5,72.1,65.0,64.9,62.5,62.4,61.9$, 30.4, 29.3, 25.1, 25.0, 14.2.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrCl}_{2} \mathrm{NNaO}_{6} \mathrm{~S}^{+}: 587.9620$ found 587.9623.

5-(((2,6-Dichlorophenyl)sulfinyl)amino)-6-ethoxy-4-hydroxy-6-oxohexyl 4-methoxybenzoate (15)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-hydroxybutyl 4-methoxybenzoate ($\mathbf{a 1 4}, 134.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound $\mathbf{1 5}$ ($55.1 \mathrm{mg}, 53 \%$ yield, syn/anti ratio $=1.6: 1$) as a colorless oil.

15, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.99-7.94$ (m, $2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.61 \mathrm{H}, \mathrm{NH})$, 6.06 (d, $J=8.0 \mathrm{~Hz}, 0.39 \mathrm{H}, \mathrm{NH}), 4.34-3.96$ (m, 6H), 3.864 (s, 1.8H), 3.859 ($\mathrm{s}, 1.2 \mathrm{H}$), $2.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.39 \mathrm{H}, \mathrm{OH}), 2.39(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 0.61 \mathrm{H}, \mathrm{OH})$, 2.04-1.56 (m, 4H), 1.30-1.25 (m, 3H).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) (mixture of syn/anti isomers) $\delta 171.0,170.6$, $166.5,166.4,163.5,140.0,139.6,133.8,133.6,132.26,132.24,131.7,131.6$, $130.4,130.3,122.7,113.7,72.6,72.1,64.4,64.3,62.47,62.44,62.37,61.9$, 55.5, 30.5, 29.4, 25.2, 25.1, 14.2.

HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NNaO}_{7} \mathrm{~S}^{+}: 540.0621$, found 540.0624.

5-(((2,6-Dichlorophenyl)sulfinyl)amino)-6-ethoxy-4-hydroxy-6-oxohexyl 4-(trifluoromethyl)benzoate (16)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-hydroxybutyl 4-(trifluoromethyl)benzoate ($\mathbf{a 1 5}, 153.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was
purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 16 ($67.7 \mathrm{mg}, 61 \%$ yield, syn/anti ratio $=1.8: 1$) as a colorless oil.

16, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 8.15-8.10$ (m, $2 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.65 \mathrm{H}, \mathrm{NH})$, 6.04 (d, $J=7.7 \mathrm{~Hz}, 0.35 \mathrm{H}, \mathrm{NH}), 4.43-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.16$ (dd, $J=7.9,4.7 \mathrm{~Hz}, 0.35 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1.3 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 0.35 \mathrm{H})$, 2.09-1.84 (m, 2H), 1.76-1.55 (m, 2H), 1.30-1.25 (m, 3H).
${ }^{13} \mathbf{C - N M R}(126 ~ M H z, ~ C D C l 3) ~(m i x t u r e ~ o f ~ s y n / a n t i ~ i s o m e r s) ~ \delta ~ 170.9, ~ 170.5, ~$ $165.48,165.46,139.9,139.5,134.9,134.7,134.4,134.2,133.8,133.63$, $133.56,132.3,130.41,130.36,130.11,130.06,125.55,125.52,124.8,122.7$, $72.5,72.1,65.3,65.2,62.6,62.5,62.4,61.9,30.4,29.4,25.15,25.06,14.2$.
${ }^{19}$ F-NMR ($376 \mathrm{MHZ}, \mathbf{C D C l}_{3}$) $\delta-63.0 \mathrm{ppm}$.
HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NNaO}_{6} \mathrm{~S}^{+}: 578.0389$, found 578.0395.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-8-(1,3-dioxoisoindolin-2-yl)-3-hydroxyoctanoate (17)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}(58.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2-(6-hydroxyhexyl)isoindoline-1,3-dione ($\mathbf{a 1 6}, 148.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 17 ($65.9 \mathrm{mg}, 61 \%$ yield, syn/anti ratio $=1.3: 1$) as a colorless oil.

${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 171.1$,
$170.6,168.5,140.1,139.7,134.0,133.7,133.5,132.2,130.31,130.25$,
$123.3,72.8,72.3,62.4,62.3,62.2,61.7,37.9,37.8,33.6,32.7,28.5$,
$26.68,26.66,25.2,25.0,14.2$.
HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}^{+}: 563.0781$,
found 563.0786.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-3-methylbutanoate (18)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and isopropyl alcohol ($\mathbf{a} 17,92.5 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{1 8}$ ($39.5 \mathrm{mg}, 56 \%$ yield) as a pale-yellow oil.

	18, new compound.
	$\begin{aligned} & { }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J= \\ & 9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.32-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.34- \\ & 1.31(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 6 \mathrm{H}) . \\ & { }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.4,140.0,133.7,132.6,130.3,72.0,66.3,62.2, \\ & 26.3,26.1,14.2 . \end{aligned}$ $\text { HRMS ESI [M+Na] }{ }^{+} \text {calculated for } \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 376.0148 \text {, found 376.0152. }$

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-3,4-dimethylpentanoate (19)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 3-methyl-2-butanol (a18, $130 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 19 ($32.2 \mathrm{mg}, 42 \%$ yield, $\operatorname{syn} /$ anti ratio $=c a .1 .2: 1$, overlap $)$ as a colorless oil.

19, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.29(\mathrm{~m}, 3 \mathrm{H})$, 6.02-5.99 (m, 1H, NH), 4.30-4.20(m, 2H), 4.09-4.05 (m, 1H), 2.45 (s, 0.55H, OH), $2.41(\mathrm{~s}, 0.45 \mathrm{H}, \mathrm{OH}), 2.02-1.99(\mathrm{~m}, 0.5 \mathrm{H}), 1.67-1.65\left(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right.$ overlaps $), 1.32-$ $1.30(\mathrm{~m}, 3 \mathrm{H}), 1.080(\mathrm{~s}, 1.5 \mathrm{H}), 1.076(\mathrm{~s}, 1.5 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 172.5,172.4,140.18$, $140.15,133.7,132.2,132.1,130.3,77.1,76.0,63.7,63.0,62.1,35.2,32.8,19.1,17.9$, 17.7, 17.6, 16.9, 16.4, 14.2, 14.1.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 404.0461$, found 404.0462.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(1-hydroxycyclobutyl)acetate (20)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and cyclobutanol ($\mathbf{a 1 9}, 50 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{2 0}$ ($43.9 \mathrm{mg}, 60 \%$ yield) as an off-white solid.

20, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=8.3$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.40-$
$2.29(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=$
$7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 170.1,140.0,133.7,132.1,130.3,76.4,62.9,62.2$,
$33.3,32.9,14.2,12.2$.
HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 388.0148$, found 388.0150.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(1-hydroxycyclopentyl)acetate (21)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}$ ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclopentanol ($\mathbf{a 2 0}, 110 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 21 ($38.5 \mathrm{mg}, 51 \%$ yield) as an off-white solid.

21, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.87-$ $1.59(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 171.6,140.2,133.7,132.1,130.3,83.5,64.6,62.2$, 37.9, 37.4, 24.2, 23.6, 14.2.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 402.0304$, found 402.0308 .

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(1-hydroxycyclohexyl)acetate (22)
The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and cyclohexanol ($\mathbf{a 2 1}, 125 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 6$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 22 ($29.7 \mathrm{mg}, 38 \%$ yield) as a white solid.

22, new compound.

${ }^{1} \mathbf{H}-N M R(500 ~ M H z, ~ C D C l 3) ~ \delta ~ 7.38-7.35(m, 2 H), ~ 7.32-7.29(m, ~ 1 H), ~ 6.03(d, ~ J=~$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.31-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.68-$ $1.46(\mathrm{~m}, 9 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 ~ M H z, ~ \mathbf{C D C l}_{3}\right) \delta 171.7,140.1,133.7,132.1,130.3,73.0,65.2,62.1$, 34.7, 34.0, 25.5, 21.69, 21.67, 14.2.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 416.0461$, found 416.0462.

Diethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxy-3-methylpentanedioate (23)

The reaction was conducted according to the General Procedure using (\pm)- $\mathbf{1 k}(58.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl-dL-3-hydroxybutyrate ($\mathbf{a 2 2}, 80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound 23 (55.2 $\mathrm{mg}, 65 \%$ yield, syn/anti ratio $=1.1: 1)$ as a colorless oil.

23, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H})$,
$7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{NH}), 6.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.48 \mathrm{H}$,
NH), 4.30-4.21 (m, 2H), 4.19-4.07 (m, 3H), $4.01(\mathrm{~s}, 0.48 \mathrm{H}, \mathrm{OH}), 3.92(\mathrm{~s}, 0.52 \mathrm{H}$,
OH), 2.76-2.68 (m, 1H), 2.55-2.48 (m, 1H), 1.34-1.24 (m, 9H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 ~ M H z, ~ \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) δ 172.21, 172.17, $140.1,140.0,133.7,132.23,132.18,130.31,130.29,72.9,72.8,64.8,64.5,62.3$, 61.1, 61.0, 42.1, 41.8, 24.8, 23.8, 14.2, 14.1.

HRMS ESI $[\mathbf{M + N a}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{6} \mathrm{~S}^{+}: 448.0359$, found 448.0362 .

4-(((2,6-Dichlorophenyl)sulfinyl)amino)-5-ethoxy-3-hydroxy-3-methyl-5-oxopentyl 4-chlorobenzoate (24)
The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 3-hydroxybutyl 4-chlorobenzoate ($\mathbf{a 2 3}, 137.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{2 4}$ $(35.6 \mathrm{mg}, 34 \%$ yield, syn/anti ratio $=$ ca. $1.0: 1)$ as a colorless oil.

24, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.97-7.93$
$(\mathrm{m}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.13-6.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.55-4.50(\mathrm{~m}, 2 \mathrm{H})$,
4.33-4.21 (m, 2H), 4.03 (d, $J=8.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}$,
$0.5 \mathrm{H}), 2.80(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OH}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ (mixture of syn/anti isomers) $\delta 170.97$, $170.93,165.60,165.57,139.7,139.6,139.5,139.4,133.63,133.59$, $132.2,130.9,130.3,128.7,128.6,128.5,73.0,72.6,65.8,65.3,62.5$, 62.4, 61.1, 36.8, 36.6, 23.9, 23.2, 14.0.

HRMS ESI [M+Na] calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NNaO}_{6} \mathrm{~S}^{+}$: 544.0126, found 544.0128.

4-(((2,6-Dichlorophenyl)sulfinyl)amino)-5-ethoxy-3-hydroxy-3-methyl-5-oxopentyl 4-bromobenzoate (25)

The reaction was conducted according to the General Procedure using (\pm) $\mathbf{- 1 k}(58.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 3-hydroxybutyl 4-bromobenzoate ($\mathbf{a 2 4}, 166.3 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound $\mathbf{2 5}$ $(42.3 \mathrm{mg}, 37 \%$ yield, syn/anti ratio $=$ ca. $1.0: 1)$ as a colorless oil.

25, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.88-7.85$
$(\mathrm{m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.09-6.13(\mathrm{~m}, 1 \mathrm{H}$,
NH), $4.52(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 1 \mathrm{H})$,
$2.82(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OH}), 2.79(\mathrm{~s}, 0.5 \mathrm{H}, \mathbf{O H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.95$
(m, 1H), 1.33-1.24 (m, 6H).

${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) (mixture of syn/anti isomers) δ 171.09, 171.06, 165.87, 165.85, 139.8, 139.7, 133.8, 133.7, 132.4, 131.9, 131.2, $130.4,129.2,129.1,128.3,128.2,73.1,72.7,66.0,65.4,62.6,62.5$, $61.25,37.0,36.8,24.0,23.4,14.2$.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrCl}_{2} \mathrm{NNaO}_{6} \mathrm{~S}^{+}: 587.9621$, found 587.9618.

Benzyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxyhexanoate (26)

The reaction was conducted according to the General Procedure using (\pm)-11 ($71.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol ($\mathbf{a} 1,35 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound 26 ($53.6 \mathrm{mg}, 67 \%$ yield, syn/anti ratio $=1.2: 1$) as a colorless oil.

26, new compound.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.12$ (d, $J=7.7 \mathrm{~Hz}, 0.54 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.46 \mathrm{H}, \mathrm{NH}), 5.27-5.12(\mathrm{~m}, 2 \mathrm{H})$, $4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.14(\mathrm{~m}, 0.46 \mathrm{H}), 4.01(\mathrm{dd}, J=8.0,3.5 \mathrm{~Hz}, 0.54 \mathrm{H}), 2.4-2.0$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1.5 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 170.9,170.5,140.0$, $139.7,135.0,134.9,133.8,133.7,132.3,130.4,130.3,128.80,128.77,128.7,128.6$, $68.9,68.6,68.1,68.0,63.4,63.2,19.9,18.7$.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 424.0148$, found 424.0144.

Benzyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(1-hydroxycyclopentyl)acetate (27)

The reaction was conducted according to the General Procedure using (\pm)-11 ($71.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclopentanol ($\mathbf{a 2 0}, 55 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 27 ($38.1 \mathrm{mg}, 43 \%$ yield) as a colorless oil.

27, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.19(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$,
$5.26(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$
(br s, 1H, OH), 1.82-1.52 (m, 8H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 171.6,140.1,134.9,133.7,132.2,130.3,128.8$,
83.6, 68.0, 64.8, 37.9, 37.5, 24.2, 23.6.
HRMS ESI $[\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{3} \mathrm{~S}^{+}$: 464.0461, found
464.0463.

Ethyl 2-cyclohexyl-2-(((2,6-dichlorophenyl)sulfinyl)amino)acetate (28)

The reaction was conducted according to the General Procedure using (\pm)-1k ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and cyclohexane ($\mathbf{r} 1,65 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound $\mathbf{2 8}$ ($57.9 \mathrm{mg}, 77 \%$ yield) as a colorless oil.

28, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.70$ (m, 3H), 1.65-1.61 (m, 2H), 1.60-1.54 (m, 1H), 1.30 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.00$ ($\mathrm{m}, 5 \mathrm{H}$).
${ }^{13} \mathbf{C}-$ NMR (126 MHz, CDCl3) $\delta 172.4,140.6,133.5,132.0,130.2,63.4,61.8,41.8$, 29.5, 27.6, 26.02, 26.00, 25.9, 14.3.

HRMS ESI [$\mathbf{M}+\mathbf{N a}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{3} \mathrm{~S}^{+}: 400.0512$, found 400.512 .

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(tetrahydrofuran-2-yl)acetate (29)

The reaction was conducted according to the General Procedure using (\pm)-1k ($58.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and tetrahydrofuran ($\mathbf{r} 2,50 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $8: 2$ to $1: 1$) to yield the title compound 29 ($59.2 \mathrm{mg}, 81 \%$ yield, syn/anti ratio $=1.0: 1$) as a colorless oil.

29, new compound.

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ (mixture of syn/anti isomers) $\delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.49 \mathrm{H}, \mathrm{NH}), 6.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.51 \mathrm{H}$,

NH), $4.34(\mathrm{td}, J=7.2,2.6 \mathrm{~Hz}, 0.51 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2.6$ $\mathrm{Hz}, 0.49 \mathrm{H}), 3.81-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 170.7,170.6,140.6$, $140.2,133.55,133.51,132.0,130.2,79.9,79.3,69.5,69.1,62.1,60.7,60.6,28.1$, 27.2, 26.0, 25.8, 14.19, 14.15.

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 388.0148$, found 388.0147.

Ethyl 2-(((2,6-dichlorophenyl)sulfinyl)amino)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)acetate (30)

The reaction was conducted according to the General Procedure using (\pm)-1k ($58.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2,2-dimethyl-1,3-dioxolane ($\mathbf{r 3}, 65 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc 8:2 to 1:1) to yield the title compound 30 (61.9 $\mathrm{mg}, 77 \%$ yield, syn/anti ratio $=1.0: 1$) as a colorless oil.

30, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NH}), 5.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.50$ (td, $J=6.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 2.5 \mathrm{H}), 4.14-4.07$ (m, 1.5H), 4.02-4.01 (m, 1H), 3.92 (dd, $J=8.3 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.42$ (s, 1.5H), 1.32-1.26 (m, 7.5H).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) (mixture of syn/anti isomers) $\delta 170.6,169.9,140.3$, $140.0,133.7,133.5,132.3,132.1,130.3,110.6,110.2,76.1,66.3,66.1,62.4,62.2$, 60.3, 58.9, 26.7, 26.1, 25.2, 14.2.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 418.0254$, found 418.0256 .

5. Reactions of Enantiomerically Enriched N-Sulfinyl α-Iminoesters

5.1. Preparation of Enantiomerically Enriched N-Sulfinyl α-Iminoesters

Both enantiomers of 2,6-dichlorobenzenesulfinamide (s6) were prepared according to Senanayake's method. ${ }^{[27]}$

(R)-2,6-Dichlorobenzenesulfinamide ((R)-s6)

Step 1: To a stirred solution of $\mathbf{i 2}{ }^{[27 \mathrm{a}]}(1.05 \mathrm{~g}, 4.8 \mathrm{mmol}, 98: 2$ d.r. $)$ in dry THF $(6.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a freshly prepared 0.5 M solution of (2,6-dichlorophenyl)magnesium bromide $\cdot \mathrm{LiCl}^{[28]}(12 \mathrm{~mL}, 6$ mmol, 1 equiv.) in THF dropwise over 40 min . The conversion of $\mathbf{i} 2$ was monitored by TLC. The reaction was quenched with sat. NaHCO_{3} aq. and the solution was diluted with 40 mL of EtOAc. The mixture was allowed to warm at r.t. and the organic phase was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure using a rotary evaporator while keeping the temperature below $30^{\circ} \mathrm{C}$. The residue was passed through a pad of silica-gel (washed with hexanes/EtOAc 75:25 to 10:90) and the solution was concentrated under reduced pressure to afford intermediate i3 as a solid, which was used without further purification in the next step.

Step 2: To a two-neck 50 mL round bottom flask were added $\mathbf{i 3}$ and dry THF (20 mL), and the mixture was cooled at $-78^{\circ} \mathrm{C}$. 1.3 M of lithium bis(trimethylsilyl)amide (10 mL , ca. $13 \mathrm{mmol}, 3$ equiv.) in THF was added dropwise to the solution. Upon completion of the addition, the reaction mixture was allowed to warm slowly to ambient temperature and the reaction was monitored by TLC. After 6 h , the reaction was quenched with water $(10 \mathrm{~mL})$, and the mixture was diluted with EtOAc (40 mL) and allowed to warm at r.t. The liquid layers were collected and the sticky solid generated was washed several times with EtOAc and water. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator. The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $80: 20$ to $0: 100$) to afford the title compound (R) s6 ($495 \mathrm{mg}, 49 \%$ overall yield, 98:2 e.r.).

（ R ）－s6，new compound．
Chiral HPLC（DAICEL CHIRALPAK IC－3，$\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ ．Isocratic： Hexanes $/ i \operatorname{PrOH} 80: 20,40^{\circ} \mathrm{C}$ ，flow rate： $1.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$ ）：Retention time $=$ $11.3 \mathrm{~min}((S)$－s6， $1.7 \%), 13.6 \mathrm{~min}((R)-\mathbf{s 6}, 98.3 \%)$ ．

HRMS ESI［M＋Na］${ }^{+}$calculated for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NOSNa}^{+}: 231.9361$ ，found 231.9363 ．

Chromatogram of (R)－s6

〈クロマトグラム〉
 mAU

Entry	Retention time（min）	Area	Area（\％）
1	11.266	509229	1.682
2	13.581	29767911	98.318
Total		30277140	100

Ethyl（R，E）－2－（（（2，6－dichlorophenyl）sulfinyl）imino）acetate（（R）－1k）

Method C：（ R ）－2，6－Dichlorobenzenesulfinamide（ (R)－s6）， $420 \mathrm{mg}, 2.0 \mathrm{mmol}$ ）and ethyl glyoxylate（47 $\mathrm{w} / \mathrm{w} \%$ solution in toluene， $410 \mu \mathrm{~L}$ ）provided 388 mg （ 66% yield）of $(R)-1 \mathbf{k}$ as a colorless solid．
$(R)-\mathbf{1 k}$ ，new compound．

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.46-4.36(\mathrm{~m}$, $2 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ ．
${ }^{13} \mathbf{C}-$ NMR（ $126 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ）$\delta 161.1,156.5,136.0,135.3,133.6,130.6,63.0,14.2$.
HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+}: 293.9753$ ，found 293.9753 ．

(S)-2,6-Dichlorobenzenesulfinamide ((S)-s6)

$i 4$

Step 1

i5

(S)-s6

Step 1: To a stirred solution of $\mathbf{i 4}{ }^{[27 \mathrm{~b}]}(3.77 \mathrm{~g}, 10.0 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a freshly prepared 0.53 M solution of (2,6-dichlorophenyl)magnesium bromide $\cdot \mathrm{LiCl}^{[28]}(20 \mathrm{~mL}, 10.5$ mmol, 1.05 equiv.) in THF dropwise over a 10 min . The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3.5 h and quenched at the same temperature by addition of sat. NaHCO_{3} aq. $(20 \mathrm{~mL})$, and the mixture was diluted with EtOAc $(25 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator while keeping the temperature below $30^{\circ} \mathrm{C}$. The crude mixture was passed through a pad of silica-gel (washed with hexanes/EtOAc 80:20 to 50:50) and the solution was concentrated under reduced pressure to afford intermediate i5 (ca. 65% yield, containing 8% of ($1 S, 2 R$)-1-(mesitylamino)-2,3-dihydro-1H-inden-2-ol), which was used without further purification in the next step.

Step 2: To a two-neck 100 mL round bottom flask were added i5 (ca. 4.8 mmol) and dry THF (20 mL), and the mixture was cooled at $-78^{\circ} \mathrm{C} .1 .9 \mathrm{M}$ of sodium bis(trimethylsilyl)amide ($7.6 \mathrm{~mL}, 14.4 \mathrm{mmol}$, ca. 3 equiv.) in THF was added dropwise over 10 min . Upon completion of the addition, the reaction mixture was allowed to warm slowly to $-30^{\circ} \mathrm{C}$ and the reaction was monitored by TLC. After 6 h , the reaction was quenched with water $(10 \mathrm{~mL})$, and the mixture was diluted with EtOAc $(40 \mathrm{~mL})$ and allowed to warm at r.t. The liquid layers were collected and the sticky solid generated was washed several times with EtOAc and water. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure using a rotary evaporator. The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $80: 20$ to $0: 100$) to afford the title compound (S)s6 (530 mg, 53\% yield, 99:1 e.r.).

	(S)-s6, new compound.
	Chiral HPLC DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm}$ x 250 mm . Isocratic: Hexanes $/ i \operatorname{PrOH} 80: 20,40^{\circ} \mathrm{C}$, flow rate: $\left.1.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}\right)$: Retention time $=11.3$ $\min ((S)$-s6, $99.1 \%), 13.6 \min ((R)-\mathbf{s 6}, 0.9 \%)$. HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NOSNa}^{+}: 231.9361$, found 231.9362.

Chromatogram of (S)-s6

Entry	Retention time (min)	Area	Area (\%)
1	11.246	36464316	99.086
2	13.603	336209	0.914
Total		36800525	100

(S)-Ethyl-(E)-2-(((2,6-dichlorophenyl)sulfinyl)imino)acetate ((S)-1k)

Method C: (S)-2,6-Dichlorobenzenesulfinamide ((S)-s6, $421.0 \mathrm{~g}, 2.0 \mathrm{mmol}$) and ethyl glyoxylate (47 $\mathrm{w} / \mathrm{w} \%$ solution in toluene, $420 \mu \mathrm{~L}$) provided 383 mg (65% yield) of (S) - 1 k as a colorless solid.

(S)-1k, new compound.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.46-4.36(\mathrm{~m}$, $2 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.1,156.5,136.0,135.3,133.6,130.6,63.0,14.2$. HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+}: 293.9753$, found 293.9754.

5.2. Reactions of $(R)-1 \mathbf{k}$ and $(S)-1 \mathbf{k}$ with Cyclopentanol

5.2.1. Preparation of ethyl 2-benzamido-2-(1-hydroxycyclopentyl)acetate ((\pm)-31)

Method F

21

(\pm)-31 (87%)

To a stirred solution of $21(31.2 \mathrm{mg}, 82 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $450 \mu \mathrm{~L}$ of $\mathrm{HCl}(1 \mathrm{~N}$ in $\mathrm{Et}_{2} \mathrm{O}$). The mixture was stirred for 10 min , and then allowed to warm at r.t. After being stirred for additional 3 h , the volatiles were removed under reduced pressure. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution were sequentially added $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 2.5$ equiv.) and benzoyl chloride ($12 \mu \mathrm{~L}, 1.1$ equiv.) dropwise. The reaction was warmed to r.t. and stirred for 4 h at the same temperature. After solvent removal under reduced pressure using a rotary evaporator, the residue was purified by flash column chromatography on silica-gel (hexanes/EtOAc 80:20 to 50:50) to furnish the desired compound (\pm) - $\mathbf{3 1}(17.9 \mathrm{mg}, 87 \%$ yield $)$ as a colorless oil.

	(\pm)-31, new compound.
	${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.19(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.65(\mathrm{~m}, 8 \mathrm{H})$, $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}: 314.1363$, found 314.1370. Chiral HPLC DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$. Isocratic: Hexanes $/ \mathrm{PrOH} 85: 15,40^{\circ} \mathrm{C}$, flow rate: $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}\right)$: Retention time $=$ $9.9 \min ((S)-31,99.1 \%), 10.6 \min ((R)-31,0.9 \%)$.

Chromatogram of（ \pm ）－31

```
〈クロマトグラム>
mAU
```


Entry	Retention time（min）	Area	Area（\％）
1	9.881	11673098	50.019
2	10.632	11664455	49.981
Total		23337553	100

5．2．2．Preparation of ethyl（ R ）－2－benzamido－2－（1－hydroxycyclopentyl）acetate（（ R ）－31）

Ethyl（R）－2－（（（R）－2，6－dichlorophenyl）sulfinyl）amino）－2－（1－hydroxycyclopentyl）acetate（（2R）－21）

The reaction was conducted following the General Procedure using $(R) \mathbf{- 1 k}(58.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and cyclopentanol（ $\mathbf{2} 21,55 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv．）．The crude mixture was purified by flash column chromatography on silica－gel（hexanes／EtOAc 80：20 to 50：50）to yield the title compound（2R）－21（40．4 $\mathrm{mg}, 53 \%$ yield）as an off－white solid．

	(2R)-21, new compound.
	$\begin{aligned} & { }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=8.6 \\ & \mathrm{Hz}, 1 \mathrm{H}), 4.31-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.52(1 \mathrm{H}), 1.90-1.57(\mathrm{~m}, \\ & 8 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \\ & { }^{\mathbf{1 3}} \mathbf{C} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.7,140.2,133.7,132.2,130.4,83.5,64.6,62.2, \\ & 37.9,37.5,24.3,23.6,14.2 . \end{aligned}$ HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 402.0305$, found 402.0304.

Ethyl (R)-2-benzamido-2-(1-hydroxycyclopentyl)acetate ((R)-31)

Method F: $(R) \mathbf{- 2 1}(33.1 \mathrm{mg}, 87 \mu \mathrm{~mol})$ furnished the desired compound $(R) \mathbf{- 3 1}(23.1 \mathrm{mg}, 91 \%$ yield $)$ as a colorless oil.

$$
(R)-\mathbf{3 1}, \text { new compound. }
$$

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.19(\mathrm{~m}$, 2H), 1.93-1.62 (m, 8H), 1.32 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.0,167.5,133.9,132.0,128.7,127.3,83.4,61.8$, 59.5, 38.2, 37.9, 24.1, 23.5, 14.3.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}: 314.1363$, found 314.1371 .
Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$. Isocratic:
Hexanes $/ i \operatorname{PrOH} 85: 15,40^{\circ} \mathrm{C}$, flow rate: $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}\right)$: Retention time $=$ $9.9 \min ((S) \mathbf{- 3 1}, 1.2 \%), 10.7 \min ((R)-\mathbf{3 1}, 98.8 \%)$.

Chromatogram of $(R)-\mathbf{3 1}$

```
<クロロマトグラム>
```


Entry	Retention time（min）	Area	Area（\％）
1	9.940	268197	1.211
2	10.652	21876086	98.789
Total		22144283	100

5．2．3．Asymmetric synthesis of ethyl（S）－2－benzamido－2－（1－hydroxycyclopentyl）acetate（（S）－31）

Ethyl（S）－2－（（（S）－2，6－dichlorophenyl）sulfinyl）amino）－2－（1－hydroxycyclopentyl）acetate（（2S）－21）
The reaction was conducted following the General Procedure using（ S ） $\mathbf{- 1 k}$（ $58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ）and cyclopentanol（ $\mathbf{a 2 1}, 55 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv．）．The crude mixture was purified by flash column chromatography on silica－gel（hexanes／EtOAc 80：20 to 50：50）to yield the title compound（2S）－21（39．6 $\mathrm{mg}, 52 \%$ yield）as an off－white solid．
(2S)-21, new compound.
${ }^{1} \mathbf{H}-$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=8.6$
 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.31-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, $1.90-1.57(\mathrm{~m}, 8 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(126 ~ M H z, ~ \mathbf{C D C l}_{3}\right) \delta 171.6,140.1,133.7,132.1,130.3,83.5,64.6,62.2$, 37.9, 37.4, 24.2, 23.5, 14.2 .

HRMS ESI [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$: 402.0305, found 402.0306.

Ethyl (S)-2-benzamido-2-(1-hydroxycyclopentyl)acetate ((S)-31)
Method F: $(2 S) \mathbf{- 2 1}(30.1 \mathrm{mg}, 110 \mu \mathrm{~mol})$ furnished the desired compound $(S) \mathbf{- 3 1}(16.8 \mathrm{mg}, 85 \%$ yield $)$ as an off-white solid.

(S)-31, new compound.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.19(\mathrm{~m}$, 2H), 1.92-1.62 (m, 8H), $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(126 ~ M H z, ~ \mathbf{C D C l}_{3}\right) ~ \delta 172.0,167.5,133.9,132.0,128.7,127.3,83.4,61.8$, 59.4, 38.2, 37.9, 24.1, 23.5, 14.3.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{4}{ }^{+}: 314.1363$, found 314.1371.
Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$. Isocratic: Hexanes $/ i \operatorname{PrOH} 85: 15,40^{\circ} \mathrm{C}$, flow rate: $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}\right)$: Retention time $=$ $9.9 \min ((S)-\mathbf{3 1}, 95.9 \%), 10.7 \mathrm{~min}((R)-\mathbf{3 1}, 4.1 \%)$.

Chromatogram of（S）－31

〈クロマトグラム〉
 mAU

Entry	Retention time（min）	Area	Area（\％）
1	9.902	8421906	95.942
2	10.680	356201	4.058
Total		8778106	100

5．3．Reactions of $(R)-1 \mathbf{k}$ and $(S)-1 \mathbf{k}$ with Ethanol

5．3．1．Preparation of authentic samples of threonine derivatives（32）for HPLC analysis

Ethyl benzoyl－L－threoninate（（2S，3R）－32）［CAS：23161－25－3］

Method G

ethyl benzoyl－L－threoninate $(2 S, 3 R)-32$

Step 1: ${ }^{[29]} \mathrm{SOCl}_{2}\left(4.5 \mathrm{~mL}, 62 \mathrm{mmol}, 5\right.$ equiv.) was added dropwise to $\mathrm{EtOH}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was complete, L-threonine ($1.51 \mathrm{~g}, 12.7 \mathrm{mmol}$) was added in one portion and the reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 20 h at r.t. The reaction solution was concentrated under reduced pressure using a rotary evaporator, and the obtained residue was triturated with cold $\mathrm{Et}_{2} \mathrm{O}$ to give ethyl L-threoninate hydrochloride as a white solid, which was used without further purification in the next step.

Step 2: Benzoyl chloride ($680 \mu \mathrm{~L}, 5.8 \mathrm{mmol}, 1.1$ equiv.) was added dropwise to a mixture of ethyl Lthreoninate hydrochloride ($972 \mathrm{mg}, 5.3 \mathrm{mmol}$) and triethylamine ($1.85 \mathrm{~mL}, 13.2 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 4 h , the reaction was quenched with water. After warming to r.t., the organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure using a rotary evaporator to give a dense oil. The residue was purified by flash column chromatography on silica-gel (hexanes/EtOAc 1:1) to afford the desired compound 32.

	($2 S, 3 R$)-32 has a CAS RN.
	$\begin{aligned} & { }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.85-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=33.5 \\ & \mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.82-4.80(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), 4.46-4.43(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), 4.27-4.23(\mathrm{~m}, 2 \mathrm{H}), \\ & 2.95-2.35(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.32-1.26(\mathrm{~m}, 6 \mathrm{H}) . \\ & \left.{ }^{13} \mathbf{C} \text {-NMR (} \mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.3,168.1,133.9,132.0,128.7,127.3,68.5,62.0 \text {, } \\ & 57.8,20.2,14.3 . \\ & \text { Chiral HPLC (DAICEL CHIRALPAK IC-3, } \phi 4.6 \mathrm{~mm} \mathrm{x} 250 \mathrm{~mm} . \text { Isocratic: } \\ & \text { Hexanes } \left./ i \operatorname{PrOH} 80: 20,40^{\circ} \mathrm{C}, \text { flow rate: } 1.5 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}\right) \text { : Retention time }=5.2 \\ & \min (100 \%) . \end{aligned}$

Chromatogram of $(2 S, 3 R)-\mathbf{3 2}$

Entry	Retention time (min)	Area	Area (\%)
1	5.160	4466052	100
Total		4466052	100

Ethyl benzoyl-dL-threoninate $((2 S, 3 R)-\mathbf{3 2}+(2 R, 3 S)-32)$ and Ethyl benzoyl-DL-allothreoninate ($(2 S, 3 S)-\mathbf{3 2}+(2 R, 3 R)-32)$

These authentic samples were prepared from a mixture of DL-threonine (containing ca. 22% of DLallothreonine) via Method G.

$(2 S, 3 R)-32,(2 R, 3 S)-32,(2 S, 3 S)-32$, and $(2 R, 3 R)$-32 (mixture of DL-threonine deriv. + DL-allothreonine deriv.)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (mixture of four isomers) $\delta 7.86-7.83(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.42 (m, 3H), 7.16 (br s, 0.2H, NH), 6.98 (br s, $0.8 \mathrm{H}, \mathrm{NH}$), 4.89-4.86 (m, $0.2 \mathrm{H}, \alpha \mathrm{CH}), 4.83-4.78(\mathrm{~m}, 0.8 \mathrm{H}, \alpha \mathrm{CH}), 4.47-4.43(\mathrm{~m}, 0.8 \mathrm{H}, \beta \mathrm{CH}), 4.32-4.23$ (m, 2.2H), 1.35-1.22 (m, 6H). Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$. Isocratic: Hexanes $/ i \operatorname{PrOH} 80: 20,40^{\circ} \mathrm{C}$, flow rate: $1.5 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}$): Retention time $=5.2 \mathrm{~min}((2 S, 3 R)-\mathbf{3 2}: 38.5 \%), 6.0 \mathrm{~min}((2 R, 3 S)-32: 39.6 \%), 7.1 \mathrm{~min}$ ((2S,3S)-32: 10.8\%), $8.3 \mathrm{~min}((2 S, 3 S)-32: 11.1 \%)$.

Chromatogram of $(2 S, 3 R) \mathbf{- 3 2},(2 R, 3 S) \mathbf{- 3 2},(2 S, 3 S) \mathbf{- 3 2}$, and $(2 R, 3 R) \mathbf{- 3 2}$ ([DL-threonine deriv.]:[DLallothreonine deriv.] $=78: 22$)

Entry	Retention time (min)	Area	Area (\%)
1	5.152	17158940	38.536
2	5.981	17621273	39.574
3	7.126	4800410	10.781
4	8.343	4946544	11.109
Total		44527166	100

5.3.2. Asymmetric synthesis of ethyl (2S)-2-benzamido-3-hydroxybutanoate ((2S)-32)

Ethyl (2S)-2-(((S)-(2,6-dichlorophenyl)sulfinyl)amino)-3-hydroxybutanoate ((2S)-2k)

The reaction was conducted following the General Procedure using (S) $\mathbf{- 1 k}$ ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol ($\mathbf{a}, 35 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv.). The crude mixture was purified by flash column chromatography on silica-gel (hexanes/EtOAc $80: 20$ to $50: 50$) to yield the title compound ($2 S$) - $\mathbf{2 k}$ (48.5 $\mathrm{mg}, 71 \%$ yield, syn/anti ratio $=1: 1.3$) as a colorless oil.

	(2S)-2k. Mixture of syn/anti isomers ($(2 S, 3 R) \mathbf{- 2 k}+(2 S, 3 S) \mathbf{- 2 k})$; syn/anti $=1: 1.3$.
	${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{NH}), 6.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NH})$, 4.29-4.10 (m, 3.6H), 3.96 (dd, $J=7.5,3.5 \mathrm{~Hz}, 0.54 \mathrm{H}$), 2.46 (br s, $0.45 \mathrm{H}, \mathrm{OH}$), 2.31 (d, $0.50 \mathrm{H}, \mathrm{OH}), 1.32-1.28(\mathrm{~m}, 4.6 \mathrm{H}), 1.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.4 \mathrm{H})$. ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) (mixture of syn/anti isomers) $\delta 171.0,170.5,140.0$, 139.7, 133.7, 133.6, 132.3, 130.4, 130.3, 68.8, 68.6, 63.2, 63.0, 62.4, 62.3, 19.9, 18.7, 14.2. HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 361.9991$, found 361.9991 .

Ethyl (2S)-2-benzamido-3-hydroxybutanoate ((2S)-32)

Method F: $(S) \mathbf{- 2 k}(37.4 \mathrm{mg}, 110 \mu \mathrm{~mol})$ furnished the desired compound $(2 S)-\mathbf{3 2}(24.3 \mathrm{mg}, 88 \%$ yield, syn/anti ratio $=1: 1.3)$ as a colorless oil.
(2S)-32. Mixture of syn/anti isomers $((2 S, 3 R)-\mathbf{3 2}+(2 S, 3 S)-32)$; syn/anti $=1: 1.3$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.85-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NH}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $0.45 \mathrm{H}, \mathrm{NH}$), 4.87 (dd, $J=7.0,3.5 \mathrm{~Hz}, 0.55 \mathrm{H}, \alpha \mathrm{CH}), 4.81$ (dd, $J=8.7,2.4 \mathrm{~Hz}, 0.45 \mathrm{H}$, $\alpha \mathrm{CH}), 4.47-4.43$ (m, 0.46H, $\beta \mathrm{CH}$), 4.34-4.23 (m, 2.6H), 3.76 (br s, 0.55H, OH), 2.852.24 (br s, 0.45 H), $1.37-1.22(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(126 ~ M H z, ~ \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 171.3,170.4,168.5$, $168.0,133.9,133.4,132.3,132.0,128.8,128.7,127.4,127.3,69.5,68.5,62.3,62.0,59.1$, 57.8, 20.3, 18.8, 14.3.

HRMS ESI [M+H] ${ }^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}$274.1050, found 274.1050.
Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm}$ x 250 mm . Isocratic: Hexanes $/ i \operatorname{PrOH} 80: 10,40^{\circ} \mathrm{C}$, flow rate: $1.5 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}$): Retention time $=5.1$ $\min (2 S, 3 R-32: 42.0 \%), 6.0 \mathrm{~min}(2 R, 3 S-32: 2.0 \%)$, $7.1 \mathrm{~min}(2 S, 3 S-32: 54.0 \%), 8.3 \mathrm{~min}$ (2S,3S-32: 2.0\%).

Chromatogram of（2S）－32

```
〈クロマトグラム>
mAU
```


Entry	Retention time（min）	Area	Area（\％）
1	5.149	8215791	41.954
2	6.001	399553	2.040
3	7.064	10579302	54.023
4	8.312	388397	1.983
Total		19583043	100

5．3．3．Asymmetric synthesis of ethyl（2R）－2－benzamido－3－hydroxybutanoate（（2R）－32）

Ethyl（2R）－2－（（（R）－（2，6－dichlorophenyl）sulfinyl）amino）－3－hydroxybutanoate（（2R）－2k）
The reaction was conducted following the General Procedure using $(R) \mathbf{- 1 k}(58.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethanol（ $\mathbf{a 1}, 35 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3$ equiv．）．The crude mixture was purified by flash column chromatography on silica－gel（hexanes／EtOAc 80：20 to 50：50）to yield the title compound（2R）－2k（54．9 $\mathrm{mg}, 81 \%$ yield，syn／anti ratio $=1: 1.3)$ as an off－white solid．

$(2 R)-\mathbf{2 k}$. Mixture of syn/anti isomers $((2 R, 3 S)-\mathbf{2 k}+(2 R, 3 R)-\mathbf{2 k})$; syn/anti $=1: 1.3$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NH})$, 4.29-4.13 (m, 3.56H), $3.96(\mathrm{q}, J=3.7 \mathrm{~Hz}, 0.54 \mathrm{H}), 2.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{OH})$, $2.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.52 \mathrm{H}, \mathrm{OH}), 1.32-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1.4 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ (mixture of syn/anti isomers) $\delta 171.0,170.5,140.0$, 139.7, 133.8, 133.7, 132.3, 130.4, 130.3, 68.8, 68.6, 63.2, 63.1, 62.4, 62.3, 19.9, 18.7, 14.2.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}^{+}: 361.9991$, found 361.9990 .

Ethyl (2R)-2-benzamido-3-hydroxybutanoate ((2R)-32)

Method F: $(R) \mathbf{- 2 k}(30.3 \mathrm{mg}, 89 \mu \mathrm{~mol})$ furnished the desired compound $(2 R) \mathbf{- 3 2}(18.3 \mathrm{mg}, 86 \%$ yield, syn/anti ratio $=1: 1.3)$ as a colorless oil.
(2R)-32. Mixture of syn/anti isomers $((2 R, 3 S)-32+(2 R, 3 R)-32) ;$ syn/anti $=1: 1.3$.
${ }^{1} \mathbf{H}-N M R(500 ~ M H z, ~ C D C l 3) ~(m i x t u r e ~ o f ~ s y n / a n t i ~ i s o m e r s) ~ \delta ~ 7.85-7.83(m, ~ 2 H), ~$, $7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{NH}), 6.98(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 0.45 \mathrm{H}, \mathrm{NH}), 4.87(\mathrm{dd}, J=7.0,3.5 \mathrm{~Hz}, 0.55 \mathrm{H}, \alpha \mathrm{CH}), 4.81(\mathrm{dd}, J=8.7,2.4$ $\mathrm{Hz}, 0.45 \mathrm{H}, \alpha \mathrm{CH}), 4.47-4.43(\mathrm{~m}, 0.45 \mathrm{H}, ~ \beta \mathrm{CH}), 4.34-4.23$ (m, 2.55H), 3.73 (br s,
 $0.55 \mathrm{H}, \mathrm{OH}), 2.48(\mathrm{br} \mathrm{s}, 0.45 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 4.6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right)$ (mixture of syn/anti isomers) $\delta 171.3,170.4,168.5$, $168.0,133.9,133.4,132.3,132.0,128.8,128.7,127.4,127.3,77.4,77.2,76.9,69.5$, $68.5,62.3,62.0,59.1,57.8,20.3,18.8,14.3$.

HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}{ }^{+}$274.1050, found 274.1049.
Chiral HPLC (DAICEL CHIRALPAK IC-3, $\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$. Isocratic: Hexanes $/ i \operatorname{PrOH} 80: 10,40^{\circ} \mathrm{C}$, flow rate: $1.5 \mathrm{~mL} / \mathrm{min}, \lambda=249 \mathrm{~nm}$): Retention time $=$ $5.2 \min (2 S, 3 R-32: 2.0 \%), 6.0 \mathrm{~min}(2 R, 3 S-32: 41.7 \%), 7.2 \min (2 S, 3 S-32: 1.8 \%), 8.4$ $\min (2 S, 3 S-32: 54.5 \%)$.

Chromatogram of (2R)-32

Entry	Retention time (min)	Area	Area (\%)
1	5.217	211583	1.985
2	6.049	4439707	41.660
3	7.171	197257	1.851
4	8.356	5808483	54.504
Total		10657030	100

6. Mechanistic Studies

6.1. Cyclic Voltammetry

The redox potentials of N-sulfinyl α-iminoesters were measured by cyclic voltammetry using an electrochemical analyzer ALS model 760D (BAS Inc.) with a $\mathrm{Ag} / \mathrm{Ag}^{+}$reference electrode, a platinum counter electrode, and a glassy carbon disk working electrode. For each sample, ${ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ ($195 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, analyte $(0.01 \mathrm{mmol})$, and degassed $\mathrm{MeCN}(5 \mathrm{~mL})$ were placed in a cell, and the solution was purged with argon for 5 min before the measurement. Voltammograms were taken at r.t. with the scan rate set to $100 \mathrm{mV} / \mathrm{s}$. Ferrocene was added to the solution as an internal standard at the end of the measurements. The obtained values referenced to $\mathrm{Ag} / \mathrm{Ag}^{+}$were converted to the SCE couple according to the literature. ${ }^{[30]}$

Table S9. Summary of redox potentials of N-sulfinyl α-iminoesters.

Figure S3. Cyclic voltammogram of $(\pm) \mathbf{- 1 i}$.

Figure S4. Cyclic voltammogram of $(\pm) \mathbf{- 1} \mathbf{j}$.

Figure S5. Cyclic voltammogram of (\pm)-1k.

6.2. Fluorescence Quenching Studies

The emission spectra were recorded using a Shimadzu RF-6000 spectrofluorophotometer. All sample solutions were prepared using dry MeCN and measured immediately after bubbling with argon at r.t. For each experiment, a sample solution was prepared by adding $100 \mu \mathrm{~L}$ of a catalyst solution (10 mM in MeCN) and an indicated amount $\left(0,100,200,300\right.$, and $500 \mu \mathrm{~L}$) of quencher solution ($\mathbf{D A B C O}^{+}$or N sulfinyl α-iminoester $(\pm)-\mathbf{1 k}, 0.10 \mathrm{M}$ in MeCN$)$ to a 5 mL volumetric flask, followed by addition of dry MeCN to the mark. The solution was then transferred to a $1 \mathrm{~cm}^{2}$ quartz quvette. The sample solution was excited at 430 nm and the fluorescence intensity was measured at 582 nm .

Figure S6. Stern-Volmer Plot with $\mathbf{D A B C O}{ }^{+}$as a quencher.

Figure S6. Stern-Volmer Plot with (\pm)-1k as a quencher.

7. References

[1] A. R. White, L. Wang and D. A. Nicewicz, Synlett, 2019, 30, 827-832.
[2] J. Luo and J. Zhang, ACS Catal., 2016, 6, 873-877.
[3] A. Matsumoto, M. Yamamoto and K. Maruoka, ACS Catal., 2022, 12, 2045-2051.
[4] B. Wang, C. A. Pettenuzzo, J. Singh, G. E. Mccabe, L. Clark, R. Young, J. Pu and Y. Deng, ACS Catal., 2022, 12, 10441-10448.
[5] A. G. A. Geissler and B. Breit, Org. Lett., 2022, 24, 7967-7971.
[6] M. Barbarotto, J. Geist, S. Choppin and F. Colobert, Tetrahedron Asymmetry, 2009, 20, 27802787.
[7] M. Kou, Z. Wei, Z. Li and B. Xu, Org. Lett., 2022, 24, 8514-8519.
[8] H. Guo, J. Xu, P. Hao, K. Ding and Z. Li, Chem. Commun., 2017, 53, 9620-9623.
[9] H. E. Bartrum, D. C. Blakemore, C. J. Moody and C. J. Hayes, Chem.-Eur. J., 2011, 17, 95869589.
[10] S. Morales, F. G. Guijarro, J. L. Garcia Ruano and M. B. Cid, J. Am. Chem. Soc., 2014, 136, 1082-1089.
[11] (a) Y. Wang, F. Zhang, Y. Wang and Y. Pan, Eur. J. Org. Chem., 2022, e202101462; (b) J. Yan, H. Tang, E. J. R. Kuek, X. Shi, C. Liu, M. Zhang, J. L. Piper, S. Duan and J. Wu, Nat. Coттип., 2021, 12, 7214.
[12] A. Nose and T. Kudo, Chem. Pharm. Bull., 1987, 35, 1770-1776.
[13] G. Zhang, Y. Xing, S. Xu, C. Ding and S. Shan, Synlett, 2018, 29, 1232-1238.
[14] S. Chartterjee, S. Makai and B. Morandi, Angew. Chem., Int. Ed., 2021, 60, 758-765.
[15] C. K. Savile, V. P. Magloire and R. J. Kazlauskas, J. Am. Chem. Soc., 2005, 127, 2104-2113.
[16] G.Zhang, S. Xu, X. Xie, C. Ding and S. Shan, RSC Adv., 2017, 7, 9431-9435.
[17] V. G. Lisnyak and S. A. Snyder, J. Am. Chem. Soc., 2020, 142, 12027-12033.
[18] N. Kern, T. Dombray, A. Blanc, J.-M. Weibel and P, Pale, J. Org. Chem., 2012, 77, 9227-9235.
[19] T. Moragas, R. M. Liffey, D. Regentová, J.-P. S. Ward, J. Dutton, W. Lewis, I. Churcher, L. Walton, J. A. Souto and P. A. Stockman, Angew. Chem., Int. Ed., 2016, 55, 10047-10051.
[20] S. Desrat, C. Remeur and F. Roussi, Org. Biomol. Chem., 2015, 13, 5520-5531.
[21] Z. Zhou, S. Pi and R. Wang, ChemistrySelect, 2022, 7, e202200842.
[22] P. K. Olsen and R. Madsen, Chem.-Eur. J., 2012, 18, 16023-16029.
[23] M. Yoshida, M. Sawamura, and Y. Masuda, ChemCatChem, 2022, 14, e202200744.
[24] W. K. Weigel, H. T. Dang, H.-B. Yang and D. B. C. Martin, Chem. Commun., 2020, 56, 96999702.
[25] V. I. Supranovich, V. V. Levin and A. D. Dilman, Org. Lett., 2019, 21, 4271-4274.
[26] A. Pulcinella, S. Bonciolini, F. Lukas, A. Sorato and T. Noël, Angew. Chem., Int. Ed., 2023, 62, e202215374.
[27] (a) Z. S. Han, A. M. Meyer, Y. Xu, Y. Zhang, R. Busch, S. Shen, N. Grinberg, B. Z. Lu, D. Krishnamurthy and C. H. Senanayake, J. Org. Chem., 2011, 76, 5480-5484; (b) T.
Ramachandar, Y. Wu, J. Zhang and F. A. Davis, Org. Synth., 2006, 83, 131-140.
[28] A. Krasovskiy and P. Knochel, Angew. Chem., Int. Ed., 2004, 43, 3333-3336.
[29] M. van Dijk, T. M. Postma, D. T. S. Rijkers, R. M. J. Liskmap, C. F. van Nostrum and W. E. Hennink, Polymer, 2010, 51, 2479-2485.
[30] V. V. Pavlishchuk and A. W. Addison, Inorganica Chim. Acta, 2000, 298, 97-102.

8. Spectral data collection

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 f}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of (\pm)-1f $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 g}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F-NMR spectra of $(\pm) \mathbf{- 1 g}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm)-\mathbf{1 h}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 h}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F-NMR spectra of $(\pm)-\mathbf{1 h}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of (\pm) - $\mathbf{1 i}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1} \mathbf{j}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1} \mathbf{j}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F-NMR spectra of $(\pm) \mathbf{- 1} \mathbf{j}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\pm) \mathbf{- 1 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of (\pm) - $\mathbf{1 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{2 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 3-d2 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-$ NMR spectra of $\mathbf{3 - \mathbf { d } _ { 2 }}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $4\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $5\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $5\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $6\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{6}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $7\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $9\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{1 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 6}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F-NMR spectra of $\mathbf{1 6}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{1 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{2 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $21\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $21\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $22\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $22\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{2 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{2 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{2 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{2 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 6}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $27\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $27\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{2 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $29\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{2 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{3 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{3 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $(R) \mathbf{- 1 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(R) \mathbf{- 1 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $(S) \mathbf{- 1 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(S) \mathbf{- 1 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(2 R)$-21 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $(2 R)$-21 $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $(2 S)$-21 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $(2 S)$-21 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(R) \mathbf{- 3 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $(R) \mathbf{- 3 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR spectra of $(S) \mathbf{- 3 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of (S) - $\mathbf{3 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(2 S) \mathbf{- 2 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ syn/anti isomers: $(2 S, 3 R)-\mathbf{2 k} \&(2 S, 3 S)-\mathbf{2 k})$

${ }^{13} \mathrm{C}$-NMR spectra of $(2 S) \mathbf{- 2 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $\left.(2 S, 3 R) \mathbf{- 2} \mathbf{k} \&(2 S, 3 S)-\mathbf{2 k}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(2 R) \mathbf{- 2 k}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $\left.(2 R, 3 S)-\mathbf{2 k} \&(2 R, 3 R)-\mathbf{2 k}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(2 R) \mathbf{- 2 k}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $\left.(2 R, 3 S) \mathbf{- 2 k} \&(2 R, 3 R)-\mathbf{2 k}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(2 S) \mathbf{- 3 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $\left.(2 S, 3 R)-\mathbf{3 2} \&(2 S, 3 S)-\mathbf{3 2}\right)$

${ }^{13} \mathrm{C}$-NMR spectra of $(2 S)$ - $\mathbf{3 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $(2 S, 3 R)-\mathbf{3 2}$ \& ($2 S, 3 S$)-32)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(2 R) \mathbf{- 3 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (syn/anti isomers: $\left.(2 R, 3 S)-\mathbf{3 2} \&(2 R, 3 R)-\mathbf{3 2}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $(2 R) \mathbf{- 3 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ syn/anti isomers: $(2 R, 3 S)-\mathbf{3 2} \&(2 R, 3 R)-32)$

[^0]: $(\pm)-\mathbf{1} \mathbf{j}$, new compound.
 ${ }^{1} \mathbf{H}-N M R(500 ~ M H z, ~ C D C l 3) ~ \delta ~ 8.33(s, 1 H), ~ 7.54-7.48(m, 1 H), ~ 7.01-6.98(m, 2 H)$, 4.45-4.38 (m, 2H), $1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
 ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.0,160.9\left(\mathrm{dd}, J_{C-F}=257.3,5.4 \mathrm{~Hz}\right), 156.1,119.1$
 $\left(\mathrm{t}, J_{C-F}=18.0 \mathrm{~Hz}\right), 113.1\left(\mathrm{dd}, J_{C-F}=21.6,3.6 \mathrm{~Hz}\right), 63.0,14.2$.
 ${ }^{19}$ F-NMR ($471 \mathrm{MHZ}, \mathbf{C D C l}_{3}$) $\delta-110.5$.
 HRMS ESI $[\mathbf{M}+\mathbf{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{~S}^{+}: 262.0344$, found 262.0340.

[^1]: $\mathbf{2 k}$, new compound.
 ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) (mixture of syn/anti isomers) $\delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.57 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.43 \mathrm{H}, \mathrm{NH}), 4.28-$ $4.21(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 0.43 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 3.5 \mathrm{~Hz}$, $0.57 \mathrm{H}), 2.45(\mathrm{br} \mathrm{s}, 0.43 \mathrm{H}, \mathrm{OH}), 2.28(\mathrm{br} \mathrm{s}, 0.57 \mathrm{H}, \mathrm{OH}), 1.33-1.24(\mathrm{~m}, 4.7 \mathrm{H}), 1.18(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1.3 \mathrm{H})$.

