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Supplementary Computational Methods
Virtual Screening. All systematic permutations of nitrogen substitutions of azulene were
generated with the itertools package of python via the itertools.product function to generate all
permutations of sequences of the characters ‘C’ and ‘N’ of length 8. These sequences were
then embedded into the azulene skeleton by placing the corresponding characters at the 8
distinct positions of the SMILES string that allow for nitrogen substitution. The resulting
SMILES were canonicalized via the rdkit package. Duplicate SMILES in the resulting list were
removed by creating a set. The code of this procedure can be found on the GitHub repository.

Lead Validation. As a reference dataset for comparing the synthesizability scores of the
structures generated by our algorithm to, we downloaded the subset of ZINC201 that contains
all the compounds in stock (In-Stock tag, https://zinc.docking.org/tranches/home/). It
encompasses over 13 million compounds. To reduce computational expense, we sampled a
random subset containing 20% of this full set. We filtered the resulting subset with the same
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filters that used to filter GDB-13, that we also employed in our genetic algorithm. This yielded
11,631 structures, for which we computed the SAscore, the SCScore, SYBA, and the RAscore.

Supplementary Results and Discussion
Virtual Screening. The comparison of simulated properties at the EOM-CCSD/cc-pVDZ level
of theory against alternative methods is illustrated in Supplementary Figure 1. The results show
that all three methods tested, i.e., ωB2PLYP’/def2-mSVP, ADC(2)/cc-pVDZ and
SOS-ADC(2)/cc-pVDZ reproduce the properties and the corresponding trends well (cf.
Supplementary Table 1). Overall, SOS-ADC(2)/cc-pVDZ shows the best agreement across
singlet-triplet gaps, oscillator strengths and vertical excitation energies, as demonstrated by
the results presented in Supplementary Table 1. Accordingly, we decided to employ
ωB2PLYP’/def2-mSVP for property simulation in our artificial design stage as it is
computationally the most efficient method. Additionally, we selected SOS-ADC(2)/cc-pVDZ as
our method of choice to validate some of the best candidates that were found in the artificial
design stage. ADC(2)/cc-pVDZ shows somewhat worse agreement with EOM-CCSD/cc-pVDZ
at a higher computational expense.

Supplementary Table 1. Linear regression results of simulated excited state properties for all
systematic permutations of nitrogen core structure substitutions of azulene at the EOM-CCSD
level of theory against the corresponding properties obtained from alternative methods: Y =
Slope · X + Intercept. R² corresponds to the coefficient of determination. F corresponds to the
result of an f-test that compares the model to parameter values of 0. N corresponds to the
number of data points. N is lower than 144 for SOS-ADC(2) as 4 simulations did not converge.

Method Property Slope Intercept R² F N

ADC(2) ΔE(S0-S1) 0.90(4) -0.05(10) 0.79 521 144

ADC(2) ΔE(S1-T1) 0.56(3) -0.006(15) 0.72 366 144

ADC(2) f12 0.80(6) 0.003(10) 0.59 201 144

SOS-ADC(2) ΔE(S0-S1) 0.97(2) -0.04(5) 0.95 2419 140

SOS-ADC(2) ΔE(S1-T1) 1.08(4) -0.30(2) 0.87 924 140

SOS-ADC(2) f12 0.73(3) 0.001(0) 0.83 667 140

ωB2PLYP’ ΔE(S0-S1) 0.93(3) 0.28(7) 0.90 1246 144

ωB2PLYP’ ΔE(S1-T1) 0.79(5) 0.34(3) 0.62 236 144

ωB2PLYP’ f12 1.26(8) 0.003(1) 0.65 259 144

2



A. Comparison of Vertical Excitation Energies

B. Comparison of Singlet-Triplet Gaps

C. Comparison of Oscillator Strengths

Supplementary Figure 1. Comparison of simulated excited state properties for all systematic
permutations of nitrogen core structure substitutions of azulene at the EOM-CCSD level of
theory against the corresponding properties obtained from alternative methods. A. Comparison
of vertical excitation energies. B. Comparison of singlet-triplet gaps. C. Comparison of
oscillator strengths.
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Artificial Design. As it is relevant throughout this work, especially for our artificial design
experiments, Supplementary Figure 2 shows the numbering of positions in azulene core
structures. This numbering is used to refer to both the positions of nitrogen substitutions in the
core structure and the introduction of additional substituents.

Supplementary Figure 2. Numbering of positions in azulene.

In the following paragraph, we will describe our initial attempts to train two ANN property
predictors, one for singlet-triplet gaps and one for oscillator strengths. First, 20% of the data
were used as a holdout set to test model performance. The remaining 80% were split again
into 48% of the total used for training and 32% of the total used as validation set. The
validation set was used to tune hyperparameters with the package Optuna.2 In that regard, we
decided to optimize the number of epochs for training, the number of epochs to continue
training without validation loss improvement, the learning rate, the number of neurons in each
layer and the dropout rate. We trained several ANNs for each of the two properties from the
data generated in the first 11 generations of the artificial design experiment 1 using various
input features for comparison as detailed in Supplementary Table 2. Each row corresponds to a
different set of features used for training. Depending on the features, the ANNs consisted of
either two dense layers, i.e., fully connected neurons (cf. SELFIES, SMILES, ECFP4 and
ECFP4-XTB in Supplementary Table 2), or two layers of graph convolution operations (cf. GCN
in Supplementary Table 2) as implemented in GCNConv of the deep graph library.3 The
SELFIES and SMILES models used one-hot encodings of the respective SELFIES and SMILES
of the molecules. The ECFP4 models used the binary representation of Morgan fingerprints4

with 1024 bits. In addition to the Morgan fingerprints, the ECFP4-XTB models also used
various molecular properties derived from semiempirical quantum chemistry simulations of the
molecules. These simulations were initiated by ground state conformational ensembles via
crest5 (version 2.10.1) with the iMTD-GC6,7 workflow (quick option) using the GFN-FF8–10

method in conjunction with loose optimization settings. Subsequently, the lowest energy
conformers were optimized using xtb11 (version 6.3.0) at the GFN2-xTB12,13 level of theory using
normal geometry convergence. From the output of the GFN2-xTB simulations, we extracted the
following molecular properties as features: the three molecular rotational constants, the three
molecular moments of inertia, the molecular dipole moment vector and the corresponding
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norm, the six molecular quadrupole moments, the homoatomic C6
AA and C8

AA dispersion
coefficients, the molecular polarizability, the fermi energy level, the energy difference between
the highest occupied molecular orbital and the lowest unoccupied molecular orbital, the
energies of the six highest occupied molecular orbitals and the energies of the six lowest
unoccupied molecular orbitals. For the GCN models, we reimplemented the code and features
used in Chemprop14 to train graph convolutional neural networks. As apparent from
Supplementary Table 2, none of the models show sufficiently good prediction performance
compared to the quantum chemical simulations, neither for singlet-triplet gaps nor for oscillator
strengths. Hence, we decided to incorporate ANN classifiers into the artificial design workflow
instead.

Supplementary Table 2. Holdout set performance for predicting singlet-triplet gaps (ΔE(S1-T1))
and oscillator strengths (f12). MAE: mean absolute error, RMSE: root mean squared error, R²:
coefficient of determination.

Model
Features

ΔE(S1-T1) [eV] f12

MAE RMSE R² MAE RMSE R²

SELFIES 0.25 0.33 0.375 0.08 0.19 0.239

SMILES 0.24 0.32 0.413 0.08 0.19 0.282

ECFP4 0.20 0.27 0.580 0.07 0.16 0.435

GCN 0.20 0.26 0.625 0.09 0.18 0.322

ECFP4-XTB 0.18 0.24 0.669 0.06 0.15 0.547

In addition to the property distributions provided in the Extended Data section of the main text,
we also provide property distributions at the ωB2PLYP’ level of theory for all structures
generated in each of the artificial design runs (cf. Supplementary Figures 3-8). They illustrate
several relationships between the properties of interest. First, as is already well established, we
find that molecules with smaller singlet-triplet gaps tend to have smaller oscillator strengths.
Additionally, molecules with smaller singlet-triplet gaps also tend to have smaller vertical
excitation energies, and we also find that structures with predicted vertical excitation energies
around 3 eV tend to have the largest oscillator strengths.
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 3. Property distributions of all the compounds generated during
experiment 1 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 4. Property distributions of all the compounds generated during
experiment 2 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).

7



A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 5. Property distributions of all the compounds generated during
experiment 3 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 6. Property distributions of all the compounds generated during
experiment 4 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 7. Property distributions of all the compounds generated during
experiment 5 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).
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A. Singlet-triplet gap and oscillator strength.

B. Vertical excitation energy and singlet-triplet gap.

C. Vertical excitation energy and oscillator strength.

Supplementary Figure 8. Property distributions of all the compounds generated during
experiment 6 of the artificial design stage at the ωB2PLYP’ level of theory colored by the
number of molecules in the respective property windows (A-C).

11



Finally, as detailed in the main text, we generated both profactuals and counterfactuals using
the model agnostic counterfactual compounds with STONED (MACCS) workflow. The
corresponding results are depicted in Supplementary Figures 9-18.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 9. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 2
using compound 4 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 10. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 2
using compound 5 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 11. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 3
using compound 6 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 12. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 3
using compound 7 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 13. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 4
using compound 8 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 14. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 4
using compound 9 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 15. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 5
using compound 10 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 16. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 5
using compound 11 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 17. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 6
using compound 12 as baseline.
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A. Profactual compounds.

B. Counterfactual compounds.

Supplementary Figure 18. Profactual (A) and counterfactual (B) compounds explaining the
predictions of the artificial neural network classifier trained in artificial design experiment 6
using compound 13 as baseline.
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Lead Validation. A comprehensive comparison of the simulated properties for the structures in
the validation dataset at the SOS-ADC(2)/cc-pVDZ level of theory against the corresponding
results at the ωB2PLYP’/def2-mSVP level of theory is depicted in Supplementary Figure 19.
The linear regression results in Supplementary Table 3 show that while vertical excitation
energies from both levels of theory show excellent agreement, both oscillator strength and
singlet-triplet gaps compare less favorably. Nevertheless, for both properties, trends are
reproduced reasonably well which demonstrates that ωB2PLYP’/def2-mSVP is appropriate to
evaluate the fitness of the most promising candidates in the artificial design stage.

Supplementary Table 3. Linear regression results of simulated excited state properties for the
validation set compounds at the ωB2PLYP’ level of theory against SOS-ADC(2) properties: Y =
Slope · X + Intercept.

Method Property Slope Intercept R² F N

SOS-ADC(2) ΔE(S0-S1) 0.926(1) -0.129(3) 0.98 8.27 · 105 13201

SOS-ADC(2) ΔE(S1-T1) 0.510(4) -0.148(3) 0.53 1.49 · 104 13201

SOS-ADC(2) f12 0.546(3) -0.002(1) 0.66 2.46 · 104 13201
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A. Comparison of Vertical Excitation Energies B. Distribution of Vertical Excitation Energies

C. Comparison of Singlet-Triplet Gaps D. Distribution of Singlet-Triplet Gaps

E. Comparison of Oscillator Strengths F. Distribution of Oscillator Strengths

Supplementary Figure 19. Comparison of simulated excited state properties for the validation
set compounds at the ωB2PLYP’ and the SOS-ADC(2) levels of theory. A. Comparison of
vertical excitation energies. B. Distribution of the comparison of vertical excitation energies. C.
Comparison of singlet-triplet gaps. D. Distribution of the comparison of singlet-triplet gaps. E.
Comparison of oscillator strengths. F. Distribution of the comparison of oscillator strengths.
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A. SAscore B. SCScore

C. SYBA D. RAscore

Supplementary Figure 20. Comparison of histograms of four distinct synthesizability metrics
between all compounds proposed during the artificial design stage and the subset of
candidates that is estimated to consist of INVEST compounds against a subset generated
based on the ZINC20 dataset.

25



A. SAscore B. SCScore

C. SYBA D. RAscore

Supplementary Figure 21. Comparison of histograms of four distinct synthesizability metrics
between the six different artificial design experiments conducted against a subset generated
based on the ZINC20 dataset.
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