Nitrogen atom insertion into arenols to access

benazepines

Yi He^{a†} Juanjuan Wang^{a†} Tongtong Zhu,^a Zhaojing Zheng^b and Hao Wei^{*a} ^aCollege of Chemistry & Materials Science, Northwest University, Xi'an 710069, China. ^bCollege of Food Science and Technology, Northwest University, Xi'an 710069, China. [†]These authors contributed equally to this work. *Correspondence: haow@nwu.edu.cn

Table of contents

1.	General information	2
2.	Experimental procedures	2
	2.1 General procedure of copper-catalyzed nitrogen atom insertion into arenols	2
	2.2 Optimization of reaction conditions	3
	2.3 Synthesis of starting materials	5
	2.3.1 General procedure for preparation of substrate 20a, 22a-24a, 26a-33a ¹	5
	2.3.2 General procedure for preparation of substrate 5a-17a ¹	6
	2.3.3 General procedure for Preparation of substrate 34a-42a, 45a-47a ²	7
	2.4 Procedure for derivatization of products	8
3.	Mechanism studies	8
	3.1 Radical inhibition experiment	8
	3.2 Cyclic Voltammetry	9
	3.3 Mechanistic studies for carbon atom deletion	10
4.	X-Ray crystallographic data	14
5.	NMR spectra data of compounds	17
6.	References	59
7.	Spectra of Compunds	60

1. General information

Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. All reactions were carried out under an atmosphere of nitrogen using standard schlenk techniques unless otherwise noted. Glass wares were heat-dried and cooled down under vacuum prior to use. Column chromatography was carried out on silica gel (300–400 mesh) using a forced flow of eluent at 0.3–0.5 bar pressure. Flash column chromatography was carried out using silica gel (200–300 mesh) at increased pressure. ¹H NMR, ¹³C NMR spectra were recorded on a WNMR-I spectrometer (400 MHz ¹H, 100 MHz ¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature. ¹H and ¹³C chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) or TMS (¹H) as an internal standard. HRMS were performed on Bruker Daltonics MicroTof-Q II mass spectrometer. Cyclic Voltammetry studies were performed using a Shanghai Chenhua CHI760E workstation.

Caution!

The azide and peroxide compounds involved in the experiments are potentially dangerous, and all compounds must be synthesized on a small scale. The operation must be carried out in the cover behind the blast shield. Always wear protective goggles and leather gloves.

2. Experimental procedures

2.1 General procedure of copper-catalyzed nitrogen atom insertion into arenols

In a sealed 10 mL vial equipped with a magnetic stir bar was charged with the arenols (0.1 mmol), CuI (1.0 mg, 0.005 mmol, 5 mol%), Cy_3PO (3.0 mg, 0.01 mmol, 10

mol%), TBPB (38.0 μ L, 0.2 mmol, 2.0 equiv), and TMSN₃ (39.0 μ L, 0.3 mmol, 3.0 equiv) in toluene (1.0 mL) was premixed and added before the vial was briefly flushed with nitrogen. Subsequently the vial was capped and closed tightly. Then the reaction was stirred at 120 °C for 12 h. After the reaction was completed, the organic phase was washed with saturated sodium bicarbonate solution for three times, dried over MgSO₄, concentrated, and purified by flash chromatography to afford desired products.

2.2 Optimization of reaction conditions

COOEt OH 1a	Catalyst (5 mol%) Cy ₃ PO (10 mol%) TBPB (2 equiv) toluene, 120 °C	
Entry	Catalyst	Yield ^b
1	CuI	80%
2	CuCl	72%
3	CuBr	65%
4	$Cu(OAc)_2$	60%
5	CuCN	61%
6	Cu ₂ O	62%
7	Cu ₂ (OH) ₂ CO ₃	21%
8	Cu(CF ₃ SO ₃)(CH ₃ CN) ₄	67%
9	Ni(acac) ₂	n.r
10	$Pd(PPh_3)_4$	n.r
11	$Ru(bpy)_3Cl_2$	n.r

Table S1. Screening for catalysts^a

^{*a*}Unless otherwise specified, all reactions were carried out using 1a (0.1 mmol) and TMSN₃ (0.3 mmol), with catalyst (5 mol%), Cy₃PO (10 mol%) and TBPB (2.0 equiv) in toluene at 120 °C for 12 h. ^{*b*}Isolated yields after chromatography.

Table S2. Screening for ligands^a

Ligand PCy_3 can afford desired product in 79% yield. However, PCy_3 was oxidized to the Cy_3PO under these condition.

COOEt OH 1a	Cul (5 mol%) Cy ₃ PO (10 mol%) TBPB (2 equiv) solvent, 120 °C	
Entry	Solvent	Yield ^b
1	toluene	80%
2	DCE	50%
3	PhCl	72%
4	DME	30%
5	DMF	n.r
6	DMSO	n.r
7	1,4-dioxane	n.r
8	MeCN	n.r

Table S3. Screening for solvents^a

^{*a*}Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol) and TMSN₃ (0.3 mmol), with CuI (5 mol%), Cy₃PO (10 mol%) and TBPB (2.0 equiv) in solvent at 120 °C for 12 h. ^{*b*}Isolated yields after chromatography.

Table S4. Screening for temperatures^a.

COOEt OH 1a	Cul (5 mol%) Cy ₃ PO (10 mol%) TBPB (2 equiv) toluene, temperature	COOEt COOEt
Entry	Temperature(°C)	Yield ^b
1	90	6%
2	100	11%
3	110	54%
4	120	80%
5	130	63%
6	140	39%

^{*a*}Unless otherwise specified, all reactions were carried out using **1a** (0.1 mmol) and TMSN₃ (0.3 mmol), with CuI (5 mol%), Cy₃PO (10 mol%) and TBPB (2.0 equiv) in toluene at temperature for 12 h. ^{*b*}Isolated yields after chromatography.

2.3 Synthesis of starting materials

2.3.1 General procedure for preparation of substrate 20a, 22a-24a, 26a-33a¹

Step 1: To a stirred solution of 2-hydroxy-1-naphthoic acid (10.0 mmol, 1.0 equiv), alcohol derivatives (10.0 mmol, 1.0 equiv) and DMAP (0.1 mmol, 0.1 equiv) in THF (15 mL), a solution of DCC (15 mmol, 1.5 equiv) in THF (15 mL) was added dropwise. The reaction mixture was stirred at room temperature for 4 h. Then the mixture was filtered through a pad of celite and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography to afford the desired products.

2.3.2 General procedure for preparation of substrate 5a-17a¹

Step 1: To a 50 mL three-neck round-bottomed flask equipped with a condenser, AlCl₃ (5.0 mmol, 1.0 equiv) and DCE (10 mL) were added successively. Then methyl chloroformate (12.5 mmol, 2.5 equiv) was added and the mixture was stirred for 10 min at room temperature. 7-methyl-2-naphthol (5.0 mmol, 1.0 equiv) was added and the mixture was stirred under reflux for 10 h. Then ice water was added. Then the mixture was filtered through a pad of celite. The aqueous layer was extracted with DCM for three times. The organic layer was washed with brine, dried over MgSO₄, filtered and then concentrated. The residue was purified by silica gel column chromatography to afford desired products.

Step 2: To a 100 mL schlenk flask, methyl-6-bromo-2-hydroxy-1-naphthoate (2.0 mmol, 1.0 equiv), aryl boronic acid (2.4 mmol, 1.2 equiv), $Pd(PPh_3)_4$ (0.2 mmol, 0.1 equiv), Na_2CO_3 (4.0 mmol, 2.0 equiv), toluene (5.0 mL) and H_2O (5.0 mL) were added successively. The mixture was reacted at 80 °C under nitrogen

atmosphere for 12 h. The reaction mixture was allowed to cool down to room temperature, filtered through a pad of celite and the solution was extracted with DCM. The organic layer was dried over MgSO₄, concentrated, and purified by flash chromatography to afford desired products.

Step 1: To a stirred solution of aryl bromide (5.0 mmol, 1.0 equiv) and aryl boronic acid (5.0 mmol, 1.2 equiv) in a toluene/ethanol (3:1) mixture was added K_2CO_3 (15.0 mmol, 3.0 equiv) and Pd(PPh₃)₄ (0.5 mmol, 0.1 equiv). The resulting suspension was heated at 110 °C under nitrogen atmosphere for 11 h. The solvent was removed under reduced pressure and the crude residue was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over MgSO₄, concentrated, and purified by flash chromatography to afford desired products.

Step 2: To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (5.0 mmol, 2.8 equiv), diethyl carbonate (5.0 mmol, 2.8 equiv), and anhydrous THF (1.0 M). The mixture was heated to 80 $^{\circ}$ C. Then a solution of ketone (5.0 mmol, 1.0 equiv) in anhydrous THF (20.0 mL) was added dropwise from the dropping funnel over 30 min. After the addition, the mixture was heated to reflux until the ketone was completely consumed (1-3 h).

When the reaction was cooled to room temperature, glacial acetic acid was added dropwise. Later, ice-water was added until the solid was dissolved completely. The organic layer was separated, and the water layer was extracted with ethyl acetate. The combined organic solution was washed with water and brine, then dried over MgSO₄, concentrated, and purified by flash chromatography to afford desired products.

Step 3: Products of step 2 (2.0 mmol, 1.0 equiv) was added to a mixture of NBS (0.8 mmol, 0.4 equiv) and NaH₂PO₄ 2H₂O (2.0 mmol, 1.0 equiv) under air, and then TBHP (7.0 mmol, 3.5 equiv, in 70% H₂O) and THF (16 mL) were added. After the mixture was stirred under reflux for 15 h, the resulting mixture was purified by silica gel column chromatography to give desired products.

2.4 Procedure for derivatization of products

To a 25 mL round-bottom flask were added nitrogen atom insertion product (0.1 mmol, 1,0 equiv), *m*-CPBA (0.3 mmol, 3.0 equiv) and DCM. The reaction mixture was stirred at 70 $^{\circ}$ C until the raw materials had been completely consumed monitored by TLC. The organic layers were washed with saturated sodium bicarbonate solution and dried over MgSO₄, concentrated, and purified by flash chromatography to afford desired products.

3. Mechanism studies

3.1 Radical inhibition experiment

2a (0.1 mmol), CuI (1.0 mg, 0.005 mmol, 5 mol%), were added to an oven dried high pressure tube. Cy₃PO (3.0 mg, 0.01 mmol, 10 mol%), BHT (33.0 mg, 0.15 mmol, 1.5 equiv), toluene (1.0 mL), TBPB (38.0 μ L, 0.2 mmol, 2.0 equiv), TMSN₃ (39.0 μ L, 0.3 mmol, 3.0 equiv), were added in glovebox. Then the reaction was stirred at 120 °C for 12 h. After cooling down to room temperature (monitored by TLC), only trace of product **2** was detected.

3.2 Cyclic Voltammetry

The cyclic voltammetry was carried out with a Shanghai Chenhua CHI760E workstation. A glassy-carbon(GC) electrode (3mm-diameter, disc-electrode) was used as the working electrode, a Pt plate was used as the auxiliary electrode and an Ag/Ag^+ electrode was used as a reference electrode, respectively. The measurements were carried out at a scan rate of 50 mV s⁻¹, if not indicated otherwise. The operation temperature was 298 K.

Figure S2. Cyclic voltammograms of CuI and Cy_3PO system at 50 mVs⁻¹ in MeCN, ⁿBu₄NBF₄ (0.1 M in MeCN), CuI and Cy_3PO (1 mM).

Figure S3. Cyclic voltammograms of TBPB at 50 mVs⁻¹ in MeCN, ⁿBu₄NBF₄ (0.1 M in MeCN), TBPB (10 mM).

Figure S4. Cyclic voltammograms of 1a at 50 mVs⁻¹ in MeCN, ⁿBu₄NBF₄ (0.1 M in MeCN), 1a (1 mM).

To gain further insights into the reaction mechanism, mechanistic studies were performed by means of cyclic voltammetry (CV). An irreversible reduction peak of the mixture CuI and Cy₃PO at -0.94 V (vs Ag/Ag+ in MeCN) was observed. Moreover, CV experiments on substrate **1a** and TBPB gave the irreversible oxidation peaks at +1.46 V (vs Ag/Ag+ in MeCN) and +1.19 V (vs Ag/Ag+ in MeCN) respectively. These results suggested TBPB underwent reduction preferentially, which was consistent with the plausible mechanism that a single-electron transfer between Cu(I) and TBPB.

3.3 Mechanistic studies for carbon atom deletion

A series of control experiments were performed to investigate the reaction pathway. The reaction of **3** was initially conducted with mCPBA at 0 °C, which resulted in nitrone intermediate **3A'** in 72% yield. Isomerization of **3A'** propels the formation of **3A**. Furthermore, heating **3A'** in DCM led to intermediate **3B** without the need for additional reagents. These results indicated that the reaction proceeded via oxaziridine intermediate **3A** and amide intermediate **3B**.

3-oxo-2-phenyl-3H-benzo[b]azepine 1-oxide (3A').

Colorless solid (17.9 mg, 72% yield). Mp = 111.9 – 112.6 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 (d, J = 9.0 Hz, 1H), 7.87 (m, 3H), 7.82 – 7.76 (m, 1H), 7.62 – 7.57 (m, 2H), 7.52 (m, 1H), 7.34 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.69 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 173.0, 161.0, 142.0, 137.1, 135.8, 131.4, 131.3, 130.5, 129.8, 129.3, 123.4, 121.1, 119.6, 114.0. HRMS (ESI) Calculated for C₁₆H₁₂NO₂ [M+H]⁺: 250.0862; Found: 250.0854.

N-Acyl quinolin-2(1*H***)-ones (3B).** Colorless solid. Mp = 122.3 - 123.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (m, 3H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* =

8.1Hz, 1H), 7.75 (m, 1H), 7.70 – 7.63 (m, 1H), 7.56 (m, 3H), 7.33 (d, J = 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 156.6, 146.6, 140.0, 134.0, 130.5, 130.2, 128.9, 128.6, 128.6, 127.5, 127.2, 126.6, 115.9. HRMS (ESI) Calculated for C₁₆H₁₂NO₂ [M+H]⁺: 250.0862; Found: 250.0857.

4. X-Ray crystallographic data

Table S5 Crystal data and structure refinement for 20

Empirical formula	$C_{17}H_{10}BrNO_3$
Formula weight	356.17
Temperature/K	220.0K
Crystal system	Monoclinic
Space group	P 21/c
a/Å	5.4496(2)
b/Å	20.6183(6)
c/Å	13.2918(4)
$\alpha/^{\circ}$	90
β/°	99.8540(10) °
$\gamma/^{\circ}$	90
Volume/Å ³	1471.45(8)
Z	4
Density (calculated) g/cm ³	1.608
μ/mm^{-1}	2.584
F(000)	712
Crystal size/mm ³	$0.180 \times 0.130 \times 0.120$
Radiation	MoK a (wavelength = 1.34138)
Index ranges	$-4 \le h \le 6, -25 \le k \le 24 - 15 \le l \le 16$
Reflections collected	14842
Independent reflections	2964 [$R_{\rm int} = 0.0464$]
Data/restraints/parameters	2964 / 0 / 199
Goodness-of-fit on F ²	1.081
Final R indexes $[I \ge 2\sigma]$	$R_1 = 0.0344, wR_2 = 0.0934$
(I)]	
Final R indexes [all data]	$R_1 = 0.0374, wR_2 = 0.0962$
Largest diff. peak/hole / e Å- 3	0.427 and -0.711

Table S6 Crystal data and st	tructure refinement for 48
Empirical formula	$C_{15}H_{12}N_2O_3$
Formula weight	268.27
Temperature/K	298.0K
Crystal system	Monoclinic
Space group	P 21/n
a/Å	7.7369(6)
b/Å	9.7927(9)
c/Å	16.8291(16)
$\alpha/^{\circ}$	90
β/°	100.727(4)
γ/°	90
Volume/Å ³	1252.78(19)
Z	4
Density (calculated) g/cm ³	1.422
μ/mm^{-1}	0.535
F(000)	560
Crystal size/mm ³	$0.130 \times 0.120 \times 0.100$
Radiation	MoK\a (wavelength = 1.34138)
Index ranges	$-9 \le h \le 9, -9 \le k \le 11, -19 \le l \le 19$
Reflections collected	16086
Independent reflections	2215 [$R_{\text{int}} = 0.1040$]
Data/restraints/parameters	2215 / 0 / 163
Goodness-of-fit on F ²	1.084
Final R indexes $[I \ge 2\sigma]$	$R_1 = 0.0935, wR_2 = 0.2433$
(I)]	
Final R indexes [all data]	$R_1 = 0.1478, wR_2 = 0.3017$
Largest diff. peak/hole / e	1.125 and -0.448
Å ⁻³	

Table S7 Crystal data and structure refinement for 46			
Empirical formula	C ₂₁ H ₁₅ NO ₃		
Formula weight	329.34		
Temperature/K	200.0K		
Crystal system	Monoclinic		
Space group	P 21/n		
a/Å	7.7620(5)		
b/Å	12.9308(9)		
c/Å	15.9453(10)		
$\alpha/^{\circ}$	90		
β/°	94.829(2)		
$\gamma^{/\circ}$	90		
Volume/Å ³	1594.73(18)		
Z	4		
Density (calculated) g/cm ³	1.372		
μ/mm^{-1}	0.476		
F(000)	688		
Crystal size/mm ³	0.180 ×0.130 ×0.100		
Radiation	MoK\a (wavelength = 1.34138)		
Index ranges	$-9 \le h \le 9, -14 \le k \le 16, -19 \le l \le 19$		
Reflections collected	15353		
Independent reflections	$3266 [R_{int} = 0.1532]$		
Data/restraints/parameters	3266 / 0 / 227		
Goodness-of-fit on F ²	0.947		
Final R indexes $[I \ge 2\sigma]$	$R_1 = 0.0477, wR_2 = 0.0962$		
(I)]			
Final R indexes [all data]	$R_1 = 0.1257, wR_2 = 0.1195$		
Largest diff. peak/hole / e	0.248 and -0.309		
Å ⁻³			

S16

5. NMR spectra data of compounds

Ethyl 10-hydroxyphenanthrene-9-carboxylate (1a).² Colorless solid. Mp = 132.4 – 133.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.24 (s, 1H), 8.70 (dd, J = 8.4, J = 1.3 Hz, 1H), 8.50 – 8.44 (m, 3H), 7.69 – 7.63 (m, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.45 (m, 1H), 7.41 – 7.36 (m, 1H), 4.51 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 162.7, 133.6, 130.4, 129.4, 127.5, 126.8, 126.0, 125.9, 125.2, 124.9, 124.2, 122.8, 122.4, 101.5, 62.0, 14.3. HRMS (ESI): Calculated for C₁₇H₁₃O₃ [M-H]⁻: 265.0859; Found: 265.0870.

Methyl 2-hydroxy-1-naphthoate (**2a**).¹ Colorless solid. Mp = 92.6 – 94.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.27 (s, 1H), 8.70 (d, *J* = 8.9 Hz, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.70 (dd, *J* = 8.1, *J* = 1.6 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.37 – 7.29 (m, 1H), 7.13 (dd, *J* = 9.0, *J* = 1.1 Hz, 1H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.3, 136.7, 131.6, 128.9, 128.5, 128.3, 125.2, 123.5, 119.1, 104.4, 52.2. HRMS (ESI): Calculated for C₁₂H₉O₃ [M-H]⁻: 201.0546; Found: 201.1544.

1-Phenylnaphthalen-2-ol (3a).⁵ Colorless solid. Mp = 97.8 – 101.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.61 (m, 2H), 7.43 – 7.36 (m, 2H), 7.33 – 7.24 (m, 4H), 7.21 – 7.14 (m, 2H), 7.12 (d, *J* = 8.8 Hz, 1H), 5.08 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 134.2, 133.2, 131.1, 129.5, 129.4, 128.8, 128.3, 128.0, 126.4, 124.5,

123.2, 120.9, 117.3. HRMS (ESI): Calculated for C₁₆H₁₁O [M-H]⁻: 219.0804; Found: 219.0823.

[1,1'-Binaphthalen]-2-ol (4a).⁵ Colorless solid. Mp = 118.6 – 120.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.79 – 7.71 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.12 – 7.07 (m, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 4.82 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 134.1, 133.8, 132.8, 131.4, 131.1, 129.8, 129.6, 129.2, 128.9, 128.4, 128.0, 126.8, 126.5, 126.0, 125.7, 124.9, 123.3, 118.7, 117.4. HRMS (ESI): Calculated for C₂₀H₁₃O [M-H]⁻: 269.0961; Found: 269.0961.

Methyl 2-hydroxy-6-phenyl-1-naphthoate (**5a**).³ Colorless solid. Mp = 158.6 – 159.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.20 (s, 1H), 8.61 (d, *J* = 8.9 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.65 (dd, *J* = 8.7, *J* = 2.2 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 9.1 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.3, 140.1, 137.0, 136.0, 130.7, 128.8, 127.7, 127.3, 127.1, 126.9, 126.6, 126.8, 119.6, 104.4, 52.3. HRMS (ESI): Calculated for C₁₈H₁₃O₃ [M-H]⁻: 277.0859; Found: 277.0876.

Methyl 6-hydroxy-[2,2'-binaphthalene]-5-carboxylate (6a). Colorless solid. Mp = 214.6 – 215.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 1H), 8.80 (d, *J* = 9.0 Hz, 1H), 8.12 – 8.02 (m, 2H), 7.95 – 7.90 (m, 4H), 7.87 – 7.80 (m, 2H), 7.52 – 7.46 (m, 2H), 7.18 (d, *J* = 8.9 Hz, 1H), 4.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8,

164.4, 137.5, 137.1, 136.0, 133.7, 132.6, 130.9, 129.0, 128.5, 128.2, 127.9, 127.6, 127.0, 126.4, 126.0, 125.9, 125.7, 125.3, 119.7, 104.6, 52.5. HRMS (ESI): Calculated for $C_{22}H_{15}O_3$ [M-H]⁻: 327.1016; Found: 327.1015.

.OMe OF

Methyl 6-(furan-3-yl)-2-hydroxy-1-naphthoate (7a). Colorless solid. Mp = 112.0 -112.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.17 (s, 1H), 8.61 (d, J = 9.0 Hz, 1H), 7.77 - 7.71 (m, 2H), 7.68 (d, J = 2.0 Hz, 1H), 7.57 (dd, J = 9.1, J = 2.2 Hz, 1H), 7.42 (s, 1H), 7.06 (d, J = 9.0 Hz, 1H), 6.70 (s, 1H), 3.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) § 172.7, 164.1, 143.8, 138.6, 136.7, 130.6, 128.9, 127.6, 126.7, 125.8, 125.7, 125.2, 119.7, 108.7, 104.7, 52.4. HRMS (ESI): Calculated for C₁₆H₁₁O₄ [M-H]⁻: 267.0652; Found: 267.0650.

Methyl 2-hydroxy-6-(thiophen-3-yl)-1-naphthoate (8a). Colorless solid. Mp = 138.2 – 139.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.28 (s, 1H), 8.78 – 8.73 (m, 1H), 7.94 – 7.88 (m, 2H), 7.83 – 7.78 (m, 1H), 7.56 – 7.53 (m, 1H), 7.51 – 7.48 (m, 1H), 7.45 - 7.41 (m, 1H), 7.18 (dd, J = 9.0, J = 0.9 Hz, 1H), 4.11 (s, 3H). ¹³C NMR (100) MHz, CDCl₃) δ 172.7, 164.3, 141.5, 136.9, 131.0, 130.7, 128.9, 127.2, 126.4, 126.2, 125.9, 125.8, 120.3, 119.7, 104.7, 52.5. HRMS (ESI): Calculated for C₁₆H₁₁O₃S [M-H]⁻: 283.0423; Found: 283.0417.

Methyl 6-(3,5-dimethoxyphenyl)-2-hydroxy-1-naphthoate (9a). Colorless solid. Mp = 165.4 - 166.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.37 – 12.22 (m, 1H), 8.77 S19

(d, J = 9.1 Hz, 1H), 7.92 (d, J = 8.9 Hz, 2H), 7.78 (dd, J = 9.1, J = 2.1 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 6.83 (d, J = 2.3 Hz, 2H), 6.49 (t, J = 2.3 Hz, 1H), 4.11 (s, 3H), 3.86 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.4, 161.1, 142.5, 137.1, 136.1, 131.0, 128.8, 127.7, 126.8, 125.8, 119.7, 105.3, 104.5, 99.2, 55.4, 52.4. HRMS (ESI): Calculated for C₂₀H₁₇O₅ [M-H]⁻: 337.1071; Found: 337.1071.

Methyl 6-([1,1'-biphenyl]-4-yl)-2-hydroxy-1-naphthoate (10a). Colorless solid. Mp = 258.7 – 259.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.23 (s, 1H), 8.74 (d, *J* = 9.1 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.79 (dd, *J* = 9.0, *J* = 2.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 8.9 Hz, 1H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 164.4, 140.6, 140.2, 139.1, 137.1, 135.6, 130.9, 129.0, 128.8, 127.6, 127.5, 127.4, 127.0, 126.7, 126.6, 125.9, 119.8, 104.6, 52.5. HRMS (ESI): Calculated for C₂₄H₁₇O₃ [M-H]⁻: 353.1172; Found: 353.1190.

Methyl 2-hydroxy-6-(p-tolyl)-1-naphthoate (11a). Colorless solid. Mp = 158.0 – 159.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.29 (s, 1H), 8.73 (d, J = 9.1 Hz, 1H), 7.88 – 7.84 (m, 2H), 7.76 (dd, J = 9.0, J = 2.1 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.25 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 9.0 Hz, 1H), 4.06 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.3, 137.3, 137.1, 137.0, 136.0, 130.6, 129.6, 128.9, 127.6, 126.8, 126.3, 125.7, 119.5, 104.5, 52.3, 21.1. HRMS (ESI): Calculated for C₁₉H₁₅O₃ [M-H]⁻⁻ 291.1016; Found: 291.1027.

Methyl 2-hydroxy-6-(4-(methylthio)phenyl)-1-naphthoate (12a). Colorless solid. Mp = 160.1 – 161.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.29 (s, 1H), 8.72 (d, *J* = 9.1 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.75 – 7.70 (m, 1H), 7.58 – 7.54 (m, 2H), 7.33 – 7.29 (m, 2H), 7.13 (dd, *J* = 9.1, *J* = 1.1 Hz, 1H), 4.06 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 164.3, 137.7, 136.9, 136.8, 135.3, 130.7, 128.8, 127.3, 127.2, 126.8, 126.2, 125.8, 119.6, 104.4, 52.3, 15.7. HRMS (ESI): Calculated for C₁₉H₁₅O₃S [M-H]⁻: 323.0736, Found: 323.0729.

Methyl 2-hydroxy-6-(4-(trimethylsilyl)phenyl)-1-naphthoate (13a). Colorless solid. Mp = 113.8 - 114.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.30 (s, 1H), 8.73 (d, J = 9.3 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.77 (dd, J = 9.0, J = 2.1 Hz, 1H), 7.63 (t, J = 8.1 Hz, 4H), 7.13 (d, J = 9.0 Hz, 1H), 4.04 (s, 3H), 0.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.4, 140.6, 139.3, 137.0, 136.0, 133.9, 130.8, 128.9, 127.6, 126.7, 126.3, 125.8, 119.6, 104.5, 52.3, -1.1. HRMS (ESI): Calculated for C₂₁H₂₁O₃Si [M-H]⁻: 349.1254; Found: 349.1253.

Methyl 6-(4-chlorophenyl)-2-hydroxy-1-naphthoate (14a). Colorless solid. Mp = $175.9 - 176.9 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.31 (s, 1H), 8.79 (d, *J* = 9.2 Hz, 1H), 7.94 - 7.89 (m, 2H), 7.76 (dd, *J* = 9.1, *J* = 2.4 Hz, 1H), 7.63 - 7.60 (m, 2H), 7.46 - 7.42 (m, 2H), 7.20 (d, *J* = 8.7 Hz, 1H), 4.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.5, 138.7, 137.0, 134.9, 133.4, 131.0, 129.0, 128.9, 128.3, 127.4,

126.7, 126.0, 119.9, 104.6, 52.5. HRMS (ESI): Calculated for C₁₈H₁₂ClO₃ [M-H]⁻: 311.0469; Found: 311.0486.

Methyl 6-(4-bromophenyl)-2-hydroxy-1-naphthoate (**15a**). Colorless solid. Mp = $139.2 - 140.1 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.30 (s, 1H), 8.70 (d, *J* = 8.9 Hz, 1H), 7.85 - 7.77 (m, 2H), 7.67 (dd, *J* = 8.7, *J* = 2.3 Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.7 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 164.4, 139.0, 136.9, 134.7, 131.9, 130.9, 128.8, 128.4, 127.1, 126.5, 125.9, 121.5, 119.8, 104.4, 52.4. HRMS (ESI): Calculated for C₁₈H₁₂BrO₃ [M-H]⁻: 354.9964; Found: 354.9977.

Methyl 6-(4-cyanophenyl)-2-hydroxy-1-naphthoate (16a). Colorless solid. Mp = $262.2 - 262.7 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.35 (s, 1H), 8.84 (d, *J* = 9.1 Hz, 1H), 7.95 (t, *J* = 4.6 Hz, 2H), 7.82 - 7.69 (m, 5H), 7.22 (d, *J* = 9.0 Hz, 1H), 4.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 164.9, 144.7, 137.1, 134.0, 132.7, 131.6, 128.8, 127.5, 127.3, 127.1, 126.3, 120.2, 118.9, 110.8, 104.6, 52.6. HRMS (ESI): Calculated for C₁₉H₁₂NO₃ [M-H]⁻: 302.0812; Found: 302.0797.

Methyl 2-hydroxy-6-(4-(trifluoromethyl)phenyl)-1-naphthoate (17a). Colorless solid. Mp = $130.9 - 131.7 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 1H), 8.67 (d, J = 9.0 Hz, 1H), 7.78 - 7.75 (m, 2H), 7.67 - 7.61 (m, 5H), 7.09 (d, J = 9.0 Hz, 1H), 4.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.7, 143.6, 137.0, 134.2, 131.2,

129.6 (q, J = 32.4 Hz), 129.3, 127.2 (t, J = 8.5 Hz), 126.0, 125.9 (q, J = 3.8 Hz), 124.5 (q, J = 270.6 Hz), 119.8, 104.4, 52.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI): Calculated for C₁₉H₁₂F₃O₃ [M-H]⁻: 345.0733; Found: 345.0735.

Methyl 2-hydroxy-7-methoxy-1-naphthoate (18a).³ Colorless solid. Mp = 135.2 – 137.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.21 (s, 1H), 8.06 (d, *J* = 2.5 Hz, 1H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 6.95 – 6.85 (m, 2H), 3.98 (s, 3H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 165.0, 159.8, 136.6, 133.4, 130.5, 123.8, 116.5, 114.4, 106.1, 103.8, 55.1, 52.3. HRMS (ESI): Calculated for C₁₃H₁₁O₄ [M-H]⁻: 231.0652; Found: 231.0656.

Methyl 6-bromo-2-hydroxy-1-naphthoate (**19a**).¹ Colorless solid. Mp = 102.2 – 103.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.18 (s, 1H), 8.48 (d, *J* = 9.3 Hz, 1H), 7.75 (d, *J* = 2.3 Hz, 1H), 7.65 (dd, *J* = 9.1, *J* = 0.7 Hz, 1H), 7.48 (dd, *J* = 9.3, *J* = 2.3 Hz, 1H), 7.06 (d, *J* = 9.1 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 164.4, 135.6, 131.3, 130.8, 130.2, 129.8, 127.1, 120.5, 117.2, 104.7, 52.5. HRMS (ESI): Calculated for C₁₂H₈BrO₃ [M-H]⁻: 278.9651; Found: 278.9664.

4-Bromophenyl 2-hydroxy-1-naphthoate (**20a**). Colorless solid. Mp = 147.1 – 148.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.93 (s, 1H), 8.84 (d, *J* = 8.8 Hz, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.82 – 7.77 (m, 1H), 7.63 – 7.58 (m, 3H), 7.44 – 7.38 (m, 1H), 7.22 – 7.16 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 165.5, 148.8, 138.0, 132.8, 131.5, 129.4, 128.9, 128.7, 125.2, 124.0, 123.7, 119.7, 119.3, 103.7. HRMS (ESI): Calculated for C₁₇H₁₀BrO₃ [M-H]⁻: 340.9808; Found: 340.9815.

Allyl 2-hydroxy-1-naphthoate (21a).³ Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 12.26 (s, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 9.1 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.56 – 7.48 (m, 1H), 7.35 – 7.29 (m, 1H), 7.13 (d, *J* = 1.0 Hz, 1H), 6.17 – 6.05 (m, 1H), 5.51 – 5.41 (m, 1H), 5.38 – 5.31 (m, 1H), 4.98 – 4.93 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 164.4, 136.8, 131.7, 131.5, 129.0, 128.5, 128.4, 125.2, 123.5, 119.2, 119.2, 104.4, 66.3. HRMS (ESI): Calculated for C₁₄H₁₁O₃ [M-H]⁻: 227.0703; Found: 227.0707.

Cyclododecyl 2-hydroxy-1-naphthoate (22a). Colorless solid. Mp = 155.0 – 155.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.38 (s, 1H), 8.71 (d, *J* = 9.0 Hz, 1H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 8.1 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 9.1 Hz, 1H), 5.42 – 5.32 (m, 1H), 1.88 – 1.80 (m, 2H), 1.67 (dd, *J* = 13.9, *J* = 5.6 Hz, 2H), 1.42 – 1.37 (m, 6H), 1.34 – 1.24 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 164.3, 136.5, 132.0, 129.0, 128.6, 128.2, 125.2, 123.4, 119.3, 105.0, 74.8, 29.0, 24.2, 24.0, 23.2, 23.0, 20.8. HRMS (ESI): Calculated for C₂₃H₂₉O₃ [M-H]⁻: 353.2111; Found: 353.2109.

Isopropyl 2-hydroxy-1-naphthoate (**23a**).¹ Colorless solid. Mp = 69.6 – 70.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 1H), 8.73 (d, J = 8.9 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.51 – 7.43 (m, 1H), 7.31 – 7.25 (m, 1H), 7.08 (d, J = 8.9 Hz, 1H), 5.46 – 5.34 (m, 1H), 1.44 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 164.3, 136.6, 131.9, 129.0, 128.6, 128.3, 125.2, 123.5, 119.3, 105.0, 70.0, 22.1. HRMS (ESI): Calculated for C₁₄H₁₃O₃ [M-H]⁻: 229.0859; Found: 229.0859.

Tert-butyl 2-hydroxy-1-naphthoate (24a).¹ Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 12.39 (s, 1H), 8.71 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.49 – 7.42 (m, 1H), 7.29 – 7.22 (m, 1H), 7.07 (d, J = 9.0 Hz, 1H), 1.65 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 164.2, 136.2, 132.0, 129.0, 128.6, 128.1, 125.2, 123.4, 119.4, 105.9, 84.1, 28.5. HRMS (ESI): Calculated for C₁₅H₁₅O₃ [M-H]⁻: 243.1016; Found: 243.1028.

(2-Hydroxynaphthalen-1-yl)ethan-1-one O-methyl oxime (25a).⁴ Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 7.69 – 7.56 (m, 3H), 7.38 – 7.30 (m, 1H), 7.26 – 7.20 (m, 1H), 7.10 (d, *J* = 8.9 Hz, 1H), 3.97 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 152.7, 131.7, 131.2, 129.1, 128.7, 126.6, 124.3, 123.3, 118.3, 114.4, 62.3, 17.9. HRMS (ESI): Calculated for C₁₃H₁₂NO₂ [M-H]⁻: 214.0863; Found: 214.0880.

(S)-2-(6-Methoxynaphthalen-2-yl)propyl2-hydroxy-1-naphthoate(26a).Colorless solid. Mp = 119.5 - 120.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.14 (s, 1H),8.16 (d, J = 8.8 Hz, 1H), 7.66 - 7.57 (m, 4H), 7.49 (dd, J = 8.1, J = 1.6 Hz, 1H), 7.30(dd, J = 8.5, J = 1.9 Hz, 1H), 7.11 - 7.03 (m, 2H), 7.00 - 6.95 (m, 2H), 6.94 - 6.89(m, 1H), 4.58 - 4.50 (m, 2H), 3.76 (s, 3H), 3.33 (q, J = 7.1 Hz, 1H), 1.36 (d, J = 7.1Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 164.2, 157.5, 138.1, 136.7, 133.6,

131.6, 129.1, 129.0, 128.8, 128.4, 128.1, 127.3, 125.9, 125.8, 125.3, 123.4, 119.1, 118.9, 105.5, 104.6, 71.0, 55.2, 38.8, 18.3. HRMS (ESI): Calculated for C₂₅H₂₁O₄ [M-H]⁻: 385.1434; Found 385.1433.

(*3R*,3*aS*,6*R*,7*R*,8*aS*)-3,6,8,8-tetramethyloctahydro-1*H*-3*a*,7-methanoazulen-6-yl 2-hydroxy-1-naphthoate (27a). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 12.65 (s, 1H), 8.87 – 8.78 (m, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.66 (dd, *J* = 8.1, *J* = 1.5 Hz, 1H), 7.48 – 7.38 (m, 1H), 7.31 – 7.25 (m, 1H), 7.08 (d, *J* = 9.0 Hz, 1H), 2.78 (d, *J* = 5.2 Hz, 1H), 2.32 – 2.18 (m, 2H), 1.85 – 1.78 (m, 2H), 1.74 (d, *J* = 0.9 Hz, 3H), 1.70 – 1.62 (m, 2H), 1.54 – 1.43 (m, 4H), 1.41 – 1.37 (m, 1H), 1.36 – 1.29 (m, 1H), 1.26 – 1.18 (m, 1H), 0.97 (s, 3H), 0.92 (s, 3H), 0.80 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 164.4, 136.3, 129.0, 128.7, 128.0, 125.4, 123.3, 119.5, 105.9, 90.7, 56.8, 54.0, 43.5, 41.2, 41.2, 36.9, 33.9, 31.3, 31.2, 28.5, 26.8, 26.7, 25.3, 15.5. HRMS (ESI): Calculated for C₂₆H₃₁O₃ [M-H]⁻: 391.2268; Found: 391.2267.

(3*S*, 8*S*, 9*S*, 10*R*, 13*R*, 14*S*, 17*R*)-10, 13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2, 3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 2-hydroxy-1-naphthoate (28a). Colorless solid. Mp = 206.8 – 207.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 1H), 8.69 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 1H), 5.32 (d, *J* = 4.8 Hz, 1H), 4.99 – 4.85 (m, 1H), 2.49 (d, *J* = 8.1 Hz, 2H), 2.02 (d, *J* = 10.0 Hz, 1H), 1.92 – 1.71 (m, 5H), 1.43 – 1.32 (m, 5H), 1.28 – 1.21 (m, 3H), 1.17 – 1.12 (m, 2H), 1.07 – 1.01 (m, 4H), 0.96 (s, 4H), 0.83 – 0.80 (m, 4H), 0.79 – 0.75 (m, 10H), 0.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 164.5, 139.2, 136.5, 131.9, 129.0, 128.6, 128.3, 125.3, 123.4, 123.2, 119.3, 104.8, 76.2, 56.6, 56.1, 50.0, 42.2, 39.6, 39.5, 38.3, 37.0, 36.6, 36.2, 35.8, 31.8, 31.7, 28.0, 26.9, 24.2, 23.9, 22.8, 22.6, 21.0, 19.3, 18.7, 14.1, 11.8. HRMS (ESI): Calculated for C₃₈H₅₁O₃ [M-H]⁻: 555.3833; Found: 555.3835.

2-(4-Isobutylphenyl)propyl 2-hydroxy-1-naphthoate (29a). Colorless solid. Mp = $54.7 - 55.2 \,^{\circ}C.^{1}H$ NMR (400 MHz, CDCl₃) δ 12.24 (s, 1H), 8.34 (d, J = 8.7 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.30 – 7.20 (m, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.10 – 7.03 (m, 3H), 4.55 – 4.47 (m, 2H), 3.23 (q, J = 7.1 Hz, 1H), 2.41 (d, J = 7.3 Hz, 2H), 1.84 – 1.76 (m, 1H), 1.34 (d, J = 6.9 Hz, 3H), 0.85 (s, 3H), 0.83 (s, 3H). ^{13}C NMR (100 MHz, CDCl₃) δ 172.2, 164.3, 140.2, 140.1, 136.6, 131.7, 129.3, 128.8, 128.4, 128.1, 126.9, 125.4, 123.4, 119.1, 104.6, 71.1, 45.0, 38.5, 30.1, 22.3, 18.3. HRMS (ESI): Calculated for C₂₄H₂₅O₃ [M-H]⁻: 361.1798; Found: 361.1803.

3-(4,5-Diphenyloxazol-2-yl)propyl 2-hydroxy-1-naphthoate (30a). Colorless solid. Mp = 106.4 – 107.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.23 (s, 1H), 8.64 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 8.9 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.44 – 7.40 (m, 3H), 7.25 – 7.17 (m, 7H), 7.02 (d, *J* = 9.1 Hz, 1H), 4.56 (t, *J* = 6.3 Hz, 2H), 2.97 (t, *J* = 7.4 Hz, 2H), 2.39 – 2.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 164.5, 162.0, 145.3, 136.8, 135.0, 132.3, 131.7, 129.0, 128.8, 128.5, 128.5, 128.4, 128.3, 128.0, 127.8, 126.3, 125.0, 123.5, 119.2, 118.9, 104.5, 64.8, 25.9, 25.0. HRMS (ESI): Calculated for C₂₉H₂₂NO₄ [M-H]⁻: 448.1543; Found: 448.1541.

((3aR,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-*b*: 4',5'-*d*]pyran-3a-yl)methyl 2-hydroxy-1-naphthoate (31a). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 11.64 (s, 1H), 8.67 (dd, *J* = 8.7, 1.1 Hz, 1H), 7.70 (d, *J* = 9.0 Hz, 1H), 7.56 (dd, *J* = 8.0, *J* = 1.5 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.26 – 7.17 (m, 1H), 7.01 (d, *J* = 9.0 Hz, 1H), 4.81 (d, *J* = 11.7 Hz, 1H), 4.50 (dd, *J* = 7.9, *J* = 2.7 Hz, 1H), 4.43 (d, *J* = 11.7 Hz, 1H), 4.27 (d, *J* = 2.7 Hz, 1H), 4.10 (dd, *J* = 7.9, *J* = 1.6 Hz, 1H), 3.82 (dd, *J* = 13.0, *J* = 1.9 Hz, 1H), 3.69 (dd, *J* = 13.0, *J* = 0.8 Hz, 1H), 1.38 (s, 3H), 1.33 (s, 3H), 1.21 (s, 3H), 1.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 163.5, 136.6, 131.5, 128.7, 128.4, 128.3, 125.3, 123.5, 119.0, 108.9, 108.9, 104.8, 101.1, 70.8, 70.5, 69.8, 65.6, 61.3, 26.3, 25.6, 24.9, 23.8. HRMS (ESI): Calculated for C₂₃H₂₅O₈ [M-H]⁻: 429.1544; Found: 429.1546.

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)ethyl

2-hydroxy-1-naphthoate (32a). Colorless solid. Mp = $159.2 - 160.1 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.13 (s, 1H), 8.49 (d, *J* = 8.6 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.26 - 7.22 (m, 3H), 7.05 - 7.01 (m, 1H), 6.92 (d, *J* = 2.6 Hz, 1H), 6.84 (d, *J* = 9.0 Hz, 1H), 6.61 - 6.56 (m, 1H), 4.65 (t, *J* = 7.1 Hz, 2H), 3.68 (s, 3H), 3.14 (t, *J* = 7.0 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 168.2, 164.3, 156.0, 139.0, 136.9, 135.4, 133.8, 131.6, 131.0, 130.9, 130.5, 129.0, 128.9, 128.5, 128.4, 125.1, 123.6, 128.4, 125.1, 128.4, 128.4, 125.1, 128.4, 128.

119.2, 115.1, 114.9, 111.5, 104.5, 101.0, 64.4, 55.6, 23.7, 13.3. HRMS (ESI): Calculated for C₃₀H₂₃ClNO₅ [M-H]⁻: 512.1259; Found: 512.1257.

5-(2,5-Dimethylphenoxy)-2,2-dimethylpentyl 2-hydroxy-1-naphthoate (**33a).** Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 12.32 (s, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 9.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.39 (m, 1H), 7.32 – 7.23 (m, 1H), 7.13 – 7.05 (m, 1H), 6.89 (d, *J* = 7.4 Hz, 1H), 6.56 (d, *J* = 7.5 Hz, 1H), 6.51 (s, 1H), 4.23 (s, 2H), 3.85 (t, *J* = 6.2 Hz, 2H), 2.20 (s, 3H), 2.01 (s, 3H), 1.81 – 1.73 (m, 2H), 1.58 – 1.52 (m, 2H), 1.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 164.5, 156.9, 136.8, 136.4, 131.8, 130.2, 129.1, 128.6, 128.3, 125.2, 123.6, 123.5, 120.6, 119.4, 111.9, 104.8, 74.0, 68.1, 35.7, 34.9, 33.8, 24.7, 24.1, 21.4, 15.7. HRMS (ESI): Calculated for C₂₆H₂₉O₄ [M-H]⁻: 405.2060; Found: 405.2070.

Ethyl 10-hydroxy-7-methylphenanthrene-9-carboxylate (34a).² Colorless solid. Mp = $131.6 - 133.2 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 13.25 (s, 1H), 8.55 (s, 1H), 8.48 (t, *J* = 8.3 Hz, 2H), 8.39 (d, *J* = 8.4 Hz, 1H), 7.71 - 7.66 (m, 1H), 7.60 - 7.53 (m, 1H), 7.28 - 7.23 (m, 1H), 4.56 (q, *J* = 7.1 Hz, 2H), 2.50 (s, 3H), 1.52 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 162.7, 137.2, 133.6, 130.3, 129.4, 126.3, 125.9, 125.6, 124.8, 124.8, 123.8, 122.6, 122.1, 101.3, 61.9, 22.1, 14.2. HRMS (ESI): Calculated for C₁₈H₁₅O₃ [M-H]⁻: 279.1016; Found: 279.1020.

Ethyl 10-hydroxy-7-pentylphenanthrene-9-carboxylate (35a).⁶ Colorless solid. Mp = 75.1 - 76.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.17 (s, 1H), 8.52 (d, J = 1.8 Hz, 1H), 8.42 (dd, J = 8.2, J = 1.5 Hz, 2H), 8.36 (d, J = 8.4 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.51 – 7.47 (m, 1H), 7.21 (dd, J = 8.4, J = 1.8 Hz, 1H), 4.52 – 4.45 (m, 2H), 2.68 (t, J = 7.7 Hz, 2H), 1.68 – 1.60 (m, 2H), 1.48 – 1.44 (m, 3H), 1.31 – 1.27 (m, 4H), 0.84 – 0.81 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 162.7, 142.1, 133.7, 130.3, 129.4, 126.3, 125.3, 125.1, 124.9, 124.8, 124.05, 122.7, 122.2, 101.4, 61.9, 36.4, 31.5, 31.0, 22.6, 14.2, 14.0. HRMS (ESI): Calculated for C₂₂H₂₃O₃ [M-H]⁻: 335.1642; Found: 335.1642.

Ethyl 7-cyclohexyl-10-hydroxyphenanthrene-9-carboxylate (36a).⁶ Colorless solid. Mp = 156.6 – 158.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.19 (s, 1H), 8.57 (d, J = 1.8 Hz, 1H), 8.46 – 8.38 (m, 2H), 8.36 (d, J = 8.5 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.52 – 7.44 (m, 1H), 7.24 (dd, J = 8.5, J = 1.8 Hz, 1H), 4.49 (q, J = 7.2 Hz, 2H), 2.61 – 2.51 (m, 1H), 1.96 – 1.86 (m, 2H), 1.84 – 1.76 (m, 2H), 1.76 – 1.66 (m, 1H), 1.50 – 1.45 (m, 4H), 1.43 – 1.38 (m, 2H), 1.37 – 1.31 (m, 1H), 1.25 – 1.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 162.7, 147.2, 133.7, 130.3, 129.5, 126.3, 124.9, 124.8, 124.2, 123.8, 123.6, 122.7, 122.2, 101.5, 61.9, 44.9, 34.6, 26.9, 26.3, 14.3. HRMS (ESI): Calculated for C₂₃H₂₃O₃ [M-H]⁻: 347.1642; Found: 347.1643.

Ethyl 10-hydroxy-7-phenylphenanthrene-9-carboxylate (37a).⁷ Colorless solid. Mp = 204.4 – 205.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.31 (s, 1H), 8.98 (d, *J* = 1.9 Hz, 1H), 8.48 – 8.41 (m, 3H), 7.66 – 7.59 (m, 4H), 7.54 – 7.49 (m, 1H), 7.43 – 7.37 (m, 2H), 7.33 – 7.27 (m, 1H), 4.49 (q, *J* = 7.1 Hz, 2H), 1.47 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 163.2, 141.4, 139.8, 133.4, 130.5, 129.7, 128.8, 127.3, 127.2, 126.8, 125.2, 125.1, 125.0, 124.5, 123.3, 123.1, 122.4, 101.4, 62.0, 14.3. HRMS (ESI): Calculated for C₂₃H₁₇O₃ [M-H]⁻: 341.1172; Found: 341.1172.

Ethyl 7-chloro-10-hydroxyphenanthrene-9-carboxylate (38a).⁶ Colorless solid. Mp = 150.9 – 151.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.43 (s, 1H), 8.76 – 8.66 (m, 1H), 8.44 (d, *J* = 8.3 Hz, 1H), 8.35 (d, *J* = 8.3 Hz, 1H), 8.31 (d, *J* = 8.9 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.60 – 7.55 (m, 1H), 7.36 – 7.29 (m, 1H), 4.56 (q, *J* = 7.1, 6.7 Hz, 2H), 1.55 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 163.6, 133.6, 132.9, 130.6, 130.4, 126.9, 125.4, 125.4, 125.0, 124.3, 124.2, 124.0, 122.2, 100.4, 62.3, 14.2. HRMS (ESI): Calculated for C₁₇H₁₂ClO₃ [M-H]⁻: 299.0469; Found: 299.0470.

EtOOC OH

Ethyl 7-fluoro-10-hydroxyphenanthrene-9-carboxylate (39a).⁶ Colorless solid. Mp = $152.1 - 152.8 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 13.41 (s, 1H), 8.37 – 8.25 (m, 4H), 7.63 – 7.56 (m, 1H), 7.48 – 7.44 (m, 1H), 7.07 – 7.01 (m, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 163.9, 162.1 (d, *J* = 244.0 Hz), 133.2, 131.0 (d, *J* = 13.0 Hz), 130.6, 126.5, 125.0, 124.7 (d, *J* = 9.6 Hz), 124.6, 122.4, 122.1, 112.4 (d, *J* = 23.5 Hz), 111.4 (d, *J* = 25.6 Hz), 100.8 (d, *J* = 2.0 Hz),), 62.2, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2. HRMS (ESI): Calculated for C₁₇H₁₂FO₃ [M-H]⁻: 283.0765; Found: 283.0783.

Ethyl 7-cyano-10-hydroxyphenanthrene-9-carboxylate (40a).⁶ Colorless solid. Mp = 232.6 – 233.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.48 (s, 1H), 8.99 (s, 1H), 8.46 – 8.35 (m, 3H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 4.54 (q, *J* = 7.2 Hz, 2H), 1.49 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 164.1, 132.3, 131.1, 131.0, 129.3, 128.6, 128.5, 126.2, 125.8, 125.3, 123.7, 122.9, 119.7, 110.9, 100.5, 62.7, 14.3. HRMS (ESI) Calculated for C₁₈H₁₂NO₃ [M-H]⁻: 290.0812; Found: 290.0819.

Ethyl 10-hydroxy-7-(trifluoromethyl)phenanthrene-9-carboxylate (41a).⁶ Colorless solid. Mp = 183.0 – 184.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.41 (s, 1H), 9.06 (s, 1H), 8.49 – 8.41 (m, 3H), 7.73 – 7.66 (m, 1H), 7.62 – 7.52 (m, 2H), 4.51 (q, J = 7.1 Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 163.6, 132.4, 130.7, 129.1, 128.8, 128.8 (d, J = 32.0 Hz), 127.8, 127.7, 125.9, 125.7, 125.0 (q, J = 261.3 Hz), 123.2, 122.5, 119.9 (q, J = 4.0 Hz), 100.8, 62.3, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3. HRMS (ESI): Calculated for C₁₈H₁₂F₃O₃ [M-H]⁻: 333.0733; Found: 333.0754.

Ethyl 10-hydroxy-5-(trifluoromethyl)phenanthrene-9-carboxylate (42a). Colorless solid. Mp = 105.6 – 106.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.09 (s, 1H), 8.74 (d, J = 8.3 Hz, 1H), 8.44 (dd, J = 7.4, 2.5 Hz, 2H), 7.77 (d, J = 7.6 Hz, 1H), 7.58 (m, 2H), 7.41 (t, J = 8.1 Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 162.4, 131.4, 131.1, 129.1, 129.0, 128.3 (q, J = 7.8 Hz), 126.9, 126.1, 126.0 (d, J = 30.5 Hz), 125.7 (d, J = 366.0 Hz), 125.7, 124.9 (q, J = 6.9 Hz), 124.5 (q, J = 1.5 Hz), 124.2, 101.3, 62.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -52.9. HRMS (ESI) Calculated for C₁₈H₁₂F₃O₃ [M-H]⁺: 333.0733; Found: 333.0739.

Ethyl 10-hydroxy-6,8-dimethylphenanthrene-9-carboxylate (43a).² Colorless solid. Mp = $141.5 - 142.9 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 8.45 (d, *J* = 8.3 Hz, 1H), 8.33 (d, *J* = 8.1 Hz, 1H), 8.10 (s, 1H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.50 (t, 1H), 7.14 (s, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 157.6, 133.9, 133.5, 132.0, 129.8, 127.2, 126.7, 126.5, 124.6, 124.4, 122.7, 120.3, 103.6, 61.7, 22.8, 21.4, 14.1. HRMS (ESI): Calculated for C₁₉H₁₇O₃ [M-H]⁻: 293.1172; Found: 293.1172.

10-Phenylphenanthren-9-ol (44a).⁸ Pink solid. Mp = $182.2 - 183.2 \, ^{\circ}C.^{1}H$ NMR (400 MHz, CDCl₃) δ 8.63 – 8.55 (m, 2H), 8.30 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 6.8 Hz, 1H), 7.38 (t, *J* = 6.2 Hz, 3H), 7.34 – 7.28 (m, 2H), 5.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 134.4, 132.4, 131.4, 131.0, 129.8, 128.6, 127.2, 126.8, 126.6, 126.3, 125.3, 124.9, 124.0, 123.0, 122.6, 122.5, 117.2. HRMS (ESI): Calculated for C₂₀H₁₃O [M-H]⁻: 269.0961; Found: 269.0970.

Ethyl 5-hydroxytetraphene-6-carboxylate (45a).² Colorless solid. Mp = $153.4 - 154.8 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 11.10 (s, 1H), 8.56 – 8.50 (m, 2H), 8.42 (d, $J = 8.9 \,\text{Hz}$, 1H), 7.96 (d, $J = 8.3 \,\text{Hz}$, 1H), 7.89 – 7.85 (m, 1H), 7.80 (d, $J = 8.9 \,\text{Hz}$, 1H), 7.74 – 7.70 (m, 1H), 7.64 – 7.59 (m, 1H), 7.52 – 7.47 (m, 1H), 7.46 – 7.41 (m, 1H), 4.31 (q, 2H), 1.10 (t, $J = 7.2 \,\text{Hz}$, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4,

158.5, 133.1, 132.9, 130.0, 129.4, 128.9, 127.7, 126.7, 126.6, 126.0, 125.8, 124.6, 124.6, 124.2, 123.9, 122.9, 120.1, 103.7, 61.6, 13.7. HRMS (ESI): Calculated for C₂₁H₁₅O₃ [M-H]⁻: 315.1016; Found: 315.1021.

Ethyl 5-hydroxybenzo[c]phenanthrene-6-carboxylate (46a).² Colorless solid. Mp = $124.9 - 125.7 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 12.99 (s, 1H), 8.66 – 8.60 (m, 2H), 8.54 – 8.48 (m, 2H), 7.79 – 7.75 (m, 1H), 7.63 (d, *J* = 9.1 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.50 – 7.44 (m, 1H), 7.43 – 7.38 (m, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 161.6, 132.9, 131.5, 129.6, 129.0, 128.2, 128.0, 127.6, 127.6, 127.2, 125.8, 125.6, 125.4, 125.0, 124.2, 123.7, 122.3, 102.2, 61.9, 14.1. HRMS (ESI): Calculated for C₂₁H₁₅O₃ [M-H]⁻: 315.1016; Found: 315.1026.

Ethyl 5-hydroxynaphtho[1,2-b]thiophene-4-carboxylate (47a).⁶ Colorless solid. Mp = 104.6 – 106.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.70 (s, 1H), 8.19 (d, *J* = 8.3 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 5.4 Hz, 1H), 7.41 – 7.34 (m, 1H), 7.30 – 7.22 (m, 1H), 7.17 (d, *J* = 5.5 Hz, 1H), 4.26 (q, *J* = 6.7 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 161.5, 133.3, 131.3, 129.9, 129.9, 126.2, 125.2, 125.0, 124.9, 123.0, 123.0, 101.3, 61.6, 14.1. HRMS (ESI): Calculated for C₁₅H₁₁O₃S [M-H]⁻: 271.0423; Found: 271.0423.

Ethyl 4-hydroxypyrrolo[1,2-a]quinoline-5-carboxylate (48a).² Colorless solid. Mp = 123.2 - 124.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 13.32 (s, 1H), 8.49 – 8.41 (m, 1H), 7.70 – 7.66 (m, 1H), 7.60 – 7.54 (m, 1H), 7.17 – 7.11 (m, 2H), 6.97 – 6.92 (m, 1H), 6.65 – 6.61 (m, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 159.5, 129.1, 126.6, 124.9, 124.5, 124.3, 121.1, 116.0, 114.0, 113.4, 107.3, 94.0, 61.6, 14.2. HRMS (ESI): Calculated for C₁₅H₁₂NO₃ [M-H]⁻: 254.0812; Found: 254.0823.

Ethyl 7-oxo-7*H*-dibenzo[b,d]azepine-6-carboxylate (1). Yellow solid (22.6 mg, 80% yield). Mp = 138.2 – 140.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.70 – 7.62 (m, 3H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 162.5, 154.7, 142.3, 141.5, 135.6, 132.7, 131.6, 130.7, 130.4, 129.1, 129.0, 128.7, 128.5, 126.1, 62.6, 14.0. HRMS (ESI): Calculated for C₁₇H₁₄NO₃ [M+H]⁺: 280.0968; Found: 280.0981.

Methyl 3-oxo-3*H*-benzo[b]azepine-2-carboxylate (2). Yellow solid (14.2 mg, 68% yield). Mp = 78.2 – 80.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.90 (m, 1H), 7.68 – 7.61 (m, 2H), 7.58 – 7.51 (m, 2H), 6.77 (d, *J* = 12.1 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.2, 156.1, 144.7, 143.8, 135.4, 133.4, 132.9, 132.2, 131.5, 131.2, 52.9. HRMS (ESI): Calculated for C₁₂H₉NO₃Na [M+Na]⁺: 238.0475; Found: 238.0474.

2-Phenyl-3*H***-benzo[***b***]azepin-3-one (3). Brown solid (10.3 mg, 46% yield). Mp = 82.4 - 84.6 °C. ¹H NMR (400 MHz, CDCl₃) \delta 8.03 - 8.01 (m, 2H), 7.94 (d,** *J* **= 8.0**

Hz, 1H), 7.66 – 7.64 (m, 2H), 7.53 (d, J = 12.0 Hz, 1H), 7.39 – 7.36 (m, 4H), 6.73 (d, J = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 160.3, 145.7, 141.5, 137.1, 133.1, 131.8, 131.5, 131.0, 130.8, 129.4, 129.3, 128.3, 127.9. HRMS (ESI): Calculated for C₁₆H₁₁NONa [M+Na]⁺: 256.0733; Found: 256.0733.

2-(Naphthalen-1-yl)-3*H***-benzo[b]azepin-3-one (4).** Yellow solid (12.2 mg, 44% yield). Mp = 206.8 – 208.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.77 (m, 4H), 7.70 (d, *J* = 7.1 Hz, 1H), 7.62 – 7.53 (m, 3H), 7.51 – 7.35 (m, 4H), 6.82 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.5, 164.1, 145.7, 142.7, 137.5, 134.2, 133.7, 132.4, 132.0, 131.5, 130.6, 130.1, 129.8, 129.1, 128.6, 127.7, 126.5, 125.9, 125.2, 124.8. HRMS (ESI): Calculated for C₂₀H₁₃NONa [M+Na]⁺: 306.0889; Found: 306.0888.

Methyl 3-oxo-7-phenyl-3*H***-benzo[***b***]azepine-2-carboxylate (5). Yellow solid (22.7 mg, 78% yield). Mp = 139.8 – 142.4 °C. ¹H NMR (400 MHz, CDCl₃) \delta 7.95 (d,** *J* **= 8.4 Hz, 1H), 7.85 – 7.76 (m, 2H), 7.58 – 7.51 (m, 3H), 7.43 – 7.37 (m, 2H), 7.37 – 7.30 (m, 1H), 6.75 (d,** *J* **= 12.1 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 180.3, 166.3, 155.7, 143.9, 143.8, 143.6, 138.3, 136.0, 133.0, 131.8, 131.5, 130.5, 129.1, 128.7, 127.1, 52.8. HRMS (ESI): Calculated for C₁₈H₁₃NO₃Na [M+Na]⁺: 314.0787; Found: 314.0782.**

Methyl 7-(naphthalen-2-yl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (6).
Yellow solid (20.1 mg, 59% yield). Mp = 206.2 – 208.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 8.07 – 8.01 (m, 1H), 7.99 – 7.94 (m, 2H), 7.94 – 7.86 (m, 2H), 7.80 – 7.74 (m, 1H), 7.65 (d, *J* = 12.2 Hz, 1H), 7.58 – 7.51 (m, 2H), 6.86 (d, *J* = 12.1 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.3, 155.7, 143.7, 143.6, 143.7, 136.1, 135.6, 133.4, 133.1, 133.0, 131.9, 131.7, 130.7, 129.0, 128.3, 127.7, 126.8, 126.7, 126.5, 124.7, 52.9. HRMS (ESI): Calculated for C₂₂H₁₆NO₃ [M+H]⁺: 342.1125; Found: 342.1124.

Methyl 7-(furan-3-yl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (7). Yellow solid (11.8 mg, 42% yield). Mp = 227.2 – 229.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.78 – 7.73 (m, 1H), 7.71 (d, *J* = 2.1 Hz, 1H), 7.54 (d, *J* = 12.1 Hz, 1H), 7.51 – 7.46 (m, 1H), 6.79 (d, *J* = 12.1 Hz, 1H), 6.74 – 6.70 (m, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.5, 166.4, 155.4, 144.5, 143.6, 143.4, 140.1, 136.2, 135.7, 133.3, 132.2, 129.9, 129.2, 124.7, 108.4, 52.9. HRMS (ESI): Calculated for C₁₆H₁₂NO₄ [M+H]⁺: 282.0760; Found: 282.0755.

Methyl 3-oxo-7-(thiophen-3-yl)-3*H*-benzo[*b*]azepine-2-carboxylate (8) . Yellow solid (21.4 mg, 72% yield). Mp = 230.4 - 232.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.68 – 7.61 (m, 2H), 7.48 (d, *J* = 2.2 Hz, 2H), 6.86 (d, *J* = 12.1 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.3, 155.4, 143.7, 143.4, 139.7, 138.5, 136.2, 133.2, 132.1, 130.6, 129.8, 127.3, 125.9, 122.8, 52.9. HRMS (ESI): Calculated for C₁₆H₁₂NO₃S [M+H]⁺: 298.0532; Found: 298.0532.

Methyl 7-(3,5-dimethoxyphenyl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (9). Yellow solid (22.8 mg, 66% yield). Mp = 241.6 – 243.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.79 (d, *J* = 2.2 Hz, 1H), 7.58 (d, *J* = 12.1 Hz, 1H), 6.80 (d, *J* = 12.2 Hz, 1H), 6.71 (d, *J* = 2.2 Hz, 2H), 6.47 (t, *J* = 2.2 Hz, 1H), 3.92 (s, 3H), 3.80 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.3, 161.3, 155.8, 144.0, 143.9, 143.8, 140.6, 136.0, 133.2, 131.9, 131.7, 130.7, 105.6, 100.4, 55.5, 53.0. HRMS (ESI): Calculated for C₂₀H₁₈NO₅ [M+H]⁺: 352.1179; Found: 352.1184.

Methyl 7-([1,1'-biphenyl]-4-yl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (10). Yellow solid (16.1 mg, 44% yield). Mp = 237.8 – 239.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.86 (d, *J* = 2.2 Hz, 1H), 7.70 – 7.65 (m, 4H), 7.61 – 7.56 (m, 3H), 7.43 – 7.38 (m, 2H), 7.35 – 7.29 (m, 1H), 6.80 (d, *J* = 12.1 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.5, 166.3, 155.7, 143.8, 143.8, 143.5, 141.6, 140.1, 137.2, 136.2, 133.2, 132.0, 131.4, 130.5, 128.9, 127.8, 127.8, 127.6, 127.0, 52.9. HRMS (ESI): Calculated for C₂₄H₁₇NO₃Na [M+Na]⁺: 390.1100; Found: 390.1099.

Methyl 3-oxo-7-(p-tolyl)-3*H*-benzo[*b*]azepine-2-carboxylate (11). Yellow solid (22.0 mg, 72% yield). Mp = 192.8 – 194.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 1H), 7.94 – 7.89 (m, 1H), 7.87 (d, J = 2.2 Hz, 1H), 7.64 (d, J = 12.2 Hz, ^{S38}

1H), 7.57 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 12.1 Hz, 1H), 3.99 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.4, 155.5, 143.9, 143.9, 143.5, 138.9, 136.1, 135.5, 133.1, 131.9, 131.3, 130.4, 129.9, 127.0, 52.9, 21.2. HRMS (ESI): Calculated for C₁₉H₁₅NO₃Na [M+Na]⁺: 328.0944; Found: 328.0937.

Methyl 7-(4-(methylthio)phenyl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (12). Yellow solid (18.5 mg, 56% yield). Mp = 192.6 – 194.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.66 – 7.56 (m, 3H), 7.38 – 7.31 (m, 2H), 6.85 (d, *J* = 12.1 Hz, 1H), 3.99 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.3, 155.6, 143.7, 143.5, 143.2, 140.0, 136.1, 134.7, 133.1, 132.0, 131.0, 130.1, 127.4, 126.5, 52.9, 15.3. HRMS (ESI): Calculated for C₁₉H₁₆NO₃S [M+H]⁺: 338.0845; Found: 338.0847.

Methyl 3-oxo-7-(4-(trimethylsilyl)phenyl)-3*H*-benzo[*b*]azepine-2-carboxylate (13). Yellow solid (24.3 mg, 68% yield). Mp = 205.6 – 207.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.97 – 7.86 (m, 2H), 7.73 – 7.62 (m, 5H), 6.86 (d, *J* = 12.1 Hz, 1H), 3.99 (s, 3H), 0.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.3, 155.7, 143.9, 143.8, 143.7, 141.4, 138.7, 136.1, 134.1, 133.1, 131.9, 131.6, 130.5, 126.4, 52.8, -1.2. HRMS (ESI): Calculated for C₂₁H₂₂NO₃Si [M+H]⁺: 364.1363; Found: 364.1364.

Methyl 7-(4-chlorophenyl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (14). Yellow solid (17.9 mg, 56% yield). Mp = $238.2 - 240.0 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 1H), 7.92 - 7.82 (m, 2H), 7.67 - 7.57 (m, 3H), 7.46 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 12.1 Hz, 1H), 3.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 166.2, 155.8, 143.8, 143.6, 142.6, 136.8, 136.1, 135.0, 133.2, 131.9, 131.4, 130.3, 129.3, 128.4, 52.9. HRMS (ESI): Calculated for C₁₈H₁₃ClNO₃ [M+H]⁺: 326.0578; Found: 326.0577.

Methyl 7-(4-bromophenyl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (15).

Yellow solid (19.6 mg, 53% yield). Mp = 208.8 – 210.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.78 (d, *J* = 2.2 Hz, 1H), 7.60 – 7.54 (m, 3H), 7.49 – 7.45 (m, 2H), 6.81 (d, *J* = 12.2 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 166.2, 155.9, 143.9, 143.6, 142.7, 137.4, 136.2, 133.4, 132.3, 132.0, 131.4, 130.3, 128.8, 123.3, 51.0. HRMS (ESI): Calculated for C₁₈H₁₂BrNO₃Na [M+Na]⁺: 391.9893; Found: 391.9880.

Methyl 7-(4-cyanophenyl)-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (16).

Yellow solid (9.5 mg, 32% yield). Mp = 296.4 – 298.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.76 – 7.70 (m, 4H), 7.60 (d, *J* = 12.1 Hz, 1H), 6.83 (d, *J* = 12.0 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 166.0, 156.3, 144.6, 143.2, 142.9, 141.7, 136.3, 133.6, 132.9, 132.0, 131.8, 130.5, 128.0, 118.4, 112.4, 53.0. HRMS (ESI): Calculated for C₁₉H₁₃N₂O₃ [M+H]⁺: 317.0921; Found: 317.0918.

Methyl 3-oxo-7-(4-(trifluoromethyl)phenyl)-3*H*-benzo[*b*]azepine-2-carboxylate (17). Yellow solid (25.5 mg, 71% yield). Mp = 225.8 - 227.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.1 Hz, 1H), 7.97 - 7.90 (m, 2H), 7.82 - 7.75 (m, 4H), 7.67 (d, *J* = 12.2 Hz, 1H), 6.88 (d, *J* = 12.1 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 166.1, 156.2, 144.3, 143.4, 142.3, 142.0, 136.2, 133.4, 132.0, 131.8, 130.8, 130.6, 130.5, 127.6, 126.1 (q, *J* = 3.9 Hz), 53.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9. HRMS (ESI): Calculated for C₁₉H₁₂F₃NO₃Na [M+Na]⁺: 382.0662; Found: 382.0650.

Methyl 8-methoxy-3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate** (**18**). Yellow solid (13.5 mg, 55% yield). Mp = 138.0 – 140.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 12.0 Hz, 1H), 7.38 (d, *J* = 2.8 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.64 (d, *J* = 11.9 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 166.5, 162.4, 157.2, 146.5, 143.7, 134.9, 130.2, 125.1, 119.5, 117.5, 55.8, 52.8. HRMS (ESI): Calculated for C₁₃H₁₁NO₄Na [M+Na]⁺: 268.0580; Found: 268.0578.

Methyl 7-bromo-3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (19). Yellow solid (16.6 mg, 58% yield). Mp = 174.2 - 175.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 3H), 7.42 (d, *J* = 12.2 Hz, 1H), 6.80 (d, *J* = 12.2 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.2, 165.9, 156.1, 143.5, 142.1, 136.8, 135.5, 135.1,

134.1, 132.7, 125.3, 53.0. HRMS (ESI): Calculated for C₁₂H₈BrNO₃Na [M+Na]⁺: 315.9579; Found: 315.9573.

4-Bromophenyl 3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate (20).** Yellow solid (14.5 mg, 41% yield). Mp = 191.6 – 193.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.9 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.71 – 7.63 (m, 2H), 7.60 – 7.51 (m, 2H), 7.25 – 7.20 (m, 2H), 6.90 (d, J = 12.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 164.1, 155.6, 149.5, 144.7, 144.3, 135.8, 133.7, 133.0, 132.6, 132.4, 131.7, 131.7, 123.4, 119.5. HRMS (ESI): Calculated for C₁₇H₁₀BrNO₃Na [M+Na]⁺: 377.9736; Found: 377.9743.

Allyl 3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (21). Yellow solid (12.1 mg, 52% yield). Mp = 96.4 – 98.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.58 – 7.50 (m, 2H), 6.77 (d, *J* = 12.0 Hz, 1H), 6.02 – 5.88 (m, 1H), 5.45 – 5.36 (m, 1H), 5.28 – 5.21 (m, 1H), 4.85 – 4.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 165.5, 156.2, 144.8, 143.9, 135.5, 133.4, 132.9, 132.2, 131.5, 131.3, 131.2, 119.1, 66.5. HRMS (ESI): Calculated for C₁₄H₁₂NO₃ [M+H]⁺: 242.0812; Found: 242.0808.

Cyclododecyl 3-oxo-3*H***-benzo**[*b*]**azepine-2-carboxylate** (**22**). Yellow solid (22.8 mg, 62% yield). Mp = 171.8 - 173.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.65 - 7.59 (m, 2H), 7.55 - 7.48 (m, 2H), 6.73 (d, *J* = 12.1 Hz, 1H),

5.32 - 5.18 (m, 1H), 1.82 - 1.73 (m, 2H), 1.64 - 1.56 (m, 2H), 1.43 - 1.25 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 165.7, 157.0, 144.9, 143.8, 135.5, 133.3, 132.9, 132.0, 131.4, 130.9, 74.7, 28.7, 24.1, 24.0, 23.2, 23.0, 20.6. HRMS (ESI): Calculated for C₂₃H₂₉NO₃Na [M+Na]⁺: 390.2039; Found: 390.2039.

Isopropyl 3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate (23).** Yellow oil (18.0 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.56 – 7.49 (m, 2H), 6.75 (d, *J* = 12.2 Hz, 1H), 5.31 – 5.20 (m, 1H), 1.33 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 165.6, 156.8, 144.9, 143.8, 135.5, 133.4, 133.0, 132.1, 131.5, 131.0, 70.1, 21.6. HRMS (ESI): Calculated for C₁₄H₁₄NO₃ [M+H]⁺: 244.0968; Found: 244.0968.

Tert-butyl 3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate (24).** Brown solid (14.9 mg, 58% yield). Mp = 66.4 – 68.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.55 – 7.45 (m, 2H), 6.73 (d, *J* = 12.1 Hz, 1H), 1.55 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.6, 165.2, 157.1, 145.0, 143.7, 135.3, 133.0, 132.0, 131.4, 130.8, 83.6, 28.0. HRMS (ESI): Calculated for C₁₅H₁₆NO₃ [M+H]⁺: 258.1125; Found: 258.1124.

2-(1-(Methoxyimino)ethyl)-3*H***-benzo[***b***]azepin-3-one (25). Yellow solid (10.9 mg, 48% yield). Mp = 64.4 – 66.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.72 (m, 1H), 7.53 – 7.48 (m, 2H), 7.37 – 7.32 (m, 2H), 6.63 (d,** *J* **= 12.1 Hz, 1H), 3.95 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.9, 157.9, 156.1, 145.2, 140.1, 132.6,**

131.8, 131.6, 130.6, 129.3, 128.1, 62.7, 11.4. HRMS (ESI): Calculated for $C_{13}H_{12}N_2O_2Na [M+Na]^+$: 251.0790; Found: 251.0793.

(*S*)-2-(6-methoxynaphthalen-2-yl)propyl 3-oxo-3*H*-benzo[*b*]azepine-2carboxylate (26). Yellow solid (12.8 mg, 33% yield). Mp = 144.6 – 146.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.80 (m, 1H), 7.63 – 7.55 (m, 5H), 7.52 – 7.43 (m, 2H), 7.34 – 7.29 (m, 1H), 7.10 – 6.96 (m, 2H), 6.71 (d, *J* = 12.1 Hz, 1H), 4.52 – 4.41 (m, 2H), 3.81 (s, 3H), 3.41 – 3.26 (m, 1H), 1.39 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 165.9, 157.4, 156.3, 144.7, 143.8, 137.8, 135.5, 133.5, 133.4, 132.8, 132.1, 131.5, 131.1, 129.1, 128.9, 127.0, 126.3, 125.7, 118.8, 105.5, 70.7, 55.2, 38.8, 18.0. HRMS (ESI): Calculated for C₂₅H₂₁NO₄Na [M+Na]⁺: 422.1362; Found: 422.1362.

(*3R*,3a*S*,6R,7R,8aS)-3,6,8,8-tetramethyloctahydro-1*H*-3a,7-methanoazulen-6-yl 3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (27). Yellow solid (18.6 mg, 46% yield). Mp = 197.4 – 199.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.54 – 7.46 (m, 2H), 6.73 (d, *J* = 11.9 Hz, 1H), 2.38 (d, *J* = 5.0 Hz, 1H), 2.23 – 2.15 (m, 1H), 2.09 – 1.99 (m, 1H), 1.83 – 1.73 (m, 2H), 1.70 (s, 3H), 1.66 – 1.58 (m, 2H), 1.55 – 1.26 (m, 6H), 1.19 (s, 3H), 0.93 (s, 3H), 0.77 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.5, 164.8, 157.0, 145.1, 143.6, 135.3, 133.2, 133.0, 131.9, 131.5, 130.6, 90.0, 57.8, 56.7, 53.8, 43.5, 41.2, 41.0, 36.9, 32.8, 31.3, 28.5, 27.2, 25.5, 25.3, 15.5. HRMS (ESI): Calculated for C₂₆H₃₁NO₃Na [M+Na]⁺: 428.2196; Found: 428.2199.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4, 7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (28). Yellow solid (25.0 mg, 44% yield). Mp = 175.4 – 177.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.9 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.56 – 7.49 (m, 2H), 6.76 (d, *J* = 12.2 Hz, 1H), 5.39 – 5.33 (m, 1H), 4.95 – 4.81 (m, 1H), 2.52 – 2.35 (m, 2H), 2.06 – 1.61 (m, 7H), 1.57 – 1.35 (m, 7H), 1.31 – 1.02 (m, 12H), 0.97 (s, 3H), 0.85 (d, *J* = 6.4 Hz, 3H), 0.79 (dd, *J* = 6.7, *J* =1.9 Hz, 6H), 0.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 165.4, 156.8, 144.9, 143.8, 139.4, 135.5, 133.4, 132.9, 132.1, 131.5, 131.0, 122.9, 76.1, 56.6, 56.1, 49.9, 42.2, 39.7, 39.5, 37.8, 36.9, 36.5, 36.1, 35.7, 31.9, 31.8, 28.2, 28.0, 27.5, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8. HRMS (ESI): Calculated for C₃₈H₅₂NO₃ [M+H]⁺: 570.3941; Found: 570.3941.

2-(4-Isobutylphenyl)propyl 3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate** (**29**). Yellow oil (19.1 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.1 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.53 – 7.44 (m, 2H), 7.13 – 7.07 (m, 2H), 7.04 – 6.98 (m, 2H), 6.71 (d, *J* = 12.1 Hz, 1H), 4.45 – 4.36 (m, 1H), 4.38 – 4.27 (m, 1H), 3.21 – 3.10 (m, 1H), 2.35 (d, *J* = 7.1 Hz, 2H), 1.81 – 1.71 (m, 1H), 1.31 (d, *J* = 7.0 Hz, 3H), 0.80 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 165.8, 156.3, 144.7, 143.7, 140.0, 139.8, 135.4, 133.4, 132.8, 132.0, 131.4, 131.1, 129.2, 127.0, 70.8, 44.9, 38.4, 30.1, 22.3, 17.9. HRMS (ESI): Calculated for C₂₄H₂₆NO₃ [M+H]⁺: 376.1907; Found: 376.1917.

3-(4,5-Diphenyloxazol-2-yl)propyl 3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate (30).** Yellow solid (31.4 mg, 68% yield). Mp = $68.2 - 70.2 \, ^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.9 Hz, 1H), 7.55 – 7.40 (m, 8H), 7.25 – 7.16 (m, 6H), 6.67 (d, *J* = 12.1 Hz, 1H), 4.47 (t, *J* = 6.2 Hz, 2H), 2.94 (t, *J* = 7.5 Hz, 2H), 2.30 – 2.22 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 180.2, 165.8, 162.2, 156.2, 145.1, 144.5, 143.8, 135.3, 134.9, 133.3, 132.6, 132.3, 132.0, 131.3, 131.1, 128.8, 128.4, 128.3, 128.2, 127.8, 127.7, 126.2, 64.8, 25.8, 24.6. HRMS (ESI): Calculated for C₂₉H₂₃N₂O₄ [M+H]⁺: 463.1652; Found: 463.1653.

((3a*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-b:4 ',5'-d]pyran-3a-yl)methyl 3-oxo-3*H*-benzo[*b*]azepine-2-carboxylate (31). Yellow solid (26.6 mg, 60% yield). Mp = 88.2 – 90.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.9 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.58 – 7.50 (m, 2H), 6.73 (d, *J* = 12.1 Hz, 1H), 4.60 – 4.47 (m, 2H), 4.41 – 4.31 (m, 2H), 4.20 – 4.14 (m, 1H), 3.92 – 3.82 (m, 1H), 3.70 (d, *J* = 13.0 Hz, 1H), 1.46 (s, 3H), 1.39 (s, 3H), 1.34 (s, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 164.7, 155.2, 144.4, 143.7, 135.1, 133.4, 132.7, 132.1, 131.4, 131.2, 109.0, 108.9, 101.2, 70.6, 70.0, 69.9, 65.4, 61.2, 26.4, 25.7, 25.2, 24.0. HRMS (ESI): Calculated for C₂₃H₂₅NO₈Na [M+Na]⁺: 466.1472; Found: 466.1470.

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)ethyl

3-oxo-*3H***-benzo**[*b*]**azepine-2-carboxylate** (**32**)**.** Yellow solid (38.9 mg, 74% yield). Mp = 154.2 – 156.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz, 1H), 7.66 – 7.51 (m, 6H), 7.40 – 7.31 (m, 2H), 6.94 (d, *J* = 2.5 Hz, 1H), 6.81 (d, *J* = 9.0 Hz, 1H), 6.74 (d, *J* = 12.2 Hz, 1H), 6.62 – 6.55 (m, 1H), 4.50 (t, *J* = 7.2 Hz, 2H), 3.74 (s, 3H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4, 168.3, 165.7, 156.0, 155.9, 144.7, 143.8, 139.0, 135.5, 135.4, 134.0, 133.4, 132.8, 132.2, 131.5, 131.2, 131.1, 130.9, 130.8, 129.0, 115.0, 114.9, 111.5, 100.9, 64.8, 55.6, 23.5, 13.3. HRMS (ESI): Calculated for C₃₀H₂₄ClN₂O₅ [M+H]⁺: 527.1368; Found: 527.1364.

5-(2,5-Dimethylphenoxy)-2,2-dimethylpentyl 3-oxo-3*H*-benzo[*b*]

azepine-2-carboxylate (33). Yellow oil (22.2 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.8 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.52 – 7.42 (m, 2H), 6.87 (d, *J* = 7.3 Hz, 1H), 6.75 – 6.68 (m, 1H), 6.53 (d, *J* = 8.9 Hz, 2H), 4.08 (s, 2H), 3.87 – 3.79 (m, 2H), 2.19 (s, 3H), 2.05 (s, 3H), 1.77 – 1.67 (m, 2H), 1.47 – 1.39 (m, 2H), 0.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 166.0, 156.9, 156.5, 144.7, 143.7, 136.3, 135.4, 133.3, 132.7, 132.0, 131.4, 131.0, 130.1, 123.4, 120.5, 111.8, 73.3, 68.2, 35.2, 33.9, 24.1, 24.0, 21.3, 15.7. HRMS (ESI): Calculated for C₂₆H₂₉NO₄Na [M+Na]⁺: 442.1988; Found: 422.1987.

Ethyl 3-methyl-7-oxo-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (34). Yellow solid (22.3 mg, 76% yield). Mp = 152.2 - 154.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 1H), 7.77 - 7.65 (m, 4H), 7.63 - 7.58 (m, 1H), 7.31 - 7.27 (m, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.46 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 162.7, 154.5, 142.2, 141.2, 139.3, 135.8, 132.7, 130.7, 130.5, 129.9, 129.0, 128.9, 128.3, 126.3, 62.6, 20.8, 14.0. HRMS (ESI): Calculated for C₁₈H₁₆NO₃ [M+H]⁺: 294.1125; Found: 294.1138.

Ethyl 7-oxo-3-pentyl-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (35). Yellow oil (24.4 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.57 (m, 4H), 7.56 – 7.51 (m, 1H), 7.25 – 7.20 (m, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 2.64 (t, *J* = 7.7 Hz, 2H), 1.66 – 1.57 (m, 2H), 1.36 – 1.24 (m, 7H), 0.86 – 0.78 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 162.7, 154.5, 144.4, 142.3, 141.2, 135.9, 132.7, 130.6, 130.2, 129.3, 129.2, 128.9, 128.4, 126.3, 62.7, 35.2, 31.3, 30.6, 22.5, 14.1, 14.0. HRMS (ESI): Calculated for C₂₂H₂₄NO₃ [M+H]⁺: 350.1751; Found: 350.1754.

Ethyl 3-cyclohexyl-7-oxo-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (36). Yellow solid (22.0 mg, 61% yield). Mp = 142.4 – 144.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.70 – 7.58 (m, 4H), 7.53 (t, J = 7.5 Hz, 1H), 7.28 – 7.22 (m, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.59 – 2.47 (m, 1H), 1.88 – 1.76 (m, 4H), 1.73 – 1.66 (m, 1H), 1.44 – 1.29 (m, 7H), 1.22 – 1.16 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 162.8, 154.4, 149.4, 142.4, 141.2, 135.9, 132.7, 130.6, 129.3, 128.9, 128.6,

128.4, 127.9, 126.3, 62.6, 43.9, 34.1, 26.7, 26.0, 14.0. HRMS (ESI): Calculated for C₂₃H₂₃NO₃Na [M+Na]⁺: 384.1570; Found: 384.1571.

Ethyl 7-oxo-3-phenyl-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (37). Yellow solid (24.9 mg, 72% yield). Mp = 200.2 – 202.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 2.0 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.69 – 7.59 (m, 5H), 7.55 (dd, *J* = 7.5, *J* =1.0 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.33 – 7.29 (m, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 162.6, 155.0, 142.8, 141.8, 141.3, 138.8, 135.5, 132.8, 131.2, 130.5, 129.2, 129.0, 128.7, 128.5, 128.1, 127.2, 127.0, 126.4, 62.7, 14.0. HRMS (ESI): Calculated for C₂₃H₁₇NO₃Na [M+Na]⁺: 378.1100; Found: 378.1100.

Ethyl 3-chloro-7-oxo-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (38). Yellow solid (26.3 mg, 84% yield). Mp = 138.8 - 141.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.81 (m, 2H), 7.79 – 7.71 (m, 3H), 7.69 – 7.63 (m, 1H), 7.47 – 7.41 (m, 1H), 4.43 (q, *J* = 7.2 Hz, 2H), 1.40 (t, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 162.3, 155.8, 143.2, 141.3, 134.8, 134.7, 132.9, 131.9, 130.2, 129.8, 129.5, 128.8, 128.4, 126.4, 62.9, 14.0. HRMS (ESI): Calculated for C₁₇H₁₃ClNO₃ [M+H]⁺: 314.0578; Found: 314.0579.

Ethyl 3-fluoro-7-oxo-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (39). Yellow solid (14.3 mg, 48% yield). Mp = $196.2 - 198.8 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d,

J = 7.9 Hz, 1H), 7.80 – 7.73 (m, 3H), 7.68 – 7.61 (m, 1H), 7.56 – 7.51 (m, 1H), 7.25 – 7.17 (m, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 163.4, 162.2 (d, J = 250.7 Hz), 155.7, 143.8 (d, J = 10.2 Hz), 141.2, 135.0, 132.9, 132.6 (d, J = 8.8 Hz), 129.2, 128.5, 128.1 (d, J = 3.6 Hz), 127.0, 126.3, 116.3 (d, J = 22.2 Hz), 62.9, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.9. HRMS (ESI): Calculated for C₁₇H₁₃FNO₃ [M+H]⁺: 298.0874; Found: 298.0882.

Ethyl 3-cyano-7-oxo-7*H*-dibenzo[b,d]azepine-6-carboxylate (40). Yellow solid (10.0 mg, 33% yield). Mp = 170.2 – 171.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 1.8 Hz, 1H), 7.96 – 7.89 (m, 2H), 7.84 – 7.71 (m, 4H), 4.44 (q, J = 7.2 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 162.0, 156.8, 142.8, 142.0, 135.9, 134.2, 134.1, 133.2, 131.9, 130.9, 130.6, 128.8, 126.6, 117.4, 112.9, 63.1, 14.0. HRMS (ESI) Calculated for C₁₈H₁₂N₂O₃Na [M+Na]⁺: 327.0740; Found: 327.0738.

Ethyl 7-oxo-3-(trifluoromethyl)-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (41). Yellow solid (14.5 mg, 42% yield). Mp = 180.0 – 182.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 1.8 Hz, 1H), 7.94 (m, 2H), 7.84 – 7.76 (m, 2H), 7.74 – 7.69 (m, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 162.1, 156.2, 142.5, 141.9, 134.8, 134.5, 131.7 (d, *J* = 284.9 Hz), 131.6, 131.2 (d, *J* = 33.6 Hz), 129.9, 128.8, 127.7(m), 126.5, 124.8 (q, *J* = 3.8 Hz), 124.7, 63.0, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI) Calculated for $C_{18}H_{12}F_{3}NO_{3}Na [M+Na]^+$: 370.0661; Found: 370.0676.

Ethyl 7-oxo-1-(trifluoromethyl)-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate(42). Yellow liquid (10.7 mg, 31% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.80 (m, 2H), 7.69 – 7.57 (m, 4H), 4.40 (qd, *J* = 7.1, 2.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 161.5, 158.2, 143.4 (d, *J* = 53.8 Hz), 140.4, 137.9, 131.9 (d, *J* = 1.3 Hz), 131.3 (d, *J* = 4.8 Hz), 130.8, 130.5, 130.4, 130.4 (d, *J* = 1.5 Hz), 129.4 (d, *J* = 131.8 Hz), 127.7 (m), 125.2, 123.7, 63.0, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -53.2. HRMS (ESI) Calculated for $C_{18}H_{12}F_{3}NO_{3}Na$ [M+Na]⁺: 370.0661; Found: 370.0661.

Ethyl 2,4-dimethyl-7-oxo-4a,7a-dihydro-7*H*-dibenzo[*b*,*d*]azepine-6-carboxylate (43). Yellow solid (15.2 mg, 51% yield). Mp = $139.4 - 141.7 \, ^\circ$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.66 - 7.58 (m, 2H), 7.54 - 7.48 (m, 1H), 7.32 (s, 1H), 7.16 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.51 (s, 3H), 2.34 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 162.5, 152.0, 141.6, 138.9, 138.4, 138.1, 136.3, 132.4, 131.6, 131.4, 129.0, 128.9, 128.8, 125.8, 62.3, 21.4, 19.1, 14.0. HRMS (ESI): Calculated for C₁₉H₁₉NO₃Na [M+Na]⁺: 330.1100; Found: 330.1105.

6-Phenyl-7*H***-dibenzo[***b,d***]azepin-7-one (44). Yellow solid (6.8 mg, 26% yield). Mp = 174.6 – 176.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.95 (m, 2H), 7.85 (d,** J = 8.1 Hz, 1H), 7.70 – 7.59 (m, 4H), 7.54 – 7.49 (m, 1H), 7.48 – 7.43 (m, 1H), 7.42 – 7.36 (m, 3H), 7.32 – 7.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 162.5, 144.3, 142.2, 136.2, 134.2, 132.2, 131.3, 130.5, 130.4, 129.4, 128.8, 128.7, 128.6, 128.5, 128.1, 126.4, 125.2. HRMS (ESI): Calculated for C₂₀H₁₄NO [M+H]⁺: 284.1070; Found: 284.1077.

Ethyl 5-oxo-5*H*-benzo[d]naphtho[2,3-*b*]azepine-6-carboxylate (45). Yellow solid (22.0 mg, 68% yield). Mp = 140.2 – 142.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.82 – 7.72 (m, 4H), 7.71 – 7.66 (m, 1H), 7.62 – 7.52 (m, 3H), 4.38 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6, 162.4, 152.2, 141.6, 138.3, 135.9, 133.0, 132.5, 130.9, 129.3, 129.1, 129.1, 127.8, 127.7, 127.5, 127.4, 127.2, 126.0, 125.4, 62.6, 14.1. HRMS (ESI): Calculated for C₂₁H₁₆NO₃ [M+H]⁺: 330.1125; Found: 330.1136.

Ethyl 9-oxo-9*H*-benzo[d]naphtho[2,1-*b*]azepine-8-carboxylate (46). Yellow solid (21.7 mg, 66% yield). Mp = 162.0 – 164.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.6 Hz, 1H), 7.99 – 7.93 (m, 2H), 7.93 – 7.88 (m, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.75 – 7.67 (m, 3H), 7.57 – 7.51 (m, 1H), 7.50 – 7.45 (m, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 161.9, 155.3, 143.6, 140.4, 133.1, 132.8, 131.8, 131.6, 130.3, 129.6, 129.5, 128.4, 128.2, 127.8, 126.9, 126.9, 126.3, 124.3, 62.8, 14.0. HRMS (ESI): Calculated for C₂₁H₁₆NO₃ [M+H]⁺: 330.1125; Found: 330.1128.

Ethyl 6-oxo-3a,6a-dihydro-6*H*-benzo[*d*]thieno[3,2-*b*]azepine-5-carboxylate (47). Yellow solid (17.4 mg, 62% yield). Mp = 139.3 – 140.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.56 (t, 1H), 7.43 (d, *J* = 5.5 Hz, 1H), 7.36 (d, *J* = 5.4 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 164.6, 151.8, 143.3, 137.0, 136.3, 133.8, 131.4, 131.3, 130.1, 129.3, 127.4, 125.0, 62.5, 14.0. HRMS (ESI): Calculated for C₁₅H₁₃NO₃SNa [M+Na]⁺: 308.0352; Found: 308.0351.

Ethyl 7-oxo-7*H*-benzo[b]pyrrolo[1,2-*d*][1,4]diazepine-6-carboxylate (48). Yellow solid (15.8 mg, 60% yield). Mp = 120.8 - 122.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.77 (m, 1H), 7.73 - 7.67 (m, 1H), 7.54 - 7.41 (m, 3H), 7.32 - 7.27 (m, 1H), 6.73 - 6.67 (m, 1H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 164.5, 155.2, 139.9, 135.1, 133.8, 133.1, 131.1, 127.2, 127.0, 122.5, 119.5, 114.7, 62.4, 14.0. HRMS (ESI): Calculated for C₁₅H₁₃N₂O₃ [M+H]⁺: 269.0921; Found: 269.0927.

6-Bromoquinolin-2(1*H***)-one (49).** Colorless solid (8.0 mg, 36% yield). Mp = 244.9 – 246.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.87 (s, 1H), 7.93 – 7.82 (m, 2H), 7.68 – 7.57 (m, 1H), 7.24 (d, J = 8.8 Hz, 1H), 6.54 (d, J = 9.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.7, 139.1, 137.9, 132.8, 129.9, 123.1, 120.8, 117.3, 113.3. HRMS (ESI): Calculated for C₉H₅BrNO [M-H]⁻: 221.9549; Found: 221.9536.

7-Methoxyquinolin-2(1*H*)-one (50). Colorless solid (6.6 mg, 38% yield). Mp = 216.8 – 217.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.60 (s, 1H), 7.80 (d, J = 9.5 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H), 6.82 – 6.76 (m, 2H), 6.30 (d, J = 9.4 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.2, 161.0, 140.7, 140.0, 129.3, 118.6, 113.3, 110.6, 98.0, 55.3. HRMS (ESI): Calculated for C₁₀H₈NO₂ [M-H]⁻: 174.0550; Found: 174.0538.

6-Phenylquinolin-2(1*H*)-one (51). Colorless solid (9.0 mg, 41% yield). Mp = 272.9 - 273.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.83 (s, 1H), 7.97 (d, *J* = 11.0 Hz, 2H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.47 (t, *J* = 6.9 Hz, 2H), 7.42 - 7.31 (m, 2H), 6.54 (d, *J* = 9.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.9, 140.4, 139.3, 138.3, 133.7, 129.0, 127.2, 126.4, 125.6, 122.3, 119.5, 115.7. HRMS (ESI): Calculated for C₁₅H₁₀NO [M-H]⁻: 220.0757; Found: 220.0745.

6-(*p***-Tolyl)quinolin-2**(1*H*)**-one** (**52**)**.** Colorless solid (9.5 mg, 42% yield). Mp = $304.4 - 305.7 \,^{\circ}\text{C}$. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.81 (s, 1H), 8.01 – 7.89 (m, 2H), 7.80 (m, 1H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.53 (d, *J* = 9.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.0, 140.4, 138.1, 136.5, 136.5, 133.6, 129.6, 128.8, 126.3, 125.3, 122.3, 119.5, 115.7, 20.7. HRMS (ESI): Calculated for C₁₆H₁₃NONa [M+Na]⁺: 258.0889; Found: 258.0873.

6-(4-((Difluoro- λ^3 -methyl)- λ^2 -fluoranyl)phenyl)quinolin-2(1*H*)-one (53). Colorless solid (18.8 mg, 65% yield). Mp = 281.3 – 282.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.91 (s, 1H), 8.06 – 7.75 (m, 7H), 7.41 (d, *J* = 8.6 Hz, 1H), 6.55 (d, *J* = 9.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.0, 143.3, 140.4, 139.0, 133.0, 129.1, 128.9, 127.6 (d, *J* = 31.7 Hz), 127.1, 126.3, 125.8 (q, *J* = 4.0 Hz), 123.1, 121.0 (d, *J* = 301.1 Hz), 116.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.8. HRMS (ESI): Calculated for C₁₆H₁₀NOF₃Na [M+Na]⁺: 312.0606; Found: 312.0606.

6-(4-Chlorophenyl)quinolin-2(1*H***)-one (54).** Colorless solid (16.3 mg, 64% yield). Mp = $307.5 - 308.2 \,^{\circ}$ C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.85 (s, 1H), 8.00 (d, *J* = 2.2 Hz, 1H), 7.96 (d, *J* = 9.5 Hz, 1H), 7.84 - 7.81 (m, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 1H), 6.54 (d, *J* = 9.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.0, 140.4, 138.5, 138.2, 132.3, 132.1, 128.9, 128.8, 128.2, 125.7, 122.4, 119.5, 115.8. HRMS (ESI): Calculated for C₁₅H₁₀ClNONa [M+Na]⁺: 278.0343; Found: 278.0327.

6-(Thiophen-3-yl)quinolin-2(1*H***)-one (55).** Colorless solid (6.6 mg, 29% yield). Mp = 280.3 – 281.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.79 (s, 1H), 8.02 (d, *J* = 2.0 Hz, 1H), 7.91 (d, *J* = 9.3 Hz, 1H), 7.88 (m, 1H), 7.85 (m, 1H), 7.66 (m, 1H), 7.58 (m, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 6.53 (d, *J* = 9.5 Hz, 1H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.9, 140.7, 140.3, 138.0, 129.0, 128.6, 127.2, 126.1, 124.9, 122.4, 120.3, 119.4, 115.6. HRMS (ESI): Calculated for C₁₃H₉NOSNa [M+Na]⁺: 250.0297; Found: 250.0285.

Phenanthridin-6(5*H*)-one (56).⁹ Colorless solid (10.3 mg, 53% yield). Mp = 280.6 – 282.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 11.70 (s, 1H), 8.51 (d, J = 8.3 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 8.32 (d, J = 7.9 Hz, 1H), 7.85 (t, J = 7.5 Hz, 1H), 7.64 (t, J= 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 160.8, 136.6, 134.3, 132.8, 129.6, 127.9, 127.5, 125.7, 123.3, 122.6, 122.3, 117.6, 116.1. HRMS (ESI): Calculated for C₁₃H₉NONa [M+Na]⁺: 218.0576; Found: 218.0576.

3-Phenylphenanthridin-6(*5H*)-one (57). Colorless solid (11.7 mg, 43% yield). Mp > 320 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.77 (s, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 7.7 Hz, 2H), 7.64 (d, *J* = 7.0 Hz, 2H), 7.55 – 7.49 (m, 3H), 7.43 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.0, 141.2, 139.3, 137.1, 134.0, 132.9, 129.1, 128.1, 128.0, 127.5, 126.7, 125.6, 124.0, 122.7, 120.9, 116.9, 113.8. HRMS (ESI): Calculated for C₁₉H₁₃NONa [M+Na]⁺: 294.0889; Found: 294.0890.

3-Cyclohexylphenanthridin-6(5*H***)-one (58).** Colorless solid (11.1 mg, 40% yield). Mp = 277.8 – 279.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.62 (s, 1H), 8.43 (d, *J* = 8.0 Hz, 1H), 8.31 – 8.24 (m, 2H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.18 (s, 1H), 7.12 (d, J = 8.3 Hz, 1H), 2.55 (d, J = 11.0 Hz, 1H), 1.84 – 1.78 (m, 4H), 1.43 – 1.34 (m, 4H), 1.22 (d, J = 17.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.0, 149.3, 136.6, 134.4, 132.7, 127.4, 127.3, 125.3, 123.2, 122.4, 121.3, 115.6, 113.7, 43.6, 33.8, 26.2, 25.6. HRMS (ESI): Calculated for C₁₉H₁₉NONa [M+Na]⁺: 300.1359; Found: 300.1359.

H N O

Benzo[a]phenanthridin-5(6*H***)-one (59).¹¹** Colorless solid (8.3 mg, 34%). Mp = 296.5 – 298.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.00 (s, 1H), 8.79 (t, J = 8.4 Hz, 2H), 8.48 – 8.41 (m, 1H), 8.05 – 8.00 (m, 2H), 7.95 – 7.90 (m, 1H), 7.7 yield 1 – 7.66 (m, 2H), 7.57 – 7.50 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 160.8, 135.7, 134.6, 132.5, 130.7, 130.4, 129.4, 129.2, 129.0, 127.7, 127.7, 127.2, 126.7, 124.9, 124.4, 117.0, 110.9. HRMS (ESI): Calculated for C₁₇H₁₁NONa [M+Na]⁺: 268.0733; Found: 268.0733.

Thieno[3,2-c]isoquinolin-5(4*H***)-one (60).** Colorless solid (6.4 mg, 32% yield). Mp = 256.7 – 258.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.02 (s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.82 – 7.73 (m, 3H), 7.52 (m 1H), 7.06 (d, J = 5.3 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.4, 138.4, 133.2, 133.1, 128.2, 127.8, 126.4, 123.6, 122.4, 118.0, 115.0. HRMS (ESI): Calculated for C₁₁H₇NOSNa [M+Na]⁺: 224.0140; Found: 224.0127.

Quinolin-2(1*H***)-one (61).⁹** Colorless solid. Mp = 234.6 – 236.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 12.87 (s, 1H), 7.74 (d, *J* = 9.4 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.19 – 7.09 (m, 1H), 6.66 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 141.1, 138.4, 130.6, 127.7, 122.7, 121.1, 119.9, 116.3. HRMS (ESI): Calculated for C₉H₆NO [M-H]⁻: 144.0443; Found: 144.0443.

6. References

- Y.- M. Zhou, Y.-J. Ping, Z.-J. Xu and C.-M. Che, Asian. J. Org. Chem., 2021, 10, 674.
- 2. Y.-T. Jiang, Z.-Z. Yu, Y.-K. Zhang and B. Wang, Org. Lett., 2018, 20, 3728.
- Q. Yin, S.-G. Wang, X.-W. Liang, D.-W. Ga, J. Zheng and S.-L. You, *Chem. Sci.*, 2015, 6, 4179.
- 4. N. Otto and T. Opatz, Beilstein J. Org. Chem., 2012, 8, 1105.
- 5. Y. He, J. Tang, M. Luo and X. Zeng, Org. Lett., 2018, 20, 4159.
- J.-D. Guo, X.-L.Yang, B. Chen, C.-H. Tung and L.-Z. Wu, *Green. Chem.*, 2021, 23, 7193.
- R. Mei, C. Yang, F. Xiong, M. Mao, H. Li, J. Sun, L. Zou, W. Ma and L. Ackermann, *Adv. Synth. Cata.*, 2020, **363**, 1120.
- Y. Xia, P. Qu, Z. Liu, R. Ge, Q. Xiao, Y. Zhang and J. Wang, *Angew. Chem. Int.* Ed., 2013, 52, 2543.
- 9. A. R. Todorov, T. Wirtanen and J. Helaja, J. Org. Chem., 2017, 82, 13756.
- 10. Z. Chen and X. Wang, Org. Biomol. Chem., 2017, 15, 5790.
- 11. T. Truong and O. Daugulis, Chem. Sci., 2013, 4, 531.

7. Spectra of Compunds

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **1a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **2a**

---0.00

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **3a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **4a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **5**a

00.0----

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 6a

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 7a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 8a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **10a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **11a**

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 12a

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 13a

S72

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 14a

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 15a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **16a**

S76

¹⁰⁰ ⁸⁰ ⁶⁰ ⁴⁰ ²⁰ ⁰ ⁻²⁰ ⁻⁴⁰ ⁻⁶⁰ ⁻⁶⁰ ⁻⁸⁰ ⁻¹⁰⁰ ⁻¹²⁰ ⁻¹⁴⁰ ⁻¹⁶⁰ ⁻¹⁸⁰ ⁻²⁰⁰ ⁻²²⁰ ⁻²⁴⁰ ⁻²⁶⁰ ⁻²⁸⁰ ⁻³⁰⁰ ⁻³⁰⁰ ¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃), of **17a**

S81

S93

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **35a**

S98

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **39a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 40a

-13.41

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **42a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 43a

--0.00

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 44a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 46a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 47a

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **48a**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **1**

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 2

--0.00

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 3

-0.00

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 4

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of **5**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 6

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 7

 $^{1}\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 8

---3.92

-00.00

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **10**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **11**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **12**

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 13

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **14**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **15**

--3.93

--0.00

 $^1\text{H-NMR}$ (400 MHz, CDCl₃), ^{13}C NMR (101 MHz, CDCl₃) of 16

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **17**

of **39**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **41**

 1.39
1.36
1.36

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **42**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **43**

--0.00

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of 44

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **45**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **46**

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) of **47**

¹H-NMR (400 MHz, DMSO- d_6), ¹³C NMR (101 MHz, DMSO- d_6) of **52**

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 11 (ppm)

¹H-NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F-NMR (376 MHz, CDCl₃) of **53**

