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S1. Polaron-transformed Hamiltonian

Applying the polaron transformation (eq. (6) of the main text) to the total Hamiltonian results in the polaron-
transformed Hamiltonian

H̃ = eSHe−S = H̃S + H̃B + H̃SB. (S1)

To evaluate this, we follow previous work [1], but adjust the equations to account for the two-particle picture. The
polaron-transformed system Hamiltonian is

H̃S =
∑
m,n

Ẽmn |m,n〉 〈m,n|+
∑

m6=m′,n

κe
mm′Je

mm′ |m,n〉 〈m′, n|+
∑

m,n6=n′

κh
nn′Jh

mm′ |m,n〉 〈m,n′|+
∑
o6=o′

κxc
oo′J

xc
oo′ |o, o〉 〈o′, o′| ,

(S2)
where the shifted energies are

Ẽmn = Emn −
∑
k

|ge
mk|2/ωmk −

∑
k

|gh
nk|2/ωnk when m 6= n (S3)

Ẽoo = Eoo −
∑
k

|gxc
ok|2/ωok (S4)

and the couplings are renormalised by factors of the form

κzmm′ = exp

(
−1

2

∑
k

(
(gzmk)

2

ω2
mk

coth
βωmk

2
+

(gzm′k)
2

ω2
m′k

coth
βωm′k

2

))
, (S5)

where the superscript z can be any of ‘e’, ‘h’ or ‘xc’ to indicate which system-bath coupling strength ge/h/xc
mk is

used and β = 1/kBT (here, we assume T = 300 K). The bath Hamiltonian is unchanged, H̃B = HB, while the
polaron-transformed interaction Hamiltonian is

H̃SB =
∑

m6=m′,n

Je
mm′ |m,n〉 〈m′, n|V e

mm′ +
∑

m,n6=n′

Jh
nn′ |m,n〉 〈m,n′|V h

nn′ +
∑
o6=o′

Jxc
oo′ |o, o〉 〈o′, o′|V xc

oo′ , (S6)

where

V zmm′ = exp

(∑
k

gzmk
ωmk

(
b†mk − bmk

))
exp

(
−
∑
k

gzm′k

ωm′k

(
b†m′k − bm′k

))
− κzmm′ . (S7)

To simplify the system-bath interaction, which currently involves a sum over bath modes, we assume that all
sites couple to their own baths with equal strengths (ge

nk = ge
k, g

h
nk = gh

k , and g
xc
nk = gxc

k ), and that the discrete
spectral density

jz(ω) =
∑
k

(gzk)
2
δ(ω − ωk) (S8)

can be replaced with a continuous one. We apply the commonly used super-Ohmic spectral density [1–4]

jz(ω) =
λz

2

(
ω

ωzc

)3

exp

(
− ω

ωzc

)
(S9)

but it would be possible to choose more structured versions for specific organic semiconductors. These approximations
reduce κzmm′ to

κzmm′ = κz = exp

(
−
∫ ∞

0

dω
jz(ω)

ω2
coth

βω

2

)
. (S10)
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S2. Polaron-transformed Redfield equation

The polaron transformation reduces the system-bath coupling by moving most of the interaction into the polaron
frame. This allows the remaining system-bath interaction (H̃SB) to be treated perturbatively to second order,
resulting in the secular polaron-transformed Redfield equation (sPTRE) [1]. The equations that follow are analogous
to those derived for sPTRE [1], but they have been generalised for the two-particle picture. The quantum master
equation describes the time evolution of polaron state populations,

dρν(t)

dt
=
∑
ν′

Rνν′ρν′(t), (S11)

where the secular Redfield tensor contains rates of population transfer between every pair of polaron states. The
Redfield tensor

Rνν′ = 2 Re
(

Γν′ν,νν′ − δνν′

∑
κ

Γνκ,κν′

)
, (S12)

consists of damping rates
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∑
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where all the summation indices index sites, ων′µ′ = Eν′ − Eµ′ , and

Kz,z′

mn,m′n′(ω) =

∫ ∞
0

eiωτ 〈V zmn(τ)V z
′

m′n′(0)〉B dτ. (S14)

The superscripts z and z′ can be any of ‘e’, ‘h’ or ‘xc’ to indicate which system-bath coupling strength ge/h/xc
mk is

used. The last integral contains the bath correlation function

〈V zmn(τ)V z
′

m′n′(0)〉B = κzκz
′
(
e−λmnm′n′φz,z′ (τ) − 1

)
, (S15)

where λmnm′n′ = δmm′ − δmn′ + δnn′ − δnm′ and

φz,z
′
(τ) =

∫ ∞
0

dω

√
jz(ω)jz′(ω)

ω2

(
cos(ωτ) coth(βω/2)− i sin(ωτ)

)
. (S16)
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S3. dKMC approximations

The sPTRE master equation is too computationally expensive to apply to the full two-particle charge separation
problem, so we apply four approximations to transform the method to dKMC. These follow our previous derivations
of dKMC [5–7], but are adapted to the two-body situation. Tracking the full time-evolution according to the
sPTRE (fig. S1a) has three computationally difficult steps that dKMC overcomes. First, calculating all N2d polaron
states involves diagonalising the N2d × N2d polaron-transformed system Hamiltonian H̃S, a task that scales as
O(N6d). Second, the full polaron-transformed Redfield tensor involves calculating N4d rates between all pairs of
N2d polaron states. Finally, calculating each rate involves a sum over N8d quadruples of site-pairs. In total, the
sPTRE procedure scales as O(N6d) +O(N12d).
The first approximation is mapping the quantum master equation onto KMC (fig. S1b). On each of the niters

realisations of disorder, rather than tracking the evolution of the full density matrix using sPTRE, we use the KMC
procedure to track ntraj individual stochastic trajectories, which are then averaged. Each trajectory is propagated
by choosing the next state probabilistically using the outgoing rates of population transfer from the current state.
Therefore, instead of calculating rates between all pairs of states as in sPTRE, KMC only calculates outgoing rates
at each of the nhops hops, reducing the number of calculated rates from O(N4d) to O(N2dnhopsntraj).

The second approximation is the use of hopping cutoffs (fig. S1c). Instead of calculating all outgoing rates at each
hop, we only calculate rates to states that are close enough to the current state. In previous work, we calibrated a
charge hopping radius rhop [5] and an exciton hopping radius rxc

hop [7], which are the distances required to contain,
on average, enough states such that the rates to them comprise more than a fraction adKMC of all rates (we set
adKMC = 0.99). In the two-particle picture, we only calculate rates from state ν to states ν′ if the hop would
displace the electron and the hole by a total of less than rhop in expectation value. That is, we only consider those
destination states ν′ for which |Ce

ν −Ce
ν′ |+ |Ch

ν −Ch
ν′ | < rhop, where the expectation value of the electron’s position

is Ce
ν = 〈ν| re |ν〉 and likewise for the hole. In addition, if the current state is an exciton state, we also calculate

a)

d) e)

b) c)

rhop

rHamrxc

rHam

Figure S1. Approximations of dKMC for charge generation. a) The high computational cost of sPTRE arises from
the need to track all possible transitions (black arrows) in the time-dependent evolution of the populations of all polaron
states. To avoid this cost, dKMC makes the following four approximations. b) Kinetic Monte Carlo: we map the quantum
master equation onto KMC, which propagates and averages many individual trajectories formed from sequential hops from
the current state (in green), chosen probabilistically. Straight arrows denote electron (solid) and hole (dashed) hops, while
curved arrows denote exciton hops. c) Hopping radius: we only calculate hopping rates to polaron states where the electron
and the hole, or the exciton, are sufficiently close to their current positions. In the diagram, the hop depicted by the green
arrows is allowed, and the red one is not. d) Population cutoff: in each rate calculation from the current state (both the
electron and the hole depicted in green) to a possible destination state (in orange), we ignore contributions from site-pairs
whose overlap with the initial or final states is insignificant, depicted as lattice points outside the dotted red outlines. e)
Diagonalising on the fly: rather than calculating all polaron states, we only calculate them for small subsystems surrounding
the electron and hole, or exciton, after each hop.
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rates to all exciton states whose position Cxc
ν′ = 〈ν′| rxc |ν′〉 is within rxc

hop of the current state’s position Cxc
ν . This is

required because exciton states are typically more delocalised and can hop further due to longer-range dipole-dipole
coupling. Overall, imposing the hopping cutoffs reduces the number of rates calculated at each hop from O(N2d) to
O(r2d

hop).
The third approximation is including a site-pair contribution cutoff when calculating each hopping rate (fig. S1d).

Instead of including all site-pairs in the sums defining the damping rates of eq. (S13), we ignore contributions of
site-pairs with insignificant overlaps with either the initial or final states. For each summation index of eq. (S13),
we only include the minimum number of site-pairs (m,n) that together support at least a fraction adKMC of the
population of ν or ν′, as appropriate (we set adKMC = 0.99). Ignoring contributions from site-pairs with small
amplitude significantly reduces the cost of calculating each rate. However, as the spatial extent of a state is difficult
to predict in general, estimating the reduction in scaling is difficult. By assuming that the each state is appreciably
delocalised across not more than than r2d

hop site-pairs, the cost for each rate calculation is no more than O(r8d
hop),

down from O(N8d).
The fourth and final approximation is diagonalising H̃S on the fly (fig. S1e). Instead of diagonalising the

Hamiltonian describing all site-pairs, we diagonalise Hamiltonians representing subsystems, i.e., only containing
site-pairs in which both the electron and the hole are close enough to their current locations. After every hop, a
new subset of the original H̃S is diagonalised for the subsystem surrounding the new locations of the charges. In
previous work, we calibrated Hamiltonian radii rHam and rxc

Ham, which represent how large a subsystem Hamiltonian
is required to calculate outgoing rates to a desired accuracy adKMC [5, 7]. In the two-particle picture, we only
include site-pairs (m,n) whose combined distance from the current locations of the electron and the hole is within
rHam, |rm −Ce

ν |+ |rn −Ch
ν | < rHam. In addition, if the current state is classified as an exciton, we also include

exciton site-pairs (o, o) within a larger exciton Hamiltonian radius rxc
Ham of the exciton, i.e., |ro−Cxc

ν | < rxc
Ham. Only

diagonalising subsystems reduces the cost of finding the required polaron states from O(N6d) to O(r6d
Hamnhopsntraj).

In practice, we calculate the Hamiltonian and hopping radii simultaneously, using the same accuracy (here chosen to
be adKMC = 0.99), using the procedure outlined in previous work [7]. The choice of adKMC = 0.99 is benchmarked
in previous work, where the chosen accuracy is shown to be sufficient to converge single-particle charge mobilities [5]
and exciton diffusion coefficients [7].

Overall, the four approximations described above reduce the scaling from O(N6d)+O(N12d) to O(r6d
Hamnhopsntraj)+

O(nhopsntrajr
2d
hopr

8d
hop). For exmaple, for the largest system we study (d = 3, N = 100, µ = 3 D, J = 22.5 meV),

dKMC reduces the computational complexity of calculations by 54 orders of magnitude over sPTRE.

S4. Recombination

Recombination of excitons and CT states is typically treated using constant rates Rxc
recomb and RCT

recomb in classical
kinetic Monte Carlo. That is, whenever the electron and the hole are on the same site, they can recombine with
rate Rxc

recomb, and when they are on neighbouring sites, they can recombine with rate RCT
recomb.

In dKMC, we use Fermi’s golden rule to calculate the corresponding exciton and CT recombination rates from a
delocalised polaron state ν [6]. The golden-rule rate for exciton recombination,

kνxc,recomb = 2π

∣∣∣∣∣∑
o

〈ν|o, o〉 〈o, o|H|g〉

∣∣∣∣∣
2

ρrecomb, (S17)

involves a sum over exciton site-pairs (where the electron and hole are on the same site) and the density of states
ρrecomb. If the exciton site-pairs are all equally coupled to the ground state with strength 〈m,n|H|g〉 = Jxc

recomb, the
exciton recombination rate becomes the standard Monte-Carlo rate adjusted by a delocalisation correction,

kνxc,recomb = Rxc
recomb

∣∣∣∣∣∑
o

〈ν|o, o〉

∣∣∣∣∣
2

, (S18)

where Rxc
recomb = 2π|Jxc

recomb|2ρrecomb.
The same approach for CT-state recombination leads to

kνCT,recomb = RCT
recomb

∣∣∣∣∣ ∑
(m,n)∈CT

〈ν|m,n〉

∣∣∣∣∣
2

, (S19)

where the sum is over CT site-pairs.
The constant recombination rate modified by the square of the sum of the amplitudes on relevant site-pairs

agrees with generalised Marcus theory [8] and with earlier recombination studies [9]. In this work, we use
Rxc

recomb = 10−11 s−1 and RCT
recomb = 10−10 s−1.
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S5. dKMC algorithm

We summarise the steps involved in the dKMC algorithm in algorithm S1.

Given parameters d, N , σ, σxc, Je, Jh, µ, λ, λxc, Eb, ωc, T , Rxc
recomb, R

CT
recomb, adKMC, rsep, dmax

xc , nhops, niter,
and ntraj:
1. Calculate calibrating cutoff radii rhop and rHam for charges and rxc

hop and rxc
Ham for excitons, using the

procedure described in [7].
2. For niter realisations of disorder:

a. Generate Nd lattice of sites, with randomly oriented dipoles µ and HOMO and LUMO energies drawn
from the bivariate normal distributions in eq. (1) of the main text.

b. Set nsep ← 0.
c. For ntraj trajectories:

i. Choose the initial excitation location at a randomly chosen initial excitation distance
dxc ∈ [1, dmax

xc ] from the interface.
ii. Create a polaron-transformed H̃S containing all site-pairs within a combined distance of rHam of

the chosen excitation location and all exciton site-pairs within rxc
Ham. Diagonalise H̃S to find the

polaron states and their energies, and calculate the expectation values of the positions of electron
Ce, hole Ch, and exciton Cxc in every state.

iii. Create a list Lxc of exciton states (those with populations on exciton site-pairs greater than pxc
cutoff)

whose position is within 1 site of the excitation location.
iv. Calculate the oscillator strength of each state in Lxc as the square of the expectation value of its

transition dipole moment.
v. Choose the initial state ν from Lxc probabalistically in proportion to the states’ oscillator

strengths.
vi. For nhops hops:

A. If ν is an exciton state:
• Diagonalise a new H̃S , being a submatrix of the original H̃S describing site-pairs (m,n) such
that |rm −Ce

ν |+ |rn −Ch
ν | < rHam and (o, o) such that |ro −Cxc

ν | < rxc
Ham.

• Create a list L containing states ν′ such that |Ce
ν −Ce

ν′ |+ |Ch
ν −Ch

ν′ | < rhop, and exciton
states ν′ such that |Cxc

ν −Cxc
ν′ | < rxc

hop.
Else:
• Diagonalise a new H̃S , being a submatrix of the original H̃S describing site-pairs (m,n) such
that |rm −Ce

ν |+ |rn −Ch
ν | < rHam.

• Create a list L of all states ν′ such that |Ce
ν −Ce

ν′ |+ |Ch
ν −Ch

ν′ | < rhop.
B. Calculate Rνν′ for all ν′ ∈ L using eq. (S12), only summing over each index in eq. (S13) the

minimum number of site-pairs (m,n) that together support at least adKMC of the population
of ν or ν′.

C. Calculate kνrecomb = kνxc,recomb + kνCT,recomb using eq. (S18) and eq. (S19), and append g to L.

D. Set Sν′ ←
∑ν′

µ=1Rνµ for all ν′ ∈ L and set W ←
∑
ν′∈L Sν′ .

E. Find ν′ such that Sν′−1 < uW < Sν′ , for uniform random number u ∈ (0, 1], and update
ν ← ν′.

F. Update t← t+ ∆t, where ∆t = −W−1 ln v for uniform random number v ∈ (0, 1].
G. If ν = g, exit the for loop.
H. If |Ce

ν −Ch
ν | > rsep, set nsep ← nsep + 1 and exit the for loop.

d. Calculate IQE = nsep/ntraj.
3. Calculate mean IQE by averaging all IQEs.

Algorithm S1. dKMC for charge generation.
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S6. Parameters

Table S1 contains the parameter values used in dKMC simulations throughout this work, unless otherwise stated.

Parameter Description Values

d Dimension 1–3
N Sites along each dimension 100
σ Electronic disorder 150 meV
σxc Exciton disorder 30 meV
Je Electron coupling 7.5–75 meV
Jh Hole coupling 7.5–75 meV
µ Transition dipole moment 1–10 D
λ Electronic bath reorganisation energy 100 meV
λxc Exciton bath reorganisation energy 100 meV
Eg HOMO-LUMO gap 1600 meV
Eb Exciton binding energy 700 meV
EHOMO

offset HOMO energetic offset 500 meV
ELUMO

offset LUMO energetic offset 500 meV
a Lattice spacing 1 nm
εr Dielectric constant 3.5
ωc Bath cutoff frequency 62 meV
T Temperature 300 K
Rxc

recomb Exciton recombination rate 10−11 s−1

RCT
recomb CT recombination rate 10−10 s−1

adKMC dKMC accuracy 0.99
rsep Concluding separation 5 nm
dmax

xc Maximum excitation distance 5 nm
nhops Maximum hop number 2000
niter Simulation landscapes 1000
ntraj Trajectories on each landscape 10 in 2D, 1 in 3D

Table S1. Parameter values. Default values used for parameters in dKMC simulations, unless otherwise specified.
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S7. Properties of polaron states

Figure S2 shows the relationship between the IPR and the energy Ẽ of the states for small couplings and dipole
moments (fig. S2a) and larger ones (fig. S2b). Figure S2a shows that when the couplings and dipole moments are
small, the states are mostly localised onto one site-pair. For higher couplings and dipole moments, as in fig. S2b,
the states can delocalised over more site-pairs. The IPR is greatest in the middle of the density of states, and
smallest at the edges, where trap states tend to be localised. There are three peaks in the density of states due to
the energetic offsets at the interface: the lowest-energy peak corresponds to the electron in the donor and the hole
in the acceptor, the middle peak corresponds to the electron and hole in the same phase, and the highest-energy
peak corresponds to the electron in the donor and the hole in the donor. Furthermore, as the states delocalise, they
can form a significant number of hybridised states, seen as stars and squares in fig. S2b, while none form in the
localised case of fig. S2a.

a)

Bulk

Separate Phases

CT Weakly Bound Separated HybridisedExciton

b)

Colour 
determined 
by state 
classi�cation

J = 67.5 meV, µ = 10 DJ = 1.5 meV, µ = 1 D

Figure S2. Properties of the polaron states. The inverse participation ratio (IPR) as a function of the energy Ẽ of
polaron states found by diagonalising a subset of the 2D polaron-transformed system Hamiltonian with a) small electronic
couplings and transition dipole moments (J = 1.5meV, µ = 1D) and b) large ones (J = 67.5meV, µ = 10D). Each state is
labelled based on which category of site-pair it has the greatest overlap with and whether the site-pairs are in the bulk (same
phase) or different phases.
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S8. Mechanisms of delocalisation enhancements

Here, we break down the mechanistic analysis of section II.D of the main text to show that the mechanisms of
delocalisation enhancement are the same for both interfacial and bulk exciton dissociation. To do so, instead of
looking at all separated trajectories together, we separately analyse the trajectories where the exciton dissociates at
the interface (fig. S3) and those where it dissociates in the bulk, without an interfacial energetic offset (fig. S4). In
both cases, the same trends are seen as in fig. 7 of main text, i.e., that delocalisation both helps charges hop further
out of an exciton and form hybridised states.

a)

d)

CT
Weakly Bound

b)

e)

c)

f)

Figure S3. The same mechanistic analysis as in fig. 7 of the main text, but only for trajectories where the exciton dissociates
across the interface.

a)

d)

CT
Weakly Bound

b)

e)

c)

f)

Figure S4. The same mechanistic analysis as in fig. 7 of the main text, but only for trajectories where the exciton dissociates
in the bulk, without an interfacial energetic offset.
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