Supporting Information

Oxidative Cleavage of Ketoximes to Ketones using Photoexcited Nitroarenes
 Lucas T. Göttemann, \ddagger Stefan Wiesler, \ddagger Richmond Sarpong

Table of Contents

1. General Considerations 1
1.1. Solvents and Reagents 1
1.2. Experimental Procedures 1
2. Optimization of the methoxime cleavage 2
2.1 Investigated nitroarenes 2
2.2 Optimization table for methoxime 16 3
2.3 Optimization table for methoxime 17 4
3. General Procedures 5
3.1 General Procedure A for the synthesis of oximes 5
3.2 General Procedure B for the synthesis of oximes 5
3.3 General procedure for the oxidative cleavage of oximes to the corresponding ketones 5
4. Reaction setup 6
5. Limitations of the scope 8
6. Mechanistic studies 9
6.1 Labeling experiments 9
6.1.1 Preparation of ${ }^{18} \mathrm{O}$-labeled 3-nitrobenzonitrile 9
6.1.2 Isotopic distribution for labeled nitroarene 10
6.1.3 Procedure for labeling experiments of the methoxime cleavage 12
6.1.4 Results of isotopic enrichment 13
6.2 Mechanistic studies using bulky, non-volatile oximes 17
7. Preparation of oxime starting materials 21
8. Preparation of ketone products from the corresponding ketoximes 38
9. References 50
10. Photophysical Data 51
10.1. Diluted UV-VIS spectra of the oxime starting materials and their corresponding parent ketones 51
10.2 UV-VIS spectra of the nitroarenes. 58
10.3 UV-VIS spectra of oximes / ketones at higher concentrations 59
10.4 UV-VIS spectra nitroarenes at higher concentrations 60
10.5 UV-VIS reaction monitoring using methoxime 17. 61
11. Spectral Data 62
12. Summary of selected functionalizations using methoximes as a directing group. 152

1. General Considerations

1.1. Solvents and Reagents

Unless otherwise described, commercial reagents were purchased from Sigma Aldrich, Acros Organics, Chem-Impex, Combi-blocks, TCI, Strem, Enamine and/or Alfa Aesar, and used without additional purification. Solvents were obtained from Fisher Scientific, Acros Organics, Alfa Aesar, and Sigma Aldrich. Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$) and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were sparged with argon and dried by passing through alumina columns using argon in a Glass Contour solvent purification system. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was freshly distilled over calcium hydride under a N_{2} atmosphere prior to each use. Benzene (PhH), methanol (MeOH), and acetonitrile (MeCN) were sparged with argon and dried by passing through alumina columns using argon in a Glass Contour solvent purification system and were further degassed by sparging with nitrogen prior to usage. Deuterated solvents were purchased from Cambridge Isotope Laboratories and were used without further purification unless otherwise specified.

1.2. Experimental Procedures

Unless otherwise noted in the experimental procedures, reactions were carried out in flame- or oven-dried glassware under a positive pressure of N_{2} in anhydrous solvents using standard Schlenk techniques. All reactions were performed in scintillation or microwave vials under a nitrogen atmosphere unless otherwise specified. Reaction temperatures above room temperature $\left(22-23{ }^{\circ} \mathrm{C}\right)$ were controlled by an IKA® temperature modulator and monitored using liquid-in-glass thermometers. Reaction progress was monitored using a combination of LC/MS analysis (using a Shimadzu LCMS-2020 (UFLC) equipped with the LC-20AD solvent delivery system, a SPD-20AV prominence UV/Vis detector (SPD-M20A Photo Diode Array), and a Thermo Scientific Hypersil GOLD HPLC column (5 $\mu \mathrm{m}$ particle size, $4.6 \times 50 \mathrm{~mm}$), and thin-layer chromatography (TLC) on SiliCycle Siliaplates (glass backed, extra hard layer, $60 \AA, 250 \mu \mathrm{~m}$ thickness, F254 indicator). Flash column chromatography was performed with either glass columns using Silicycle silica gel (40-63 $\mu \mathrm{m}$ particle size) or with a Yamazen Smart Flash EPCLC W-Prep 2XY (dual channel) automated flash chromatography system on prefilled, premium, universal columns using ACS grade solvents. Preparative thin layer chromatography was performed on SiliCycle Siliaplates (glass backed, extra hard layer, $60 \AA, 250 \mu \mathrm{~m}$ thickness, F254 indicator) or Merck KGaA TLC Aluminium oxide 60 F254 basic plates Reversed-phase high-performance liquid chromatography was carried out using an Agilent 1100 HPLC-MSD system consisting of a 6130B single quadrupole mass-selective detector (MSD), G1315B diode array detector, G2258A autosampler, two G1361A preparative pumps, one G1379A quaternary pump with degasser, one G1312A binary pump, and three G1364B fraction collectors from Agilent Technologies. System control and data analysis was performed using Agilent's ChemStation software, revision B.03.01-SR.1. A Waters XBridge C18 OBD Prep Column, $100 \AA, 5 \mu \mathrm{~m}, 19 \mathrm{~mm} \times 150 \mathrm{~mm}$ column was used as the stationary phase (Waters Corporation) Gradient elution was carried out using water and acetonitrile as the mobile phase. An aqueous 10\% trifluoroacetic acid or 10\% ammonium hydroxide solution was added into the mobile phase as a modifier using a static mixer prior to the column, pumped at 1% of the total mobile phase flow rate. Photoreactions were performed using either a Penn OC M2 photoreactor equipped with a 420 nm light source or 390 nm Kessil lamps (see 4. Reaction setup), or with an Ace Glass Incorporated medium pressure, quartz, mercuryvapor lamp. GC-MS analysis was performed using an Agilent 6890 N GC equipped with an HP-5MS Agilent column ($30 \mathrm{~m} \times 0.250 \mathrm{~mm}$ $x 0.25 \mu \mathrm{~m}$) and an Agilent 5975 mass selective detector. The temperature was held at $80^{\circ} \mathrm{C}$ for 2 min, and then ramped up to $300{ }^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, and finally held at $300^{\circ} \mathrm{C}$ for 10 min .

2. Optimization of the methoxime cleavage

2.1 Investigated nitroarenes

Figure S1: Investigated nitroarenes.

2.2 Optimization table for methoxime 16

Table S1. Optimization for (E)-3,4-dihydronaphthalen-1(2H)-one O-methyl oxime (16) (Yields are isolated).

entry	wavelength	nitroarene	solvent	time	$\frac{\text { yield }}{16: \text { S1:38 }}$
1	385 nm	N3 (1.5 equiv)	MeCN	8h	7\% / 30\% / 29\%
2	405 nm	N3 (1.5 equiv)	MeCN	8h	9\% / 37\% / 25\%
3	420 nm	N3 (1.5 equiv)	MeCN	8h	14\% / 49\% / 23\%
4	450 nm	N3 (1.5 equiv)	MeCN	8h	27\% / 62\% / 5\%
5	470 nm	N3 (1.5 equiv)	MeCN	8h	48\% / 49\% / -
6	420 nm	N3 (1.5 equiv)	MeCN	8h	14\% / 49\% / 23\%
7	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 9: 1$	8h	19\% / 44\% / 31\%
8	420 nm	N3 (1.5 equiv)	$\mathrm{PhH} / \mathrm{H}_{2} \mathrm{O} 9: 1$	8h	23\% / 63\% / 9\%
9	420 nm	N3 (1.5 equiv)	EtOAc/ $\mathrm{H}_{2} \mathrm{O} 9: 1$	8h	23\% / 55\% / 13\%
10	420 nm	N3 (1.5 equiv)	HFIP/ $\mathrm{H}_{2} \mathrm{O} 9: 1$	8h	41\% / 46\% / 9\%
11	420 nm	N3 (1.5 equiv)	MeCN/HFIP/ $\mathrm{H}_{2} \mathrm{O}$ 8.5:0.5:1	8h	12\% / 47\% / 25\%
12	420 nm	N3 (1.5 equiv)	$\mathrm{DCM} / \mathrm{H}_{2} \mathrm{O} 9: 1$	8h	27\% / 50\% / 13\%
13	420 nm	N3 (1.5 equiv)	DCE/ $\mathrm{H}_{2} \mathrm{O} 9: 1$	8h	27\% / 47\% / 25\%
14	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	8h	20\% / 42\% / 33\%
15^{b}	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	8h	22\% / 39\% / 32\%
16^{c}	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	8h	18\% / 34\% / 20\%
17	420 nm	-	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	8h	71\% / 28\% / -
18	-	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	8h	100\% / - / -
19	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	16h	15\% / 34\% / 42\%
20	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	24h	11\% / 26\% / 52\%
21	420 nm	N3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	trace / 10\% / 69\%
22	420 nm	N2 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	17\% / 50\% / 14\%
23	420 nm	SN1 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	7\% / 21\% / 50\%
24	420 nm	SN2 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	17\% / 52\% / 16\%
25	420 nm	SN3 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	19\% / 32\% / 39\%
26	420 nm	N4 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	13\% / 46\% / 30\%
27	420 nm	N1 (1.5 equiv)	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 4: 1$	48h	15\% / 20\% / 51\%

${ }^{a}$ The reactions were carried out in a photoreactor.
${ }^{b}$ The reaction mixture was sparged with argon.
${ }^{c}$ The reaction mixture was sparged with air.

2.3 Optimization table for methoxime 17

Table S2. Optimization for (E)-1-phenylethan-1-one O-methyl oxime (17) (Yields are isolated).

 starting material oxime

[^0]
3. General Procedures

3.1 General Procedure A for the synthesis of oximes

A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, corresponding ketone ($2.00 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride ($251 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.50$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 x)$. Anhydrous pyridine (5 mL) was then added in one portion and the reaction mixture was placed into a preheated $\left(80-115^{\circ} \mathrm{C}\right)$ oil bath with stirring overnight. After this time ($\sim 12 \mathrm{~h}$), the reaction mixture was allowed to cool to room temperature and then quenched by the addition of distilled water $(10 \mathrm{~mL})$. The resulting mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were washed sequentially with $1 \mathrm{~N} \mathrm{HCl}(3 x 10 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, then dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography (0 to 25% of EA:Hex) gave the desired oxime product.
Note: In some cases, the oximes could be used without further purification. However, in that case, it is important to completely remove any residual pyridine from the mixture. This was achieved by azeotropic distillation using toluene.

3.2 General Procedure B for the synthesis of oximes

A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, the corresponding ketone (2.00-10.00 mmol, 1.00 equiv), O-methyloxime hydrochloride (3.00 equiv) and sodium acetate trihydrate (3.00 equiv). The resulting mixture was dissolved in methanol $(5 \mathrm{~mL})$ and placed into a preheated $\left(80^{\circ} \mathrm{C}\right)$ oil bath. The reaction mixture was stirred and held at this temperature overnight and then cooled to room temperature. Concentration under vacuum yielded a residue to which was added distilled water (10 mL). The resulting suspension was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with sat. aq. NaHCO_{3} $(2 x 25 \mathrm{~mL})$ as well as brine $(25 \mathrm{~mL})$. The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product, which was then submitted to purification by flash column chromatography (0 to 25% of EA:Hex) to give the desired oxime product.
Note: In some cases, the oximes could be used without further purification. However, it was important to completely remove any residual acetic acid (that forms during the reaction) from the mixture by repeated washing with sat. aq. NaHCO_{3}.

3.3 General procedure for the oxidative cleavage of oximes to the corresponding ketones

A flame-dried 1-dram clear glass vial was charged with a magnetic stir bar, oxime ($0.100 \mathrm{mmol}, 1.00$ equiv) and 4-nitrophtalonitrile (52 $\mathrm{mg}, 0.300 \mathrm{mmol}, 3.00$ equiv). The vial was sealed using a septum cap and the mixture was evacuated and backfilled with nitrogen ($3 x$) before the addition of anhydrous acetonitrile $(0.4 \mathrm{~mL})$ and distilled water $(0.1 \mathrm{~mL})$. The resulting solution was sparged with nitrogen for a period of 5 min after which the septum cap was exchanged for a Teflon cap which was reinforced by sealing with black tape. The sealed vial was placed on a magnetic stir plate in between two Kessil PR160L lamps (390 nm) with each at a distance of 3 cm . A stream of air/nitrogen was pointed to the vial using a funnel that ensured cooling of the reaction mixture and both lamps were switched on. Stirring under irradiation was continued for 48 h before the irradiation and cooling were discontinued. The reaction mixture was then diluted with DCM $(2 \mathrm{~mL})$ as well as distilled water $(2 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with DCM ($3 \times 2 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The crude product was then subjected to preparative thin layer chromatography / flash column chromatography to obtain the desired ketone products.

4. Reaction setup

Depiction 1: Left: Reaction mixture before irradiation for 48 h ; Right: Reaction mixture after irradiation for 48 h .

Depiction 2: Left: Distance between the two lamps; Right: Setup including the cooling fan.

Depiction 3: Left: Irradiation of the reaction mixture; Right: Setup including protection.

5. Limitations of the scope

S2

48 h

S3
traces detected

S4

48 h

S5 o conversion

\qquad

SA1

Scheme S1: Unsuccessful methoxime cleavage of phenolic \& amine containing compounds.

S2, S4, S6, SA1 and SA3 were subjected to the conditions described in the general procedure. After the indicated reaction time, either no conversion to, or traces the desired ketone products was observed.

6. Mechanistic studies

6.1 Labeling experiments

6.1.1 Preparation of ${ }^{18} \mathrm{O}$-labeled 3 -nitrobenzonitrile

A flame-dried 2-dram vial containing a magnetic stir bar was placed in a $-20^{\circ} \mathrm{C}$ cooling bath under nitrogen atmosphere. Sulfuric acid $\left(700 \mu \mathrm{~L}, 11.7 \mathrm{mmol}, 8.0\right.$ equiv) was added to the vial followed by the dropwise addition of ${ }^{18} \mathrm{O}$ labeled nitric acid ($350 \mathrm{mg}, 3.30 \mathrm{mmol}$, 2.3 equiv) ($65 \mathrm{wt} \%$ in $\mathrm{H}_{2}{ }^{18} \mathrm{O}$). The resulting nitrating acid was stirred for 15 min at the same temperature before benzonitrile (150 mg , $1.45 \mathrm{mmol}, 1.0$ equiv) was added dropwise. Upon complete addition, the resulting mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 2 h . After the indicated reaction time, a separation funnel containing ice-cold diethyl ether (20 mL) as well as ice-cold water (10 mL) was prepared. The reaction mixture was poured into the separation funnel in one portion and extracted quickly with diethyl ether ($2 x 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a mixture of ${ }^{18}$ O-labeled 3-nitrobenzonitrile and 2-nitrobenzonitrile ($\sim 9: 1$) ($195 \mathrm{mg}, 1.28 \mathrm{mmol}, 88 \%$) as a colorless solid. The mixture without was used in the mechanistic studies without further purification.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.54(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{dt}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 1H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform-d) $\delta 148.43,137.71,130.79,127.66,127.38,116.64,114.35$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 152.0358$, found: 152.0360

6.1.2 Isotopic distribution for labeled nitroarene

Table S3. Degree of isotopic enrichment for labeled nitroarene N4 and N5.

entry	$\mathrm{m} / \mathrm{z}=148$ intensity I	$\mathrm{m} / \mathrm{z}=150$ intensity I	$\mathrm{m} / \mathrm{z}=152$ intensity I	SL1 (\%)	SL2 (\%)	SL3 (\%)
1	691721	2373779	2205641	13	45	42

A sample was prepared using a crude mixture of SL1, SL2 and SL3 in a concentration of $1 \mathrm{mg} / \mathrm{mL}$. GC-MS analysis was performed using an Agilent 6890N GC equipped with an HP-5MS Agilent column ($30 \mathrm{~m} \times 0.250 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) and an Agilent 5975 mass selective detector. The temperature was held at $80^{\circ} \mathrm{C}$ for 2 min , and then ramped up to $300^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, and finally held at $300{ }^{\circ} \mathrm{C}$ for 10 min (see Figure S1).

Figure S2: GC-MS trace of N4 and N5 including mass spectrum.

6.1.3 Procedure for labeling experiments of the methoxime cleavage

A flame-dried 1-dram clear glass vial was charged with a magnetic stir bar, oxime ($0.050 \mathrm{mmol}, 1.00$ equiv) and ${ }^{18} \mathbf{O}-\mathrm{N} 4$ ($8.4 \mathrm{mg}, 0.055$ mmol 1.1 equiv). The vial was sealed using a septum cap and the mixture was evacuated and backfilled with nitrogen ($3 x$) before the addition of anhydrous acetonitrile $(0.2 \mathrm{~mL})$ and $\mathrm{H}_{2}^{16} \mathrm{O}$ or $\mathrm{H}_{2}^{18} \mathrm{O}(0.05 \mathrm{~mL})$. The resulting solution was sparged with nitrogen for a period of 5 min after which the septum cap was exchanged for a Teflon cap which was reinforced by sealing with black tape. The sealed vial was placed on a magnetic stir plate in between two Kessil PR160L lamps (390 nm) with each at a distance of 3 cm . A fan was pointed to the vial to ensure cooling of the reaction mixture and both lamps were switched on. Stirring under irradiation was continued for 48 h before the irradiation and cooling were discontinued. The reaction mixture was then diluted with DCM (2 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and the residue was dissolved in anhydrous acetonitrile to give a solution suitable for GC-MS analysis (1mg/mL). GC-MS analysis was performed using an Agilent 6890N GC equipped with an HP5 MS Agilent column ($30 \mathrm{~m} \times 0.250 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) and an Agilent 5975 mass selective detector. The temperature was held at $80{ }^{\circ} \mathrm{C}$ for 2 min , and then ramped up to $300^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, and finally held at $300^{\circ} \mathrm{C}$ for 10 min .

6.1.4 Results of isotopic enrichment

The level of ${ }^{18} \mathrm{O}$ incorporation was calculated using the following formula:

Formula S1: Calculation of ${ }^{18} \mathrm{O}$ incorporation in 46.

Table S4. Summary of labeling results.

entry	nitroarene	$\mathrm{H}_{2} \mathrm{O}$	m/z = 150 intensity I	m/z = 152 intensity I	${ }^{18} \mathrm{O}$ incorporation (\%)
1	${ }^{18} \mathrm{O}-\mathrm{N} 4$	$\mathrm{H}_{2}{ }^{16} \mathrm{O}$	3493239	251928	6
2	N 4	$\mathrm{H}_{2}{ }^{18} \mathrm{O}$	1283669	2865922	69
3	${ }^{18} \mathrm{O}-\mathrm{N} 4$	$\mathrm{H}_{2}{ }^{18} \mathrm{O}$	931915	3070164	77

Figure S3: GC-MS trace (Table S4, entry 1) of crude mixture of labeling experiments showing mass spectrum ratio of ${ }^{18} \mathrm{O}-46$ versus 46.

Figure S4: GC-MS trace (Table S4, entry 2) of crude mixture of labeling experiments showing mass spectrum ratio of ${ }^{18} \mathrm{O}-46$ versus 46 .

Figure S5: GC-MS trace (Table S4, entry 3) of crude mixture of labeling experiments showing mass spectrum ratio of ${ }^{18} \mathrm{O}-46$ versus 46 .

6.2 Mechanistic studies using bulky, non-volatile oximes

Scheme S2: Detection of byproducts of the oxidative cleavage reaction.

The reactions for this part of the mechanistic studies were performed analogous to the General Procedure for the labeling experiments (S16). The GC-MS traces of the detected byproducts are shown (Figure S6-S8).

Figure S6: GC-MS trace of commercial 1-adamantanol (65) as reference.

Figure S7: GC-MS trace of detected 1-adamantanol (65) in the crude mixture from 60.

Figure S8: GC-MS trace of detected 1-adamantanol (65) in the crude mixture from 61.

Figure S9: Crude ${ }^{1} \mathrm{H}$ NMR depicting the presence of $\mathbf{6 7}$ from $\mathbf{6 0}$.

7. Preparation of oxime starting materials

17
(E)-1-Phenylethan-1-one O-methyl oxime (17) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{1}$

S8
(E)-1-(4-(tert-Butyl)phenyl)ethan-1-one O-methyl oxime (S8) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{2}$

(E)-1-(4-(Trifluoromethyl)phenyl)ethan-1-one O-methyl oxime (S9) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{3}$

[^1]

16
(E)-3,4-Dihydronaphthalen-1(2H)-one O-methyl oxime (16) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{4}$

39
(E)-3,4-Dihydronaphthalen-1(2H)-one oxime (39) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{5}$

40
(E)-3,4-Dihydronaphthalen-1(2H)-one O-acetyl oxime (40) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{6}$

[^2]
tert-Butyl (E)-2-(3,4-dihydronaphthalen-1 $(2 H)$-ylidene)hydrazine-1-carboxylate (41) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{7}$

42
(E)-1-(((3,4-Dihydronaphthalen-1(2H)-ylidene)amino)oxy)propan-2-one (42): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, (E)-2-(((3,4-dihydronaphthalen-1 $(2 \mathrm{H})$-ylidene)amino) oxy) acetic acid ($1.46 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00$ equiv) as well as O-(carboxymethyl)hydroxylamine hemihydrochloride ($4.37 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$. Anhydrous ethanol (5 mL) and pyridine $(5 \mathrm{~mL})$ were then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirred overnight at this temperature. After $\sim 12 \mathrm{~h}$, the reaction mixture was allowed to cool to room temperature and then quenched by the addition of distilled water (10 mL). The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCI}(3 \times 10 \mathrm{~mL})$ as well as brine (30 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure to give (E)-1-(((3,4-dihydronaphthalen-1(2H)-ylidene)amino)oxy)propan-2-one ($2.17 \mathrm{~g}, 9.90 \mathrm{mmol}, 99 \%$) as an off-white solid that was used without further purification.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=8.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform-d) $\delta 175.1,156.9,140.2,129.9,129.8,128.8,126.6,124.7,70.5,29.8,24.7,21.4$.

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 220.0968$, found: 220.0968

[^3]

S10
(E)-Chroman-4-one O-methyl oxime (S10) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{8}$

S11
(E)-1-(4-Methoxyphenyl)ethan-1-one O-methyl oxime (S11) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{4}$

S12
(E)-1-(3-Methoxyphenyl)ethan-1-one O-methyl oxime (S12) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{9}$

[^4]

S13
(E)-1-(2-Methoxyphenyl)ethan-1-one O-methyl oxime (S13) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{4}$

S14
(E)-3-(1-(Methoxyimino)ethyl)benzonitrile (S14) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{10}$

S15
(E)-2,2-Dimethyl-1-(4-phenoxyphenyl)propan-1-one O-methyl oxime (S15): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 2,2-dimethyl-1-(4-phenoxyphenyl)propan-1-one ($509 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride ($251 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.50$ equiv). The microwave vial was then sealed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 x)$. Anhydrous pyridine (5 mL) was added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirred overnight. After $\sim 12 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$, the reaction mixture was allowed to cool to room temperature before being quenched by the addition of distilled water $(10 \mathrm{~mL})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL})$ as well as brine $(30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and concentrated under reduced pressure to give (E)-2,2-dimethyl-1-(4-phenoxyphenyl)propan-1-one O-methyl oxime ($510 \mathrm{mg}, 1.80 \mathrm{mmol}, 90 \%$) as a colorless viscous oil that was used without further purification.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}$, $3 H), 1.16(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 165.1,156.9,156.7,129.9,129.1,123.7,119.5,117.8,61.6,37.3,28.5$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 284.1645$, found: 284.1643

[^5]

S16
(E)-Cyclohexyl(phenyl)methanone O-methyl oxime (S16) was prepared according to General Procedure A. The product was isolated as a mixture of E / Z isomers ($E: Z 39: 61$). Spectral data was in full agreement with the reported literature values. ${ }^{11}$

S17

Diphenylmethanone O-methyl oxime (S17) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{12}$

S18

Bis(4-fluorophenyl)methanone O-methyl oxime (S18) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{9}$

[^6]

S19
(E)-1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one O-methyl oxime (S19) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{13}$

S20

(E)-1-(Pyrazin-2-yl)ethan-1-one O-methyl oxime (S20). A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 1-(pyrazin-2-yl)ethan-1-one ($244 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride ($251 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.50$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$. Anhydrous pyridine (5 mL) was then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirred overnight. The reaction mixture was then allowed to cool to room temperature and quenched by the addition of distilled water (10 mL). The resulting mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL}$) as well as brine (30 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was subjected to flash column chromatography (EA:Hex, 0-18\%) to obtain (E)-1-(pyrazin-2-yl)ethan-1-one O-methyl oxime ($249 \mathrm{mg}, 1.65 \mathrm{mmol}, 82 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) ठ 9.16 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.52 (dd, $\left.J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 2.29 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 153.7, 149.6, 143.4, 143.0, 142.4, 62.4, 10.3.

HRMS (ESI): Calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 152.0818 , found: 152.0818

S21
(E)-1-(4-Nitrophenyl)ethan-1-one O-methyl oxime (S21) was prepared according to General Procedure A. The product was isolated as a mixture of E / Z isomers ($E: Z 83: 17$). Spectral data was in full agreement with the reported literature values. ${ }^{2}$

[^7]

S22

(E)-5-(Methoxyimino)-5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfonate (S22): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfonate ($500 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.00$ equiv), O-Methyloxime Hydrochloride ($213 \mathrm{mg}, 2.55 \mathrm{mmol}, 1.50$ equiv) as well as sodium acetate trihydrate ($347 \mathrm{mg}, 2.55 \mathrm{mmol}, 1.50$ equiv). The resulting mixture was dissolved in methanol ($6 \mathrm{~mL}, 0.3 \mathrm{M}$) and placed into a preheated $\left(80^{\circ} \mathrm{C}\right)$ oil bath. Stirring was continued overnight and the resulting mixture was then concentrated under vacuum and distilled water (15 mL) was added. The resulting offwhite suspension was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3$ $x 100 \mathrm{~mL}$) as well as brine (50 mL) before being dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography (EA:Hex, 0-20\%) gave (Z)-5-(methoxyimino)-5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfonate ($420 \mathrm{mg}, 1.30 \mathrm{mmol}, 77 \%$) as a light orange oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d$) \delta 8.06(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.86(q d, J=6.6,3.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 152.6,149.7,141.9,131.3,126.6,121.1,119.3,118.9(q, J=320.8 \mathrm{~Hz}), 62.4,29.9,24.0,21.2$.
${ }^{19}$ F NMR (565 MHz , Chloroform-d) $\delta-72.90$.

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 324.0512$, found: 324.0509

S23
(E)-1-(4-Fluorophenyl)ethan-1-one O-methyl oxime (S23) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{14}$

52
(E)-2-Hydroxy-1,2-diphenylpropan-1-one O-methyl oxime (52): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 2-hydroxy-1,2-diphenylpropan-1-one ($453 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride (251 mg , $3.00 \mathrm{mmol}, 1.50$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with N_{2} ($3 x$). Anhydrous pyridine $(5 \mathrm{~mL})$ was then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirring was continued overnight. The reaction mixture was allowed to cool to room temperature before being quenched by the addition of distilled water (10 $\mathrm{mL})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were subsequently washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL})$ as well as brine $(30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was subjected to flash column chromatography (EA:Hex 0-10\%) to obtain (E)-2-hydroxy-1,2-diphenylpropan-1-one Omethyl oxime ($400 \mathrm{mg}, 1.57 \mathrm{mmol}, 78 \%$) as a colorless oil that solidified to a colorless solid upon standing.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 161.1,143.8,131.9,128.6,128.2,128.1,127.9,127.6,126.2,76.2,62.5,27.2$

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 256.1332 , found: 256.1332

[^8]
(E)-1-(4-Chlorophenyl)ethan-1-one O-methyl oxime (S24) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{14}$

S25
(E)-1-(4-Bromophenyl)ethan-1-one O-methyl oxime (S25) was prepared according to General Procedure B. Spectral data was in full agreement with the reported literature values. ${ }^{14}$

59
($1 r, 3 r, 5 R, 7 S$)-Adamantan-2-one O-methyl oxime (59) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{15}$

[^9]

S26
(E)-1-((3r,5r,7r)-Adamantan-1-yl)ethan-1-one O-methyl oxime (S26): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 1-((3r,5r,7r)-adamantan-1-yl)ethan-1-one ($357 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride (251 mg , $3.00 \mathrm{mmol}, 1.50$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with N_{2} (3 x). Anhydrous pyridine $(5 \mathrm{~mL})$ was then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirring was continued overnight. The reaction mixture was allowed to cool to room temperature before being quenched by the addition of distilled water (10 $\mathrm{mL})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(3$ $x 10 \mathrm{~mL}$) as well as brine (30 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was subjected to flash column chromatography (EA:Hex, 0-10\%) to obtain (E)-1-((3r,5r,7r)-adamantan-1-yl)ethan-1-one O-methyl oxime ($390 \mathrm{mg}, 1.88 \mathrm{mmol}, 94 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 3.83$ (s, 3H), 2.01 (s, 3H), 1.82 - 1.59 (m, 15H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 163.6, 61.1, 39.6, 38.9, 36.9, 28.3, 9.5.

HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 208.1696, found: 208.1694

S27

4-(tert-Butyl)cyclohexan-1-one O-methyl oxime (S27) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{16}$

50
(2E,3E)-4-phenylbut-3-en-2-one O-methyl oxime (50) was prepared according to General Procedure B. The product was isolated as a mixture of E / Z isomers ($E: Z$ 81:19). Spectral data was in full agreement with the reported literature value. ${ }^{17}$

[^10]
($5 S, 10 S, 13 R, 17 R, E)$-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-3H cyclopenta[a]phenanthren-3-one O-methyl oxime (S28): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, ($5 \mathrm{~S}, 10 \mathrm{~S}, 13 \mathrm{R}, 17 \mathrm{R}$)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one ($387 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) as well as Omethyloxime hydrochloride ($125 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.50$ equiv). The microwave vial was closed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$. Anhydrous pyridine (5 mL) was then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirring was continued overnight. The reaction mixture was allowed to cool to room temperature before being quenched by the addition of distilled water (10 mL). The resulting mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL})$ as well as brine (30 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was recrystallized from hot ethyl acetate to obtain (5S,10S,13R,17R,E)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one O-methyl oximeoxime ($320 \mathrm{mg}, 0.77 \mathrm{mmol}, 77 \%$) as colorless crystals.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) б 3.81 (s, 3H), $3.20-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{tt}, J=10.9,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 9 \mathrm{H}), 1.18-0.95(\mathrm{~m}, 10 \mathrm{H}), 0.95-$ $0.80(\mathrm{~m}, 13 \mathrm{H}), 0.66(\mathrm{~s}, 3 \mathrm{H})$.

HRMS (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 416.3887$, found: 416.3884

55
(1R,10S)-4,12,12-Trimethyl-5-oxatricyclo[8.2.0.0 $0^{4,6}$]dodecan-9-one (55) was prepared according to a previously reported procedure starting from (-)-caryophyllene oxide. Spectral data was in full agreement with the reported literature values. ${ }^{18}$

(1R,10S,E)-4,12,12-Trimethyl-5-oxatricyclo[8.2.0.0 ${ }^{4,6}$]dodecan-9-one O-methyl oxime (S29): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 4,12,12-trimethyl-5-oxatricyclo[8.2.0.04,6]dodecan-9-one ($330 \mathrm{mg}, 1.48 \mathrm{mmol}, 1.00$ equiv), O-methyloxime hydrochloride ($124 \mathrm{mg}, 1.48 \mathrm{mmol}, 1.00$ equiv) as well as sodium acetate trihydrate ($202 \mathrm{mg}, 1.48 \mathrm{mmol}, 1.00$ equiv). The resulting mixture was dissolved in methanol ($5 \mathrm{~mL}, 0.3 \mathrm{M}$) and placed into a preheated $\left(80^{\circ} \mathrm{C}\right)$ oil bath. Stirring was continued overnight and the resulting mixture was concentrated under vacuum before the addition of distilled water (10 mL). The resulting offwhite suspension was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$) and the combined organic layers were washed with sat. aq. NaHCO_{3} (3 $\times 100 \mathrm{~mL}$) as well as brine (50 mL) before being dried over anhydrous sodium sulfate. Concentration under reduced pressure gave the crude product which was then submitted to purification by flash column chromatography (EA:Hex, 0-25\%) to give (E)-4,12,12-trimethyl-5-oxatricyclo[8.2.0.04,6]dodecan-9-one O-methyl oxime ($300 \mathrm{mg}, 1.19 \mathrm{mmol}, 80 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 3.85$ (s, 1H), 3.82 (s, 3H), 2.85 (dd, $J=11.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.62 (ddd, $J=11.9,6.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{dd}, J=12.2,7.2 \mathrm{~Hz}, 0 \mathrm{H}), 2.39-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{dt}, J=13.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.70-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 4 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform-d) $\delta 161.5,64.5,61.3,59.8,48.7,46.0,38.5,37.8,35.5,29.8,26.6,24.2,23.0,21.1,16.3$.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 252.1958$, found: 252.1957

[^11]Naproxen derived oxime was prepared from the corresponding ketone, which was made using a known procedure as detailed here:

S30
N-methoxy-2-(6-methoxynaphthalen-2-yl)-N-methylpropanamide (S30) was prepared according to a previously reported procedure starting from (+/- naproxen). Spectral data are in full agreement with the reported literature values. ${ }^{19}$

3-(6-methoxynaphthalen-2-yl)butan-2-one (53) was prepared according to a previously reported procedure. Spectral data are in full agreement with the reported literature values. ${ }^{20}$

(E)-3-(6-Methoxynaphthalen-2-yl)butan-2-one O-methyl oxime (S31): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, 3-(6-methoxynaphthalen-2-yl)butan-2-one ($808 \mathrm{mg}, 3.54 \mathrm{mmol}, 1.00$ equiv), O-methyloxime hydrochloride (443 $\mathrm{mg}, 5.31 \mathrm{mmol}, 1.50$ equiv) as well as sodium acetate trihydrate ($722 \mathrm{mg}, 5.31 \mathrm{mmol}, 1.50$ equiv). The resulting mixture was dissolved in methanol ($6 \mathrm{~mL}, 0.3 \mathrm{M}$) and placed into a preheated $\left(80^{\circ} \mathrm{C}\right)$ oil bath. Stirring was continued overnight and the resulting mixture was allowed to cool to room temperature and then concentrated under vacuum before the addition of distilled water (10 mL). The resulting off-white suspension was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with sat. aq. NaHCO_{3} ($3 \times 100 \mathrm{~mL}$) as well as brine (50 mL) before being dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography (EA:Hex, 0-20\%) gave (E)-3-(6-methoxynaphthalen-2-yl)butan-2-one O-methyl oxime ($750 \mathrm{mg}, 2.91 \mathrm{mmol}, 82 \%$) as a light orange oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.70$ (t, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (s, 1H), 7.35 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18-7.10$ (m, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 3.79 (q, J = 7.1 Hz, 1H), 1.65 (s, 3H), 1.52 (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 159.9,157.6,137.6,133.6,129.3,129.1,127.1,126.7,125.7,119.0,105.7,61.4,55.4,45.2,17.8$, 12.4.

[^12]

S32

(E)-6,7,8,9-Tetrahydro-5H-benzo[7]annulen-5-one O-methyl oxime (S32) was prepared according to General Procedure A. Spectral data are in full agreement with the reported literature values. ${ }^{21}$

S33

(E)-2-(1-(Methoxyimino)ethyl)phenyl acetate (S33) to a previously reported procedure. Spectral data are in full agreement with the reported literature values. ${ }^{22}$

Undecan-6-one O-methyl oxime (S34): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, undecane-6-one ($1.00 \mathrm{~g}, 5.87 \mathrm{mmol}, 1.00$ equiv) as well as O-methyloxime hydrochloride ($1.47 \mathrm{~g}, 17.6 \mathrm{mmol}, 3.0$ equiv). The microwave vial was sealed, placed under vacuum, and backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$. Anhydrous pyridine (5 mL) was then added in one portion and the reaction mixture was placed into a preheated $80^{\circ} \mathrm{C}$ oil bath and stirring was continued overnight. The reaction mixture was allowed to cool to room temperature before being quenched by the addition of distilled water (10 mL). The resulting mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{~mL})$ as well as brine (30 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was subjected to flash column chromatography (EA:Hex, 0-5\%) to give undecan-6-one O-methyl oxime ($1.05 \mathrm{~g}, 5.27 \mathrm{mmol}, 90 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) ठ 3.80 (s, 3H), $2.28-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 8 \mathrm{H})$, $0.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) δ 162.1, 61.2, 34.2, 32.2, 31.8, 28.0, 26.6, 25.7, 22.6, 22.5, 14.1, 14.1.

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 200.2001, found: 200.1992

[^13]

S35
(E)-1-(4-(Methylthio)phenyl)ethan-1-one O-methyl oxime (S35) was prepared according to General Procedure A. Spectral data was in full agreement with the reported literature values. ${ }^{23}$

S36
(E)-1-(4-(Methylsulfonyl)phenyl)ethan-1-one O-methyl oxime (S36) was prepared according to General Procedure A. Spectral data are in full agreement with the reported literature values. ${ }^{23}$

56

To a 2 mL vial was added (1R,3S,3aR,9aS,E)-8-(methoxyimino)-1,5-dimethyl-9a-((trimethylsilyl)oxy)-1,2,3,3a,4,8,9,9a-octahydro-3,9a (epoxymethano)cyclopenta[def]phenanthren-10-one ($27.0 \mathrm{mg}, 67.6 \mu \mathrm{~mol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(15.2 \mathrm{mg}, 67.6 \mu \mathrm{~mol}, 1.0$ equiv), CSA (15.7 mg, $67.6 \mu \mathrm{~mol}, 1.0$ equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\left(36.5 \mathrm{mg}, 135 \mu \mathrm{~mol}, 2.0\right.$ equiv), $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(37.3 \mathrm{mg}, 135 \mu \mathrm{~mol}, 2.0\right.$ equiv) and $\mathrm{KO}_{2} \mathrm{CCO}_{2}(28.8 \mathrm{mg}, 203$ $\mu \mathrm{mol}, 3.0$ equiv), followed by DCE $(1.35 \mathrm{~mL}, 0.05 \mathrm{M})$ at room temperature and the vial was sealed with a Teflon cap. After stirring at $90{ }^{\circ} \mathrm{C}$ for 18 h , the reaction mixture was allowed to cool down to room temperature, filtered through a silica plug (eluted with hexanes/EtOAc = 1:1), and concentrated in vacuo. The resulting residue was purified by thin layer preparative TLC (hexanes/EtOAC $=1: 1$), yielding $64(11.5 \mathrm{mg}, 25.1 \mu \mathrm{~mol}, 37 \%)$ as a white solid. Spectral data was in full agreement with the reported literature values. ${ }^{24}$

[^14]

60
(E)-1-phenylethan-1-one $O-((3 s, 5 s, 7 s)$-adamantan-1-yl) oxime (60): A flame-dried 20 mL Biotage microwave vial was charged with a magnetic stir bar, acetophenone ($25 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.00$ equiv), $O-\left((3 s, 5 \mathrm{~s}, 7 \mathrm{~s})\right.$-adamantan- 1 -yl)hydroxylamine hydrochloride ${ }^{25}$ (64 mg , $0.31 \mathrm{mmol}, 1.50$ equiv) as well as sodium acetate trihydrate ($42 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.50$ equiv). The resulting mixture was dissolved in methanol $(0.7 \mathrm{~mL}, 0.3 \mathrm{M})$ and placed into a preheated $\left(100^{\circ} \mathrm{C}\right)$ oil bath. Stirring was continued overnight and the resulting mixture was allowed to cool to room temperature and then concentrated under vacuum before the addition of distilled water (10 mL). The resulting off-white suspension was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the combined organic layers were washed with sat. aq. NaHCO_{3} $(3 \times 10 \mathrm{~mL})$ as well as brine $(5 \mathrm{~mL})$ before being dried over anhydrous sodium sulfate and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography (EA:Hex, 0-10\%) gave (E)-1-phenylethan-1-one 0 -($(3 s, 5 s, 7 s)$ -adamantan-1-yl) oxime ($40 \mathrm{mg}, 0.14 \mathrm{mmol}, 68 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.73-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.69$ (s, 6H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ठ 152.8, 137.8, 128.7, 128.4, 126.0, 77.9, 42.0, 36.7, 30.9, 12.5.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 270.1852$, found: 270.1852

61

Diphenylmethanone $O-\left((3 s, 5 s, 7 s)\right.$-adamantan-1-yl) oxime (61) was prepared according to a previously described procedure. ${ }^{26}$ Spectral data was in full agreement with the reported literature values.

[^15]
8. Preparation of ketone products from the corresponding ketoximes

Acetophenone (19) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{27}$ The title compound (19) ($11.4 \mathrm{mg}, 0.095 \mathrm{mmol}, 95 \%$) was isolated as a colorless liquid.

1-(4-(tert-Butyl)phenyl)ethan-1-one (20) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{28}$ The title compound (20)(16.1 mg, 0.091 mmol, 91%) was isolated as a colorless liquid.

21
1-(4-(Trifluoromethyl)phenyl)ethan-1-one (21) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{29}$ The title compound (21) (16.7 mg, $0.089 \mathrm{mmol}, 89 \%$) was isolated as a colorless liquid.

[^16]

22
Chroman-4-one (22) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{30}$ The title compound (22) ($11.3 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($2.8 \mathrm{mg}, 0.016 \mathrm{mmol}, 16 \%$).

23
1-(4-Methoxyphenyl)ethan-1-one (23) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{31}$ The title compound (23) ($6.1 \mathrm{mg}, 0.041$ $\mathrm{mmol}, 41 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($4.7 \mathrm{mg}, 0.026 \mathrm{mmol}, 26 \%$).

24
1-(3-Methoxyphenyl)ethan-1-one (24) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{32}$ The title compound (24) (7.0 mg, 0.047 $\mathrm{mmol}, 47 \%$) was isolated as a colorless liquid along with an isomeric mixture of starting material oxime ($6.1 \mathrm{mg}, 0.034 \mathrm{mmol}, 34 \%$).

[^17]

25
1-(2-Methoxyphenyl)ethan-1-one (25) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{33}$ The title compound (25) ($6.6 \mathrm{mg}, 0.044$ $\mathrm{mmol}, 44 \%$) was isolated as a colorless liquid along with an isomeric mixture of starting material oxime ($3.2 \mathrm{mg}, 0.018 \mathrm{mmol}, 18 \%$).

1-(4-Chlorophenyl)ethan-1-one (26) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{34}$ The title compound (26) (7.7 mg, 0.05 $\mathrm{mmol}, 50 \%$) was isolated as a colorless oil.

1-(4-Bromophenyl)ethan-1-one (7) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{35}$ The title compound (7) ($13.5 \mathrm{mg}, 0.068$ $\mathrm{mmol}, 68 \%$) was isolated as a colorless solid.

[^18]

1-(4-Fluorophenyl)ethan-1-one (27) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{36}$ The title compound (27) (11.9 mg, $0.087 \mathrm{mmol}, 87 \%$) was isolated as a colorless oil along with an isomeric mixture of starting material oxime ($1.5 \mathrm{mg}, 0.009 \mathrm{mmol}, 9 \%$).

1-(4-Nitrophenyl)ethan-1-one (28) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{37}$ The title compound (28) (10.5 mg, $0.064 \mathrm{mmol}, 64 \%$) was isolated as a light yellow solid along with an isomeric mixture of starting material oxime ($3.3 \mathrm{mg}, 0.017 \mathrm{mmol}$, 17\%).

3-Acetylbenzonitrile (29) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{38}$ The title compound (29) ($8.0 \mathrm{mg}, 0.055 \mathrm{mmol}, 55 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($4.5 \mathrm{mg}, 0.026 \mathrm{mmol}, 26 \%$).

[^19]

1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one (30) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{39}$ The title compound ($\mathbf{3 0}$) ($5.1 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($4.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \%$).

31
Cyclohexyl(phenyl)methanone (31) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{40}$ The title compound (31) ($9.1 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 50 \%$) was isolated as a colorless oil along with an isomeric mixture of starting material oxime ($8.5 \mathrm{mg}, 0.039 \mathrm{mmol}, 39 \%$).

32
Benzophenone (32) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones.
 as a colorless solid along with starting material oxime ($3.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \%$).

[^20]

33
bis(4-Fluorophenyl)methanone (33) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{42}$ The title compound (33) (16.0 mg, $0.073 \mathrm{mmol}, 73 \%$) was isolated as a colorless solid along with starting material oxime ($3.7 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \%$).

2,2-Dimethyl-1-(4-phenoxyphenyl)propan-1-one (34) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{43}$ The title compound (34) (11.4 $\mathrm{mg}, 0.045 \mathrm{mmol}, 45 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($13.9 \mathrm{mg}, 0.049 \mathrm{mmol}$, 49\%).

35
1-(Pyrazin-2-yl)ethan-1-one (35) was prepared following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{44}$ The title compound (35) (4.2 mg, 0.33 $\mathrm{mmol}, 20 \%$) was isolated as a light beige solid along with an isomeric mixture of starting material oxime ($6.2 \mathrm{mg}, 0.041 \mathrm{mmol}, 41 \%$).

36
2-Acetylphenyl acetate (36) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{45}$ The title compound (36) ($8.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 40 \%$) was isolated as a colorless oil along with an isomeric mixture of starting material oxime ($10.6 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$).

[^21]

37

6,7,8,9-Tetrahydro-5H-benzo[7]annulen-5-one (37) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{46}$ The title compound (37) (9.7 mg, $0.061 \mathrm{mmol}, 61 \%$) was isolated as a colorless oil.

38
3,4-Dihydronaphthalen-1 $2 H$)-one (38) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{47}$ The title compound (38) (10.1 mg, $0.069 \mathrm{mmol}, 69 \%$) was isolated as a slightly yellowish liquid along with an isomeric mixture of starting material oxime ($1.7 \mathrm{mg}, 0.01$ mmol, 10\%).

5-oxo-5,6,7,8-Tetrahydronaphthalen-2-yl trifluoromethanesulfonate (43) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{48}$ The title compound (51) ($9.0 \mathrm{mg}, 0.031 \mathrm{mmol}, 31 \%$) was isolated as a light orange oil along with an isomeric mixture of starting material oxime ($3.9 \mathrm{mg}, 0.012 \mathrm{mmol}, 12 \%$).

[^22]

44
1-(4-(Methylsulfonyl)phenyl)ethan-1-one (44) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{49}$ The title compound (44) ($15.7 \mathrm{mg}, 0.079$ $\mathrm{mmol}, 79 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($5.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 18 \%$).

45
1-(4-(Methylthio)phenyl)ethan-1-one (45) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{50}$ The title compound (45) ($5.2 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 30 \%$) was isolated as a colorless oil along with an isomeric mixture of starting material oxime ($3.7 \mathrm{mg}, 0.019 \mathrm{mmol}, 19 \%$).

46
($1 r, 3 r, 5 r, 7 r$)-Adamantan-2-one (46) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{51}$ The title compound (46)(11.1 mg, $0.073 \mathrm{mmol}, 73 \%$) was isolated as a colorless solid along with starting material oxime ($5.6 \mathrm{mg}, 0.031 \mathrm{mmol}, 31 \%$).

47
1-((3r,5r,7r)-Adamantan-1-yl)ethan-1-one (47) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{52}$ The title compound (47) (10.5 mg , $0.059 \mathrm{mmol}, 59 \%$) was isolated as a colorless oil along with an isomeric mixture of starting material oxime ($7.3 \mathrm{mg}, 0.035 \mathrm{mmol}, 35 \%$).

[^23]

48
4-(tert-Butyl)cyclohexan-1-one (48) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{51}$ The title compound (48) ($6.0 \mathrm{mg}, 0.039$ $\mathrm{mmol}, 39 \%$) was isolated as a colorless solid solid along with starting material oxime ($2.7 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \%$).

Undecan-6-one (49) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{53}$ The title compound (49) ($15.2 \mathrm{mg}, 0.09 \mathrm{mmol}, 89 \%$) was isolated as a colorless oil.

3-(6-Methoxynaphthalen-2-yl)butan-2-one (53) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{19}$ The title compound (53) (4.1 mg , $0.021 \mathrm{mmol}, 21 \%$) was isolated as a light orange oil along with an isomeric mixture of starting material oxime ($13.1 \mathrm{mg}, 0.051 \mathrm{mmol}$, 51\%).

[^24]
(5S,10S,13R,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral data are in full agreement with the reported literature values. ${ }^{54}$ The title compound (54) ($12.2 \mathrm{mg}, 0.031 \mathrm{mmol}, 31 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($25.8 \mathrm{mg}, 0.062 \mathrm{mmol}, 62 \%$).

55
$(1 R, 10 S)-4,12,12$-Trimethyl-5-oxatricyclo[8.2.0.0 ${ }^{4,6}$]dodecan-9-one (55) was obtained following the general procedure for the oxidative cleavage of oximes to the corresponding ketones. Spectral are was in full agreement with the reported literature values. ${ }^{18}$ The title compound (55) ($15.0 \mathrm{mg}, 0.067 \mathrm{mmol}, 67 \%$) was isolated as a colorless solid along with an isomeric mixture of starting material oxime ($5.5 \mathrm{mg}, 0.022 \mathrm{mmol}, 22 \%$).

[^25]

57
A flame-dried 1-dram clear glass vial was charged with a magnetic stir bar, methyl ($1 R, 3 S, 3 \mathrm{a} R, 9 \mathrm{a} S, E$)-8-(methoxyimino)-1,5-dimethyl-10-oxo-9a ${ }^{1}$-((trimethylsilyl)oxy)-1,2,3,3a,4,8,9,9a-octahydro-3,9a ${ }^{1}$-(epoxymethano)cyclopenta[deflphenanthrene-7-carboxylate (4.6 $\mathrm{mg}, 0.01 \mathrm{mmol}, 1.00$ equiv) and 4-nitrophtalonitrile ($5.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 3.00$ equiv). The vial was sealed using a septum cap and the mixture was evacuated and backfilled with nitrogen (3x) before the addition of anhydrous acetonitrile (0.16 mL) and distilled water (0.04 mL). The resulting solution was sparged with nitrogen for a period of 5 min after which the septum cap was exchanged for a Teflon cap which was reinforced by sealing with black tape. The sealed vial was placed in the photoreactor (420 nm). Stirring was continued for 48 h before the irradiation and cooling were discontinued. The reaction mixture was then diluted with DCM $(2 \mathrm{~mL})$ as well as distilled water (2 mL) and the phases were separated. The aqueous phase was extracted with DCM ($3 \times 2 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The crude product was then subjected to preparative thin layer chromatography (EA:Hex, 50\%) to give methyl (1R,3S,3aR,9aS)-1,5-dimethyl-8,10-dioxo-9a ${ }^{1}$ -((trimethylsilyl)oxy)-1,2,3,3a,4,8,9,9a ${ }^{1}$-octahydro-3,9a-(epoxymethano)cyclopenta[def]phenanthrene-7-carboxylate (57) (1.8 mg , $0.0042 \mathrm{mmol}, 42 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.34(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{J}=17.9,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=17.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.39$ (m, 1H), 1.33 - 1.28 (m, 1H), 0.91 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}),-0.16$ (s, 9H).
${ }^{13}$ C NMR (151 MHz , Chloroform- d) δ 194.4, 172.4, 169.2, 145.2, 142.3, 141.3, 131.9, 131.1, 126.1, 84.6, 78.3, 54.3, 53.1, 48.26, 37.0 , 31.4, 30.0, 28.9, 19.8, 19.2, 1.2.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 429.1728, found: 429.1728.

3
A flame-dried 1-dram clear glass vial was charged with a magnetic stir bar, methyl ($1 R, 3 S, 3 a R, 9 a S$)-1,5-dimethyl-8,10-dioxo-9a ${ }^{1}$ -((trimethylsilyl)oxy)-1,2,3,3a,4,8,9,9a ${ }^{1}$-octahydro-3,9a-(epoxymethano)cyclopenta[def]phenanthrene-7-carboxylate (65) (1.3 mg, 3.0 $\mu \mathrm{mol}, 1.00$ equiv) and the mixture was evacuated and backfilled with nitrogen ($3 x$) before the addition of THF ($150 \mu \mathrm{~L}, 0.02 \mathrm{M}$). The resulting mixture was placed in an ice-bath and stirring was continued for 10 min . After the indicated time, TBAF (1M in THF, $15 \mu \mathrm{~L}, 15$ $\mu \mathrm{mol}, 5.00$ equiv) was added dropwise and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . Subsequently, the mixture was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mu \mathrm{~L})$ and diluted with water $(400 \mu \mathrm{~L})$. The phases were separated, and the aqueous phase was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was then subjected to preparative thin layer chromatography (EA:Hex, 66\%) to obtain cephanolide $\mathrm{D}(3)(1.0 \mathrm{mg}, 2.8 \mu \mathrm{~mol}, 93 \%)$ as a colorless solid.

Spectral data are in full agreement with the reported literature values. ${ }^{55}$

[^26]
9. References

[1]
P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688-5691.
Y.-Q. Li, Q.-L. Yang, P. Fang, T.-S. Mei, D. Zhang, Org. Lett. 2017, 19, 2905-2908.
C. Ma, C.-Q. Zhao, Y.-Q. Li, L.-P. Zhang, X.-T. Xu, K. Zhang, T.-S. Mei, Chem. Commun. 2017, 53, 12189-12192.
[4] Sk. S. Shah, M. Shee, A. K. Singh, A. Paul, N. D. P. Singh, J. Org. Chem. 2020, 85, 3426-3439.
[5] T. Ohwada, N. Tani, Y. Sakamaki, Y. Kabasawa, Y. Otani, M. Kawahata, K. Yamaguchi, Proc. Natl. Acad. Sci. 2013, 110, 42064211.
[6] A. Yadav, A. Yadav, S. Tripathi, V. Dewaker, R. Kant, P. N. Yadav, A. K. Srivastava, J. Org. Chem. 2022, 87, 7350-7364.
[7] J. Wang, S. Zha, K. Chen, J. Zhu, Org. Chem. Front. 2016, 3, 1281-1285.
[8] R. G. Schmidt, E. K. Bayburt, S. P. Latshaw, J. R. Koenig, J. F. Daanen, H. A. McDonald, B. R. Bianchi, C. Zhong, S. Joshi, P. Honore, K. C. Marsh, C.-H. Lee, C. R. Faltynek, A. Gomtsyan, Bioorg. Med. Chem. Lett. 2011, 21, 1338-1341.
[9] S.-S. Zhang, Y.-C. Zheng, Z.-W. Zhang, S.-Y. Chen, H. Xie, B. Shu, J.-L. Song, Y.-Z. Liu, Y.-F. Zeng, L. Zhang, Org. Lett. 2021, 23, 5719-5723.
[10] L. Liu, N. Wang, C. Dai, Y. Han, S. Yang, Z. Huang, Y. Zhao, Eur. J. Org. Chem. 2019, 2019, 7857-7863.
[11] J. Mas-Roselló, T. Smejkal, N. Cramer, Science 2020, 368, 1098-1102.
[12] B. S. Pilgrim, A. E. Gatland, C. H. A. Esteves, C. T. McTernan, G. R. Jones, M. R. Tatton, P. A. Procopiou, T. J. Donohoe, Org. Biomol. Chem. 2016, 14, 1065-1090.
C. Zhu, M. Yamane, Org. Lett. 2012, 14, 4560-4563.
[14] Y.-K. Liu, S.-J. Lou, D.-Q. Xu, Z.-Y. Xu, Chem. - Eur. J. 2010, 16, 13590-13593.
[15] L. I. L. Cabral, S. Pomel, S. Cojean, P. S. M. Amado, P. M. Loiseau, M. L. S. Cristiano, Molecules 2020, $25,465$.
[16] Y. Dong, J. L. Vennerstrom, J. Org. Chem. 1998, 63, 8582-8585.
[17] S. Seko, N. Tani, Tetrahedron Lett. 1998, 39, 8117-8120.
[18] D. D. Bume, C. R. Pitts, F. Ghorbani, S. A. Harry, J. N. Capilato, M. A. Siegler, T. Lectka, Chem. Sci. 2017, 8, 6918-6923.
$[19]$
C. Zhang, A. Z. Gao, X. Nie, C.-X. Ye, S. I. Ivlev, S. Chen, E. Meggers, J. Am. Chem. Soc. 2021, 143, 13393-13400.
[20] S.-C. Ren, X. Yang, B. Mondal, C. Mou, W. Tian, Z. Jin, Y. R. Chi, Nat. Commun. 2022, 13, 2846.
[21] C. Wang, X Zhang Y -W Zhao Q Liu, H Cheng Z. Huang Y Zhao, Org Chem Front 2023 10, 335-341
[22] C. J. Mulligan, S. M. Bagale, O. J. Newton, J. S. Parker, K. K. M. Hii, ACS Sustain. Chem. Eng. 2019, 7, 1611-1615.
[24] H. Palandoken, C. M. Bocian, M. R. McCombs, M. H. Nantz, Tetrahedron Lett. 2005, 46, 6667-6669
[25] H. Zhuang, Q. Hou, F. Han, H. Lv, C. Miao, Green Chem. 2023, 25, 310-317.
[26] M. Majedi, E. Safaei, S. Gyergyek, RSC Adv. 2023, 13, 4040-4055.
[27] S. Zhang, J. Zhang, H. Zou, Org. Lett. 2023, 25, 1850-1855.
[28] Q. Wang, H. Chai, Z. Yu, Organometallics 2017, 36, 3638-3644.
[29] W. Zhang, M. Sun, K. You, Y. Pang, B. Ma, Org. Biomol. Chem. 2022, 20, 7027-7030.
[30] J. K. Kim, M. Gong, E. A. Shokova, V. A. Tafeenko, O. V. Kovaleva, Y. Wu, V. V. Kovalev, Org. Biomol. Chem. 2020, 18, 56255638.
X. Feng, P. Ji, Z. Li, T. Drake, P. Oliveres, E. Y. Chen, Y. Song, C. Wang, W. Lin, ACS Catal. 2019, 9, 3327-3337.
S. Wertz, A. Studer, Adv. Synth. Catal. 2011, 353, 69-72.
M. B. Power, A. R. Barron, Tetrahedron Lett. 1990, 31, 323-324.
H.-J. Shen, Y.-N. Duan, K. Zheng, C. Zhang, J. Org. Chem. 2019, 84, 14381-14393.
M. Peer, N. Weeranoppanant, A. Adamo, Y. Zhang, K. F. Jensen, Org. Process Res. Dev. 2016, 20, 1677-1685.
K. Moriyama, M. Takemura, H. Togo, J. Org. Chem. 2014, 79, 6094-6104.
A. V. Ushkov, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 10999-11005.
Y. Liu, X. Li, Q. Liu, X. Li, H. Liu, Org. Lett. 2022, 24, 6604-6608.
L. Li, P. Cai, Q. Guo, S. Xue, J. Org. Chem. 2008, 73, 3516-3522.
Y. Yao, G. Zhao, A. Hamze, M. Alami, O. Provot, Eur. J. Org. Chem. 2020, 2020, 5775-5779.
M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs, J. Fronert, ACS Catal. 2012, 2, 2810-2815.
J. Chen, Z. Zhang, B. Li, F. Li, Y. Wang, M. Zhao, I. D. Gridnev, T. Imamoto, W. Zhang, Nat. Commun. 2018, 9, 5000. S. H. Kim, J. H. An, J. H. Lee, Org. Biomol. Chem. 2021, 19, 3735-3742.
X. Zhang, L. Zhang, Y. Liu, B. Bao, Y. Zang, J. Li, W. Lu, Tetrahedron 2015, 71, 4842-4845.
B. Karimi, A. Biglari, J. H. Clark, V. Budarin, Angew. Chem. Int. Ed. 2007, 46, 7210-7213.
[46] D.-M. Cui, M. Kawamura, S. Shimada, T. Hayashi, M. Tanaka, Tetrahedron Lett. 2003, 44, 4007-4010.
[47] C. Fotsch, G. Biddlecome, K. Biswas, J. J. Chen, D. C. D'Amico, R. D. Groneberg, N. B. Han, F.-Y. Hsieh, A. Kamassah, G. Kumar, D. Lester-Zeiner, Q. Liu, D. A. Mareska, B. B. Riahi, Y.-J. J. Wang, K. Yang, J. Zhan, J. Zhu, E. Johnson, G. Ng, B. C. Askew, Bioorg. Med. Chem. Lett. 2006, 16, 2071-2075.
[48] Z. Cheng, P. Sun, A. Tang, W. Jin, C. Liu, Org. Lett. 2019, 21, 8925-8929.
[49] R. A. Cutler, R. J. Stenger, C. M. Suter, J. Am. Chem. Soc. 1952, 74, 5475-5481.
[50] C. Isart, D. Bastida, J. Burés, J. Vilarrasa, Angew. Chem. Int. Ed. 2011, 50, 3275-3279.
[51] S. Ha, Y. Lee, Y. Kwak, A. Mishra, E. Yu, B. Ryou, C.-M. Park, Nat. Commun. 2020, 11, 2509
[52] I. C. Yoon, T. G. Kim, C. S. Cho, Organometallics 2014, 33, 1890-1892.
[53] H. Tohma, S. Takizawa, T. Maegawa, Y. Kita, Angew. Chem. Int. Ed. 2000, 39, 1306-1308.
[54] M. Haider, G. Sennari, A. Eggert, R. Sarpong, J. Am. Chem. Soc. 2021, 143, 2710-2715.
[55] G. Sennari, K. E. Gardner, S. Wiesler, M. Haider, A. Eggert, R. Sarpong, J. Am. Chem. Soc. 2022, 144, 19173-19185.

10. Photophysical Data

10.1. Diluted UV-VIS spectra of the oxime starting materials and their corresponding parent ketones

Below are listed the individual UV-VIS spectra for the oximes as well as their parent ketones in a concentration of $50 \mu \mathrm{M}$ in the reaction solvent mixture of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} 4: 1$.

10.2 UV-VIS spectra of the nitroarenes

Below are listed the UV-VIS spectra of the investigated nitroarenes in a concentration of $50 \mu \mathrm{M}$ in the reaction solvent mixture of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ 4:1.

10.3 UV-VIS spectra of oximes / ketones at higher concentrations

Below are listed the UV-VIS spectra of selected methoximes and their parent ketones in the indicated concentration in the reaction solvent mixture of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ 4:1.

Acetophenone example:

2-Adamantanone example:

10.4 UV-VIS spectra nitroarenes at higher concentrations

Selected nitroarenes:

10.5 UV-VIS reaction monitoring using methoxime 17
A.

B.

c.

Figure S10: A. Investigated substrate 17 using optimized conditions. B. UV-VIS monitoring for the reaction of methoxime 17 indicating a redshift over time. C. Color change over time.

11. Spectral Data

Compound 17, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S8, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S9, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 16, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 39, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 40, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 41, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 42, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 42, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S10, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S11, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound $\mathbf{S 1 2},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S13, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound $\mathbf{S 1 4},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S15, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S15, ${ }^{13} \mathrm{C}$ NMR (CDCl_{3})

Compound S16, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S17, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S18, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S19, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S20, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S20, ${ }^{13} \mathrm{C}$ NMR (CDCl_{3})

Compound S21, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S22, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S22, ${ }^{13} \mathrm{C}$ NMR (CDCl_{3})

Compound S23, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 52, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 52, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S24, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S25, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 59, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S26, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S26, ${ }^{13} \mathrm{C}$ NMR (CDCl_{3})

Compound S27, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 50, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S28, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S32, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S33, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S35, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound S36, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

 \underbrace{n}

56

Compound 23, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 24, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 26, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 28, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 29, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound $\mathbf{3 5},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$

Compound 45, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Compound 46, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

[^27]Mixture of Compound ${ }^{18} \mathrm{O}-\mathrm{N} 4$ and ${ }^{18} \mathrm{O}-\mathrm{N} 5{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

Mixture of Compound ${ }^{18} \mathrm{O}-\mathrm{N} 4$ and ${ }^{18} \mathrm{O}-\mathrm{N} 5{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$

12. Summary of selected functionalizations using methoximes as a directing group

Scheme S3: Functionalizations using methoximes as a directing group.

[^0]: ${ }^{a}$ The reactions were carried out in a photoreactor.
 ${ }^{b}$ The reaction was carried out using Kessil lamps (distance to LED $=3 \mathrm{~cm}$).

[^1]: ${ }^{1}$ P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688-5691.
 ${ }^{2}$ Y.-Q. Li, Q.-L. Yang, P. Fang, T.-S. Mei, D. Zhang, Org. Lett. 2017, 19, 2905-2908.
 ${ }^{3}$ C. Ma, C.-Q. Zhao, Y.-Q. Li, L.-P. Zhang, X.-T. Xu, K. Zhang, T.-S. Mei, Chem. Commun. 2017, 53, 12189-12192.

[^2]: ${ }^{4}$ Sk. S. Shah, M. Shee, A. K. Singh, A. Paul, N. D. P. Singh, J. Org. Chem. 2020, 85, 3426-3439.
 ${ }^{5}$ T. Ohwada, N. Tani, Y. Sakamaki, Y. Kabasawa, Y. Otani, M. Kawahata, K. Yamaguchi, Proc. Natl. Acad. Sci. 2013, 110, 42064211.
 ${ }^{6}$ A. Yadav, A. Yadav, S. Tripathi, V. Dewaker, R. Kant, P. N. Yadav, A. K. Srivastava, J. Org. Chem. 2022, 87, 7350-7364.

[^3]: ${ }^{7}$ J. Wang, S. Zha, K. Chen, J. Zhu, Org. Chem. Front. 2016, 3, 1281-1285.

[^4]: ${ }^{8}$ R. G. Schmidt, E. K. Bayburt, S. P. Latshaw, J. R. Koenig, J. F. Daanen, H. A. McDonald, B. R. Bianchi, C. Zhong, S. Joshi, P. Honore, K. C. Marsh, C.-H. Lee, C. R. Faltynek, A. Gomtsyan, Bioorg. Med. Chem. Lett. 2011, 21, 1338-1341.
 ${ }^{4}$ Sk. S. Shah, M. Shee, A. K. Singh, A. Paul, N. D. P. Singh, J. Org. Chem. 2020, 85, 3426-3439.
 ${ }^{9}$ S.-S. Zhang, Y.-C. Zheng, Z.-W. Zhang, S.-Y. Chen, H. Xie, B. Shu, J.-L. Song, Y.-Z. Liu, Y.-F. Zeng, L. Zhang, Org. Lett. 2021, 23, 5719-5723.

[^5]: ${ }^{4}$ Sk. S. Shah, M. Shee, A. K. Singh, A. Paul, N. D. P. Singh, J. Org. Chem. 2020, 85, 3426-3439.
 ${ }^{10}$ L. Liu, N. Wang, C. Dai, Y. Han, S. Yang, Z. Huang, Y. Zhao, Eur. J. Org. Chem. 2019, 2019, 7857-7863.

[^6]: ${ }^{11}$ J. Mas-Roselló, T. Smejkal, N. Cramer, Science 2020, 368, 1098-1102.
 ${ }^{12}$ B. S. Pilgrim, A. E. Gatland, C. H. A. Esteves, C. T. McTernan, G. R. Jones, M. R. Tatton, P. A. Procopiou, T. J. Donohoe, Org. Biomol. Chem. 2016, 14, 1065-1090.
 ${ }^{9}$ S.-S. Zhang, Y.-C. Zheng, Z.-W. Zhang, S.-Y. Chen, H. Xie, B. Shu, J.-L. Song, Y.-Z. Liu, Y.-F. Zeng, L. Zhang, Org. Lett. 2021, 23, 5719-5723.

[^7]: ${ }^{13}$ C. Zhu, M. Yamane, Org. Lett. 2012, 14, 4560-4563.
 ${ }^{2}$ Y.-Q. Li, Q.-L. Yang, P. Fang, T.-S. Mei, D. Zhang, Org. Lett. 2017, 19, 2905-2908.

[^8]: ${ }^{14}$ Y.-K. Liu, S.-J. Lou, D.-Q. Xu, Z.-Y. Xu, Chem. - Eur. J. 2010, 16, 13590-13593.

[^9]: ${ }^{14}$ Y.-K. Liu, S.-J. Lou, D.-Q. Xu, Z.-Y. Xu, Chem. - Eur. J. 2010, 16, 13590-13593
 ${ }^{15}$ L. I. L. Cabral, S. Pomel, S. Cojean, P. S. M. Amado, P. M. Loiseau, M. L. S. Cristiano, Molecules 2020, $25,465$.

[^10]: ${ }^{16}$ Y. Dong, J. L. Vennerstrom, J. Org. Chem. 1998, 63, 8582-8585.
 ${ }^{17}$ S. Seko, N. Tani, Tetrahedron Lett. 1998, 39, 8117-8120.

[^11]: ${ }^{18}$ D. D. Bume, C. R. Pitts, F. Ghorbani, S. A. Harry, J. N. Capilato, M. A. Siegler, T. Lectka, Chem. Sci. 2017, 8, 6918-6923.

[^12]: ${ }^{19}$ C. Zhang, A. Z. Gao, X. Nie, C.-X. Ye, S. I. Ivlev, S. Chen, E. Meggers, J. Am. Chem. Soc. 2021, 143, 13393-13400.
 ${ }^{20}$ S.-C. Ren, X. Yang, B. Mondal, C. Mou, W. Tian, Z. Jin, Y. R. Chi, Nat. Commun. 2022, 13, 2846.

[^13]: ${ }^{21}$ C. Wang, X. Zhang, Y.-W. Zhao, Q. Liu, H. Cheng, Z. Huang, Y. Zhao, Org. Chem. Front. 2023, 10, 335-341.
 ${ }^{22}$ C. J. Mulligan, S. M. Bagale, O. J. Newton, J. S. Parker, K. K. M. Hii, ACS Sustain. Chem. Eng. 2019, 7, 1611-1615.

[^14]: ${ }^{23}$ T. Pinkert, M. Das, M. L. Schrader, F. Glorius, J. Am. Chem. Soc. 2021, 143, 7648-7654.
 ${ }^{24}$ G. Sennari, K. E. Gardner, S. Wiesler, M. Haider, A. Eggert, R. Sarpong, J. Am. Chem. Soc. 2022, 144, 19173-19185.

[^15]: ${ }^{25}$ H. Palandoken, C. M. Bocian, M. R. McCombs, M. H. Nantz, Tetrahedron Lett. 2005, 46, 6667-6669.
 ${ }^{26}$ H. Zhuang, Q. Hou, F. Han, H. Lv, C. Miao, Green Chem. 2023, 25, 310-317.

[^16]: ${ }^{27}$ M. Majedi, E. Safaei, S. Gyergyek, RSC Adv. 2023, 13, 4040-4055.
 ${ }^{28}$ S. Zhang, J. Zhang, H. Zou, Org. Lett. 2023, 25, 1850-1855.
 ${ }^{29}$ Q. Wang, H. Chai, Z. Yu, Organometallics 2017, 36, 3638-3644.

[^17]: ${ }^{30}$ W. Zhang, M. Sun, K. You, Y. Pang, B. Ma, Org. Biomol. Chem. 2022, 20, 7027-7030.
 ${ }^{31}$ J. K. Kim, M. Gong, E. A. Shokova, V. A. Tafeenko, O. V. Kovaleva, Y. Wu, V. V. Kovalev, Org. Biomol. Chem. 2020, 18, 56255638.
 ${ }^{32}$ X. Feng, P. Ji, Z. Li, T. Drake, P. Oliveres, E. Y. Chen, Y. Song, C. Wang, W. Lin, ACS Catal. 2019, 9, 3327-3337.

[^18]: ${ }^{33}$ S. Wertz, A. Studer, Adv. Synth. Catal. 2011, 353, 69-72.
 ${ }^{34}$ M. B. Power, A. R. Barron, Tetrahedron Lett. 1990, 31, 323-324.
 ${ }^{35}$ H.-J. Shen, Y.-N. Duan, K. Zheng, C. Zhang, J. Org. Chem. 2019, 84, 14381-14393.

[^19]: ${ }^{36}$ M. Peer, N. Weeranoppanant, A. Adamo, Y. Zhang, K. F. Jensen, Org. Process Res. Dev. 2016, 20, 1677-1685.
 ${ }^{37}$ K. Moriyama, M. Takemura, H. Togo, J. Org. Chem. 2014, 79, 6094-6104.
 ${ }^{38}$ A. V. Ushkov, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 10999-11005.

[^20]: ${ }^{39}$. Liu, X. Li, Q. Liu, X. Li, H. Liu, Org. Lett. 2022, 24, 6604-6608.
 ${ }^{40}$ L. Li, P. Cai, Q. Guo, S. Xue, J. Org. Chem. 2008, 73, 3516-3522.
 ${ }^{41}$ Y. Yao, G. Zhao, A. Hamze, M. Alami, O. Provot, Eur. J. Org. Chem. 2020, 2020, 5775-5779.

[^21]: ${ }^{42}$ M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs, J. Fronert, ACS Catal. 2012, 2, 2810-2815.
 ${ }^{43}$ J. Chen, Z. Zhang, B. Li, F. Li, Y. Wang, M. Zhao, I. D. Gridnev, T. Imamoto, W. Zhang, Nat. Commun. 2018, 9, 5000.
 ${ }^{44}$ S. H. Kim, J. H. An, J. H. Lee, Org. Biomol. Chem. 2021, 19, 3735-3742.
 ${ }^{45}$ X. Zhang, L. Zhang, Y. Liu, B. Bao, Y. Zang, J. Li, W. Lu, Tetrahedron 2015, 71, 4842-4845.

[^22]: ${ }^{46}$ B. Karimi, A. Biglari, J. H. Clark, V. Budarin, Angew. Chem. Int. Ed. 2007, 46, 7210-7213.
 ${ }^{47}$ D.-M. Cui, M. Kawamura, S. Shimada, T. Hayashi, M. Tanaka, Tetrahedron Lett. 2003, 44, 4007-4010.
 ${ }^{48}$ C. Fotsch, G. Biddlecome, K. Biswas, J. J. Chen, D. C. D'Amico, R. D. Groneberg, N. B. Han, F.-Y. Hsieh, A. Kamassah, G. Kumar, D. Lester-Zeiner, Q. Liu, D. A. Mareska, B. B. Riahi, Y.-J. J. Wang, K. Yang, J. Zhan, J. Zhu, E. Johnson, G. Ng, B. C. Askew, Bioorg. Med. Chem. Lett. 2006, 16, 2071-2075.

[^23]: ${ }^{49}$ Z. Cheng, P. Sun, A. Tang, W. Jin, C. Liu, Org. Lett. 2019, 21, 8925-8929.
 ${ }^{50}$ R. A. Cutler, R. J. Stenger, C. M. Suter, J. Am. Chem. Soc. 1952, 74, 5475-5481.
 ${ }^{51}$ C. Isart, D. Bastida, J. Burés, J. Vilarrasa, Angew. Chem. Int. Ed. 2011, 50, 3275-3279.
 ${ }^{52}$ S. Ha, Y. Lee, Y. Kwak, A. Mishra, E. Yu, B. Ryou, C.-M. Park, Nat. Commun. 2020, 11, 2509.

[^24]: ${ }^{51}$ C. Isart, D. Bastida, J. Burés, J. Vilarrasa, Angew. Chem. Int. Ed. 2011, 50, 3275-3279.
 ${ }^{53}$ I. C. Yoon, T. G. Kim, C. S. Cho, Organometallics 2014, 33, 1890-1892.
 ${ }^{19}$ C. Zhang, A. Z. Gao, X. Nie, C.-X. Ye, S. I. Ivlev, S. Chen, E. Meggers, J. Am. Chem. Soc. 2021, 143, 13393-13400.

[^25]: ${ }^{54}$ H. Tohma, S. Takizawa, T. Maegawa, Y. Kita, Angew. Chem. Int. Ed. 2000, 39, 1306-1308.
 ${ }^{18}$ D. D. Bume, C. R. Pitts, F. Ghorbani, S. A. Harry, J. N. Capilato, M. A. Siegler, T. Lectka, Chem. Sci. 2017, 8, 6918-6923.

[^26]: ${ }^{55}$ M. Haider, G. Sennari, A. Eggert, R. Sarpong, J. Am. Chem. Soc. 2021, 143, 2710-2715.

[^27]:

