Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Engineering band structure via dual atoms modification for the efficient

photoanode

Xiaodong Wang^{a,1}, Huijuan Zhang^{a,b,1}, Chuanzhen Feng^a, Yu Wang^{a,b*}

^a The School of Chemistry and Chemical Engineering, National Key Laboratory of Power

Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District,

Chongqing City, 400044, P.R. China

^b College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote,

010022, P. R. China

¹ These authors contributed equally to this work.

E-mail address: wangy@cqu.edu.cn

Figure S1. O₂ evolution amount in different a) Cu doping Ta_3N_5 and b) Zr doping Ta_3N_5 , respectively. Error bars are the standard deviation. Both photoelectrodes were loaded with cocatalyst NiCoFe-B_i. Then, the NiCoFe-B_i/Cu-Ta₃N₅/FTO and NiCoFe-B_i/Zr-Ta₃N₅/FTO photoanode were held at 1.0 V_{RHE} in 1 M KOH under AM 1.5G simulated sunlight for 1 h.

Figure S2. HAADF-STEM image of Cu, Zr_h - Ta_3N_5 and Corresponding EDS elemental mappings. Cu, Zr_h - Ta_3N_5 synthesized by conventional methods shows a uniform distribution of Zr.

Figure S3. HAADF-STEM image of pristine Ta₃N₅ and Corresponding EDS elemental mappings.

Figure S4. Cu 2p high-resolution XPS spectra of Cu-Ta₃N₅, Cu,Zr_h-Ta₃N₅ and Cu,Zr_g-Ta₃N₅.

Figure S5. Zr 3*d* High-resolution XPS spectra of $Cu_{,}Zr_{g}$ -Ta₃N₅ under different etching times, a) 0 s and b) 30 s.

Figure S6. Zr^{3+}/Zr^{4+} area ratio of Cu, Zr_g -Ta₃N₅ vs etching time obtained from XPS measurements. The volcano-shaped curve indicates that the Zr^{3+}/Zr^{4+} area ratio follows the regularity of gradient changes.

Figure S7. a) O 1s; b) Ta 4f and c) N 1s high-resolution XPS spectra of Ta₃N₅, Cu-Ta₃N₅ and Cu,Zr_g-Ta₃N₅.

Figure S8. a) O 1*s*; b) N 1*s*; c) Ta 4*f*; d) Zr 3*d* high-resolution XPS spectra of Cu,Zr_h-Ta₃N₅ and e) Zr^{3+}/Zr^{4+} area ratio of Cu,Zr_h-Ta₃N₅ vs etching time obtained from XPS measurements. As shown in Figure R1, according to the XPS etching curve, it can be seen that the ratio of Zr³⁺ and Zr⁴⁺ changes little over time, indicating that the interaction of Cu and Zr in Cu,Zr_h-Ta₃N₅ is similar. In addition, we made a change in the supporting information and marked it in red.

Figure S9. Mott–Schottky plot for Ta_3N_5 , $Cu-Ta_3N_5$, $Cu,Zr_h-Ta_3N_5$ and $Cu,Zr_g-Ta_3N_5$ without cocatalyst under dark conditions. The M-S plot only exhibits the positive slope, suggesting its intrinsic n-type conductivity.

Figure S10. Electrocatalytic OER performance of NiCoFe-B_i catalyst deposited on FTO electrode in 1 M KOH. a) The OER polarization curve of the NiCoFe-B_i catalyst; b) Stability test of the NiCoFe-B_i catalyst on FTO measured at constant current density of 10 mA cm⁻² for 10 h. The overpotential without iR correction.

 $Figure \ S11. \ Electrochemical \ impedance \ spectra \ for \ Cu, Zr_g-Ta_3N_5 \ and \ NiCoFe-B_i/Cu, Zr_g-Ta_3N_5.$

Figure S12. Chopped I-T Curve of Cu, $Zr_g\mbox{-}Ta_3N_5$ with or without NiCoFe-B_i co-catalyst.

Figure S13. a) Cross-sectional SEM image of Cu, Zr_g -Ta₃N₅; b) Top-view SEM image of NiCoFe-B_i/ Cu, Zr_g-Ta₃N₅.

Figure S14. a) J-V curves for Cu-Ta₃N₅; b) ABPE of the Cu-Ta₃N₅ calculated from J-V curves from a; c) Steady-state photocurrent of Cu-Ta₃N₅ with NiCoFe-B_i co-catalyst at 1.0 V versus RHE under AM 1.5G simulated sunlight.

Figure S15. The IPCE spectrum of pristine Ta_3N_5 and Cu_2Zr_g -Ta $_3N_5$.

Figure S16. Stability of the photocurrent for NiCoFe- B_i/Cu , Zr_g -Ta₃N₅ photoanode at 1.0 V versus RHE under AM 1.5G in 1 M KOH.

Figure S17. a) XRD pattern and b) SEM image for $\text{Cu}, \text{Zr}_g\text{-}\text{Ta}_3\text{N}_5$ after PEC water splitting test.

Figure S18. a) Ta 4f, b) N 1s and c) O 1s high-resolution XPS spectra of Cu, Zr_g -Ta₃N₅ after PEC water splitting test.

Figure S19. a) Ta 4f, b) N 1s and c) O 1s high-resolution XPS spectra of pristine Ta₃N₅ after PEC water splitting test.

Figure S20. SEM image of pristine Ta₃N₅ after PEC water splitting test.

Sample	Weight ratio (wt%)/Atomic ratio (at%)							
	Ta ⁱ	Cu ⁱ	Zr ^ı	N ^C	Oc			
Cu,Zr _g -Ta ₃ N ₅	80.1/30.9	5.4/5.9	1.2/0.9	9.8/48.8	3.1/13.5			
Cu,Zr _h -Ta ₃ N ₅	80.3/30.9	5.3/5.8	1.3/1.0	9.9/49.2	3.0/13.1			
Cu-Ta ₃ N ₅	82.5/32.8	5.1/5.8	0/0	11.1/57.0	1.0/4.5			
Ta ₃ N ₅	87.9/37.5	0/0	0/0	11.0/60.6	0.7/1.9			

Table S1. Chemical compositions of Various Ta_3N_5 material as determined by ICP-AES and combustion analysis.

^I Measured by ICP-AES

^c Measured by the N-O combustion analyzer

Table S2. Bandgap and band positions of pristine Ta_3N_5 , $Cu-Ta_3N_5$ and $Cu, Zr_h-Ta_3N_5$ photoanodes determined by UPS spectra and UV-vis absorption spectra.

Sample	E _{BG} (eV)	E _F (eV)	E _{VB} (eV)	E _{CB} (eV)
Pristine Ta ₃ N ₅	2.06	-3.92	-5.97	-3.91
Cu-Ta ₃ N ₅	2.08	-4.10	-5.99	-3.91
Cu,Zr _h -Ta ₃ N ₅	2.10	-4.37	-6.31	-4.21

Table S3. Areas of the deconvoluted Ta 4f XPS peaks at specific binding energies.

Ta species									
Sample	N-Ta(V)-N Peak area at B.E.= F		Ratio	Ta ³⁺ Peak area at B.E.=		Ratio	O-Ta(V)-N Ratio Peak area at B.E.=		Ratio
	24.5	26.4	(%)	23.6	25.5	(%)	26.0	27.9	(%)
Cu,Zr _g -Ta ₃ N ₅	29353.0	22015.3	95.8	0	0	0	1277.4	958.1	4.2
Cu-Ta₃N₅	31996.7	23998.1	96.7	0	0	0	1083.3	812.5	3.3
Ta₃N₅	34655.7	25992.4	85.8	5068.7	3801.6	12.5	664.5	498.4	1.7

Table S4. Crystallite size of various Ta₃N₅ materials is obtained by applying Scherrer equation.

	Crystallite size (nm)						
Peak position	Pristine Ta ₃ N ₅	$Cu-Ta_3N_5$	$Zr-Ta_3N_5$	Cu, Zr_h -Ta $_3N_5$	Cu,Zr _g -Ta ₃ N ₅		
(110)	33.3	31.8	32.4	36.2	41.8		

Sample	$ au_{1}$ (ns)	f ₁	$ au_2$ (ns)	f ₂	$ au_{AV}\left(ns ight)$	χ^2
Pristine-Ta ₃ N ₅	0.11	93.25	2.34	6.75	0.26	1.049
Cu,Zr _h -Ta ₃ N ₅	0.14	85.56	2.93	14.44	1.19	1.187
Cu,Zr _g -Ta ₃ N ₅	0.21	65.11	3.65	34.89	1.41	1.119

Table S5. Fitted parameters for the TRPL decay of different Ta_3N_5 materials.

The f_1 and f_2 are the fractional intensities; τ_1 and τ_2 are the lifetimes; τ_{AV} is the intensity-weighted average lifetime, which is equal to $f_1\tau_1 + f_2\tau_2$; and χ^2 is the reduced chi-square value.