# Manipulating the crystal plane angle within primary particle

## arrangement for the radial ordered structure in Ni-rich cathode

*Ting Chen*<sup>[a]</sup>, *Chuyao Wen*<sup>[b]</sup>, *Chen Wu*<sup>[c]</sup>, *Lang Qiu*<sup>[d]</sup>, *Zhenguo Wu*<sup>\* [d]</sup>, *Jiayang Li*<sup>[b]</sup>, Yanfang Zhu<sup>[b]</sup>, Haoyu Li<sup>[d]</sup>, Qingquan Kong<sup>[a]</sup>, Yang Song<sup>[d]</sup>, Fang Wan<sup>[d]</sup>, Mingzhe Chen<sup>[e]</sup>, Ismael Saadoune<sup>[f]</sup>, Benhe Zhong<sup>[d]</sup>, Shixue Dou<sup>[g]</sup>, Yao Xiao<sup>\*[b]</sup>, and Xiaodong Guo<sup>\*[a] [d]</sup>

[a] Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR (China)

[b] Institute for Carbon Neutralization, College of Chemistry and Materials

Engineering, Wenzhou University, Wenzhou, 325035, PR (China)

[c] Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610299, PR (China)

[d] College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR (China)

[e] School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR (China)

[f] Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE),

Mohammed VI Polytechnic University, Benguerir, 43150, PR (Morocco)

[g] Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, PR (China)

\*Corresponding authors.

E-mail addresses: zhenguowu@scu.edu.cn (Zhenguo Wu), xiaoyao@wzu.edu.cn (Yao Xiao), xiaodong2009@scu.edu.cn (Xiaodong Guo).

Keywords: Ni-rich cathodes, radial ordered microstructure, tungsten incorporation, interfacial angle, lithium-ion batteries

## 1. Experimental section

## 1.1 Preparation of Ni-rich cathode

For the doped nickel-rich cathode,  $Ni_{0.86}Co_{0.08}Mn_{0.06}(OH)_2$  precursor, oxides  $(TMO_2 = WO_3, B_2O_3)$ , and LiOH·H<sub>2</sub>O are weighed and evenly mixed according to the molar ratio of 0.99:0.01:1.02, and the evenly mixed sample was placed in a tubular

furnace with oxygen atmosphere at 480 °C for 5 h and then cooled to room temperature. Subsequently, the presintered products were pressed into disks and calcined at 750 °C for 20 h followed by quenching to room temperature.

#### **1.2 Material characterization**

The composition of different nickel-rich cathode materials (including doped and undoped) was determined by ICP-OES (OPTIMA 4300 DV, PerkinElmer). Scanning electron microscope and focused ion beam (FIB, FEI) were used to analyze the surface particles and profile structure of nickel-rich cathode (SEM, FEI Nova Nano SEM 460). X-ray powder diffraction (Bruker D8 Advance and Cu  $K\alpha$  ( $\lambda$ = 1.5418 Å) characterizes the crystal structure and lattice parameters. STEM was employed for detailed spectroscopic analysis, and Pt is added at the top of the sample as a protective layer to protect particles from damage. All the STEM images using a HAADF detector.

#### **1.3 Electrochemical measurement**

The cathode is prepared by mixing the active material, Super P and polyvinylidene fluoride (mass ratio 8:1:1) with a certain amount of N-methyl-2-pyrrolidone (NMP) into the slurry. The Al foil is evenly coated with the slurry and dried in a vacuum oven at 120 ° C for 12 hours. The mass loading of the electrode is 4-5mg cm<sup>-2</sup>, and it is assembled into a button battery. The glove box requires that the water and oxygen content be less than 0.1ppm. Electrolyte (1.2 M LiPF<sub>6</sub> dissolved in a solution of FEC/FEMC/HFE) was used. Electrochemical test equipment is Neware battery test system (CT-4008T-5V20mA-164, Shenzhen, China). The batteries were tested in the voltage windows of 3.0-4.6 V at room temperature (25 °C).

#### **1.4 Computation details**

All the density functional theory calculations were performed by using the Vienna ab initio Simulation Program (VASP). [1,2] The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) form and a cutoff energy of 500 eV for planewave basis set were adopted.[3] The  $10 \times 10 \times 1$  and  $1 \times 10 \times 1$  Monkhorst-Pack grid was used for sampling the Brillouin zones at structure optimization for (003) and (104) surfaces, respectively. [4] The ion-electron interactions were described by the projector augmented wave (PAW) method.[5] The convergence criteria of structure

optimization were choose as the maximum force on each atom less than 0.01 eV/Å with an energy change less than  $1 \times 10^{-5}$  eV. The Surface energy (E<sub>sur</sub>) for each elemental step is defined as:

$$\Delta E_{\text{surf}} = \Delta E_{\text{cleave}} + \Delta E_{\text{relax}} = \frac{1}{2} (E_{\text{cleaved}} - E_{\text{bulk}}) + (E_{\text{relaxed}} - E_{\text{cleaved}})$$
(1)

where  $\Delta E_{cleave}$  is the cleaving energy which arises due to bond breaking between atoms to create two new surfaces on either side of the vacuum slab.  $\Delta E_{cleave}$  was calculated by subtracting the energy of the original bulk crystal ( $E_{bulk}$ ) from that of the as-cleaved crystal ( $E_{cleaved}$ , without relaxation of the surface atoms).

## 2. Supporting Figures and text



Fig. S1 (a) SEM image and (b) local enlarged image of Ni<sub>0.86</sub>Co<sub>0.08</sub>Mn<sub>0.06</sub>(OH)<sub>2</sub>, and (c) crosssectional image and (d) XRD spectra of Ni<sub>0.86</sub>Co<sub>0.08</sub>Mn<sub>0.06</sub>(OH)<sub>2</sub>.



Fig. S2 XRD spectra of Ni-rich cathode materials prepared in air and oxygen atmosphere.



Fig. S3 SEM images of surface particles and cross section of Ni-rich cathode prepared in (a-b) air atmosphere and (c-d) oxygen atmosphere.



Fig. S4 TG spectra of (a) N86, (b) N86-W, and (c) N86-B mixture systems.



Fig. S5 SEM images of surface morphology and cross-sectional section of (a-c) N86, (d-f) N86-W,

and (g-i) N86-B samples quenched at 750  $^{\circ}\mathrm{C}$ 



Fig. S6. Magnified STEM image of primary particles fromN86-W.



Fig. S7 SEM images of (a-d) N86 and (e-h) N86-W prepared at 740, 760, 800 and 850 °C.



Fig. S8 XRD patterns of (a) N86 and (b) N86-W prepared at 740, 750, 760, 770, 780, and 800 °C.



Fig. S9 (a-b) First charge-discharge curves and (c-d) cyclic performance of N86 and N86-W

electrodes prepared at 750-780 °C.



Fig. S10 EIS results of (a-d) N86, (e-h) N86-W, and (i-l) N86-B before and after being charged to different potentials and then stored at 60 °C for 5 days.



Fig. S11 Bright-field (BF) STEM image and EDS elemental maps of Ni,

Co, Mn, W and O.

| Sample | а      | С       | c/a    | $I_{(003)}/I_{(104)}$ |
|--------|--------|---------|--------|-----------------------|
| N86    | 2.8725 | 14.1923 | 4.9407 | 1.65                  |
| N86-B  | 2.8741 | 14.2012 | 4.9470 | 1.66                  |
| N86-W  | 2.8737 | 14.2117 | 4.9454 | 1.62                  |

Table S1. Cell parameters and  $I_{(003)}/I_{(104)}$  value of cathode materials after XRD refinement

Table S2.  $I_{(003)}/I_{(104)}$  value of N86 and N86-W prepared at 740, 750, 760, 770, 780 and 800  $^\circ C$ 

| Sample | I <sub>(003)</sub> /I <sub>(104)</sub> |        |        |        |        |        |  |  |
|--------|----------------------------------------|--------|--------|--------|--------|--------|--|--|
|        | 740 °C                                 | 750 °C | 760 °C | 770 °C | 780 °C | 800 °C |  |  |
| N86    | 1.6271                                 | 1.6559 | 1.6773 | 1.6496 | 1.5888 | 1.5400 |  |  |
| N86-W  | 1.3086                                 | 1.3470 | 1.5423 | 1.6155 | 1.6082 | 1.4708 |  |  |

### **Supplementary References**

- [1] G.Kresse, J. Furthmüller, Comput. Mater. Sci. 1 (1996) 15-50.
- [2] G.Kresse, J. Furthmüller, Phys. Rev. B. 16 (1996) 11169-11186.
- [3] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 18 (1996) 3865-3868.
- [4] H.J. Monkhorst, J.D. Pack, Phys. Rev. B. 13 (12) (1976) 5188-5192.
- [5] P.E. Blöchl, Phys. Rev. B. 50 (24) (1994) 17953-17979.