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1. Materials and characterization techniques

The reagents and starting materials were commercially available and used without any further
purification, if not specified, SH-Benzofuro[3,2-c]carbazole, and 5H-Benzo[4,5]thieno[3,2-
c]carbazole are purchased from Bidepharm. Csl/Cg/BCP/MAI are purchased from Xi’an P-
OLED. FAl is purchased from Solarmer. Pbl, is obtained from TCI. DMF, DMSO, IPA, and CB
are purchased from J&K. Compound CbzPh was synthesized according previous report.!!l

'"H NMR and '3C NMR spectra were measured on Bruker AVANCE III 300MHz and 400MHz
spectrometers. Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass
spectra were collected on a Bruker Solarix-XR high-resolution mass spectrometer (HR-MS).
Single crystals used for X-ray diffraction analysis were obtained by slowl evaporation in acetone.
The data for the single crystals of SH-Benzofuro[3,2-c]carbazole, and SH-Benzo[4,5]thieno[3,2-
c]carbazole were collected with a Rigaku Saturn diffractometer with CCD area detector.
Crystallographic data (excluding structure factors) reported in this paper were deposited in the
Cambridge Crystallographic Data Centre (CCDC No. 2298041 for S5H-Benzofuro[3,2-
c]carbazole, CCDC No. 2298042 for 5H-Benzo[4,5]thieno[3,2-c]carbazole). Crystallographic
data (excluding structure factors) of 7H-benzo[c]carbazole was deposited in the Cambridge
Crystallographic Data Centre (CCDC No. 1412957).

Solution and thin-film UV-Vis absorption spectra were obtained from Agient8454
spectrophotometer. All film samples were spin-cast on ITO substrates. Solution UV-Vis
absorption spectra were collected from the isopropanol solution of four SAMs with the
concentration of 1.0 x 10> M. Cyclic voltammetry (CV) measurements were conducted on a
CHI660D electrochemical workstation. The CV experiments were performed at room
temperature with a conventional three-electrode system using a glassy carbon electrode as
working electrode, Pt wire as the counter electrode, and an Ag/AgCl (saturated KCl) as the
reference electrode. Tetrabutylammonium phosphorus hexafluoride (BusNPFg¢, 0.1M) in
acetonitrile solution was used as the supporting electrolyte, and the scan rate was 0.1 Vs!. For
calibration, the redox potential of ferrocene/ferrocenium (Fc/Fc+) was measured under the same
condition. The SAMs were drop-cast onto the glassy carbon electrode from isopropanol solutions
(1 mg mL!) to form thin films. HOMO energies of SAMs were estimated with the following
equation: HOMO = -(E°™¢t + 4.8) eV. LUMO energies were estimated with the following
equation: LUMO = (HOMO+E,°"") eV. UPS and XPS characterization are conducted in a VG
ESCALAB 220i-XL surface analysis system equipped with a He discharge lamp (hv=21.22 ¢V)
and a monochromatic Al-Ka X-ray gun (hv = 1486.6 ¢V). The samples are deposited on ITO in
the same process as device fabrication. Typically, the characterized peak of hydrocarbon Cls
from adventitious carbon at 284.8 eV is used for binding energy calibration. Surface potential of
SAM modified ITO by Kelvin probe force microscopy (KPFM) was determined using Bruker
‘MultiMode 8’ Atomic Force Microscope (AFM) System and the probe is SCM-PIT-V2 (Pt-Ir
coating on the front side) with the tip radius of 25 nm. Contact angle is measured with a
DataPhysics contact angle tester and the water drop volume is set as 1 puL. Surface morphology

of perovskite films are characterized by scanning electron microscopy (SEM, Philips XL30
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FEG). The XRD patterns for perovskite film crystallization analysis are measured by an X-ray
diffraction (XRD) using a Bruker D2 Phaser with Cu Ka radiation.

2. Synthesis and characterization
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5-(4-bromobutyl)-SH-benzofuro[3,2-c|carbazole: 5H-benzofuro[3,2-c]carbazole (1 g, 3.89
mmol) was dissolved in 1,4- dibromobutane (20 eq, 15.69 g, 8.7 mL, 77.7 mmol),
tetrabuthylammonium bromide (0.15 eq, 0.188 g, 0.58 mmol) and 50% KOH aqueous solution
(5 eq) were added subsequently. Reaction was stirred at 60 °C overnight. After completion of
the reaction, extraction was done with dichloromethane. The organic layer was dried over
anhydrous Na,SO, and the solvent was distilled off under reduced pressure. The crude product
was purified by column chromatography (n-hexane: dichloromethane 4:1 v:v) to give 1.43 g
(93.8 %) of white powder. '"H NMR (300 MHz, Chloroform-d) & 8.54 (d, J= 7.8 Hz, 1H), 8.04
—7.94 (m, 2H), 7.73 (dd, J=17.7, 1.4 Hz, 1H), 7.58 — 7.35 (m, 6H), 4.43 (t, /= 6.9 Hz, 2H), 3.39
(t,J= 6.4 Hz, 2H), 2.21 —2.03 (m, 2H), 2.00 — 1.86 (m, 2H). 3C NMR (75 MHz, Chloroform-d)
o 156.17, 151.41, 140.80, 139.82, 125.56, 125.18, 122.89, 122.86, 120.61, 119.80, 119.61,
117.86, 115.79, 111.67, 108.68, 108.13, 104.35, 42.73, 33.16, 30.21, 27.76.
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Diethyl (4-(SH-benzofuro[3,2-c]carbazol-5-yl)butyl)phosphonate: 5-(4-bromobutyl)-5H-
benzofuro[3,2-c]carbazole (1.33 g, 3.39 mmol) was dissolved in triethyl phosphite (20 eq, 11.27
g, 11.63 mL, 67.8 mmol) and the reaction mixture was heated at 145 °C overnight. After reaction
completion the solvent was distilled off under reduced pressure. The crude product was purified
by column chromatography (dichloromethane:ethyl acetate 3:1 v:v) to give 1.40 g (92 %) of
colorless oil. '"H NMR (300 MHz, Chloroform-d) & 8.52 (dt, J = 7.8, 1.0 Hz, 1H), 8.04 — 7.93
(m, 2H), 7.72 (dd, J= 7.4, 1.3 Hz, 1H), 7.57 — 7.33 (m, 6H), 4.42 (t, J= 7.1 Hz, 2H), 4.02 (qdd,
J=17.9,5.7,2.0 Hz, 4H), 2.10 — 1.98 (m, 2H), 1.75 (td, J=7.0, 6.3, 3.1 Hz, 4H), 1.24 (t,J= 7.0
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Hz, 6H). 3C NMR (75 MHz, Chloroform-d) 6 156.14, 151.40, 140.83, 139.84, 125.50, 125.19,
125.13, 122.83, 120.57, 119.73, 119.58, 117.79, 115.70, 111.64, 108.71, 108.07, 104.40, 61.64,
61.55, 43.10, 29.95, 29.74, 26.36, 24.49, 20.49, 20.43, 16.47, 16.39.
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(4-(5H-benzofuro|3,2-c]carbazol-5-yl)butyl)phosphonic acid (CbzBF): Diethyl (4-(5H-
benzofuro[3,2-c]carbazol-5-yl)butyl)phosphonate (1 g, 2.22 mmol) was dissolved in anhydrous
1,4-dioxane (22 mL) under argon atmosphere and bromotrimethylsilane (10 eq, 3.4 g 2.93 mL,
22.2 mmol) was added dropwise. Reaction was stirred for 12 h at room temperature under argon
atmosphere. Afterwards solvent was partially distilled off under reduced pressure, and the liquid
residue was dissolved in methanol (8 ml). Next, distilled water was added dropwise (40 ml), until
solution became opaque. Product was filtered off and washed with water to give 0.72 g (82.3 %)
of off-white solid. '"H NMR (400 MHz, DMSO-d) 6 8.35 (d, J= 7.7 Hz, 1H), 8.20 — 8.11 (m,
2H), 7.82 (d, J= 7.9 Hz, 1H), 7.73 (dd, J = 18.0, 8.4 Hz, 2H), 7.54 (t, J = 7.7 Hz, 1H), 7.50 —
7.38 (m, 2H), 7.35 (t,J= 7.4 Hz, 1H), 4.52 (t, J= 7.1 Hz, 2H), 1.91 (p, /= 7.0 Hz, 2H), 1.58 (d,
J =9.6 Hz, 4H). >*C NMR (100 MHz, DMSO-dy) & 155.77, 150.78, 141.10, 140.08, 126.14,
125.92,125.13,123.71,122.21,120.47, 120.15, 119.78, 118.74, 115.28, 112.04, 110.33, 107.26,
106.21, 43.12, 30.23, 30.08, 28.49, 27.13, 20.94, 20.89. HR-MS (MALDI-TOF): calcd. for
CHyoNO4P [M]"393.1130; Found: 393.1130.

of E= af
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60°C
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5-(4-bromobutyl)-SH-benzo[4,5]thieno[3,2-c]carbazole: 5H-benzo[4,5]thieno[3,2-
c]carbazole (1 g, 3.66 mmol) was dissolved in 1,4- dibromobutane (20 eq, 14.77 g, 8.2 ml, 73.6
mmol), tetrabuthylammonium bromide (0.15 eq, 0.55 mmol, 0.177 g) and 50% KOH aqueous
solution (5 eq) were added subsequently. Reaction was stirred at 60°C overnight. After
completion of the reaction, extraction was done with dichloromethane. The organic layer was
dried over anhydrous Na,SO, and the solvent was distilled off under reduced pressure. The crude
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product was purified by column chromatography (n-hexane: dichloromethane 4:1 v:v) to give
1.42 g (95 %) of white powder. '"H NMR (400 MHz, Chloroform-d) 4 8.27 (dt, J = 7.8, 1.0 Hz,
1H), 8.24 - 8.16 (m, 2H), 8.02 — 7.93 (m, 1H), 7.57 — 7.39 (m, 6H), 4.43 (t,J= 7.0 Hz, 2H), 3.37
(t, J= 6.5 Hz, 2H), 2.18 — 2.01 (m, 2H), 1.92 (ddd, J = 13.1, 9.0, 6.2 Hz, 2H). '3C NMR (100
MHz, Chloroform-d) & 139.98, 139.31, 138.59, 136.08, 133.07, 128.27, 125.51, 125.19, 124.61,
123.00, 122.10, 121.81, 120.81, 119.76, 119.14, 116.53, 108.82, 106.43, 42.59, 33.12, 30.19,

27.83.
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Diethyl (4-(5H-benzo[4,5]thieno[3,2-c]carbazol-5-yl)butyl)phosphonate: 5-(4-bromobutyl)-
SH-benzo[4,5]thieno[3,2-c]carbazole (1.3 g, 3.18 mmol) was dissolved in triethyl phosphite (20
eq, 10.58 g, 10.92 mL, 63.67 mmol) and the reaction mixture was heated at 145 °C overnight.
After reaction completion the solvent was distilled off under reduced pressure. The crude product
was purified by column chromatography (dichloromethane:ethyl acetate 3:1 v:v) to give 1.35 g
(91 %) of colorless oil. 'H NMR (400 MHz, Chloroform-d) & 8.31 — 8.15 (m, 3H), 8.00 — 7.93
(m, 1H), 7.57 - 7.47 (m, 4H), 7.47 — 7.36 (m, 2H), 4.43 (t, /= 7.1 Hz, 2H), 4.07 — 3.95 (m, 4H),
2.05 (p, J = 7.2 Hz, 2H), 1.78 — 1.68 (m, 4H), 1.23 (t, J = 7.1 Hz, 6H). 3C NMR (100 MHz,
Chloroform-d) 6 140.02, 139.36, 138.58, 136.10, 133.06, 128.23, 125.46, 125.15, 124.59,
122.99, 122.08, 121.77, 120.79, 119.69, 119.10, 116.51, 108.85, 106.49, 61.59, 61.53, 43.01,
30.01, 29.85, 26.16, 24.75, 20.51, 20.46, 16.45, 16.39.
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(4-(5H-benzo[4,5]thieno[3,2-c]carbazol-5-yl)butyl)phosphonic acid (CbzBT): Diethyl (4-
(5H-benzo[4,5]thieno[3,2-c]carbazol-5-yl)butyl)phosphonate (1.13 g, 2.43 mmol) was dissolved
in anhydrous 1,4-dioxane (24 ml) under argon atmosphere and bromotrimethylsilane (10 eq, 3.71
g 3.2 mL, 24.3 mmol) was added dropwise. Reaction was stirred for 12 h at room temperature
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under argon atmosphere. Afterwards solvent was partially distilled off under reduced pressure,
and the liquid residue was dissolved in methanol (8 ml). Next, distilled water was added dropwise
(40 ml), until solution became opaque. Product was filtered off and washed with water to give
0.805 g (81 %) of white solid. "H NMR (400 MHz, DMSO-ds) & 8.45 — 8.36 (m, 2H), 8.15 —
8.08 (m, 2H), 7.84 (d, J=8.7 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.60 — 7.44 (m, 3H), 7.39 (t, J
= 7.4 Hz, 1H), 4.54 (t, J= 7.0 Hz, 2H), 1.91 (p, J = 7.0 Hz, 2H), 1.58 (t, J = 7.9 Hz, 4H). 13C
NMR (100 MHz, DMSO-ds) 6 140.22, 139.67, 137.88, 136.19, 131.98, 128.00, 126.10, 125.90,
125.46, 123.66, 121.68, 121.35, 121.19, 120.15, 120.08, 115.68, 110.45, 108.24, 42.99, 30.32,
30.17, 28.49, 27.13, 20.94, 20.90. HR-MS (MALDI-TOF): caled. for CyH;)NOs;PS [M]*
409.0902; Found: 409.0902.

3. Optical and Electrochemical Characterizations

CbzPh
1.0 CbhzBF
ChzBT

0.4 -
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o
D
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320 340 360 380 400 420
Wavelength (nm)

Figure S1. UV/Vis absorption spectra of CbzPh, CbzBF and CbzBT in solutions (10> M in
IPA).
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Figure S2. Cyclic voltammetry characterized oxidation potential of phosphates (see synthesis
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section) corresponding to CbzPh, CbzBF and CbzBT in (1x10 M) in DCM with 0.1M BuyNPFg
as electrolyte, glassy carbon and platinum wire as working and counter electrodes and Ag/AgCl
as reference electrode; scanning rate was 100 mV/s; Ferrocene was used as external reference
and the potentials were presented by reference to E;,(Fc/Fc*).

4. Density Functional Theory (DFT) Calculation

Computational Details: Geometries optimization and frequency analysis were performed at the
level of B3LYP /6-311G(d,p). The molecular orbitals and dipole moments were analyzed, the
energy gaps between HOMO and LUMO were obtained. All calculations are based on Density
Functional Theory (DFT) with Gaussian09 package.[*!

CbzPh CbzBF CbhzBT

e,
LUMO: -1.15 eV LUMO: -1).17 eV

IgJ

oYk
° 9 4 2t Re=ta

HOMO: -5.49 eV HOMO: -5.50 eV  HOMO: -5.54 eV

o o
g

Figure S3. The calculated HOMO/LUMO orbitals and energy levels of CbzPh, CbzBF and
CbzBT.
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Figure S4. The calculated molecular structures and dipoles of CbzPh, CbzBF and CbzBT.

Table S1. Experimentally measured and theoretically calculated energy levels of CbzPh, CbzBF
and CbzBT.

Experimental Calculated
HOMO HOMO LUMO Optical HOMO LUMO
eV)CV  (eV) (eV) band gap (eV) (eV)
UPS (eV)
CbzPh -5.48 -5.40 -2.19 3.29 -5.49 -1.38
CbzBF, -5.46 -5.44 -2.02 3.44 -5.50 -1.15
CbzBT -5.50 -5.45 -2.10 3.40 -5.54 -1.17

Optical band gaps obtained from the absorption edge of UV-Vis spectra.
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5. Single crystal X-ray diffraction analysis

Table S2. Crystal data and structural refinement for 5SH-Benzofuro[3,2-c]carbazole and 5H-
Benzo[4,5]thieno[3,2-c]carbazole.

Identification code 070723a_wenlin 070723b_wenlin
CCDC deposition No. 2298041 2298042
Empirical formula CisH{1NO CigHi NS
Formula weight 257.28 273.34
Temperature/K 193(2) 193(2)

Crystal system monoclinic orthorhombic
Space group C2/c Pna2,

a/A 21.6821(11) 15.7172(3)

b/A 5.3270(4) 5.28910(10)

c/A 22.9919(15) 31.0413(7)

o/° 90 90

/e 114.126(5) 90

v/° 90 90

Volume/A3 2423.6(3) 2580.46(9)

Z 8 8

Pealcg/cm? 1.410 1.407

wmm-! 0.694 2.098

F(000) 1072.0 1136.0

Crystal size/mm? 0.22 x 0.11 x 0.02 0.31 x 0.08 x 0.03
Radiation CuKoa (A =1.54178) CuKoa (A =1.54178)
iglectiff/‘(fe for  datag 938 10 148.95 5.694 to 149.212

26 <h<26,-6<k<6,-28<1-19<h<19,-6<k<5,-38<1
Index ranges

<28 <38
Reflections collected 9881 21616
. 2451 [Riy= 0.0456, Rgoma=4942 [Rix= 0.0687, Rgioma=
Independent reflect & &
ndependent reflections 0.0396] 0.0576]
Data/restraints/parameters 2451/0/181 4942/1/361
Goodness-of-fit on F? 1.068 1.066

Final R indexes [[>=2c (I)] R; = 0.0384, wR, =0.1037 R; =0.0509, wR, = 0.1378
Final R indexes [all data] R; =0.0407, wR, = 0.1064 R; =0.0574, wR, = 0.1458

Largest diff. peak/hole / e

A 0.20/-0.23 0.22/-0.56
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6. Surface Characterizations

CbzPh CbzPh
CbzBF ChzBF
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Figure S5. UPS spectra (using the He I lamp with a photon energy of 21.22 eV) of CbzPh,
CbzBF and CbzBT modified ITO.

Figure S6. Surface potential profiles of CbzPh-, CbzBF- and CbBT-modified ITO substrates.
(a) KPFM topography map and (b) surface contact potential difference (CPD) map of CbzPh-,
CbzBF- and CbBT-modified ITO substrates.

-20nm
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1ITo
I cbzPh
CbzBF
B cozeT 669.6 mV|
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Figure S7. Statistical distribution of CPD extracted from corresponding KPFM images.
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Figure S8. X-ray photoelectron spectra of Cls for CbzPh, CbzBF and CbzBT modified ITO.
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Figure S9. X-ray photoelectron spectra of P 2p for CbzPh, CbzBF and CbzBT modified ITO.
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Figure S10. HR-XPS surveys of bare ITO, CbzPh, CbzBF and CbzBT-modified ITO
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Figure S11. The X-ray photoelectron spectroscopy at the N 1s, O 1s, S 2p and In 3d regions of
bare ITO, CbzPh, CbzBF and CbzBT-modified ITO.

Table S3. C 1s and In 3d5,, core-level peak area as measured by XPS for different SAM on ITO
covered glass substrate. The C 1s peak area is divided by the number of carbon atoms and a
relative coverage factor is calculated by normalizing to the In 3d5/, core level area

SAM C 1s Area In 3d;,, Area # Carbon Coverage
atoms factor
ITO+CbzPh 62205.3 382278.6 20 8.14-10°3
ITO+CbzBF 68910.6 375012.7 22 8.35-10°3
ITO+CbzBT 69831.0 367763.4 22 8.63-1073
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Pb4f
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Figure S12. XPS spectra showing the evolution of Pb 4f core levels of the buried perovskite film
peeled off from CbzPh, CbzBF and CbzBT-modified ITO. The buried interface was obtained by
exfoliating the perovskite film from the glass/ITO/SnO2 substrate. The specific method is as
followsB!: The surface of the perovskite film was coated by UV curable glue and covered with
glass, followed by the application of pressure on the glass. The samples were then placed in a
UV lamp box (350 W) for 1 min to cure the UV adhesive. Finally, two tweezers were used to
clamp the substrate and glass. Then the perovskite film was peeled off from the substrate.

ITO: 10.1 ° CbzPh: 77.6 ° CbzBF: 79.4 ° CbhzBT: 86.6 °

——— A AR A

Figure S13. Water contact angles of bare ITO, CbzPh-, CbzBF- and CbBT-modified ITO.
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Figure S14. The Pbl, and (110) peaks of perovskite films deposited on CbzPh-, CbzBF- and

CbBT-modified ITO.
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7. Device Fabrication and characterization

The pre-patterned ITO-coated glass substrates (15 Q sq') were sequentially cleaned by
sonication with detergent (Decon 90), deionized (DI) water, acetone, and isopropyl alcohol for
15 min, respectively, and subsequently dried in an oven overnight. The cleaned ITO substrates
are treated with UV ozone (Novascan UV-ozone Cleaners) for 30 min right before being
transferred into a nitrogen glovebox for device fabrication. SAM solutions are prepared by
dissolving CbzPh, CbzBF and CbzBT (1 mM) in IPA and stirred for 30 min at 80 °C before
deposition. 40 uL of the SAM solution is dropped onto the substrates and spin-coated at 3000
rpm for 30 s. Then after annealing at 100 °C for 15 min, the substrates are washing with IPA (60
ul) through spin-coating at 3000 rpm for 30 s, then anneal at 100 °C for 5 min.

1.6 M perovskite precursor solution was prepared by mixing FAIL, Pbl,, MAI and Csl in
DMF:DMSO mixed solvent (4:1 v:v) with the chemical formula CsgosMAg sFAqgoPbl;. 15
mol% of MACI was added to the precursor before deposition. After stirring for over 6 h, the
precursor is transferred for spin-coating. 50 uL of the precursor was dripped onto SAM-based
substrates and spin-coating at 1000 rpm for 7 s and 5000 rpm for 39 s, 180uL. CB as anti-solvent
is dripped at the final 20 s. Then the perovskite films were annealed at 100 °C for 30 min. For
the surface passivation, PI (0.3 mg/mL in IPA) was spin-coated on perovskite film at 4000 rpm
for 30 s, then annealed at 100 °C for 10 min.[*l The films were transferred to thermal evaporator
for deposition of Cgy, BCP and Ag with a thickness of 25 nm, 6 nm and 100 nm under a high
vacuum (<4 x 1076 torr). For the anti-reflection coating, a MgF, layer with a thickness of 110 nm
was thermal evaporated onto the backside of devices.

J-V characteristics of PSC devices were measured in nitrogen glovebox at room temperature by
using a Keithley 2400 source meter under simulated sunlight from a solar simulator (Enlitech,
SS-F5, Taiwan). EQE is measured by an EnLi Technology (Taiwan) EQE measurement system.
A National Renewable Energy Laboratory calibrated silicon solar cell is used to calibrate the
AM 1.5 G light intensity. The PVCs are equipped with a shading mask with an aperture area of
0.04 cm? to ensure the accuracy of current density in J-V curves. The operational stability tests
were carried out at the MPP for the unencapsulated cells under AM 1.5 G illumination in N,
atmosphere which was produced by a xenon-lamp-based solar simulator. The bias at the MPP
was calculated and applied automatically. The light intensity was calibrated by a standard silicon
reference cell from Newport.
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Table S4. Lifetimes and weight fractions derived from time-resolved PL decay traces[?l.

Sample Ti[ns] A [%] To[ns] A, [%] Tave[1S]
ITO/CbzPh/Pvk 20 0.43 2120 99.57 2120
ITO/CbzBF/Pvk 15 0.13 4346 99.87 4346
ITO/CbzBT/Pvk 20 0.07 5031 99.93 5031

[2IThe TRPL decay curves (Figure S17b) are fitted by bi-exponential decay equation I(t) =
Ajexp(—t/ty) + Asexp(—t/ty); t; and 1, are the lifetimes of fast and slow decays; A; and A, are
the corresponding weight fractions. The average lifetime is calculated using the equation:

n
2
QA
i=1
- n
QA
i=1

8. 'H and 3C NMR spectra
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