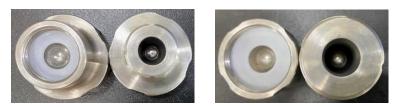
Solid-State Mechanochemistry for the Rapid and Efficient Synthesis of Tris-Cyclometalated Iridium(III) Complexes

Koji Kubota,*^{a,b} Tsubura Endo,^a and Hajime Ito*^{a,b}

^aDivision of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan. ^bInstitute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.

e-mail: hajito@eng.hokudai.ac.jp, kbt@eng.hokudai.ac.jp

Table of Contents


- 1. Chemicals and Instrumentation
- 2. Details of High-Temperature Ball-Milling Method
- 3. General Procedure for Solid-State Synthesis of Iridium(III) Complexes
- 4. List of Ligands Used in This Study
- 5. Attempts for Synthesis in Solution
- 6. Effects of Liquid Additives
- 7. Calculations of E-Factors
- 8. Characterization of Products
- 9. References
- 10. NMR Spectra

1. Chemicals and Instrumentation

The starting materials were obtained from commercial suppliers and used as received. 2-Aryl pyridine ligands (**2b**–**2i**) were prepared according to the reported procedures.¹ Solvents were purchased from commercial suppliers and further dried over molecular sieve (MS 4Å). All mechanochemical reactions were carried out using grinding vessels in a Retsch MM400 mill (Figure S1). Both jars (1.5 mL, 5.0 mL) and balls (5 mm, 10 mm) are made of stainless-steel (SUS400B and SUS420J2, respectively) (Figure S2). The heat gun Takagi HG-1450B with temperature control function was used for high-temperature ball-milling reactions (Figure S3). NMR spectra were recorded on JEOL JNM-EC X400P and JNM-ECS400 spectrometers (¹H: 392 or 396 or 399 or 401 MHz, ¹³C: 99 or 100 MHz). Tetramethylsilane (¹H), CDCl₃ (¹³C) was employed as external standards, respectively. Multiplicity was recorded as follows: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sept = septet, o = octet, m = multiplet. Thermography was recorded with an NEC Avio Thermo GEAR G120. High-resolution mass spectra were recorded at the Global Facility Center, Hokkaido University.

Figure S1. Retsch MM400 used in this study.

Figure S2. Stainless jar and ball used in this study. (Left : 1.5 ml jar and 5 mm ball, Right : 5.0 ml jar and 10 mm ball)

2. Details of High-Temperature Ball-Milling Method

The heat gun was fixed with clamps and placed directly above the ball milling jar (distance between the heat gun and ball milling jar: ca. 1 cm) (Figure S3).² The mechanochemical reactions were conducted while applying heated air to the outside of the milling jar (the preset temperature at 300 °C). The temperature inside the milling jar after the mechanochemical reactions was confirmed by observation with a thermography camera immediately after the milling jar (approximately 135 °C) (Figure S4).

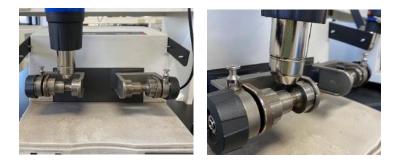


Figure S3. The set-up procedure for a heat gun on MM400.

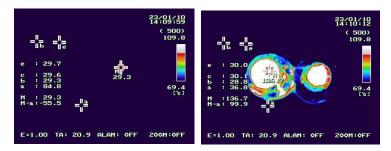
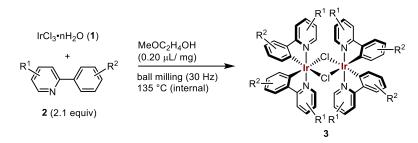
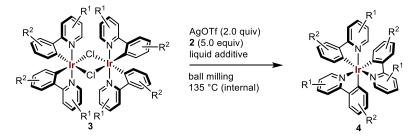



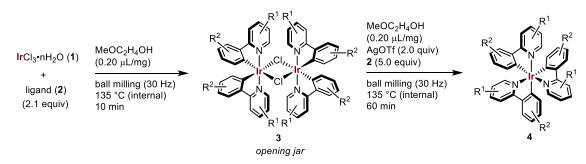
Figure S4. Thermography images.


3. General Procedure for Solid-State Synthesis of Iridium(III) Complexes

1) Procedure A: solid-state synthesis of chloride-bridged dimer 3

Iridium(III) chloride hydrate **1** (0.20 mmol), 2-aryl pyridine ligand **2** (0.42 mmol, 2.1 equiv), and 2methoxyethanol (0.20 μ L/mg) were placed in a ball milling vessel (stainless-steel, 1.5 mL) loaded with one grinding ball (stainless-steel, diameter: 5 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 10 or 30 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was filtered by H₂O and CH₂Cl₂ to give the corresponding chloride-bridged dimer **3**. Because the low solubility of **3** in organic solvent, the crude product **3** was used in the next step without further purification.

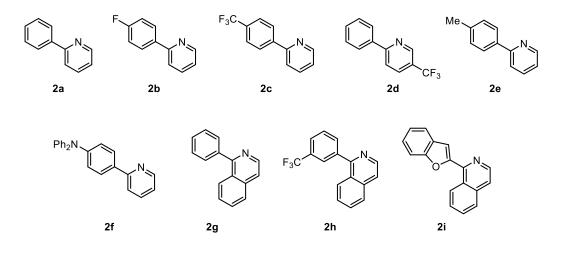
2) Procedure B: solid-state synthesis of tris-cyclometalated iridium(III) complexes 4

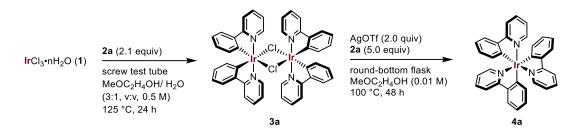


Method 1 (2-methoxyethanol was used as a liquid addivie)

3 (1.0 equiv), **2** (5.0 equiv), AgOTf (2.0 equiv) and 2-methoxyethanol (0.20 μ L/mg) were placed in a ball milling vessel (stainless-steel, 1.5 mL) loaded with one grinding ball (stainless-steel, diameter: 5 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 60 or 90 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was filtered by CH₂Cl₂ to remove silver salts. The crude mixture was then purified by flash column chromatography (SiO₂, typically CH₂Cl₂/hexane, typically 0:100-100:0) or reprecipitation from CH₂Cl₂/hexane to give the corresponding triscyclometalated iridium(III) complexes **4**.

Method 2 (DMF was used as a liquid addivie)


3 (1.0 equiv), **2** (5.0 equiv), AgOTf (2.0 equiv) and and *N*,*N*-dimethylformamide (DMF) (0.50 μ L/mg) were placed in a ball milling vessel (stainless, 5.0 mL) loaded with one grinding ball (stainless, diameter: 10 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 60 or 90 min at 20 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was filtered by CH₂Cl₂ to remove Ag salts. The crude mixture was then purified by flash column chromatography (SiO₂, typically CH₂Cl₂/hexane, typically 0:100-100:0) or reprecipitation from CH₂Cl₂/hexane to give the corresponding tris-cyclometalated iridium(III) complexes **4**.


3) Procedure C: solid-state one-pot synthesis of tris-cyclometalated iridium(III) complexes 4

Iridium(III) chloride hydrate **1** (0.20 mmol), **2** (0.42 mmol, 2.1 equiv), and 2-methoxyethanol (0.20 μ L/mg) were placed in a ball milling vessel (stainless, 1.5 mL) loaded with one grinding ball (stainless, diameter: 5 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 10 or 30 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was rapidly opened. Then **2** (5.0 equiv to **3**), AgOTf (2.0 equiv to **3**) and 2-methoxyethanol (0.20 μ L/mg) were placed in a the vessel. After being closed, the vessel placed in the ball mill machine (Retsch MM400, 60 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was filtered by CH₂Cl₂ to remove Ag salts. The crude mixture was then purified by flash column chromatography (SiO₂, typically CH₂Cl₂/hexane, typically 0:100-100:0) or reprecipitation from CH₂Cl₂/hexane to give the corresponding tris-cyclometalated iridium(III) complexes **4**.

4. List of Ligands Used in This Study.

5. Attempts for One-Pot Synthesis in Solution

An oven-dried reaction vial was charged with iridium(III) chloride hydrate **1** (59.6 mg, 0.20 mmol), **2a** (68.5 mg, 0.44 mmol, 2.2 equiv) and then the vial was capped with a rubber septum. The vial with reagents was refilled with a nitrogen atmosphere and the solids were suspended in 2methoxyethanol/H₂O (300 μ L/100 μ L), then the suspension was allowed to stir at 125 °C for 24 h. After completing the reaction, the mixture was moved an oven-dried round-bottom flask and added **2** (77.6 mg, 0.5 mmol, 5.0 equiv to **3a**), AgOTf (52.5 mg, 0.20 mmol, 2.0 equiv to **3a**). The flask was refilled with a nitrogen atmosphere and the solids were suspended in 2-methoxyethanol (20 mL), then the suspension was allowed to stir at 100 °C for 48 h. After completing the reaction, the mixture was cooled and opened. The mixture was filtered by MeOH/CH₂Cl₂ to give the crude mixture. The desired product **4a** was not detected by ¹H NMR analysis of the crude mixture.

6. Effects of Liquid Additives

We have investigated the effect of other liquid additives. We have tested polar solvents such as EtOH, glycerol, DMF, and DMSO, which furnished **3a** in comparable yields (55-75%) that are lower than that of the conditions using 2-methoxyethanol. The use of PEG-400 did not improve the yield of **3a** (78%). We also checked a non-polar solvent (toluene), which provided inferior results (58%).

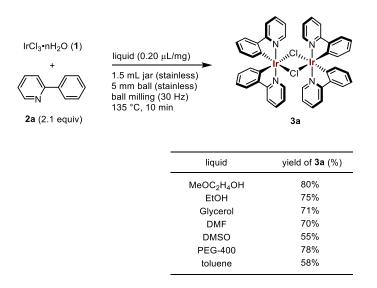
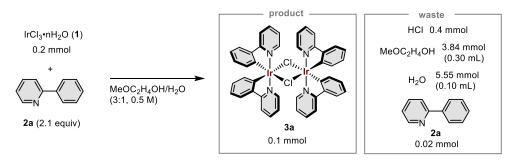


Table S1. Effects of liquid additives for the first ligand exchange.

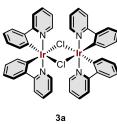
7. Calculations of E-Factors


For the first ligand exchange

E-factor for the first ligand exchange in the solid-state.

this work	M_{W}	mmol	mg
product (3a)	1072.10	0.10	107.21
waste	M_{W}	mmol	mg
HCl	36.46	0.40	14.58
MeOC ₂ H ₄ OH	76.10	0.32	24.35
unreacted 2a	155.20	0.020	3.10
total			149.24

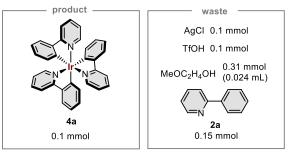
 $E_{mechanochemical} = 149.24 / 107.21 = 1.39$



E-factor for the first ligand exchange in solution.

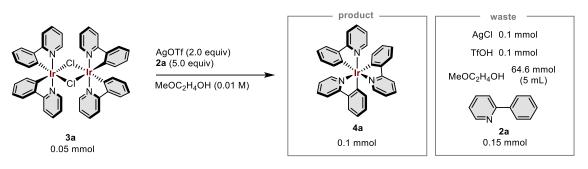
this work	M_{W}	mmol	mg
product (3a)	1072.10	0.10	107.21
waste	M_{W}	mmol	mg
HCl	36.46	0.40	14.58
MeOC ₂ H ₄ OH	76.10	3.84	292.22
H_2O	18.02	5.55	100.01
unreacted 2a	155.20	0.020	3.10
total			517.12

 $E_{solution} = 517.12 / 107.21 = 4.82$


For the second ligand exchange

MeOC₂H₄OH (0.20 μL/mg) AgOTf (2.0 equiv) **2a** (5.0 equiv)

0.05 mmol

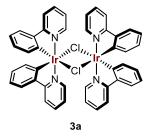

1.5 mL jar (stainless) 5 mm ball (stainless) ball milling (30 Hz)

E-factor for the second ligand exchange in the solid-state.

this work	M_{W}	mmol	mg
product (4a)	654.79	0.10	65.48
waste	M_{W}	mmol	mg
AgCl	143.32	0.10	14.33
TfOH	150.07	0.10	15.01
MeOC ₂ H ₄ OH	76.10	0.31	23.56
unreacted 2a	155.20	0.15	23.28
total			141.66

 $E_{mechanochemical} = 141.66 / 65.48 = 2.16$

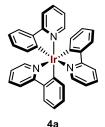
E-factor for the second ligand exchange in solution.


this work	M_{W}	mmol	mg
product (4a)	654.79	0.10	65.48
waste	M_{W}	mmol	mg
AgCl	143.32	0.10	14.33
TfOH	150.07	0.10	15.01
MeOC ₂ H ₄ OH	76.10	64.6	4915.74
unreacted 2a	155.20	0.15	23.28
total			5033.84

 $E_{solution} = 5033.84 / 65.48 = 76.88$

8. Characterization of Products.

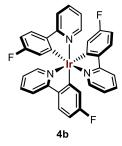
In this study, the generation of meridional (*mer*) tris-cyclometalated iridium (III) complexes were not confirmed in the crude reaction mixtures, and the facial (*fac*) complexes were obtained exclusively under mechanochemical conditions.³


Dichlorotetrakis[2-(2-pyridinyl)phenyl]diiridium(III) (3a).

The reaction was performed according to the general procedure A (ball-milling time: 10 min). The reaction was carried out with 59.7 mg (0.20 mmol) of **1**. The product **3a** was obtained as a yellow powder (87.1 mg, 0.081 mmol, 81% yield) after reprecipitation from CH_2Cl_2 /hexane.

¹H NMR (400 MHz, CDCl₃, δ): 5.93 (d, *J* = 8.0 Hz, 4H), 6.56 (td, *J* = 0.8, 7.2 Hz, 4H), 6.72–6.80 (m, 8H), 7.49 (dd, *J* = 1.2, 8.0 Hz, 4H), 7.74 (td, *J* = 1.2, 8.0 Hz, 4H), 7.87 (d, *J* = 8.0 Hz, 4H), 9.24 (dd, *J* = 0.8, 5.6 Hz, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 118.4 (CH), 121.3 (CH), 122.1 (CH), 123.6 (CH), 126.3 (CH), 129.1 (CH), 130.6 (CH), 136.1 (CH), 143.7 (CH), 145.3 (C), 147.5 (C), 151.7 (CH), 168.5 (C). The monomer of **3a** was only detected by ESI high-resolution mass spectrometry. HRMS-ESI (*m*/*z*): [M–Cl]⁺ calcd for C₂₂H₁₆IrN₂, 499.0914; found, 499.0912.

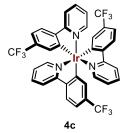
fac-Tris(2-phenylpyridinato)iridium(III) (4a).



The reaction was performed according to the general procedure B, Method 1 (ball-milling time: 60 min). The reaction was carried out with 54.4 mg (0.051 mmol) of **3a**. The product **4a** was obtained as a yellow powder (47.9 mg, 0.073 mmol, 73% yield) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

¹H NMR (392 MHz, CDCl₃, δ): 6.80–6.92 (m, 12H), 7.53 (d, J = 4.8 Hz, 3H), 7.59 (td, J = 1.2, 8.0 Hz, 3H), 7.66 (d, J = 7.2 Hz, 3H), 7.88 (d, J = 8.4 Hz, 3H). ¹³C NMR signals were barely detected

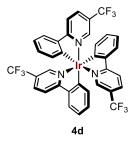
because of the low solubility of **4a**. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₃₃H₂₄IrN₃Na, 676.1468; found, 676.1465.


fac-Tris[2-(4-fluorophenyl)pyridinato]iridium(III) (4b).

The reactions were performed according to the general procedure A (ball-milling time: 10 min) for the first ligand exchange and the general procedure B, Method 1 (ball-milling time: 60 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 59.7 mg (0.20 mmol) of **1** to give the crude dimer product **3b** (93.2 mg, 0.09781 mmol, 81% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 85.4 mg of **3b** (0.075 mmol). The product **4b** was obtained as a yellow-green powder (85.2 mg, 0.120 mmol, 81% yield) (66% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

¹H NMR (392 MHz, CDCl₃, δ): 6.45 (dd, J = 2.7, 10.2 Hz, 3H), 6.61 (td, J = 2.7, 8.8 Hz, 3H), 6.88 (t, J = 6.3 Hz, 3H), 7.47 (d, J = 5.5 Hz, 3H), 7.62 (dd, J = 5.9, 8.6 Hz, 6H), 7.82 (d, J = 8.6 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 107.6 (d, J = 23.4 Hz, CH), 118.8 (CH), 121.7 (CH), 122.2 (d, J = 16.9 Hz, CH), 125.7 (d, J = 9.5 Hz, CH), 136.3 (CH), 139.8 (C), 147.0 (CH), 163.1 (d, J = 52.6 Hz, C), 164.4 (d, J = 193.5 Hz, C), 165.5 (C). HRMS-ESI (m/z): [M]⁺ calcd for C₃₃H₂₁F₃IrN₃, 707.1294; found, 707.1286.

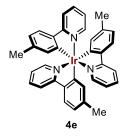
fac-Tris{2-[4-(trifluoromethyl)phenyl]pyridinato}iridium(III) (4c).



The reactions were performed according to the general procedure A (ball milling time: 10 min) for the first ligand exchange and the general procedure B, Method 1 (ball-milling time: 60 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 60.3 mg (0.20 mmol) of **1** to give the crude dimer product **3c** (130.4 mg, 0.097 mmol, 96% yield), which was used directly for the

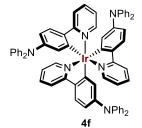
next step without further purification. The second ligand exchange reaction was carried out with 121.2 mg of **3c** (0.090 mmol). The product **4c** was obtained as a yellow powder (91.7 mg, 0.107 mmol, 59% yield) (57% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

¹H NMR (392 MHz, CDCl₃, δ): 6.94 (d, J = 1.2 Hz, 3H), 6.97–7.02 (m, 3H), 7.15 (dd, J = 2.0, 8.0 Hz, 3H), 7.50–7.55 (m, 3H), 7.68–7.74 (m, 6H), 7.97 (d, J = 8.0 Hz, 3H). ¹³C NMR signals were barely detected because of the low solubility of **4c**. HRMS-ESI (m/z): [M]⁺ calcd for C₃₆H₂₁F₉IrN₃, 857.1198; found, 857.1192.


fac-Tris[2-phenyl-5-(trifluoromethyl)pyridinato]iridium(III) (4d).

The reactions were performed according to the general procedure A (ball-milling time: 10 min) for the first ligand exchange and the general procedure B, Method 1 (ball-milling time: 60 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 59.7 mg (0.20 mmol) of **1** to give the crude dimer product **3d** (71.5 mg, 0.054 mmol, 53% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 64.8 mg of **3d** (0.048 mmol). The product **4d** was obtained as a yellow powder (55.2 mg, 0.064 mmol, 67% yield) (36% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

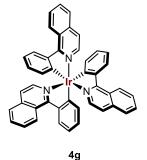
¹H NMR (400 MHz, CDCl₃, δ): 6.81 (dd, *J* = 1.2, 7.6 Hz, 3H), 6.92 (td, *J* = 1.2, 7.6 Hz, 3H), 6.99 (td, *J* = 1.2, 7.2 Hz, 3H), 7.67 (s, 3H), 7.73 (dd, *J* = 1.6, 8.0 Hz, 3H), 7.85 (dd, *J* = 2.0, 8.8 Hz, 3H) 8.02 (d, *J* = 8.4 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 118.9 (CH), 120.9 (CH), 121.3 (C), 124.1 (C), 124.8 (C), 125.1 (C), 125.6 (CH), 131.5 (CH), 133.7 (CH), 137.2 (CH), 141.8 (C), 143.79 (CH), 143.84 (CH), 161.0 (C), 170.0 (C). HRMS-ESI (*m*/*z*): [M]⁺ calcd for C₃₆H₂₁F₉IrN₃, 857.1198; found, 857.1180


fac-Tris[2-(p-tolyl)pyridinato]iridium(III) (4e).

The reactions were performed according to the general procedure A (ball-milling time: 10 min) for the first ligand exchange and the general procedure B, Method 1 (ball-milling time: 60 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 60.4 mg (0.20 mmol) of **1** to give the crude dimer product **3e** (97.8 mg, 0.087 mmol, 86% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 92.1 mg of **3e** (0.082 mmol). The product **4e** was obtained as a white powder (35.5 mg, 0.051 mmol, 31%yield) (27% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

¹H NMR (392 MHz, CDCl₃, δ): 2.12 (s, 9H), 6.57 (s, 3H), 6.66 (d, *J* = 7.4 Hz, 3H), 6.77 (s, 3H), 7.43 (s, 3H), 7.51–7.59 (m, 6H), 7.81 (d, *J* = 8.2 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 21.9 (*C*H₃), 118.3 (*C*H), 121.0 (*C*H), 121.3 (*C*H), 123.6 (*C*H), 135.6 (*C*H), 137.7 (*C*H), 139.4 (*C*), 141.1 (*C*), 146.9 (*C*H), 161.4 (*C*), 166.7 (*C*). HRMS-ESI (*m*/*z*): [M]⁺ calcd for C₃₆H₃₀IrN₃, 695.2046; found, 695.2042.

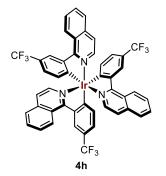
fac-Tris[N,N-diphenyl-4-(pyridin-2-yl)anilinato]iridium(III) (4f).



The reactions were performed according to the general procedure A (ball-milling time: 10 min) for the first ligand exchange and the general procedure B, Method 1 (ball-milling time: 60 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 60.2 mg (0.20 mmol) of **1** to give the crude dimer product **3f** (190.3 mg, 0.109 mmol, >99% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 178.1 mg of **3f** (0.102 mmol). The product **4f** was obtained as a red powder (49.4 mg, 0.043 mmol, 21% yield) (21% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–50:50).

¹H NMR (392 MHz, CDCl₃, δ): 6.25 (dd, J = 2.4, 8.6 Hz, 3H), 6.58 (d, J = 2.7 Hz, 3H), 6.76–6.90 (m,

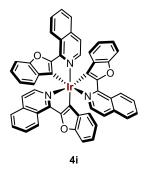
21H), 7.09 (t, *J* = 7.8 Hz, 12H), 7.27 (d, *J* = 7.4 Hz, 3H), 7.51–7.57 (m, 6H), 7.69 (d, *J* = 7.8 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 114.5 (*C*H), 117.7 (*C*H), 120.5 (*C*H), 122.1 (*C*H), 124.5 (*C*H), 124.7 (*C*H), 128.6 (*C*H), 130.1 (*C*H), 135.4 (*C*H), 137.5 (*C*), 147.2 (*C*), 147.6 (*C*H), 148.2 (*C*), 161.8 (*C*), 166.2 (*C*). HRMS-ESI (*m/z*): [M]⁺ calcd for C₆₉H₅₁IrN₆, 1154.3781; found, 1154.3813.


fac-Tris(1-phenylisoquinolinato)iridium(III) (4g).

The reactions were performed according to the general procedure A (ball-milling time: 30 min) for the first ligand exchange and the general procedure B, Method 2 (ball-milling time: 90 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 59.7 mg (0.20 mmol) of **1** to give the crude dimer product **3g** (77.0 mg, 0.061 mmol, 61% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 62.2 mg of **3g** (0.049 mmol). The product **4g** was obtained as a red powder (71.5 mg, 0.089 mmol, 91% yield) (56% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–80:20).

¹H NMR (392 MHz, CDCl₃, δ): 6.87 (t, J = 7.3 Hz, 3H), 6.95–7.01 (m, 6H), 7.12 (d, J = 6.3 Hz, 3H), 7.31 (d, J = 6.3 Hz, 3H), 7.61–7.68 (m, 6H), 7.70–7.75 (m, 3H), 8.20 (d, J = 7.8 Hz, 3H), 8.94–9.00 (m, 3H). ¹³C NMR signals were barely detected because of the low solubility of **4g**. HRMS-ESI (*m/z*): [M]⁺ calcd for C₄₅H₃₀IrN₃, 803.2046; found, 803.2038.

fac-Tris{1-[3-(trifluoromethyl)phenyl]isoquinolinato}iridium(III) (4h).



The reactions were performed according to the general procedure A (ball-milling time: 30 min) for the

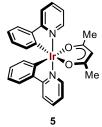
first ligand exchange and the general procedure B, Method 1 (ballmilling time: 90 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 60.3 mg (0.20 mmol) of **1** to give the crude dimer product **3h** (157.6 mg, 0.102 mmol, >99% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 132.5 mg of **3h** (0.086 mmol). The product **4h** was obtained as a red powder (106.2 mg, 0.105 mmol, 61% yield) (61% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–80:20).

¹H NMR (392 MHz, CDCl₃, δ): 7.00 (d, *J* = 7.8 Hz, 3 H), 7.06 (d, *J* = 8.2 Hz, 3H), 7.25 (d, *J* = 6.3 Hz, 3H), 7.33 (d, *J* = 5.9 Hz, 3H), 7.70–7.83 (m, 9H), 8.40 (s, 3H), 8.88 (d, *J* = 7.8 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 121.5 (*C*H), 126.0 (*C*H), 126.1 (*C*H), 126.5 (*C*), 126.9 (*C*H), 127.3 (*C*H), 128.6 (*C*H), 130.8 (*C*H), 136.8 (*C*), 137.2 (*C*H), 139.4 (*C*H), 145.4 (*C*), 166.1 (*C*), 168.8 (*C*). HRMS-ESI (*m/z*): [M]⁺ calcd for C₄₈H₂₇F₉IrN₃, 1007.1667; found, 1007.1656.

fac-Tris[1-(benzofuran-2-yl)isoquinolinato]iridium(III) (4i).

The reactions were performed according to the general procedure A (ball-milling time: 30 min) for the first ligand exchange and the general conditions B, Method 1 (ball-milling time: 90 min) for trhe second ligand exchange. The first ligand exchange reaction was carried out with 61.5 mg (0.21 mmol) of **1** to give the crude dimer product **3i** (134.2 mg, 0.091 mmol, 91% yield) which was used directly for the next step without further purification. The second-step reaction was carried out with 128.2 mg of **3i** (0.089 mmol). The product **4i** was obtained as a red powder (116.0 mg, 0.125 mmol, 70% yield) (64% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–70:30).

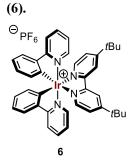
¹H NMR (392 MHz, CDCl₃, δ): 6.66 (d, *J* = 7.8 Hz, 3H), 6.78 (t, *J* = 7.6 Hz, 3H), 7.03 (d, *J* = 6.2 Hz, 3H), 7.19 (t, *J* = 7.8 Hz, 3H), 7.38 (d, *J* = 6.3 Hz, 3H), 7.52 (d, *J* = 8.2 Hz, 3H), 7.64–7.71 (m, 9H), 9.41 (d, *J* = 8.2 Hz, 3H). ¹³C NMR (99 MHz, CDCl₃, δ): 110.9 (CH), 117.8 (CH), 122.2 (CH), 124.6 (C), 125.5 (CH), 125.8 (CH), 126.1 (CH), 127.1 (CH), 127.5 (CH), 131.2 (CH), 136.6 (C), 136.7 (C), 137.3 (C), 141.6 (CH), 155.3 (C), 157.3 (C), 159.2 (C). HRMS-EI (*m*/*z*): [M]⁺ calcd for C₅₁H₃₀IrN₃O₃, 923.1893; found, 923.1893.


fac-Tris(2-phenylquinolinato)iridium(III) (4j).

The reactions were performed according to the general procedure A (ball-milling time: 30 min) for the first ligand exchange and the general conditions B, Method 1 (ball-milling time: 90 min) for the second ligand exchange. The first ligand exchange reaction was carried out with 60.2 mg (0.20 mmol) of **1** to give the crude dimer product **3j** (123.3 mg, 0.097 mmol, 96% yield), which was used directly for the next step without further purification. The second ligand exchange reaction was carried out with 110.0 mg of **3j** (0.086 mmol). The product **4j** was obtained as a red powder (68.3 mg, 0.085 mmol, 49% yield) (47% yield in 2 steps) after purification by silica-gel column chromatography (SiO₂, CH₂Cl₂/hexane, 0:100–100:0).

¹H NMR (392 MHz, CDCl₃, δ): 6.47 (d, *J* = 7.8 Hz, 3H), 6.66–6.71 (m, 6H), 6.85 (t, *J* = 7.4 Hz, 3H), 7.18 (t, *J* = 7.4 Hz, 3H), 7.66 (d, *J* = 7.4 Hz, 3H), 7.74 (d, *J* = 7.8 Hz, 3H), 8.00 (d, *J* = 9.0 Hz, 3H), 8.03–8.10 (m, 6H). ¹³C NMR signals were barely detected because of the low solubility of **4j**. HRMS-EI (*m/z*): [M]⁺ calcd for C₄₅H₃₀IrN₃, 803.2046; found, 803.2051.

Bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III) (5).

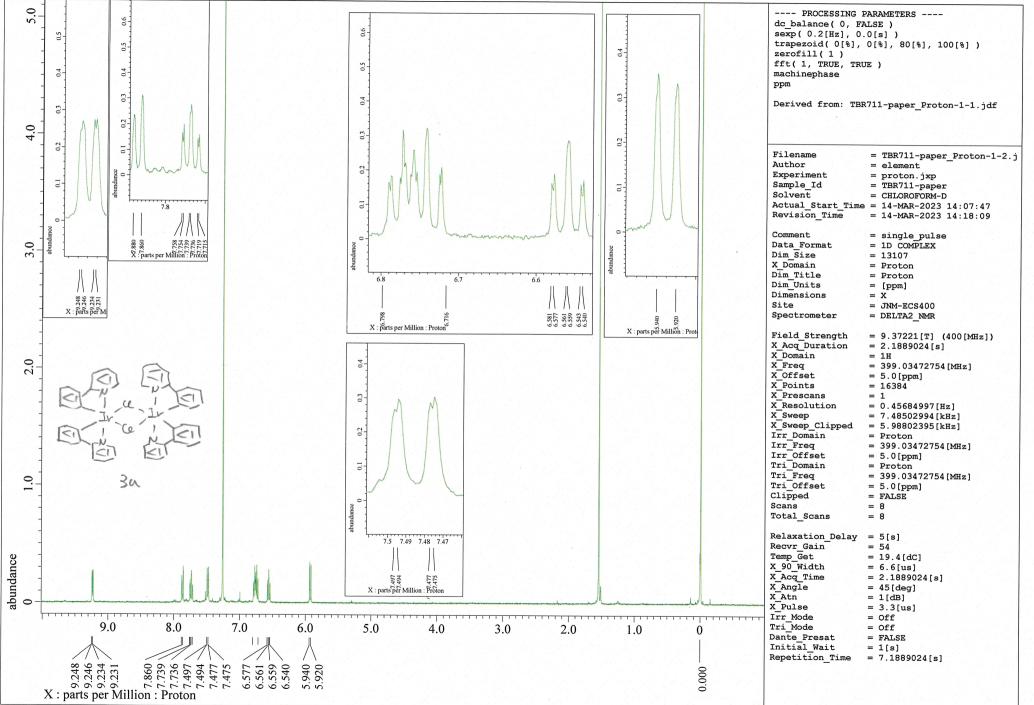


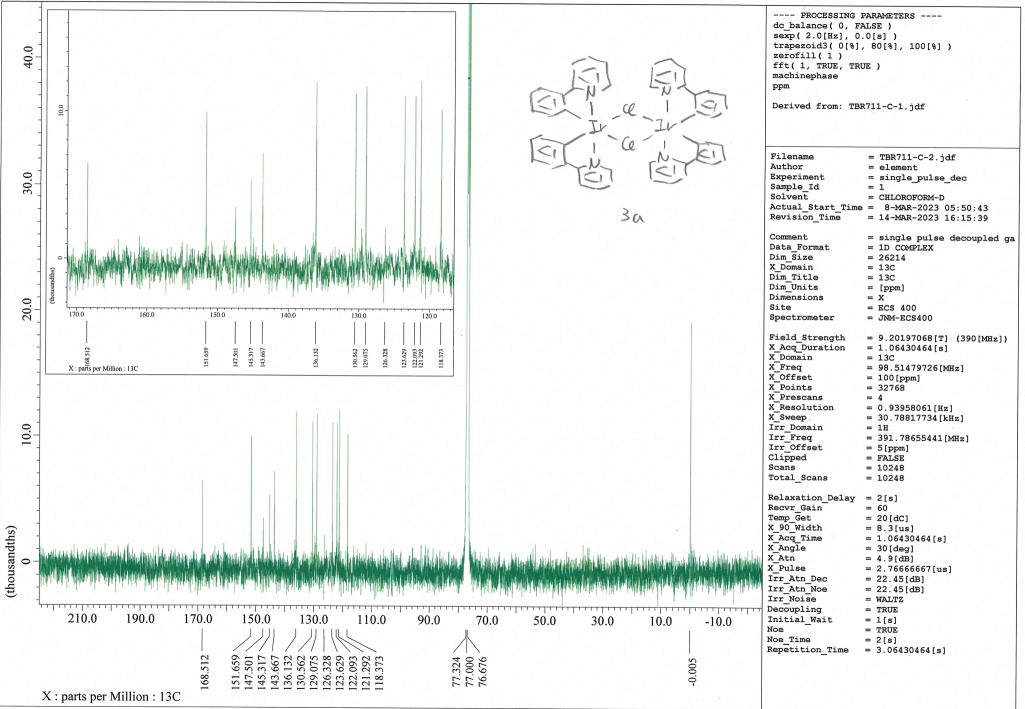
Chloride-bridged dimer **3a** (54.6 mg, 0.051 mmol), acetylacetone (50.6 mg, 0.51 mmol, 10 equiv), K_2CO_3 (140.0 mg, 1.01 mmol, 20 equiv) and and 2-methoxyethanol (0.20 µL/mg) were placed in a ball milling vessel (stainless, 1.5 mL) loaded with one grinding ball (stainless, diameter: 5 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 60 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was filtered by H₂O and Et₂O to give the desired product **5** as a orange powder (49.9 mg, 0.083 mmol, 83% yield).

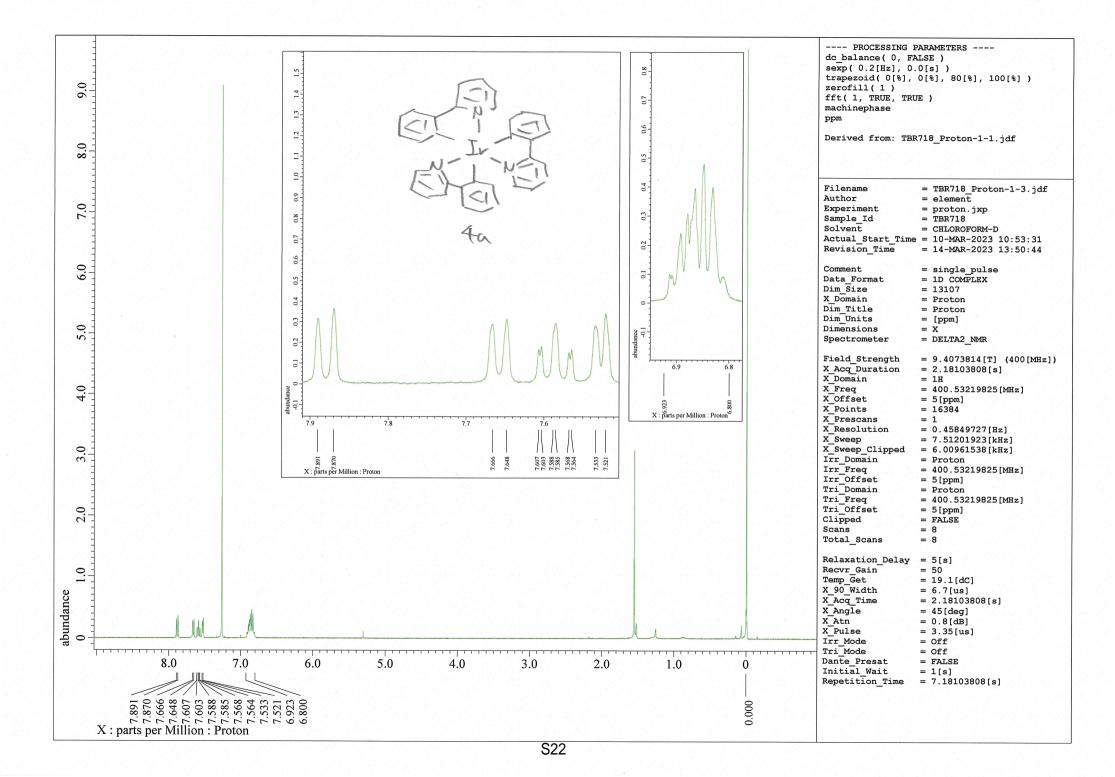
¹H NMR (400 MHz, CDCl₃, δ): 1.78 (s, 6H), 5.21 (s, 1H), 6.26 (d, *J* = 6.8 Hz, 2H), 6.68 (td, *J* = 1.6, 7.2 Hz, 2H), 6.80 (t, *J* = 8.0 Hz, 2H), 7.10–7.18 (m, 2H), 7.54 (d, *J* = 7.6 Hz, 2H), 7.73 (td, *J* = 1.2,

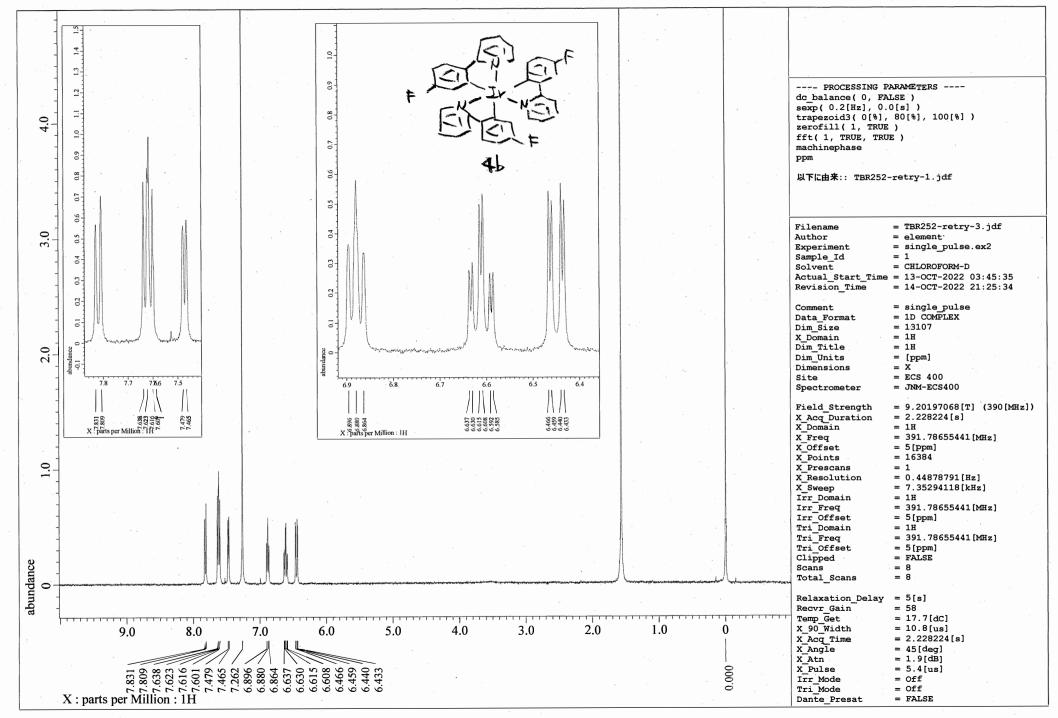
7.6 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 8.51 (d, J = 4.8 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 28.8 (CH₃), 100.3 (CH), 118.3 (CH), 120.6 (CH), 121.4 (CH), 123.8 (CH), 129.1 (CH), 133.0 (CH), 136.7 (CH), 144.6 (CH), 147.7 (C), 148.1 (CH), 168.6 (C), 184.5 (C). HRMS-EI (m/z): [M+Na]⁺ calcd for C₂₇H₂₃IrN₂O₂Na, 621.1258; found, 621.1254.

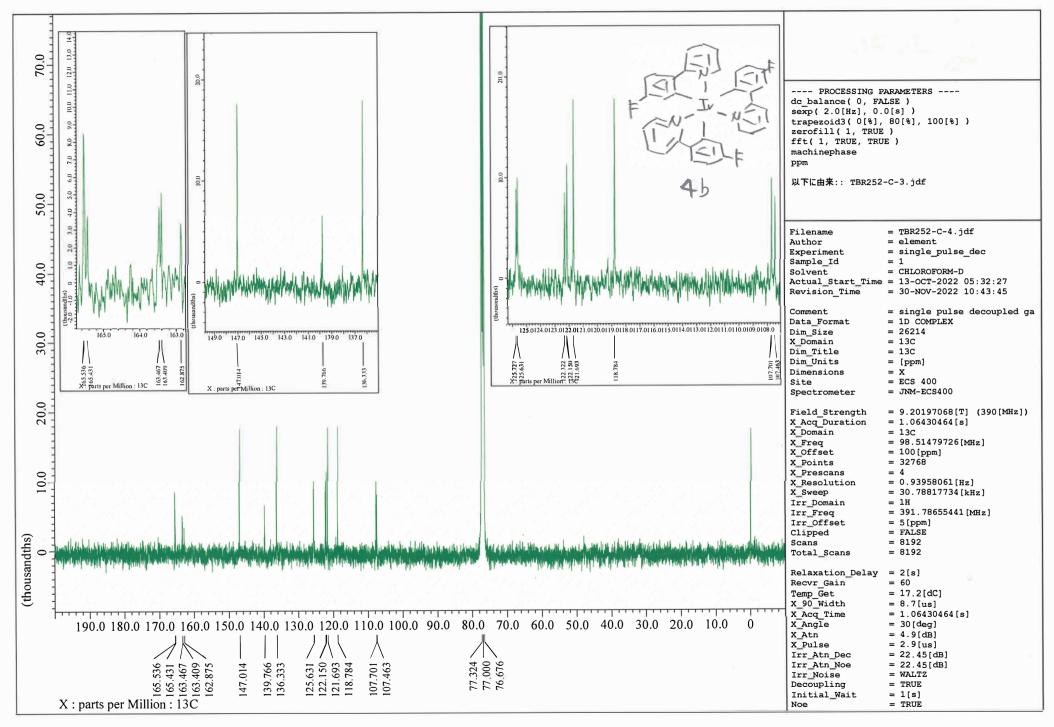
(4,4'-Di-*tert*-butyl-2,2'-bipyridine)bis[(2-pyridinyl)phenyl]iridium(III) Hexafluorophosphate




Chloride-bridged dimer **3a** (81.3 mg, 0.076 mmol), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (85.0 mg, 0.32 mmol, 4.2 equiv), ethylene glycol (0.20 μ L/mg) were placed in a ball milling vessel (stainless, 1.5 mL) loaded with one grinding ball (stainless, diameter: 5 mm). After being closed, the vessel placed in the ball mill machine (Retsch MM400, 60 min at 30 Hz) with a heat gun (the preset temperature at 300 °C). After ball milling, the jar was then cooled rapidly with cold water and opened. The mixture was extracted with Et₂O three times and the mixture was evaporated under vacuum. Then the mixture was dissolved in saturated KPF₆ aqueous solution and stirred for 1 hour at room temperature. The surry solution was filtered to give the desired product **6** as a red powder (119.9 mg, 0.131 mmol, 88% yield).


¹H NMR (401 MHz, CDCl₃, δ): 1.45 (s, 18H), 6.29 (d, *J* = 7.2 Hz, 2H), 6.89 (t, *J* = 7.0 Hz, 2H), 7.01 (t, *J* = 7.2 Hz, 2H), 7.11 (s, 2H), 7.38 (d, *J* = 4.4 Hz, 2H), 7.59 (s, 2H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.73–7.86 (m, 4H), 7.90 (d, *J* = 6.8 Hz, 2H), 8.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 30.5 (*C*H₃), 35.7 (*C*), 119.4 (*C*H), 122.4 (*C*H), 123.6 (*C*H), 124.6 (*C*H), 125.3 (*C*H), 130.6 (*C*H), 131.7 (*C*H), 138.0 (*C*H), 143.6 (*C*), 149.4 (*C*H), 149.7 (*C*H), 150.8 (*C*), 155.7 (*C*), 164.0 (*C*), 167.6 (*C*). HRMS-EI (*m/z*): [M–PF₆]⁺ calcd for C₄₀H₄₀N₄Ir, 767.2853; found, 767.2844.


9. References.


- 1. Anuradha, S.; Kip, T.; Megan, K.; Kariate, S. P.; Sadagopan, K.; Jimmie, D. W. J. Org. Chem. 776, 51–59 (2015).
- 2. Seo, T.; Toyoshima, N; Kubota, K.; Ito, H. J. Am. Chem. Soc. 143, 6165–6175 (2021).
- Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 125, 7377–7387 (2003).

