Supplementary Information for
 The Structures and Reactivity of NHC-supported Copper(I) TriphenyIgermyls

Rex S. C. Charman, Nick J. Evans, Laura E. English, Samuel E. Neale, Petra Vasko, Mary F. Mahon, David J. Liptrot

Experimental 4
General Considerations and Starting Materials 4
Synthesis of (6-Dipp)CuOMe 4
Synthesis of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$ 5
Synthesis of compound 1, (SIMes)CuGePh ${ }_{3}$ 5
Synthesis of compound 2, (IPr)CuGePh ${ }_{3}$ 5
Synthesis of compound 3, (6-Mes)CuGePh ${ }_{3}$ 6
Synthesis of compound 4, (6-Dipp)CuGePh 6
Synthesis of compound 5, (IPr)CuSC(=NtBu)GePh ${ }_{3}$ 7
Synthesis of compound 6, (IPr)CuSC(S)GePh 7
Synthesis of compound 7, (IPr)CuN(Ph)C(O)Ph 7
Synthesis of compound 8, (IPr)CuN(Ph)C(O)GePh 3 8
Synthesis of compound 9, (IPr)CuC(Ph)C(H) GePh_{3} 8
Synthesis of compound 10, (IPr)CuC(H)=C(Ph) GePh_{3} 8
Reaction of compound $\mathbf{2}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ 9
Reaction of compound 2 and $\mathrm{Ph}_{2} \mathrm{PCl}$ 9
Reaction of compound $\mathbf{2}$ and carbon dioxide 9
${ }^{1} \mathrm{H}$ VT-NMR study of the reaction of compound $\mathbf{2}$ and carbon dioxide 9
Reaction of compound $\mathbf{2}$ and di-iso-propyl carbodiimide 9
Thermolysis of compound 5 10
Reaction of compound $\mathbf{2}$ and phenyl isocyanate 10
Thermolysis of compound 8 10
Reaction of compound 1 and phenyl isocyanate 10
Reaction of compound 2 and phenyl acetylene at $-40^{\circ} \mathrm{C}$ 10
Reaction of compound $\mathbf{2}$ and of phenyl acetylene at room temperature 10
Reaction of 10 mol\% compound $\mathbf{2}$ with $\mathrm{Ph}_{3} \mathrm{GeH}$ and phenyl acetylene 11
Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ 11
Reaction of (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$ 11
General Procedure for the Catalytic Cross Coupling Reactions 11
Catalytic Cross Coupling Reactions 11
General Procedure for the Catalytic Hydrogermylation of Activated Alkenes 12
Catalytic Hydrogermylation of Activated Alkenes 12
X-ray Crystallography 15
X-ray data discussion 15
Figure S1. Molecular structure of (SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh ${ }_{3}$ 16
Table S1. Crystal data and structure refinement details (compounds 1-4) 17
Table S2. Crystal data and structure refinement details (compounds 5-8) 18
Table S3. Crystal data and structure refinement details (compounds 9-10 and 19(SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh ${ }_{3}$)
In situ reaction monitoring by NMR spectroscopy 20
Figures S2: Reaction of (SIMes)CuOtBu and $\mathrm{Ph}_{3} \mathrm{GeH}$ 20

Figure S3: Reaction of (IPr)CuOMe and $\mathrm{Ph}_{3} \mathrm{GeH}$
20
Figure S4: Reaction of (6-Mes)CuMes and $\mathrm{Ph}_{3} \mathrm{GeH}$ 21
Figure S5: Reaction of (6-Dipp)CuOMe and $\mathrm{Ph}_{3} \mathrm{GeH} 21$
Figure S6: Reaction of (IPr)CuGePh ${ }_{3}$ and tBuNCS 22
Figure S7: Reaction of (IPr)CuGePh ${ }_{3}$ and $\mathrm{CS}_{2} \quad 22$
Figure S8: Reaction of (IPr)CuPh and PhNCO 23
Figure S9-10: Reaction of compound 2 and $\mathrm{Ph}_{3} \mathrm{SnCl} 23$
Figures S11-12: Reaction of compound 2 and $\mathrm{Ph}_{2} \mathrm{PCl} 24$
Figure S13: Reaction of compound 2 and carbon dioxide 25
Figure S14: ${ }^{1} \mathrm{H}$ VT-NMR spectra of the reaction of compound 2 and carbon 26
dioxide
Figure S15: Reaction of compound 2 and di-iso-propyl carbodiimide 26
Figure S16: Thermolysis of compound 5 27
Figure S17: Reaction of compound 2 and phenyl isocyanate 27
Figure S18: Thermolysis of compound $8 \quad 28$
Figure S19: Reaction of compound 1 and phenyl isocyanate 28
Figure S20: Reaction of compound 2 and phenyl acetylene at $-40^{\circ} \mathrm{C} \quad 29$
Figure S21: Reaction of compound 2 and phenyl acetylene at room 29
temperature
Figure S22: The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum of the reaction of compound $2 \mathbf{3 0}$
and two equivalents of phenyl acetylene at room temperature
Figure S23: Reaction of 10 mol\% compound 2 with phenyl acetylene and
$\mathrm{Ph}_{3} \mathrm{GeH}$
Figures S24-25: Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ 31
Figures S26-27: Reaction of (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe} 32$
Figures S28-29: Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and 33 $\mathrm{Bu}_{3} \mathrm{SnOMe}$
Figures S30-31: Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and 34 $\mathrm{Ph}_{3} \mathrm{SnOtBu}$
Figure S32: Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and methyl vinyl35
ketone
Figure S33: Reaction of $5 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and acrylonitrile
Figure S34: Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and 4 -vinyl pyridine

NMR Spectra of Compounds
 37

Figures S35-36: NMR spectra of (6-Dipp)CuOMe 37
Figures S37-39: NMR spectra of $\mathrm{Ph}_{3} \mathrm{SnOtBu} 38$
Figures S40-42: NMR spectra of $\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3} 39$
Figures S43-44: NMR spectra of compound 1, (SIMes)CuGePh ${ }_{3} 41$
Figures S45-46: NMR spectra of compound 2, (IPr)CuGePh ${ }_{3} 42$
Figures S47-48: NMR spectra of compound 3, (6-Mes)CuGePh 3
Figures S49-50: NMR spectra of compound 4, (6-Dipp)CuGePh 3
Figures S51-52: NMR spectra of compound 5, (IPr)CuSC(=NtBu)GePh ${ }_{3} 45$
Figures S53-54: NMR spectra of compound 6, (IPr)CuSC(S)GePh ${ }_{3} 46$
Figures S55-56: NMR spectra of compound 7, (IPr)CuN(Ph)C(O)Ph 47
Figures S57-58: NMR spectra of compound 8, (IPr)CuN(Ph)C(O)GePh ${ }_{3} 48$
Figures S59-60: NMR spectra of compound 9, (IPr)CuC(Ph)C(H)GePh 3
Figures S61-62: NMR spectra of compound 11a, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3} \mathrm{50}$
Figures S63-64: NMR spectra of compound 11b, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}$
Figures S65-66: NMR spectra of compound 11c, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ 52
Figures S67-68: NMR spectra of compound 11d, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OCH}_{3}$ 53
Figures S69-70: NMR spectra of compound 11g, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$ 54
Figures S71-72: NMR spectra of compound $11 \mathrm{~h}, \mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NMe}_{2}$ 55
Figures S73-74: NMR spectra of compound 11k, $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2}\left(2-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ 56
Computational details 57
References 68

Experimental

General Considerations and Starting Materials

All reactions dealing with air- and moisture-sensitive compounds were carried out under argon atmosphere using standard Schlenk line and glovebox techniques. NMR experiments using air sensitive compounds were conducted in J. Young's tap NMR tubes prepared and sealed in a glovebox under argon. Hexane, toluene, and pentane were purified using an MBraun Solvent Purification System and stored over $4 \AA$ molecular sieves. Benzene, diethyl ether, and THF were dried with a sodium benzophenone suspension and distilled. $\mathrm{C}_{6} \mathrm{D}_{6}$ and toluene- d_{8} was dried over a potassium mirror prior to vacuum transfer into a sealed ampoule and stored in a glove box under argon. Methanol was dried over magnesium turnings and distilled. All NMR data, unless otherwise stated, were acquired at 298 K on an Agilent ProPulse or Bruker Avance instrument for ${ }^{1} \mathrm{H}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $(126 \mathrm{MHz})$, and ${ }^{119} \mathrm{Sn}(186 \mathrm{MHz})$ and a Bruker Avance 400 for ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(101 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(162 \mathrm{MHz}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced using residual solvent resonances. Elemental analyses were performed by Elemental Microanalysis Ltd., Okehampton, Devon, U.K. $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ were purchased from Merck and was used as received. Dibutyldimethoxytin was purchased from TCl and was used as received. Sodium methoxide and tributyltin methoxide were purchased from Fisher and were used as received. Phenyl isocyanate, tert-butyl isothiocyanate, $\mathrm{Ph}_{2} \mathrm{POEt}$, and $\mathrm{Ph}_{2} \mathrm{PCl}$ were purchased from Merck and distilled before use. Carbon disulfide was purchased from Merck and dried over calcium hydride prior to vacuum transfer into reactions. Carbon dioxide was purchased from Boc and atmospheres were applied through an Agilent 1/4 inch OT3-4 oxygen/moisture trap. Phenylacetylene was purchased from Fluorochem and was used as received. Diphenyltin oxide was purchased from Strem and was used as received. Methyl acrylate, ethyl acrylate, tertbutyl acrylate, methyl methacrylate, methyl crotonate, acrylonitrile, and 4-vinyl pyridine were purchased from Fisher and were distilled before use. Acrylamide, N,N-dimethylacrylamide, styrene, methyl vinyl ketone, and 2-vinyl pyridine were purchased from Merck and were distilled before use. (SIMes)CuOtBu, (IPr)CuPh, (IPr)CuOMe, (IPr)CuOtBu, (6-Mes)CuMes, (6-Dipp)CuCl, $\mathrm{Ph}_{3} \mathrm{GeLi}, \mathrm{Me}_{3} \mathrm{GeOMe}, \mathrm{Ph}_{3} \mathrm{GeOMe}$, and $\mathrm{Ph}_{3} \mathrm{SiOMe}$ were prepared according to literature procedures. ${ }^{1}$

Synthesis of (6-Dipp)CuOMe

In a glovebox, (6-Dipp)CuCl ($1.254 \mathrm{~g}, 2.49 \mathrm{mmol}$) and $\mathrm{NaOMe}(0.135 \mathrm{~g}, 2.50 \mathrm{mmol})$ were added to a Schlenk flask. Methanol (40 mL) was added forming a yellow suspension which was left stirring overnight at room temperature. Volatiles were removed in vacuo precipitating a beige powder. Benzene (20 mL) was added and resulting suspension was filtered forming a pale yellow solution. Volatiles were removed in vacuo precipitating an off-white powder which was washed with hexane (3 $\times 10 \mathrm{~mL}$) yielding the product, (6-Dipp)CuOMe ($0.475 \mathrm{~g}, 0.95 \mathrm{mmol}, 38 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}$, para-H), $7.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, meta-H), $3.92(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.03\left(\right.$ hept, $\left.J=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.73\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.52-1.47\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $\left.1.19\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 203.2(\mathrm{CCu}), 145.7$ ($\mathrm{Ar}-$ C), 142.5 ($\mathrm{Ar}-\mathrm{C}$), 129.3 ($\mathrm{Ar}-\mathrm{C}$), 124.8 ($\mathrm{Ar}-\mathrm{C}), 46.1\left(\mathrm{NCH}_{2}\right), 28.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.6$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$. Analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{CuN}_{2} \mathrm{O}(\mathrm{MW}=499.21 \mathrm{~g} / \mathrm{mol})$: Expected: C , 69.77; H, 8.68; N, 5.61. Found: C, 69.37; H, 8.88; N, 5.26. See figures S35-36 for full NMR spectra of (6Dipp)CuOMe.

Synthesis of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$

In a glovebox, $\mathrm{Ph}_{3} \mathrm{SnCl}(0.900 \mathrm{~g}, 2.33 \mathrm{mmol})$ and $\mathrm{KOtBu}(0.262 \mathrm{~g}, 2.33 \mathrm{mmol})$ were added to a Schlenk flask. Hexane (30 mL) was added forming a colourless suspension which was left stirring overnight at room temperature. The resulting suspension was filtered, and volatiles were removed in vacuo precipitating a colourless powder of the product, $\mathrm{Ph}_{3} \mathrm{SnOtBu}(0.814 \mathrm{~g}, 1.92 \mathrm{mmol}, 82 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.78-7.63(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.07\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ and residual $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}$, SnOtBu). 13C NMR (126 MHz, C6 D_{6}) $\delta 140.3$ ($\mathrm{Ar}-\mathrm{C}$), 136.9 (Ar-C), 129.9 (Ar-C), 129.0 (Ar-C), 72.4 $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.1\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{119} \mathrm{Sn}$ NMR ($\left.186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-114.3$. See figures $\mathrm{S} 37-39$ for full NMR spectra of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$.

Synthesis of compound 1, (SIMes)CuGePh ${ }_{3}$

In a glovebox, (SIMes)CuOtBu ($0.300 \mathrm{~g}, 0.68 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{GeH}(0.206 \mathrm{~g}, 0.68 \mathrm{mmol})$ were added to a Schlenk flask. Diethyl ether (30 mL) was added forming a white suspension which was left stirring overnight at room temperature. Volatiles were removed in vacuo precipitating a white powder which was washed with cold hexane ($3 \times 10 \mathrm{~mL}$) yielding the product, compound $1(0.355 \mathrm{~g}, 0.53 \mathrm{mmol}, 78$ $\%)$. Single crystals of compound 1 that were suitable for characterisation by SC-XRD were grown from the slow cooling of a saturated toluene solution overnight.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.57-7.54(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20-7.17(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17-7.12(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-$ H and residual benzene), $6.73-6.72(\mathrm{~m}, 4 \mathrm{H}$, meta -H$), 2.97\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.11\left(\mathrm{~s}, 6 \mathrm{H}\right.$, para $\left.-\mathrm{CH}_{3}\right), 2.10$ ($\mathrm{s}, 12 \mathrm{H}$, ortho $-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 204.5$ (CCu), 150.3 (Ar-C), 138.5 (Ar-C), 136.8 (Ar-C), 135.7 ($\mathrm{Ar}-\mathrm{C}$), 135.5 ($\mathrm{Ar}-\mathrm{C}$), $130.0(\mathrm{Ar}-\mathrm{C}), 127.5(\mathrm{Ar}-\mathrm{C}), 126.3(\mathrm{Ar}-\mathrm{C}), 50.5\left(\mathrm{NCH}_{2}\right), 21.1($ para-CH3$), 18.1$ (ortho- CH_{3}). Analysis calculated for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{CuGeN}_{2}$ (MW = $673.95 \mathrm{~g} / \mathrm{mol}$): Expected: $\mathrm{C}, 69.51 ; \mathrm{H}, 6.13$; N, 4.16. Found: C, 69.04; H, 6.15; N, 4.02. See figure S2 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures S43-44 for full NMR spectra of 1.

Synthesis of compound 2, (IPr)CuGePh ${ }_{3}$

In a glovebox, (IPr)CuOMe ($0.780 \mathrm{~g}, 1.61 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{GeH}(0.492 \mathrm{~g}, 1.61 \mathrm{mmol})$ were added to a Schlenk flask. Toluene (30 mL) was added forming a colourless solution which was stirred overnight at room temperature. Volatiles were removed in vacuo precipitating a white powder which was washed with hexane ($3 \times 10 \mathrm{~mL}$). The white powder was dissolved in the minimum amount of toluene and filtered forming a colourless solution. The solution was cooled to $-5^{\circ} \mathrm{C}$ overnight precipitating a colourless crystalline material of the product, compound $\mathbf{2}$ ($0.440 \mathrm{~g}, 0.58 \mathrm{mmol}, 36 \%$). Single crystals of compound 2 were that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane into a saturated toluene solution.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.51-7.49(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20-7.13(\mathrm{~m}, 11 \mathrm{H}$, Ar-H and residual benzene), $7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}$, meta-H), $6.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 2.53$ (hept, $J=6.9 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.05\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 183.6$ (CCu), 150.3 ($\mathrm{Ar}-\mathrm{C}$), 145.9 ($\mathrm{Ar}-\mathrm{C}$), 136.8 ($\mathrm{Ar}-\mathrm{C}$), 134.8 ($\mathrm{Ar}-\mathrm{C}$), 130.7 ($\mathrm{Ar}-\mathrm{C}$), 127.5 ($\mathrm{Ar}-\mathrm{C}$), 126.2 (Ar-C), $124.3(\mathrm{Ar}-\mathrm{C}), 122.2(\mathrm{NCH}), 29.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Analysis calculated for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{CuGeN}_{2}(\mathrm{MW}=756.09 \mathrm{~g} / \mathrm{mol})$: Expected: $\mathrm{C}, 71.49 ; \mathrm{H}, 6.80 ; \mathrm{N}, 3.71$. Found: C, 70.96; H, 6.82; N, 3.69. See figure S3 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures $\mathrm{S} 45-46$ for full NMR spectra of 2.

Synthesis of compound 3, (6-Mes)CuGePh ${ }_{3}$

In a glovebox, (6-Mes)CuMes ($111 \mathrm{mg}, 0.220 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{GeH}(67.2 \mathrm{mg}, 0.220 \mathrm{mmol}$) were added to a Schlenk flask. Toluene (10 mL) was added forming a colourless solution which was stirred for 3 days at $60^{\circ} \mathrm{C}$. Volatiles were removed in vacuo forming a white powder which was washed with hexane ($3 \times 10 \mathrm{~mL}$) yielding the product, compound $3(75.5 \mathrm{mg}, 0.110 \mathrm{mmol}, 50 \%)$. Single crystals of compound $\mathbf{3}$ that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane into a saturated toluene solution.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.45-7.44(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.12$ ($\mathrm{m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and residual benzene), $6.75\left(\mathrm{~s}, 4 \mathrm{H}\right.$, meta-H), $2.46\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}\right.$, para $\left.-\mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 12 \mathrm{H}\right.$, ortho- $\left.\mathrm{CH}_{3}\right), 1.32$ - $1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 202.2(\mathrm{CCu}), 150.8$ (Ar-C), 141.8 (Ar-C), 138.1 (ArC), 136.8 ($\mathrm{Ar}-\mathrm{C}$), 134.9 ($\mathrm{Ar}-\mathrm{C}$), 130.0 ($\mathrm{Ar}-\mathrm{C}$), 127.3 ($\mathrm{Ar}-\mathrm{C}$), 126.1 ($\mathrm{Ar}-\mathrm{C}$), 43.4 ($\mathrm{NC}, 21.2$ (para- CH_{3}), 20.6 $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 18.1$ (ortho- CH_{3}). MS (ESI) [M+] $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{CuGeN}_{2}$: 685.1998, found: 685.2069 (err [ppm] = 4.63). Despite repeated attempts, we were unable to obtain satisfactory elemental analysis for this compound. This is most likely due to the compound's high sensitivity towards air and moisture. Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{CuGeN}_{2}(\mathrm{MW}=687.97 \mathrm{~g} / \mathrm{mol})$: Expected: $\mathrm{C}, 69.83 ; \mathrm{H}, 6.3 ; \mathrm{N}, 4.07$. Found: C, 68.22; H, 6.17; N, 3.88. See figure S 4 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures $\mathrm{S} 47-48$ for full NMR spectra of 3 .

Synthesis of compound 4, (6-Dipp)CuGePh ${ }_{3}$

(6-Dipp)CuOMe route:
In a vial in a glovebox, (6-Dipp)CuOMe ($30 \mathrm{mg}, 0.060 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{GeH}(27 \mathrm{mg}, 0.089 \mathrm{mmol}$) were combined. Benzene (0.5 mL) was added forming a yellow solution which was transferred into a J Young's NMR tube. The reaction was heated to $40^{\circ} \mathrm{C}$ for 4 days and volatiles were removed in vacuo precipitating a yellow oil. The oil was triturated with hexane (0.5 mL) precipitating a beige powder. The powder was redissolved in toluene (0.5 mL) and filtered forming a colourless solution. Crystals of compound 4 that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane. Despite repeated attempts at purification, this route yielded material that was impure by NMR spectroscopy. Crystalline yield: (6-Dipp)CuGePh ${ }_{3}(8.5 \mathrm{mg}, 0.011 \mathrm{mmol}, 18 \%)$. See figure S 5 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures S49-50 for full NMR spectra of 4 .

(6-Dipp)CuCl route:

In a vial in a glovebox, (6-Dipp)CuCl ($30 \mathrm{mg}, 0.060 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{GeLi}(19 \mathrm{mg}, 0.060 \mathrm{mmol})$ were combined. Diethyl ether (0.5 mL) was added forming a white suspension which was transferred into a J Young's NMR tube. The reaction was heated to $40^{\circ} \mathrm{C}$ overnight and volatiles were removed in vacuo precipitating a white powder. The powder was redissolved in toluene (0.5 mL) and filtered forming a colourless solution. Crystals of compound 4 were grown from the slow diffusion of hexane with a 5% impurity of (6-Dipp)CuCl, (6-Dipp)CuGePh 3 ($4.4 \mathrm{mg}, 0.006 \mathrm{mmol}, 10 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.36$ - $7.32(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29-7.26$ (m, 2H, Ar-H), 7.22 - $7.17(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-$ H), 7.09 (d, J = $7.8 \mathrm{~Hz}, 4 \mathrm{H}$, meta-H), $2.99-2.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.66\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.47-$ $1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.29-1.24\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.14\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 202.3(\mathrm{CCu}), 150.5(\mathrm{Ar}-\mathrm{C}), 145.9$ ($\mathrm{Ar}-\mathrm{C}$), 141.4 ($\left.\mathrm{Ar}-\mathrm{C}\right), 136.8$ ($\mathrm{Ar}-\mathrm{C}$), 129.5 (Ar-C), $127.2(\mathrm{Ar}-\mathrm{C}), 126.0(\mathrm{Ar}-\mathrm{C}), 125.0(\mathrm{Ar}-\mathrm{C}), 45.9\left(\mathrm{NCH}_{2}\right), 28.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.6$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{K}] \mathrm{C}_{46} \mathrm{H}_{55} \mathrm{CuGeN}_{2} \mathrm{~K}: 811.2544$, found: 811.2502 (err [ppm] = 1.19).

Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{CuGeN}_{2}$ ($\mathrm{MW}=772.14 \mathrm{~g} / \mathrm{mol}$): Expected: $\mathrm{C}, 71.56 ; \mathrm{H}, 7.18 ; \mathrm{N}, 3.63$. Found: C, 71.20; H, 7.09; N, 3.55. No in-situ NMR spectra were collected for 4 via this synthetic pathway.

Synthesis of compound 5, (IPr)CuSC(=NtBu)GePh ${ }_{3}$

In a vial in a glovebox, ($(\mathrm{Pr}) \mathrm{CuGePh}_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in benzene (0.5 mL). tert-Butyl isothiocyanate ($5.0 \mu \mathrm{~L}, 0.040 \mathrm{mmol}$) was added forming a pale yellow solution. The reaction mixture was transferred into a J Young's NMR tube and placed at $40^{\circ} \mathrm{C}$ for 10 days. Volatiles were removed in vacuo precipitating a beige powder. The powder was dissolved in the minimum amount of toluene and single crystals of compound 5 that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane, (IPr)CuSC($=\mathrm{NtBu}$) $\mathrm{GePh}_{3}(8 \mathrm{mg}, 0.009 \mathrm{mmol}, 20 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.85-7.81$ (m, 6H, Ar-H), 7.27 - 7.23 (m, 2H, Ar-H), $7.15-7.09(\mathrm{~m}, 13 \mathrm{H}$, Ar-H), 6.37 (s, 2H, NCH), 2.77 (hept, $\left.J=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08$ (d, J = $\left.6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.60\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 187.0(\mathrm{CCu}), 146.0(\mathrm{Ar}-$ C), 144.4 ($\mathrm{Ar}-\mathrm{C}$), 135.8 ($\mathrm{Ar}-\mathrm{C}$), 135.3 ($\mathrm{Ar}-\mathrm{C}$), 130.4 ($\mathrm{Ar}-\mathrm{C}$), 127.7 ($\mathrm{Ar}-\mathrm{C}$), 124.2 ($\mathrm{Ar}-\mathrm{C}$), 122.5 ($\mathrm{Ar}-\mathrm{C}$), 29.7 $\left(\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{M}-\mathrm{H}]^{-} \mathrm{C}_{50} \mathrm{H}_{59} \mathrm{CuGeN}_{3} \mathrm{~S}: 869.2984$, found: 869.3023 (err [ppm] = 0.75). Analysis calculated for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{CuGeN}_{3} \mathrm{~S}(\mathrm{MW}=871.29 \mathrm{~g} / \mathrm{mol})$: Expected: C, 68.93; H, 6.94; N, 4.82. Found: C, 69.22; H, 6.90; N, 3.98. See figure S6 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures S51-52 for full NMR spectra of 5.

Synthesis of compound 6, (IPr)CuSC(S)GePh ${ }_{3}$

In a vial in a glovebox, (IPr) CuGePh ${ }_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in benzene (0.5 mL) and was transferred into a J Young's NMR tube. $\mathrm{CS}_{2}(4.7 \mu \mathrm{~L}, 0.079 \mathrm{mmol})$ was added via vacuum transfer forming a pale green solution. Volatiles were removed in vacuo yielding the product, $(\mathrm{IPr}) \mathrm{CuSC}(\mathrm{S}) \mathrm{GePh}_{3}(19.7 \mathrm{mg}, 0.024 \mathrm{mmol}, 60 \%)$. Single crystals of compound 6 were that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane into a saturated toluene solution.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.83-7.78(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14-7.08(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-$ H), 7.06 (d, J = $7.8 \mathrm{~Hz}, 4 \mathrm{H}$, meta-H), 6.32 (s, 2H, NCH), 2.62 (hept, $\left.J=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37$ (d, J= $\left.6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.07\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 192.7\left(\mathrm{CS}_{2}\right), 184.4$ (CCu), 145.8 (Ar-C), 138.0 ($\mathrm{Ar}-\mathrm{C}$), 136.1 ($\mathrm{Ar}-\mathrm{C}$), 135.3 ($\mathrm{Ar}-\mathrm{C}$), 130.6 ($\mathrm{Ar}-\mathrm{C}$), 128.9 ($\mathrm{Ar}-\mathrm{C}$), 128.1 ($\mathrm{Ar}-\mathrm{C}$), $124.2(\mathrm{Ar}-\mathrm{C}), 122.4(\mathrm{NCH}), 29.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Analysis calculated for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{CuGeN}_{2} \mathrm{~S}_{2}(\mathrm{MW}=832.22 \mathrm{~g} / \mathrm{mol})$: Expected: $\mathrm{C}, 66.39 ; \mathrm{H}, 6.18 ; \mathrm{N}, 3.37$. Found: $\mathrm{C}, 66.26 ; \mathrm{H}, 6.11$; $\mathrm{N}, 3.25$. See figure $\mathrm{S7}$ for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures $\mathrm{S} 53-54$ for full NMR spectra of 6 .

Synthesis of compound 7, (IPr)CuN(Ph)C(O)Ph

In a vial in a glovebox, (IPr)CuPh ($30 \mathrm{mg}, 0.057 \mathrm{mmol}$) was dissolved in benzene (0.5 mL) and PhNCO $(9.2 \mu \mathrm{~L}, 0.085 \mathrm{mmol})$ was added forming a colourless suspension. The reaction was left overnight at room temperature before the suspension was transferred into a J Young's NMR tube. Volatiles were removed in vacuo precipitating a colourless powder which was washed with hexane ($3 \times 1 \mathrm{~mL}$) yielding compound 7, (IPr)CuN(Ph)C(O)Ph ($14.6 \mathrm{mg}, 0.023 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.98-7.96$ (m, 2H, Ar-H), 7.23 - 7.19 (m, 2H, Ar-H), $7.16-7.11(\mathrm{~m}, 16 \mathrm{H}$, Ar-H and residual benzene), $7.05-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99-6.97(\mathrm{~m}, 4 \mathrm{H}$, meta-H$), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), $6.75-6.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 2.41$ (hept, $\left.J=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.06(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.99\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 182.0(C(\mathrm{O})), 173.5(\mathrm{CCu}), 151.4$ ($\mathrm{Ar}-\mathrm{C}$), 145.4 ($\left.\mathrm{Ar}-\mathrm{C}\right), 144.4$ ($\mathrm{Ar}-\mathrm{C}$), 135.1 (Ar-C), 130.8 (Ar-C), 128.4 (Ar-C), 128.2 (Ar-C), 127.9 ($\mathrm{Ar}-\mathrm{C}$), 127.7 ($\mathrm{Ar}-\mathrm{C}$), 126.3 ($\mathrm{Ar}-\mathrm{C}$), 124.6 (meta-C), $123.0(\mathrm{NCH}), 121.0(\mathrm{Ar}-\mathrm{C}), 28.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{CuN}_{3} \mathrm{O}$ (MW = $648.37 \mathrm{~g} / \mathrm{mol}$): Expected: C, 74.10; H, 7.15; N, 6.48. Found: C, 73.72; H, 6.82; N, 6.12. See figure S 8 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures $\mathrm{S} 55-56$ for full NMR spectra of 7 .

Synthesis of compound 8, (IPr)CuN(Ph)C(O)GePh ${ }_{3}$

In a vial in a glovebox, (IPr) CuGePh ${ }_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in benzene $(0.5 \mathrm{~mL})$ and PhNCO $(5.4 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ was added forming a colourless solution. The reaction was left for 7 days at room temperature and was then transferred into a J Young's NMR tube. Volatiles were removed in vacuo precipitating a beige powder which was dissolved in the toluene (0.5 mL). Single crystals of compound 8 that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane, (IPr) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3}$ ($4.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 13 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.68-7.64(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.09-7.05(\mathrm{~m}, 13 \mathrm{H}$, Ar-H), 6.59-6.52 (m, 3H, Ar-H), $6.42-6.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}$), 2.59 (hept, J = 6.8 Hz, 4H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.07\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 184.6(\mathrm{C}(\mathrm{O})), 183.0(\mathrm{CCu}), 148.9(\mathrm{Ar}-\mathrm{C}), 145.9(\mathrm{Ar}-\mathrm{C}), 140.1$ ($\mathrm{Ar}-\mathrm{C}$), 135.9 ($\mathrm{Ar}-\mathrm{C}$), 135.2 ($\mathrm{Ar}-\mathrm{C}$), 130.6 ($\mathrm{Ar}-\mathrm{C}$), 128.2 ($\mathrm{Ar}-\mathrm{C}$), 127.9 ($\mathrm{Ar}-\mathrm{C}$), 127.8 ($\mathrm{Ar}-\mathrm{C}$), 126.2 ($\mathrm{Ar}-\mathrm{C}$), 124.4 ($\mathrm{Ar}-\mathrm{C}$), 122.6 (NCH), 122.3 ($\mathrm{Ar}-$ C), $29.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, , $24.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{52} \mathrm{H}_{57} \mathrm{CuGeN}_{3} \mathrm{~S}: 876.3000$, found: 876.2999 (err [ppm] = -2.20). Despite repeated attempts, we were unable to obtain satisfactory yield of this compound for suitable elemental analysis. See figure S 16 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum and figures S57-58 for full NMR spectra of 8 .

Synthesis of compound 9, (IPr)CuC(Ph)C(H)GePh ${ }_{3}$

In a vial in a glovebox, (IPr) CuGePh ${ }_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in cold toluene $(0.5 \mathrm{~mL})$ and the solution was cooled to $-40^{\circ} \mathrm{C}$. Phenyl acetylene ($3.5 \mu \mathrm{~L}, 0.032 \mathrm{mmol}$) was then added and the reaction mixture was left at $-40^{\circ} \mathrm{C}$ for three days. The reaction mixture was then transferred into J Young's NMR tube and volatiles were removed in vacuo precipitating a white powder. The powder was redissolved in toluene (0.5 mL) and filtered forming a colourless solution. Single crystals of compound 8 that were suitable for characterisation by SC-XRD were grown from the slow diffusion of hexane, (IPr) $\mathrm{CuC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{GePh}_{3}(11.4 \mathrm{mg}, 0.013 \mathrm{mmol}, 33 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.96$ - $7.62(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18-7.13(\mathrm{~m}, 10 \mathrm{H}$, Ar-H and residual benzene), $7.09-7.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99-6.97(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHGePh}_{3}\right)$, 6.74 - $6.70(\mathrm{~m}, 2 \mathrm{H} . \operatorname{Ar-H}), 6.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 2.47$ (hept, $\left.J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $\left.12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 198.9$ (CuCPh), 184.7 (CCu), 159.6 (Ar-C), 145.7 (Ar-C), 145.3 ($\mathrm{Ar}-\mathrm{C}$), 141.5 ($\mathrm{Ar}-\mathrm{C}$), 135.9 ($\mathrm{Ar}-\mathrm{C}$), 135.3 ($\mathrm{Ar}-\mathrm{C}), 132.5\left(\mathrm{CHGePh}_{3}\right)$, 132.3 ($\mathrm{Ar}-\mathrm{C}$), 130.6 ($\mathrm{Ar}-\mathrm{C}$), 128.4 ($\mathrm{Ar}-\mathrm{C}$), 128.2 ($\mathrm{Ar}-\mathrm{C}$), 128.1 ($\mathrm{Ar}-\mathrm{C}$), 128.0 ($\mathrm{Ar}-\mathrm{C}$), 128.0 ($\mathrm{Ar}-\mathrm{C}$), 125.9 ($\mathrm{Ar}-$ C), 124.4 (meta-C), 122.9 (NCH), $122.7(\mathrm{Ar}-\mathrm{H}), 28.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{MS}$ (ESI) [M+] $\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{CuGeN}_{2}$: 859.3054, found: 859.3057 (err [ppm] = -0.37). Analysis calculated for $\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{CuGeN}_{2}$ (MW = $858.23 \mathrm{~g} / \mathrm{mol}$): Expected: C, 74.17 ; H, 6.69; N, 3.26. Found: C, 74.76; H, 7.05; N, 3.58. See figures S59-60 for full NMR spectra of 9 .

Synthesis of compound 10, (IPr)CuC(H)=C(Ph)GePh ${ }_{3}$

In a vial in a glovebox, (IPr)CuGePh $(30 \mathrm{mg}, 0.04 \mathrm{mmol})$ was dissolved in toluene $(0.5 \mathrm{~mL})$ and phenyl acetylene ($3.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$) was then added forming a colourless solution.

The reaction was left overnight at room temperature and was then transferred into J Young's NMR tube. Volatiles were removed in vacuo precipitating a white powder. The powder was redissolved in toluene (0.5 mL) and filtered forming a colourless solution. Single crystals of compound $\mathbf{1 0}$ that were suitable for characterisation by SC-XRD were grown from the slow diffusion of pentane into a saturated THF solution at $-40^{\circ} \mathrm{C}$. Despite repeated attempts at purification, we were unable to isolate compound $\mathbf{1 0}$ from a mixture containing compound 9 , (IPr)CuCCPh, and $\mathrm{PhC}\left(\mathrm{GePh}_{3}\right)=\mathrm{CH}_{2}$. See figures S19-S20 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of compound 2 and $\mathrm{Ph}_{3} \mathrm{SnCl}$

In a vial in a glovebox, (IPr)CuGePh $h_{3}(20 \mathrm{mg}, 0.026 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ ($11 \mathrm{mg}, 0.03 \mathrm{mmol}$) was then added forming a colourless solution. The reaction was then transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ NMR spectroscopy. An aliquot of the reaction mixture was dissolved in THF (1 mL) for investigation by mass spectrometry. MS (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3}[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{36} \mathrm{H}_{30} \mathrm{CuGeSnK}: 693.0212$, found: 693.0217 (err [ppm] =-1.52).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.71$ - $7.50(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.11-7.06(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$; ${ }^{119} \mathrm{Sn}$ NMR (186 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 160.3\left(\mathrm{~s}, \mathrm{Ph}_{3} \mathrm{GeSnPh}_{3}\right)$. Resonances correspond to known literature data for $\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3} .{ }^{5}$ See figures $\mathrm{S8}$-S9 for the in-situ reaction NMR spectra.

Reaction of compound 2 and $\mathrm{Ph}_{2} \mathrm{PCl}$

In a vial in a glovebox, (IPr) CuGePh ${ }_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and $\mathrm{Ph}_{2} \mathrm{PCl}$ ($7.7 \mu \mathrm{~L}, 0.042 \mathrm{mmol}$) was then added forming a colourless suspension. The reaction was then transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ and ${ }^{31}$ P NMR spectroscopy. A second equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}(7.7 \mu \mathrm{~L}, 0.042 \mathrm{mmol})$ was then added and the reaction was interrogated by ${ }^{1} \mathrm{H}$ and ${ }^{31}$ P NMR spectroscopy. See figures S10-S11 for the in-situ reaction NMR spectra.

Reaction of compound 2 and carbon dioxide

In a vial in a glovebox, ($(\mathrm{Pr}) \mathrm{CuGePh} 3$ ($20 \mathrm{mg}, 0.026 \mathrm{mmol}$) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and the resulting solution was transferred into a J Young's NMR tube. The solution was degassed, and an atmosphere of CO_{2} was applied. The reaction was then interrogated by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature showing no reaction. See figure S 12 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

${ }^{1} \mathrm{H}$ VT-NMR study of the reaction of compound 2 and carbon dioxide

In a vial in a glovebox, ($(\mathrm{Pr}) \mathrm{CuGePh}_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in toluene- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$ and the resulting solution was transferred into a J Young's NMR tube. The solution was degassed, and an atmosphere of CO_{2} was applied. The reaction was then and was interrogated by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature. The resulting reaction mixture was monitored at different temperatures (298 K, 273K, and 248 K) within an NMR spectrometer showing no reaction. See figure S13 for the in-situ reaction ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectra.

Reaction of compound $\mathbf{2}$ and di-iso-propyl carbodiimide

In a vial in a glovebox, (IPr)CuGePh ${ }_{3}(19.5 \mathrm{mg}, 0.026 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and di-isopropyl carbodiimide ($4.0 \mu \mathrm{~L}, 0.026 \mathrm{mmol}$) was then added. The reaction was then transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The reaction displayed no evidence of a reaction even after heating at $80^{\circ} \mathrm{C}$ overnight. See figure S14 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Thermolysis of compound 5

In a vial in a glovebox, (1 Pr)CuSC(= NtBu) $\mathrm{GePh}_{3}(35 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and the solution was transferred into a J Young's NMR tube. The solution was heated at $120{ }^{\circ} \mathrm{C}$ for overnight and was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. No evidence of decomposition was observed. See figure S 15 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of compound 2 and phenyl isocyanate

In a vial in a glovebox, (IPr)CuGePh $(15.5 \mathrm{mg}, 0.021 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and phenyl isocyanate ($2.0 \mu \mathrm{~L}, 0.019 \mathrm{mmol}$) was then added forming a colourless solution. The reaction was then transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was left for 2 days at room temperature and a grey material precipitated out during the course of the reaction. An aliquot of the reaction mixture was dissolved in THF (1 mL) for investigation by mass spectrometry. MS (ESI) expected for $\mathrm{Ph}_{4} \mathrm{Ge}[\mathrm{M}+\mathrm{K}]^{+} \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{GeK}$: 420.0437, found: 420.0408 (err [ppm] = -4.00). See figure S16 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Thermolysis study of compound 8

In a vial in a glovebox, (IPr) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3}(4.4 \mathrm{mg}, 0.005 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and was then transferred into a J Young's NMR tube. The resulting solution was heated at $120^{\circ} \mathrm{C}$ for 4 days and was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. An aliquot of the reaction mixture was dissolved in THF $(1 \mathrm{~mL})$ for investigation by mass spectrometry. MS (ESI) expected for [$\mathrm{PhNC}(\mathrm{O})]_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}$: 358.1192, found: 358.1187 (err [ppm] = 0.31). See figure $S 17$ for the in-situ reaction ${ }^{1} \mathrm{H} N M R$ spectrum.

Reaction of compound 1 and phenyl isocyanate

In a vial in a glovebox, (SIMes)CuGePh ${ }_{3}(12 \mathrm{mg}, 0.018 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and phenyl isocyanate ($2.0 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$) was then added forming a colourless solution. The reaction was then transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Colourless crystals of (SIMes)CuN(Ph)C(O)N(Ph)C(O) GePh_{3}, crystallised out of solution that were suitably single for characterisation by SC-XRD.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.09-8.03(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27-7.19(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.98-6.86(\mathrm{~m}, 6 \mathrm{H}$, Ar-H), 6.72 - 6.59 (m, 4H, Ar-H), $6.56-6.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42-6.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}$, NCH_{2}), $2.03\left(\mathrm{~s}, 6 \mathrm{H}\right.$, para $\left.-\mathrm{CH}_{3}\right), 1.87\left(\mathrm{~s}, 12 \mathrm{H}\right.$, ortho $\left.-\mathrm{CH}_{3}\right)$. See figure S 18 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of compound 2 and phenyl acetylene at $-40^{\circ} \mathrm{C}$

In a vial in a glovebox, (IPr) $\mathrm{CuGePh}_{3}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in cold toluene- d_{8} (0.5 mL) and the solution was cooled to $-40^{\circ} \mathrm{C}$. Phenyl acetylene ($3.5 \mu \mathrm{~L}, 0.032 \mathrm{mmol}$) was then added and the reaction mixture was left at $-40^{\circ} \mathrm{C}$ for three days. The reaction mixture was then transferred into a J Young's NMR tube and was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. For corresponding ${ }^{1} \mathrm{H}$ NMR spectrum, see Figure S13. See figure S19 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of compound 2 and of phenyl acetylene at room temperature

In a vial in a glovebox, (IPr) CuGePh 3 ($30 \mathrm{mg}, 0.040 \mathrm{mmol}$) was dissolved in toluene- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$ and phenyl acetylene ($3.5 \mu \mathrm{~L}, 0.032 \mathrm{mmol}$) was added. The reaction was then transferred into a J Young's NMR tube and was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Another equivalent of phenyl acetylene (3.5 $\mu \mathrm{L}, 0.032 \mathrm{mmol}$) was then added and the reaction mixture was interrogated by ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectroscopy.

An aliquot of the reaction mixture was dissolved in THF (1 mL) for investigation by mass spectrometry. MS (ESI) expected for $\mathrm{PhC}\left(\mathrm{GePh}_{3}\right)=\mathrm{CH}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Ge}: 409.1012$, found: 409.1018 (err [ppm] = 2.75). Selected ${ }^{1} \mathrm{H}$ NMR resonances (400 MHz , Toluene- d_{8}) $\delta 6.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.65(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$). For corresponding ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum and full ${ }^{1} \mathrm{H}$ NMR spectral data, see Figures S20-S21.

Reaction of 10 mol\% compound 2 with $\mathrm{Ph}_{3} \mathrm{GeH}$ and phenyl acetylene

In a vial in a glovebox, (IPr) $\mathrm{CuGePh}_{3}(5.0 \mathrm{mg}, 0.007 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{GeH}$ $(20.0 \mathrm{mg}, 0.070 \mathrm{mmol})$ was added. Phenyl acetylene ($7.3 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$) was then added and the reaction mixture was transferred into a J Young's NMR tube. The reaction was heated at $60{ }^{\circ} \mathrm{C}$ overnight and was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy showing generation of N, N '-bis $(2,6-$ diisopropylphenyl)imidazol-2-ylidene(phenylacetylido)copper(I) and no catalytic turnover. See figure S22 for the in-situ reaction ${ }^{1} \mathrm{H}$ NMR spectrum.

Reaction of 10 mol\% (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$

In a vial in a glovebox, (SIMes)CuOtBu ($5 \mathrm{mg}, 0.007 \mathrm{mmol}$) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL) forming a colourless solution. $\mathrm{Ph}_{3} \mathrm{GeH}(22.6 \mathrm{mg}, 0.074 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{SnCl}(28.6 \mathrm{mg}, 0.074 \mathrm{mmol})$ was then added. The reaction mixture was transferred into a J Young's NMR tube and was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{119}$ Sn NMR spectroscopy overnight at $60{ }^{\circ} \mathrm{C}$ showing no reaction. See figures S23-S24 for the in-situ reaction NMR spectra.

Reaction of (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$

In a vial in a glovebox, (SIMes)CuOtBu ($30 \mathrm{mg}, 0.068 \mathrm{mmol}$) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ forming a colourless solution. $\mathrm{Ph}_{3} \mathrm{GeH}(21 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}(19 \mu \mathrm{~L}, 0.068 \mathrm{mmol})$ was then added. The reaction mixture was transferred into a J Young's NMR tube and was interrogated by ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ NMR spectroscopy. See figures S25-S26 for the in-situ reaction NMR spectra.
$\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}$:
1H NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta \delta 7.66$ - 7.61 (m, 6H, Ar-H), 7.22 - 7.18 (m, 6H, Ar-H), 7.15 - 7.11 (m, 3H, $\mathrm{Ar}-\mathrm{H}$), $1.59-1.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.20\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{2}\right.$ with overlapped tBuOH$), 0.81(\mathrm{t}, \mathrm{J}$ $\left.=7.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{119} \mathrm{Sn}$ NMR spectrum (186 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-86.3\left(\mathrm{~m}, \mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}\right)$.
(SIMes)CuOMe:
1H NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.74$ (s, 4H, meta-H), 3.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CuOCH}_{3}$), 3.08 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NCH}_{2}$), 2.14 - 2.10 ($\mathrm{m}, 18 \mathrm{H}$, ortho- CH_{3} and para- $-\mathrm{CH}_{3}$).

General Procedure for the Catalytic Cross Coupling Reactions

In a vial in a glovebox, $\mathrm{Ph}_{3} \mathrm{GeH}(20.6 \mathrm{mg}, 0.068 \mathrm{mmol})$ and the corresponding alkoxide (0.068 mmol) were combined in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$. (SIMes)CuOtBu ($3 \mathrm{mg}, 0.007 \mathrm{mmol}$) was then added, and the reaction mixture was transferred into a J Young's NMR tube. The reaction was monitored by ${ }^{1} \mathrm{H}$ (and ${ }^{119} \mathrm{Sn}$ NMR spectroscopy where relevant) until full conversion was reached. Spectroscopic yields were measured using $50 \mu \mathrm{~L}$ of a 1,3,5-trimethoxybenzene stock solution.

$\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}$

The reaction was conducted on a 2.33 mmol scale. Reaction was allowed to proceed at room temperature overnight before volatiles were removed in vacuo in order to push the reaction to completion.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.68-7.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.21-7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-$ H), $1.60-1.51\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31-1.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24-1.18\left(, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 0.83-0.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{119} \mathrm{Sn}$ NMR (186 MHz, C $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-86.3 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 140.0$ (Ar-C), 135.7 ($\mathrm{Ar}-\mathrm{C}$), 128.8 ($\mathrm{Ar}-\mathrm{C}$), 128.7 ($\mathrm{Ar}-\mathrm{C}$), $30.43\left(\mathrm{SnBu}_{3}\right), 27.77\left(\mathrm{SnBu}_{3}\right), 13.82\left(\mathrm{SnBu}_{3}\right), 10.22\left(\mathrm{SnBu}_{3}\right) . \mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{Cl}]^{-}$ $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{GeSnCl}$: Expected: 627.1204, found: 627.1237 (err [ppm] = -1.31). Yield ($79 \mathrm{mg}, 0.13 \mathrm{mmol}, 59$ \%). See figures S27-S28 for the in-situ reaction NMR spectra and figures S40-S42 for full NMR spectra $\mathrm{Ph}_{3} \mathrm{GeSnBu}$.

$\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3}$

NMR data matched those in literature (see figures S29-S30 for the in-situ reaction NMR spectra). Yield (29.3 mg, $0.045 \mathrm{mmol}, 66$ \%).

$\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OMe})_{2}$

0.034 mmol used. No conversion was observed even after heating at $60^{\circ} \mathrm{C}$ overnight.

$\mathrm{Ph}_{2} \mathrm{SnO}$

0.034 mmol used. No conversion was observed at room temperature.

$\mathrm{Ph}_{3} \mathrm{GeOMe}$

5 mol\% (SIMes)CuOtBu was used in this reaction. No conversion was observed even after heating to $60^{\circ} \mathrm{C}$ overnight.

$\mathrm{Me}_{3} \mathrm{GeOMe}$

No conversion was observed even after heating at $80^{\circ} \mathrm{C}$ overnight.

$\mathrm{Ph}_{3} \mathrm{SiOMe}$

No conversion was observed even after heating at $100^{\circ} \mathrm{C}$ overnight.

Ph_{2} POEt

No conversion was observed even after heating at $80^{\circ} \mathrm{C}$ overnight.

General Procedure for the Catalytic Hydrogermylation of Activated Alkenes

In the glovebox, $\mathrm{HGePh}_{3}(20.6 \mathrm{mg}, 0.068 \mathrm{mmol})$ and 1,3,5-trimethoxybenzene ($\sim 2 \mathrm{eq}$) were dissolved in $400 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ (unless otherwise stated) and the corresponding alkene (0.068 mmol) was then added. The solution was transferred to a J. Young's NMR tube and a ${ }^{1} \mathrm{H}$ NMR spectroscopy experiment (using a delay of 25 seconds) was performed to obtain initial ratios of $\mathrm{HGePh}_{3}, 1,3,5$-trimethoxybenzene, and the unsaturated substrate. The sample was then returned to the glovebox where $10 \mathrm{~mol} \%$ of (SIMes)CuOtBu (100 $\mu \mathrm{L}$ of a stock solution) was added. The reaction was then heated at $60{ }^{\circ} \mathrm{C}$ overnight unless overwise stated. ${ }^{1} \mathrm{H}$ NMR spectroscopy was then taken (using a delay of 25 seconds) which provided a spectroscopic conversion and yield of the reaction.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}$, 11a

Compound was contaminated with ca. 15 mol\% 11c caused by competing transesterification of 11a.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.47-7.44(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.11\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$, and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.45-2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 174.0$ (CO), 135.6 (Ar-C), 135.3 (Ar-C), 129.3 (Ar-C), 128.6 (Ar-C), 51.0 $\left(\mathrm{OCH}_{3}\right), 29.9\left(\mathrm{CH}_{2}\right), 9.3\left(\mathrm{CH}_{2}\right)$. MS (ESI) expected for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{GeO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 415.0729$, found:
415.0725 (err [ppm] = 0.7). Conversion, >99 \%; Yield, 91 \%. See figures S61-62 for NMR spectra of 11a.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}, 11 \mathrm{~b}$

Compound was contaminated with ca. 11 mol\% 11c caused by competing transesterification of 11b.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.49-7.45(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.10\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $3.86\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $2.50-2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{t}, \mathrm{J}=$ $\left.7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 173.7$ (CO), 136.8 ($\mathrm{Ar}-\mathrm{C}$), 135.3 ($\mathrm{Ar}-\mathrm{C}$), 129.3 ($\mathrm{Ar}-\mathrm{C}$), 128.6 (Ar-C), $60.2\left(\mathrm{OCH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI})$ expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{GeO}_{2} \mathrm{Na}: 429.0886$, found: 429.0910 (err [ppm] = -5.8). Conversion, >99 \%; Yield, 77%. See figures S63-64 for NMR spectra of 11b.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 11 \mathrm{c}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.51-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.12\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $2.54-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $173.3(\mathrm{CO}), 136.9(\mathrm{Ar}-\mathrm{C}), 135.4(\mathrm{Ar}-\mathrm{C}), 129.2(\mathrm{Ar}-\mathrm{C}), 128.6(\mathrm{Ar}-\mathrm{C}), 79.7\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.3\left(\mathrm{CH}_{2}\right), 28.1$ $\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $9.3\left(\mathrm{CH}_{2}\right)$. MS (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{GeO}_{2} \mathrm{Na}$: 457.1199, found: 457.1192 (err [ppm] = 1.5). Conversion, >99 \%; Yield, >99 \%. See figures S65-66 for NMR spectra of 11c.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OCH}_{3}$, 11d

Reaction was heated at $100{ }^{\circ} \mathrm{C}$ for two days when full conversion was reached. Compound was contaminated with ca. $8 \mathrm{~mol} \% \mathrm{Ph} 3 \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ from competing transesterification of 11d. MS (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{GeO}_{2} \mathrm{Na}$: 471.1355, found: 471.1353 (err [ppm] = -0.16).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.56-7.52(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17-7.13\left(\mathrm{~m}, 12 \mathrm{H}\right.$, Ar-H and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $3.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.12-2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61-1.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.13 - $1.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.6$ (CO), 137.2 (Ar-C), 135.5 (Ar-C), 129.2 (Ar-C), $128.6(\mathrm{Ar}-\mathrm{C}), 50.9\left(\mathrm{OCH}_{3}\right), 36.6(\mathrm{CH}), 21.1\left(\mathrm{CHCH}_{3}\right), 19.4\left(\mathrm{CH}_{2}\right) . \mathrm{MS}$ (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OCH}_{3}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{GeO}_{2} \mathrm{Na}: 429.0886$, found: 429.0899 (err [ppm] = -3.4). Conversion, >99 \%; Yield, 82 \%. See figures S67-68 for NMR spectra of 11d.

$\mathrm{Ph}_{3} \mathrm{Ge}\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}$, 11e

No conversion was observed even after heating to $100^{\circ} \mathrm{C}$ overnight.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$, 11 f

Complete consumption of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ was observed after heating to $80^{\circ} \mathrm{C}$ for three days resulting in an intractable mixture. No consumption of $\mathrm{Ph}_{3} \mathrm{GeH}$ was observed (see figure S31).

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathbf{1 1 g}$

Reaction was conducted in THF- d_{8} and was heated at $100^{\circ} \mathrm{C}$ for seven days when full conversion was reached. ${ }^{1} \mathrm{H}$ NMR (500 MHz , THF) $\delta 7.52$ - $7.46(\mathrm{~m}, 6 \mathrm{H}, \mathrm{m} \mathrm{Ar}-\mathrm{H}), 7.36-7.29(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}$, NH), 5.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 2.27 - 2.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.84-1.79$ (m, 2H, CH2).
${ }^{13} \mathrm{C}$ NMR (126 MHz, THF-d8) $\delta 175.2$ (CO), 138.0 ($\mathrm{Ar}-\mathrm{C}$), 135.9 ($\mathrm{Ar}-\mathrm{C}$), 129.8 ($\mathrm{Ar}-\mathrm{C}$), 129.1 ($\mathrm{Ar}-\mathrm{C}$), 31.6 $\left(\mathrm{CH}_{2}\right), 10.0\left(\mathrm{CH}_{2}\right)$. MS (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{GeNONa}$: 400.0733, found: 400.0730 (err [ppm] = -0.2). Conversion, 99%; Yield, 77%. See figures S69-70 for NMR spectra of 11 g .

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NMe}_{2}, 11 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.59-7.56(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.21-7.13\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.27-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz, C6 D_{6}) $\delta 172.1(\mathrm{CO}), 137.5(\mathrm{Ar}-\mathrm{C}), 135.5(\mathrm{Ar}-\mathrm{C}), 129.2(\mathrm{Ar}-\mathrm{C}), 128.6$ ($\left.\mathrm{Ar}-\mathrm{C}\right), 35.9\left(\mathrm{NCH}_{3}\right)$, $35.0\left(\mathrm{NCH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), \quad 9.3\left(\mathrm{CH}_{2}\right) . \mathrm{MS}$ (ESI) expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NMe}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{25}$ GeNONa: 428.1046, found: 428.1045 (err [ppm] = 0.33). Conversion, $>99 \%$; Yield, 97%. See figures S71-72 for NMR spectra of $\mathbf{1 1}$.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{CN}, 11 \mathrm{i}$

Minimal conversion of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ was observed even after heating to $100^{\circ} \mathrm{C}$ for three days (see figure S32).

4- $\left(\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2}\right)-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 11 \mathrm{j}$

Complete consumption of $\mathrm{CH}_{2} \mathrm{CH}_{2}\left(4-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ was observed after heating to $60{ }^{\circ} \mathrm{C}$ for three days resulting in an intractable mixture (see figure S 33).

2-($\left.\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2}\right)-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 11 \mathrm{k}$

Reaction was heated at $40^{\circ} \mathrm{C}$ overnight when full conversion was reached.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 8.50-8.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.57-7.54(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.14(\mathrm{~m}, 13 \mathrm{H}$, Ar-H and residual $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent), $7.00-6.96$ (m, 1H, Ar-H), $6.61-6.56$ (m, 2H, Ar-H), $3.09-3.05$ (m, CH_{2}), 2.10-2.07 (m, 2H, CH2). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 163.9$ (CO), 149.7 ($\mathrm{Ar}-\mathrm{C}$), 137.5 ($\mathrm{Ar}-\mathrm{C}$), 135.7 (Ar-C), 135.4 (Ar-C), 129.2 (Ar-C), 128.6 ($\mathrm{Ar}-\mathrm{C}$), 128.4 ($\mathrm{Ar}-\mathrm{C}$), 122.2 ($\mathrm{Ar}-\mathrm{C}$), 120.9 ($\mathrm{Ar}-\mathrm{C}$), $34.1\left(\mathrm{CH}_{2}\right), 14.4$ $\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI})$ expected for $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2}\left(2-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{GeNNa}: 434.0940$, found: 434.0955 (err [ppm] = -3.6). Conversion, >99 \%; Yield, 97 \%. See figures S73-74 for NMR spectra of 11k.

$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 11 \mathrm{l}$

No conversion was observed even after heating to $100^{\circ} \mathrm{C}$ overnight.

X-ray crystallography

Data for compounds 2, 3-8, and (SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh ${ }_{3}$ were obtained using an Agilent SuperNova instrument and a Cu-K α source while those for compounds $\mathbf{1}$ and $9-10$ were obtained garnered with Mo-Ka radiation on an Agilent Xcalibur diffractometer. All experiments were conducted at 150 K , solved using SHELXT ${ }^{2}$ and refined using SHELXL ${ }^{2}$ via the Olex2 ${ }^{3}$ interface. Multiscan absorption corrections were employed throughout, via the CrysAlisPro (Rigaku) diffractometer software. While the majority of refinements were straightforward there are some points of particular note that merit special mention herein.

In the structure of compound $\mathbf{2}$, it was noted that there are two molecules of the copper complex in the asymmetric unit. C11 and C12 were treated for 55:45 disorder with the inclusion of minimal distance and ADP restraints.

For compound 4, premium sample quality and a routine data collection readily afforded the solution of the structure. The conundrum lay, therefore, with the maximum residual electron density peak located at a chemically insignificant distance ($0.84 \AA \AA$) from the germanium centre. Initial strategies were to consider some minor disorder with the (6-Dipp) HBr adduct (a synthetic precursor) or some by-product. Spectroscopically, the dissolved crystals did not evidence either scenario.
Scrutiny of the frames indicated the presence of a second diffracting component that contributed so weakly to the pattern that it was only evident at low Bragg angles. Nonetheless, a twin integration was performed (followed by refinement) until convergence. However, this approach offered no significant change in the intensity or position of the residual electron-density maximum which was unsurprising given the paucity and intensity of the data from the second component. As a test, the data were integrated with triclinic symmetry and this illustrated that the residual electron-density maximum observed herein was also present for all four molecules in the P1 asymmetric unit. There was no evidence for any twinning.

The asymmetric unit in compound $\mathbf{6}$ was seen to contain two independent molecules, with S 4 (in the complex based on Cu2) necessitating treatment for 60:40 disorder. Distance and ADP restraints were employed, on merit, in this disordered region to assist convergence. The largest residual electron density peak lies at a chemically insignificant distance ($0.90 \AA$) from Cu1. Attempts to model same as a being disordered with Cu1 indicated that any putative disorder was in the region of 4%. As such, a two-component treatment of this copper centre was abandoned as it would have been artificial rather than credible.
The structural solution of compound $\mathbf{7}$ proved unexpectedly problematic beyond the fact that C23 and C24 were treated for 50:50 disorder. The primary issue relates to smearing of the electron density in the region of the amide ligand, which may be indicative of some disorder or slight rockling/pendulous behaviour of this ligand. This is very evident in the bond precision observed for this region of the molecule wherein the phenyl ring based on C35 was refined as a rigid hexagon. The C34-C35 bond distance is long relative to what one might expect for the $s p^{2}$-hybridised C34 and imposition of a bond-distance restraint had little impact on same. Efforts to model any disorder of the amide were not credible (< 10% occupancy of any putative second component) and, therefore, abandoned. The raw data were textbook in quality and there was no evidence of twinning. Integration in lower symmetries did nothing to improve the movement in the region of the amide, whatsoever. As such, incorrect space group assignment could be excluded. Ultimately, while this structure affords a chemical characterisation of compound $\mathbf{7}$, no claims will be made with respect to the metrics withing the amide moiety for the aforementioned reasons.

There were two molecules present in the asymmetric unit of compound 8 , and, in the structure of compound 9 , the hydrogen atoms attached to C29 was located, and refined without restraints.

Refinement was straightforward in the structure of compound $\mathbf{1 0}$ with the only notable quirk being the residual electron density maximum. The location of said peak is chemically insignificant, but the location of same may point to some crystallographic disorder. Efforts to model this suggested that it would be in the region of 3% and, as such, disorder modelling was abandoned.

Finally, the asymmetric unit in (SIMes) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3}$ comprises one molecule of the copper complex and one molecule of deuterated benzene.

Crystallographic data for all compounds have been deposited with the Cambridge Crystallographic Data Centre as the following supplementary CCDC publications: 2221285-2221292 for compound 1 (2221285), compound 2 (2221286), compound 3 (2221288), compound $4(2221287)$, compound 5 (2221289), compound 6 (2221290), compound 7 (2221291), compound 8 (2249130), compound 9 (2221292), compound 10 (2249131) and (SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh ${ }_{3}$ (2249132). Copies of these data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk.

Figure S1. Molecular structure of (SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh h_{3}. Hydrogen atoms have been omitted for clarity. The phenyl and carbene substituents are represented in wireframe view, for clarity. Ellipsoids are represented at 30% probability. Selected bond length (\AA) and angle (${ }^{\circ}$) data: C1Cu1, 1.891(3); Cu1-N3, 1.903(2); N3-C28, 1.332(4); C28-O1, 1.229(4); C28-N4, 1.458(3); N4-C35, 1.384(4); C35-O2, 1.224(4); C35-Ge1,2.002(3) ; C1-Cu1-N3, 165.69(11); N4-C35-Ge1, 123.5(2).

Table S1. Crystal data and structure refinement details

Identification code	1	2	3	4
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{CuGeN}_{2}$	$\mathrm{C}_{90} \mathrm{H}_{102} \mathrm{Cu}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{CuGeN}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{55} \mathrm{CuGeN}_{2}$
Formula weight	673.87	1512.01	687.89	772.05
Crystal system	triclinic	triclinic	monoclinic	orthorhombic
Space group	$P-1$	$P-1$	$P 2_{1} / \mathrm{n}$	$P 2_{12} 2_{1} 2_{1}$
a/ Å	10.6500(4)	11.0264(1)	8.9616(1)	12.0126(1)
b/Å	11.2963(4)	19.2655(3)	19.7494(1)	17.1438(1)
c/ Å	15.0976(5)	20.3965(3)	20.0400(2)	19.7933(1)
$\alpha /{ }^{\circ}$	111.368(3)	86.283(1)	90	90
B/ ${ }^{\circ}$	93.137(3)	77.281(1)	100.990(1)	90
$\mathrm{V}^{\circ}{ }^{\circ}$	92.330(3)	73.472(1)	90	90
V / A^{3}	1685.35(11)	4051.84(10)	3481.76(6)	4076.26(5)
Z	2	2	4	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.328	1.239	1.312	1.258
μ / mm^{-1}	1.551	1.785	2.025	1.784
$F(000)$	700.0	1584.0	1432.0	1624.0
Crystal size/ mm ${ }^{3}$	$0.423 \times 0.267 \times 0.166$	$0.255 \times 0.213 \times 0.114$	$0.248 \times 0.167 \times 0.073$	$0.212 \times 0.157 \times 0.09$
Radiation	Mo Ka ($\lambda=0.71073$)	Cu K $\alpha(\lambda=1.54184)$	Cu K $\alpha(\lambda=1.54184)$	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha} \mathrm{(} \lambda=1.54184$)
2θ range for data collection/ ${ }^{\circ}$	5.812 to 60.584	8.558 to 146.696	8.956 to 145.086	6.822 to 145.22
Index ranges	$\begin{aligned} & -14 \leq h \leq 15, \\ & -15 \leq k \leq 15, \\ & -19 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -9 \leq h \leq 13, \\ & -23 \leq k \leq 23, \\ & -25 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 11, \\ & -24 \leq k \leq 16, \\ & -24 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -14 \leq h \leq 14, \\ & -21 \leq k \leq 21, \\ & -24 \leq 1 \leq 21 \end{aligned}$
Reflections collected	15653	48122	46335	45377
Independent reflections, $\boldsymbol{R}_{\text {int }}$	8491, 0.0241	16059, 0.0274	6896, 0.0212	8021, 0.0368
Data/restraints/parameters	8491/0/394	16059/14/919	6896/0/403	8021/0/459
Goodness-of-fit on F^{2}	1.040	1.065	1.081	1.121
Final $R 1, w R 2[1>=2 \sigma(I)]$	$0.0328,0.0795$	0.0348, 0.0924	0.0270, 0.0722	0.0564, 0.1432
Final $R 1, w R 2$ [all data]	0.0437, 0.0853	$0.0372,0.0943$	0.0284, 0.0733	$0.0566,0.1433$
Largest diff. peak/hole/e \AA^{-3}	0.78/-0.41	0.78/-0.44	0.45/-0.23	2.86/-0.77
Flack Parameter	-	-	-	-0.01(2)
CCDC number	2221285	2221286	2221288	2221287

Table S2. Crystal data and structure refinement details

Identification code	5	6	7	8
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{CuGeN}_{3} \mathrm{~S}$	$\mathrm{C}_{92} \mathrm{H}_{102} \mathrm{Cu}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{4} \mathrm{~S}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{CuN}_{3} \mathrm{O}$	$\mathrm{C}_{104} \mathrm{H}_{112} \mathrm{Cu}_{2} \mathrm{Ge}_{2} \mathrm{~N}_{6} \mathrm{O}_{2}$
Formula weight	871.20	1664.27	648.34	1750.25
Crystal system	monoclinic	triclinic	orthorhombic	monoclinic
Space group	$P 2_{1} / \mathrm{c}$	P-1	$\mathrm{Pca2}_{1}$	P2/C
a/ Å	10.22373(4)	13.1905(5)	16.2264(3)	13.3558(2)
b/ Å	20.07164(9)	18.6418(7)	10.8168(3)	18.1417(3)
c/ Å	22.27774(11)	20.1369(10)	20.4792(7)	38.4583(7)
$\alpha /{ }^{\circ}$	90	66.024(4)	90	90
6/ ${ }^{\circ}$	98.8634(4)	81.401(3)	90	99.0988(15)
$\underline{7 /{ }^{\circ}}$	90	69.363(4)	90	90
V / \AA^{3}	4516.96(4)	4233.9(3)	3594.46(17)	9201.1(3)
Z	4	2	4	4
$\rho_{\text {cald }} / \mathrm{g} \mathrm{cm}^{-3}$	1.281	1.305	1.198	1.263
μ / mm^{-1}	2.097	2.656	1.104	1.669
$F(000)$	1832.0	1736.0	1376.0	3664.0
Crystal size/ mm ${ }^{3}$	$0.212 \times 0.186 \times 0.114$	$0.098 \times 0.056 \times 0.044$	$0.098 \times 0.05 \times 0.018$	$0.099 \times 0.082 \times 0.016$
Radiation	Cu Ka ($\lambda=1.54184)$	$\mathrm{CuKa}(\lambda=1.54184)$	$\mathrm{CuKa}(\lambda=1.54184)$	Cu Ka ($\lambda=1.54184$)
2θ range for data collection/ ${ }^{\circ}$	8.034 to 145.16	7.162 to 145.254	8.174 to 145.636	7.532 to 148.838
Index ranges	$\begin{aligned} & -12 \leq h \leq 10, \\ & -24 \leq k \leq 24, \\ & -26 \leq I \leq 27 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 16, \\ & -18 \leq k \leq 22, \\ & -24 \leq 1 \leq 24 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 20, \\ & -13 \leq k \leq 12, \\ & -25 \leq l \leq 23 \end{aligned}$	$\begin{aligned} & -16 \leq h \leq 13, \\ & -20 \leq k \leq 22, \\ & -30 \leq 1 \leq 47 \end{aligned}$
Reflections collected	64057	31199	23418	41435
Independent reflections, $R_{\text {int }}$	8941, 0.0194	16439, 0.0251	6888, 0.0370	17933, 0.0395
Data/restraints/parameters	8941/0/516	16439/7/962	6888/91/421	17933/0/1061
Goodness-of-fit on F^{2}	1.056	1.015	1.045	1.014
Final $R 1, w R 2[I>=2 \sigma(I)]$	0.0288, 0.0738	0.0383, 0.0923	0.0522, 0.1377	0.0476, 0.1123
Final R1,wR2 [all data]	0.0294, 0.0743	0.0469, 0.0978	0.0615, 0.1468	$0.0748,0.1257$
Largest diff. peak/hole/ e \AA^{-3}	0.48/-0.33	1.60/-0.84	0.70/-0.36	0.42/-0.45
Flack Parameter	-	-	0.01(2)	-
CCDC number	2221289	2221290	2221291	2249130

Table S3. Crystal data and structure refinement details

Identification code	9	10	(SIMes)CuN(Ph)C(O)N(Ph)C(O)GePh ${ }_{3}$
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{CuGeN}_{2}$	$\mathrm{C}_{53} \mathrm{H}_{57} \mathrm{CuGeN}_{2}$	$\mathrm{C}_{59} \mathrm{H}_{57} \mathrm{CuGeN}_{4} \mathrm{O}_{2}$
Formula weight	858.13	858.13	990.21
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / n$	$P 2_{1} / n$
a/ Å	14.9501(3)	12.3095(2)	11.4816(1)
b/A	19.7103(3)	19.8911(3)	30.4535(2)
c/ Å	16.1176(3)	18.5854(4)	14.2528(1)
$\alpha /{ }^{\circ}$	90	90	90
6/ ${ }^{\circ}$	105.269(2)	91.1959(18)	94.8925(7)
$\underline{7 /}{ }^{\circ}$	90	90	90
V / \AA^{3}	4581.73(15)	4549.62(15)	4965.40(6)
Z	4	4	4
$\rho_{\text {cald }} / \mathrm{g} \mathrm{cm}^{-3}$	1.244	1.253	1.325
μ / mm^{-1}	1.156	1.164	1.635
F(000)	1800.0	1800.0	2064.0
Crystal size/ mm ${ }^{3}$	$0.429 \times 0.274 \times 0.261$	$0.302 \times 0.288 \times 0.129$	$0.241 \times 0.087 \times 0.053$
Radiation	Mo Ka ($\lambda=0.71073$)	$\mathrm{Mo} \mathrm{Ka}(\lambda=0.71073)$	Cu K $\alpha(\lambda=1.54184)$
2θ range for data collection/ ${ }^{\circ}$	5.938 to 60.668	5.916 to 58.26	6.868 to 147.15
Index ranges	$\begin{aligned} & -21 \leq h \leq 21, \\ & -25 \leq k \leq 26, \\ & -21 \leq 1 \leq 22 \end{aligned}$	$\begin{aligned} & -16 \leq h \leq 16, \\ & -25 \leq k \leq 26, \\ & -25 \leq I \leq 22 \end{aligned}$	$\begin{aligned} & -14 \leq h \leq 11, \\ & -37 \leq k \leq 37, \\ & -17 \leq I \leq 17 \end{aligned}$
Reflections collected	41691	44765	78090
Independent reflections, $\boldsymbol{R}_{\text {int }}$	12097, 0.0261	11791, 0.0440	9988, 0.0490
Data/restraints/parameters	12097/0/526	11791/0/526	9988/0/610
Goodness-of-fit on F^{2}	1.023	1.099	1.163
Final $R 1, w R 2[1>=2 \sigma(I)]$	0.0323, 0.0711	0.0531, 0.1142	0.0512, 0.1262
Final $R 1, w R 2$ [all data]	$0.0510,0.0798$	$0.0950,0.1290$	$0.0545,0.1281$
Largest diff. peak/hole/e \AA^{-3}	0.43/-0.36	1.33/-0.39	1.17/-0.47
Flack Parameter	-	-	-
CCDC number	2221292	2249131	2249132

In situ reaction monitoring by NMR spectroscopy

Figure S2. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (SIMes) CuOtBu and $\mathrm{Ph}_{3} \mathrm{GeH}$ after heating for 3 days at $40^{\circ} \mathrm{C}$. $\#=\mathrm{HOtBu}$.

Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (IPr)CuOMe and $\mathrm{Ph}_{3} \mathrm{GeH}$ after 3 days at room temperature. \# = residual $\mathrm{Ph}_{3} \mathrm{GeH}$.
$\stackrel{\infty}{\infty}$

| 1 | | | | | | | | | | |
| :--- |
| 8.0 | 1 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 1 |

Figure S4．The ${ }^{1} \mathrm{H}$ NMR spectrum（ $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ）of the reaction of（ $6-\mathrm{Mes}$ ）CuMes and $\mathrm{Ph}_{3} \mathrm{GeH}$ after heating for 2 days at $40^{\circ} \mathrm{C}$ ．\＃＝residual $\mathrm{Ph}_{3} \mathrm{GeH}$ ．

Figure S5．The ${ }^{1} \mathrm{H}$ NMR spectrum（ $500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ）of the reaction of（ 6 －Dipp）CuOMe and $\mathrm{Ph}_{3} \mathrm{GeH}$ after heating for 3 days at $60^{\circ} \mathrm{C}$ ．\＃＝residual $\mathrm{Ph}_{3} \mathrm{GeH}$ ；＊＝methanol；\＄＝residual（6－Dipp）CuOMe．
+

Figure S6. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (IPr) CuGePh_{3} and tBuNCS after heating for 10 days at $40^{\circ} \mathrm{C}$.
(,

$\bigcirc \stackrel{\infty}{\circ}$	\cdots	N ${ }_{\sim}^{n}$
~	-	-iririr
$1 /$	\|	\ V

Figure S7. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (IPr) CuGePh_{3} and CS_{2} at room temperature.

Figure S8. The ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (IPr) CuPh and PhNCO at room temperature.

Figure S9. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$. Integrated resonances correspond to $\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3} .{ }^{5}$ Non-integrated resonances correspond to (IPr)CuCl. ${ }^{6}$ = residual toluene. ${ }^{4}$

Figure 10. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of of the reaction of compound 2 and $\mathrm{Ph}_{3} \mathrm{SnCl}$. * $=\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3} .{ }^{5}$

Figure S11. The ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and $\mathrm{Ph}_{2} \mathrm{PCl}$. (i) $=$ After one equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}$. (ii) $=$ After a second equivalent of $\mathrm{Ph}_{2} \mathrm{PCl} .{ }^{*}=(\underline{(\mathrm{Pr}}) \mathrm{CuCl} .{ }^{6} \#=\underline{\mathrm{Ph}_{3} G e C l} .^{7}$
(ii)

(i)

Figure S12. The ${ }^{31} \mathrm{P}$ NMR spectra ($162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and $\mathrm{Ph}_{2} \mathrm{PCl}$. (i) $=$ Addition of one equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}$; (ii) = Addition of a second equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}$. $\$=$ Excess $\mathrm{Ph}_{2} \mathrm{PCl} . .^{*}=\mathrm{Ph}_{2} \mathrm{PPPh}_{2} .{ }^{8} . \#=\mathrm{Ph}_{2} \mathrm{PGePh}_{3}$.

Figure S13. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and carbon dioxide.

273 K

298 K

\qquad Λ

Figure S14. The ${ }^{1} \mathrm{H}$ VT-NMR spectrum (500 MHz , toluene- d_{8}) of the reaction of compound $\mathbf{2}$ and carbon dioxide.

8.0	7.5	7.0	6.5	${ }_{6} 6$	5.5	5.0	4.5	${ }_{4} 1.0$	3.5	3.0	2.5	${ }_{2} .0$	1.5	1.0	$\stackrel{1}{0.5}$	${ }_{0.0}$

Figure S15. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and di-iso-propyl carbodiimide at room temperature.

Figure S16. The ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{5}$ after heating at $120^{\circ} \mathrm{C}$ overnight.

Figure S17. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and phenyl isocyanate. Integrated resonances correspond to $\mathrm{Ph}_{4} \mathrm{Ge} .{ }^{9}$

Figure S18. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 8 after heating at $120^{\circ} \mathrm{C}$ for 4 days. Integrated resonances correspond to $[\mathrm{PhNCO}]_{3} .{ }^{10}$

Figure S19. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 1 and PhNCO . Integrated resonances correspond to (SIMes) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3}$.

Figure S20. The ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , Toluene- d_{8}) of the reaction of compound $\mathbf{2}$ and 0.8 equivalents of phenyl acetylene at $-40^{\circ} \mathrm{C}$. Ratio of product yields are illustrated A-D. ${ }^{11}$

Figure S21. The ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , Toluene $-\mathrm{d}_{8}$) of the reaction of compound $\mathbf{2}$ and 0.8 equivalents of phenyl acetylene at room temperature. Ratio of product yields are illustrated A-D. ${ }^{1}$

Figure S22. The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of compound $\mathbf{2}$ and two equivalents of phenyl acetylene after 3 days at room temperature for confirmation of the geometry of compound D, PhC $\left(\mathrm{GePh}_{3}\right)=\mathrm{CH}_{2}$, figure S14.

Figure S23. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ compound $\mathbf{2}$ with an equivalent of phenyl acetylene and $\mathrm{Ph}_{3} \mathrm{GeH}$ after overnight at $60{ }^{\circ} \mathrm{C}$. \# = $\mathrm{PhCC} \underline{H},{ }^{14}{ }^{*}=\mathrm{Ph}{ }_{3} \mathrm{Ge} \underline{H} .{ }^{12}$ Remaining labelled resonances in spectrum correspond to N, N '-bis(2,6-diisopropylphenyl)imidazol-2ylidene(phenylacetylido)copper(I). ${ }^{11}$

Figure S24. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ at $60^{\circ} \mathrm{C}$ overnight. ${ }^{*}=\mathrm{Ph}_{3} \mathrm{Ge} \underline{H} . .^{12}$

Figure S25. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnCl}$ at $60^{\circ} \mathrm{C}$ overnight. ${ }^{*}=\mathrm{Ph}_{3} \mathrm{SnCl}^{13} \#=\mathrm{Ph}_{3} \mathrm{SnOtBu}$.

Figure S26. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of (SIMes) CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$ at room temperature. Unlabelled integrated resonances correspond to $\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}$. Labelled integrated resonances (A-E) correspond to (SIMes)CuOMe. \# =tBuOH. ${ }^{4}$

Figure S27. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of reaction of (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$ at room temperature.

Figure S28. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$ after volatiles were removed in vacuo.

Figure S29. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Bu}_{3} \mathrm{SnOMe}$ after volatiles were removed in vacuo.

Figure S30. The ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnOtBu}$. (i) = After addition at room temperature. (ii) = After heating at $100^{\circ} \mathrm{C}$ overnight. \# = $\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3} ;{ }^{5}=\mathrm{tBuOH} .{ }^{4}$

| \boldsymbol{T} | ${ }_{-10}^{10}$ | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S31. The ${ }^{119} \mathrm{Sn}$ NMR spectra ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and $\mathrm{Ph}_{3} \mathrm{SnOtBu} . \#=\mathrm{Ph}_{3} \mathrm{GeSnPh}_{3} .{ }^{5}$

Figure S32. The ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and methyl vinyl ketone after heating at $80^{\circ} \mathrm{C}$ for 3 days. $\#=\mathrm{HGePh}_{3}$.

Figure S33. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $5 \mathrm{~mol} \%$ (SIMes) CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and acrylonitrile after heating at $100^{\circ} \mathrm{C}$ for 3 days. ${ }^{*}=\mathrm{HGePh}_{3} ; \#=t \mathrm{BuOH} ; \$=$ acrylonitrile.

Figure S34. The ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of the reaction of $10 \mathrm{~mol} \%$ (SIMes)CuOtBu with $\mathrm{Ph}_{3} \mathrm{GeH}$ and 4-vinyl pyridine after heating at $60^{\circ} \mathrm{C}$ for 3 days. ${ }^{*}=\mathrm{HGePh}_{3} ; \#=t \mathrm{BuOH} ; \$=$ toluene.

NMR spectra of Compounds

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (6-Dipp)CuOMe.

Figure S36. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of (6-Dipp)CuOMe.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$.
$\stackrel{m}{\stackrel{m}{7}}$

Figure S38. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{C}_{6}$) of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$.

Abstract

Figure S39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathrm{Ph}_{3} \mathrm{SnOtBu}$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3 .}{ }^{*}=$ residual grease. ${ }^{4}$

-40	-45	-50	-55	-60	- 6	-70	-75	- 80			-	100	105	110					
	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135

Figure S41. The ${ }^{119} \mathrm{Sn}$ NMR spectrum ($186 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}$.

Figure S42. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathrm{Ph}_{3} \mathrm{GeSnBu}_{3}$.

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1}$, (SIMes) CuGePh_{3}. \# = residual hexane. ${ }^{4 *}=$ residual grease. ${ }^{4}$

Figure S44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1}$, (SIMes) CuGePh ${ }_{3}$.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 2, (IPr) CuGePh_{3}.

Figure S46. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{2}$, (IPr) CuGePh_{3}.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 3, (6-Mes) CuGePh_{3}.

Figure S48. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{3}$, (6-Mes) CuGePh_{3}.

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 4, (6-Dipp)CuGePh ${ }_{3}$. ${ }^{*}=5 \%$ impurity of (6-Dipp)CuCl. ${ }^{15} \#=$ residual hexane. ${ }^{4}$

Figure S50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 4, (6-Dipp)CuGePh ${ }_{3}$.

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 5 , (IPr) $\mathrm{CuSC}(=\mathrm{NtBu}) \mathrm{GePh}_{3 .}$ * $=$ residual hexane. ${ }^{4}$

Figure S52. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of compound 5 , (IPr) $\mathrm{CuSC}(=\mathrm{NtBu}) \mathrm{GePh}_{3}$.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 6, (IPr)CuSC(S) GePh ${ }_{3}$.

Figure S54. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 6, (IPr)CuSC(S) GePh ${ }_{3}$.

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 7, (IPr)CuN(Ph)C(O)Ph.

Figure S56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of compound 7, (IPr) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{Ph}$.

Figure S57. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 8, (IPr) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3 .} . *=$ residual hexane. ${ }^{4}$

Figure S58. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of compound 8, (IPr) $\mathrm{CuN}(\mathrm{Ph}) \mathrm{C}(\mathrm{O}) \mathrm{GePh}_{3}$.

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 9, (IPr)CuC(Ph)C(H)GePh .

Figure S60. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 9, (IPr) CuC(Ph)C(H)GePh ${ }_{3}$.

Figure S61. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11a. \# = Triphenylgermane; * $=c a .15$ mol \% contaminated with 11c from competing transesterification reaction of 11a; $\$=$ grease.

Figure S62. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $11 \mathrm{a},{ }^{*}=c a .15 \mathrm{~mol} \%$ contaminated with 11 c from competing transesterification reaction of 11a.

Figure S63. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11b. \$ = Triphenylgermane; * ca. 11 mol \% contaminated with 11c from competing transesterification reaction of 11b; \# = unknown; \$= $\mathrm{HGePh}_{3} ; £=$ grease.

Figure S64. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $11 \mathrm{~b},{ }^{*}=c a .11 \mathrm{~mol} \%$ contaminated with 11 c from competing transesterification reaction of $\mathbf{1 1 b}$.

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11c. * = hexane.

Figure S66. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11 c , ${ }^{*}=$ hexane.

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11d. ${ }^{*}=$ grease; \# = ca. $8 \mathrm{~mol} \%$ contaminated with $\mathrm{Ph}_{3} \mathrm{GeCH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}(\mathrm{O}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ from competing transesterification of 11d.

Figure S68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($\left.126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of compound 11d.

Figure S69. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound 11 g . * = toluene; \# = hexane.

Figure S70. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1 1 g}$.

Figure S71. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1 1 h}$.

Figure S72. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1 1 h}$.

Figure S73. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1 1} \mathbf{k}$.

Figure $\mathbf{S 7 4 .}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of compound $\mathbf{1 1} \mathbf{k}$.

Computational details

DFT calculations were run with Gaussian 16 (C.01). ${ }^{16}$ The Cu and Ge centres were described with the Stuttgart RECPs and associated basis sets, ${ }^{17}$ and $6-31 \mathrm{G}^{* *}$ basis sets were used for all other atoms (BS1). ${ }^{18}$ Initial BP86 ${ }^{19,20}$ optimizations were performed using the 'grid = ultrafine' option, with all stationary points being fully characterized via analytical frequency calculations as minima (all positive eigenvalues). All energies were recomputed with 6-311++G** basis sets for all atoms except copper and germanium, for which the cc-pvtz-pp basis set and corresponding ECP was used (BS2). ${ }^{21,22}$ Corrections for the effect of benzene $(\varepsilon=2.2706)$ solvent were run using the polarizable continuum model (PCM) and BS1. ${ }^{23}$ Single-point dispersion corrections to the BP86 results employed Grimme's D3 parameter set with Becke-Johnson damping as implemented in Gaussian. ${ }^{24}$ Bond analyses were performed on compound $\mathbf{2}$ using NBO7 as implemented in Gaussian16 and EDA-NOCV ${ }^{25}$ analysis was performed as implemented in the ADF program package (2022.103). ${ }^{26}$ All EDA-NOCV calculations were performed at the PBEO-d3bj/tz2p//BP86-d3bj/BS1 level of theory (numerical quality very good, nosym).

EDA-NOCV

	$\mathrm{IPrCu} \bullet+\bullet \mathrm{GePh}_{3}$	$\mathrm{IPrCu}^{+}+\mathrm{GePh}_{3}$	$1 \mathrm{PrCu}^{-}+{ }^{+} \mathrm{GePh}_{3}$
Pauli repulsion	$138.73 \mathrm{kcal} / \mathrm{mol}$	$82.59 \mathrm{kcal} / \mathrm{mol}$	$220.50 \mathrm{kcal} / \mathrm{mol}$
Electrostatic attraction	-144.14 kcal/mol	-162.25 kcal/mol	-241.06 kcal/mol
Orbital Interaction	-74.96 kcal/mol	-55.28 kcal/mol	-243.50 kcal/mol
Dispersion	-8.42 kcal/mol	-8.42 kcal/mol	-8.42 kcal/mol
Overall Bonding Energy	-88.79 kcal/mol	-146.36 kcal/mol	-272.47 kcal/mol

Orbital interaction for $\mathrm{IPrCu}^{+}+{ }^{-} \mathrm{GePh}_{3}$ fragmentation broken down as follows:
$\Delta \mathrm{E}_{\text {orb1 }}=-36.87 \mathrm{kcal} / \mathrm{mol}(66.6 \%)$
$\Delta \mathrm{E}_{\text {orb2 }}=-2.03 \mathrm{kcal} / \mathrm{mol}(3.6 \%)$
$\Delta \mathrm{E}_{\text {orb3 }}=-2.52 \mathrm{kcal} / \mathrm{mol}(4.5 \%)$
$\Delta \mathrm{E}_{\text {orb4 }}=-2.00 \mathrm{kcal} / \mathrm{mol}(3.5 \%)$
$\Delta \mathrm{E}_{\text {orb(rest) }}=-12.10 \mathrm{kcal} / \mathrm{mol}(21.8 \%)$

Figure S75. Plot of deformation density $\Delta \rho(1)$ of the pairwise orbital interaction between [IPrCu]+ and [GePh ${ }_{3}$]- in compound 2 associated with energy term $\Delta \mathrm{E}_{\text {orb1 }}$. Charge flow from red to blue.

Cartesian Coordinates and Computed Energies [in Hartrees]

```
Phenylacetylene
SCF (BP86) Energy = -308.376233126
Enthalpy 0K = -308.271436
Enthalpy 298K = -308.270492
Free Energy 298K = -308.308773
Lowest Frequency = 139.6291 cm-1
Second Frequency = 150.8098 cm-1
SCF (BP86-D3BJ) Energy = -
308.406625354
SCF (C66H6) Energy = -308.386067339
SCF (BS2) Energy = -308.463935992
\begin{tabular}{lrrr} 
C & -1.52035 & -1.21574 & 0.00003 \\
C & -0.12008 & -1.22150 & -0.00003 \\
C & 0.59980 & -0.00001 & -0.00006 \\
C & -0.12006 & 1.22149 & -0.00003 \\
C & -1.52033 & 1.21575 & 0.00003 \\
C & -2.22513 & 0.00001 & 0.00005 \\
H & -2.06507 & -2.16563 & 0.00004 \\
H & 0.43374 & -2.16498 & -0.00005 \\
H & 0.43378 & 2.16495 & -0.00005 \\
H & -2.06504 & 2.16565 & 0.00004 \\
H & -3.32000 & 0.00002 & 0.00010 \\
C & 2.02971 & -0.00001 & -0.00014 \\
C & 3.25258 & 0.00000 & -0.00003 \\
H & 4.32572 & 0.00001 & 0.00096
\end{tabular}
```


Compound 2

SCF (BP86) Energy = -2056.32851158 Enthalpy 0K $=-2055.456950$
Enthalpy 298K $=-2055.456005$
Free Energy 298K $=-2055.609058$
Lowest Frequency $=6.1777 \mathrm{~cm}^{-1}$
Second Frequency $=11.3824 \mathrm{~cm}^{-1}$
SCF (BP86-D3BJ) Energy = -
2056.59078181

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2056.34486638$
SCF (BS2) Energy $=-2347.69568896$

Ge	2.21017	0.14177	0.04930
Cu	-0.15028	0.06281	-0.03342
N	-3.00439	0.93417	-0.10199
N	-2.82589	-1.22245	-0.11965
C	-2.06457	-0.07381	-0.08224
C	-4.30449	0.42790	-0.15131
H	-5.17537	1.07738	-0.17311
C	-4.19106	-0.93618	-0.16276
H	-4.94330	-1.71944	-0.19790
C	-2.28057	-2.56647	-0.09788
C	-2.12432	-3.21135	1.15484
C	-1.62222	-4.52716	1.14550
H	-1.48949	-5.05452	2.09588
C	-1.28575	-5.16686	-0.05386
H	-0.89314	-6.18896	-0.03672
C	-1.44504	-4.50016	-1.27442
H	-1.17176	-5.00511	-2.20671

$-1.94663-3.18494-1.32819$
$-2.48946-2.54271 \quad 2.48028$
$-2.73690-1.48741 \quad 2.27108$
$-1.30577-2.54566 \quad 3.47255$
$-1.57858-1.99642 \quad 4.39017$
$-0.41136-2.06914 \quad 3.03904$
$-1.03034-3.57148 \quad 3.77372$
-3.74072-3.20291 3.10536
-3.55391-4.26546 3.34025
$-4.60775-3.15916 \quad 2.42423$
$-4.01773-2.69446 \quad 4.04512$
$-2.11630-2.48971-2.67848$
$-2.46474-1.45950-2.48930$
$-0.77395-2.38772-3.43638$
$-0.37288-3.38506-3.68720$
$-0.01115-1.85992-2.84045$
$-0.91336-1.83885-4.38390$
$-3.19141-3.19602-3.53674$
$-3.33309-2.66198-4.49228$
$-4.16485-3.23538-3.01858$
$-2.89665-4.23320-3.77401$
$-2.68641 \quad 2.34851-0.06016$
$-2.59888 \quad 2.98482 \quad 1.20300$
$-2.29606 \quad 4.36037 \quad 1.21347$
-2.21304 $4.88162 \quad 2.17285$
$-2.09281 \quad 5.06734 \quad 0.02213$
$-1.85495 \quad 6.13572 \quad 0.05437$
-2.18714 4.40989-1.21034
$-2.01726 \quad 4.96943-2.13594$
-2.48768 $3.03582-1.28299$
$\begin{array}{lll}-2.78582 & 2.23351 & 2.52097\end{array}$
$\begin{array}{lll}-3.11700 & 1.20719 & 2.28428\end{array}$
$-1.44350 \quad 2.12056 \quad 3.28013$
$-0.68154 \quad 1.60955 \quad 2.66683$
$\begin{array}{lll}-1.57473 & 1.54794 & 4.21462\end{array}$
$\begin{array}{lll}-1.05174 & 3.11761 & 3.54737\end{array}$
$\begin{array}{lll}-3.87758 & 2.87738 & 3.40441\end{array}$
$-3.59697 \quad 3.89678 \quad 3.72134$
$-4.03011 \quad 2.27876 \quad 4.31890$
$-4.84245 \quad 2.94495 \quad 2.87373$
$-2.54945 \quad 2.33665-2.64049$
-2.91986 1.30923-2.47779
$-1.13527 \quad 2.22537-3.25590$
$-1.17409 \quad 1.68671-4.21872$
$-0.45222 \quad 1.68219-2.57976$
$-0.70215 \quad 3.22365-3.44171$
$-3.53104 \quad 3.03198-3.60960$
$-3.20093 \quad 4.05471-3.86126$
$-4.54493 \quad 3.10251-3.18041$
$-3.59728 \quad 2.46640-4.55490$
$2.97430-0.688031 .73710$
$2.57321-1.98555 \quad 2.13182$
H $\quad 1.85878 \quad-2.54439 \quad 1.51304$
C $3.07575-2.58159 \quad 3.30161$
H 2.75617 -3.59216 3.58266
C $3.98543-1.88137 \quad 4.11168$
H $4.37596-2.34064 \quad 5.02679$

C	4.39060	-0.58933	3.73982
H	5.10188	-0.03730	4.36555
C	3.89201	-0.00308	2.56280
H	4.22424	1.00330	2.28167
C	3.14177	-0.85878	-1.45330
C	4.07425	-1.89179	-1.21586
H	4.32309	-2.16917	-0.18469
C	4.69246	-2.57352	-2.27954
H	5.41409	-3.37195	-2.06966
C	4.39388	-2.22942	-3.60760
H	4.87728	-2.75763	-4.43720
C	3.47191	-1.20082	-3.86537
H	3.23558	-0.92204	-4.89920
C	2.85271	-0.52922	-2.79766
H	2.13534	0.27236	-3.01696
C	3.04713	1.98695	-0.01755
C	4.28411	2.22364	-0.65712
H	4.80663	1.39406	-1.14802
C	4.85602	3.50777	-0.68254
H	5.81674	3.66811	-1.18591
C	4.19993	4.58414	-0.06322
H	4.64452	5.58565	-0.08212
C	2.96894	4.36919	0.57837
H	2.44937	5.20466	1.06245
C	2.40087	3.08368	0.59544
H	1.43426	2.93207	1.09287

Compound 9

SCF (BP86) Energy $=-2364.73457030$
Enthalpy 0K = -2363.754089
Enthalpy 298K $=-2363.753145$
Free Energy 298K $=-2363.918566$
Lowest Frequency $=6.0553 \mathrm{~cm}^{-1}$
Second Frequency $=11.0659 \mathrm{~cm}^{-1}$ SCF (BP86-D3BJ) Energy = -
2365.05974322
$\operatorname{SCF}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ Energy $=-2364.76057947$
SCF (BS2) Energy $=-2656.185385$

Ge	-3.10468	-0.62661	-0.09000
Cu	0.76610	-0.39675	-0.34167
N	2.37600	2.06004	0.32166
N	3.24805	0.23178	1.09723
C	2.16136	0.69623	0.37916
C	3.55560	2.42258	0.97577
H	3.89706	3.45283	1.01507
C	4.10179	1.27126	1.46964
H	5.01164	1.09292	2.03589
C	3.58196	-1.16665	1.30725
C	4.54827	-1.75093	0.44874
C	4.91773	-3.08725	0.70047
H	5.66298	-3.56476	0.05586
C	4.34231	-3.81158	1.74942
H	4.63987	-4.85062	1.92589
C	3.37811	-3.21246	2.57021
H	2.92547	-3.79256	3.37909
C	2.97488	-1.87742	2.37476
C	5.19420	-0.99888	-0.71616
H	4.68494	-0.02508	-0.81980

-4.66755	-1.33226	2.45633
-3.61325	-0.56988	4.18741
-4.37159	-0.92536	4.89417
-2.48326	0.11870	4.65623
-2.35721	0.30640	5.72838
-1.51636	0.56886	3.74101
-0.63227	1.10905	4.09960
-1.68270	0.33370	2.36497
-0.91485	0.68405	1.66235
-3.27715	1.18657	-0.91958
-3.92795	2.23920	-0.23884
-4.27874	2.08962	0.78960
-4.13607	3.48168	-0.86297
-4.64907	4.28599	-0.32321
-3.68985	3.68987	-2.17838
-3.85698	4.65552	-2.66870
-3.03107	2.65567	-2.86346
-2.67840	2.81489	-3.88874
-2.82736	1.41416	-2.23750
-2.30939	0.61120	-2.77479
0.40448	-3.97567	-4.05791
-0.23467	-3.00749	-3.26866
0.23718	-2.68558	-1.97066
1.38772	-3.37114	-1.50586
2.01342	-4.35586	-2.28490
1.52905	-4.66063	-3.56904
0.02133	-4.19707	-5.06090
-1.10959	-2.47413	-3.65641
1.77400	-3.13564	-0.50687
2.88736	-4.88451	-1.88759
2.02661	-5.41881	-4.18347
-0.44725	-1.66168	-1.11985
-1.80613	-1.77092	-1.02988
-2.30944	-2.61212	-1.54537

TS1,

SCF (BP86) Energy $=-2364.70355765$
Enthalpy 0K = -2363.717708
Enthalpy 298K = -2363.716763
Free Energy 298K $=-2363.881402$
Lowest Frequency $=-66.6942 \mathrm{~cm}^{-1}$
Second Frequency $=10.6310 \mathrm{~cm}^{-1}$
SCF (BP86-D3BJ) Energy = -
2365.02205855

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2364.71897370$
SCF (BS2) Energy $=-2656.145007$

Ge	-2.29469	-0.98064	-0.30089
Cu	-0.06403	-0.11793	-0.11072
N	0.85971	2.53170	0.75121
N	2.02961	1.01404	1.76828
C	1.11981	1.17127	0.73448
C	1.56918	3.18539	1.75996
H	1.49863	4.25856	1.91137
C	2.29776	2.22905	2.40709
H	2.98424	2.29661	3.24631
C	2.78460	-0.18926	2.06965
C	4.16846	-0.19532	1.75110
C	4.91009	-1.34454	2.09183

	5.97979	-1.37503	1.85980
C	4.30316	-2.44185	2.70961
H	4.89665	-3.32666	2.96395
C	2.93452	-2.40904	3.00787
H	2.46992	-3.27200	3.49214
C	2.14258	-1.28436	2.70712
C	4.89044	0.98188	1.08718
H	4.13852	1.74185	0.81485
C	5.61120	0.57151	-0.21495
H	6.07786	1.45700	-0.68088
H	4.91453	0.12374	-0.94048
H	6.41286	-0.16248	-0.02580
C	5.88516	1.64345	2.07059
H	6.67933	0.93602	2.36687
H	5.38825	1.98587	2.99441
H	6.37092	2.51615	1.60054
C	0.66874	-1.23765	3.11217
H	0.11701	-0.71274	2.30575
C	0.02044	-2.62717	3.25513
H	0.40714	-3.17832	4.13142
H	0.18617	-3.24563	2.35696
H	-1.06650	-2.50960	3.39152
C	0.48835	-0.42463	4.41716
H	-0.58096	-0.37314	4.68411
H	0.86699	0.60655	4.31805
H	1.02723	-0.90588	5.25288
C	0.03895	3.24104	-0.21169
C	-1.23400	3.72147	0.19102
C	-1.97058	4.47014	-0.74671
H	-2.95885	4.84818	-0.46859
C	-1.47222	4.72208	-2.02994
H	-2.06779	5.30091	-2.74350
C	-0.21629	4.23046	-2.40150
H	0.16852	4.43182	-3.40698
C	0.57371	3.48734	-1.50245
C	-1.81021	3.47087	1.58512
H	-1.22129	2.65932	2.04975
C	-1.67582	4.72905	2.47673
H	-0.62687	5.05157	2.58903
H	-2.07981	4.53250	3.48502
H	-2.23991	5.57468	2.04530
C	-3.28273	3.00869	1.53332
H	-3.95118	3.81857	1.19237
H	-3.62066	2.70864	2.53954
H	-3.41687	2.15097	0.85577
C	1.95753	3.00969	-1.94197
H	2.41985	2.46897	-1.09891
C	2.87724	4.20153	-2.29386
H	3.88615	3.84152	-2.56008
H	2.97502	4.90107	-1.44638
H	2.48945	4.77231	-3.15567
C	1.85909	2.01235	-3.11735
H	1.39624	2.47810	-4.00524
H	1.25844	1.13068	-2.83768
C	-2.86605	1.66382	-3.40535
H	-2.06248	-3.3 .96914	-0.62647
	-1.81483	-6.12163	-0.77260

C	-2.61722	-5.27405	-2.60436
H	-2.67279	-6.23749	-3.12317
C	-3.02559	-4.09695	-3.25243
H	-3.40493	-4.14072	-4.28006
C	-2.95500	-2.86195	-2.58451
H	-3.28783	-1.95362	-3.10110
C	-3.28074	-1.31088	1.44687
C	-4.25193	-2.32850	1.58389
H	-4.46924	-2.98693	0.73483
C	-4.94131	-2.52281	2.79461
H	-5.68922	-3.32040	2.87449
C	-4.67468	-1.69826	3.89937
H	-5.21087	-1.84831	4.84304
C	-3.71357	-0.67975	3.78554
H	-3.49986	-0.02963	4.64250
C	-3.02598	-0.49571	2.57281
H	-2.27271	0.29926	2.50121
C	-3.56973	0.20084	-1.35533
C	-4.95109	0.26064	-1.06476
H	-5.35292	-0.31566	-0.22271
C	-5.82277	1.04946	-1.83539

Int,

SCF (BP86) Energy $=-2364.71053565$
Enthalpy 0K $=-2363.727499$
Enthalpy 298K = -2363.726555
Free Energy 298K $=-2363.887526$
Lowest Frequency $=10.8972 \mathrm{~cm}^{-1}$
Second Frequency $=15.8715 \mathrm{~cm}^{-1}$
SCF (BP86-D3BJ) Energy = -
2365.04688703
$\operatorname{SCF}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ Energy $=-2364.72927162$
SCF (BS2) Energy $=-2656.157705$

Ge	-2.09679	-0.89372	-0.37841
Cu	0.30295	-0.34547	-0.58873
N	0.71412	2.14986	1.05354
N	1.89580	0.49078	1.81392
C	1.04145	0.83116	0.77611
C	1.32837	2.59354	2.22959
H	1.19192	3.60503	2.59989
C	2.05944	1.54907	2.71301
H	2.68822	1.45995	3.59412
C	2.73903	-0.69150	1.87536
C	4.11846	-0.53341	1.57547
C	4.94152	-1.67214	1.68584
H	6.00924	-1.57947	1.46187
C	4.41859	-2.91278	2.06431
H	5.07584	-3.78591	2.13779
C	3.05425	-3.03776	2.35684
H	2.65477	-4.00916	2.66181
C	2.18487	-1.93214	2.28295
C	4.75038	0.80589	1.18397
H	3.94182	1.54258	1.04180
C	5.53104	0.72956	-0.14550
H	5.93642	1.72518	-0.39788
H	4.88956	0.39366	-0.97456
H	6.38562	0.03445	-0.08040
C	5.66459	1.32925	2.31792

-6.89115	1.08124	-1.59110
-5.32820	1.79261	3
-6.00746	2.40451	-3.52448
-3.95770	1.74840	-3.22338
-3.56252	2.32836	-4.06554
-3.08989	0.96464	-2.44261
-2.01855	0.95343	-2.68094
5.30909	-1.48296	-3.73402
3.95335	-1.38229	-3.39895
3.45021	-2.02890	-2.23807
4.34723	-2.77672	-1.42907
5.69878	-2.87582	-1.77936
6.18641	-2.23129	-2.92980
5.68233	-0.98192	5
3.26276	-0.81775	-4.03203
3.96453	-3.27226	-0.53263
6.37749	-3.46255	-1.15126
7.24407	-2.31426	-3.20041
2.05974	-1.99456	-1.93080
0.85199	-1.99552	-1.67780
-0.17586	-2.32850	-1.66746
6.50931	0.64063	2.49493
5.12071	1.43646	3.27190
6.08425	2.31488	2.05168
0.72708	-2.05734	2.71848
0.13703	-1.32469	2.14036
0.11232	-3.44158	2.43902
0.54180	-4.22843	3.08476
0.25440	-3.74161	1.38739
-0.97059	-3.40542	2.64250
0.59256	-1.69872	4.21862
-0.46554	-1.74885	4.52609
0.96211	-0.68070	4.43015
1.17038	-2.40447	4.84178
-0.05079	3.04818	0.20507
-1.28639	3.56048	0.67927
-1.96671	4.48413	-0.13939
-2.92673	4.88574	0.19871
-1.44843	4.88261	-1.37341
-2.00104	5.59304	-1.99693
-0.21683	4.37869	-1.80844
0.19056	4.71206	-2.76700
0.51882	3.46465	-1.03108
-1.88814	3.19800	2.03811
-1.33277	2.33187	2.43856
-1.73195	4.36880	3.03951
-0.67932	4.66825	3.18113
-2.14126	4.08924	4.02575
-2.28115	5.25926	2.68653
-3.37399	2.79107	1.93350
-4.00991	3.65134	1.66037
-3.73039	2.41096	2.90548
-3.52767	2.00316	1.18072
1.92416	3.04584	-1.47121
2.11306	2.02647	-1.09227
2.97601	3.99364	-0.84251
3.99602	3.68310	-1.12880
2.91735	3.99758	0.25902
2.82390	5.03049	-1.19177
2.10147	2.99412	-3.00107

$-6.89115 \quad 1.08124-1.59110$
$-5.32820 \quad 1.79261-2.92013$
$-6.00746 \quad 2.40451-3.52448$
$-3.95770 \quad 1.74840-3.22338$
$-3.56252 \quad 2.32836-4.06554$
-3.08989 $0.96464-2.44261$
$-2.018550 .95343-2.68094$
$.30909-1.48296-3.73402$
. $95335-1.38229-3.39895$
$3.45021-2.02890-2.23807$
$4.34723-2.77672-1.42907$
$5.69878-2.87582-1.77936$
$6.18641-2.23129-2.92980$
$5.68233-0.98192-4.63345$
3.26276-0.81775-4.03203
$6.37749-3.46255-1.15126$
$7.24407-2.31426-3.20041$
$2.05974-1.99456-1.93080$
$0.851991 .99552-1.67780$
$-0.17586-2.32850-1.66746$
$.509310 .64063 \quad 2.49493$
.12071 1.43646-3.27190
$.72708-2.05734 \quad 2.71848$
$.13703-1.32469 \quad 2.14036$
$.11232-3.44158 \quad 2.43902$
$0.25440-3.74161 \quad 1.38739$
$-0.97059-3.40542 \quad 2.64250$
$0.59256-1.69872 \quad 4.21862$
$-0.46554-1.74885 \quad 4.52609$
$0.96211-0.68070 \quad 4.43015$
$1.17038-2.40447 \quad 4.84178$
$-0.05079 \quad 3.04818 \quad 0.20507$
$-1.28639 \quad 3.56048 \quad 0.67927$
$-1.96671 \quad 4.48413-0.13939$
$-2.92673 \quad 4.88574 \quad 0.19871$
$-1.44843 \quad 4.88261-1.37341$
$-2.00104 \quad 5.59304-1.99693$
C $-0.21683 \quad 4.37869-1.80844$
H $0.19056 \quad 4.71206-2.76700$
$0.51882 \quad 3.46465-1.03108$
$-1.33277 \quad 2.33187 \quad 2.43856$
$-1.73195 \quad 4.36880 \quad 3.03951$
$-0.67932 \quad 4.66825 \quad 3.18113$
$-2.14126 \quad 4.08924 \quad 4.02575$
$-2.28115 \quad 5.25926 \quad 2.68653$
$-3.37399 \quad 2.79107 \quad 1.93350$
$-4.00991 \quad 3.65134 \quad 1.66037$
$-3.73039 \quad 2.41096 \quad 2.90548$
$1.92416 \quad 3.04584-1.47121$
H $2.11306 \quad 2.02647-1.09227$
C $2.97601 \quad 3.99364-0.84251$
H $\quad 3.99602 \quad 3.68310 \quad-1.12880$
H $\quad 2.91735 \quad 3.99758 \quad 0.25902$
H $2.82390 \quad 5.03049-1.19177$
C $2.10147 \quad 2.99412 \quad-3.00107$

```
    2.06827 3.99810 -3.46024
    1.32527 2.37237 -3.47786
    3.08562 2.55994-3.24297
-2.58521 -2.60167-1.37472
-2.37090 -3.87441 -0.79646
-2.00422 -3.94767 0.23454
-2.63317 -5.05661 -1.50912
-2.46726-6.03017-1.03298
-3.10733 -4.99247-2.83033
-3.30995 -5.91274 -3.38931
-3.31972 -3.74007 -3.42744
-3.69279 -3.67905-4.45650
-3.06205 -2.56023-2.70493
-3.24989 -1.59034 -3.18174
-2.98251 -1.19453 1.43205
-4.09682 -2.05544 1.56785
-4.46896-2.60085 0.69308
-4.73379 -2.23730 2.80867
-5.59651 -2.90929 2.88502
-4.26705 -1.56203 3.94782
-4.76136 -1.70310 4.91536
-3.15872 -0.70619 3.83725
-2.78570 -0.17431 4.72055
-2.52749 -0.53124 2.59239
-1.65957 0.13631 2.52504
-3.28928 0.46326-1.31420
-4.66030 0.59345 -0.99822
-5.09052 -0.00620-0.18688
-5.48780 1.48160-1.70692
-6.54891 1.56695-1.44467
-4.95864 2.25434 -2.75410
-5.60392 2.94283-3.31132
-3.59805 2.13950-3.08141
-3.17640 2.74113 -3.89493
-2.77356 1.25595 -2.36238
-1.70902 1.18619 -2.61935
    4.83094-0.64405-3.90320
    3.49795-0.48938-3.49999
    2.97366-1.26358-2.43120
    3.83286-2.18520-1.77672
    5.15875 -2.34106-2.19926
    5.66787-1.57300-3.26098
    5.21440-0.04389-4.73563
    2.84033 0.21347-4.01936
    3.44196-2.77744 -0.94438
    5.80100-3.06880-1.69172
    6.70604-1.69730-3.58551
    1.58232 -1.18211 -2.06716
    0.34562 -1.46721 -2.17351
H -0.43594 -2.03938-2.66849
```


TS2 9

SCF (BP86) Energy $=-2364.69212453$
Enthalpy 0K $=-2363.706178$
Enthalpy 298K $=-2363.705233$
Free Energy 298K $=-2363.866949$
Lowest Frequency $=-128.9081 \mathrm{~cm}^{-1}$
Second Frequency $=10.9417 \mathrm{~cm}^{-1}$

SCF (BP86-D3BJ) Energy = 2365.01978327

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2364.70851773$
SCF (BS2) Energy $=-2656.135861$

Ge 2.16078 -0.90209 0.01565
$\mathrm{Cu}-0.48335-0.46215 \quad 0.19593$
N $\quad-1.32021 \quad 2.39298-0.22041$
N $-2.24405 \quad 0.98176-1.60157$
C $-1.319291 .04731-0.56542$
C $-2.20575 \quad 3.12240-1.02254$
H $\quad-2.34854 \quad 4.19044-0.88861$
C $-2.77693 \quad 2.23996-1.89186$
H $-3.51515 \quad 2.38156-2.67601$
C $-2.81500-0.24509-2.13004$
C $-4.07360-0.66176-1.61909$
C $-4.63251-1.84017-2.15242$
H $-5.60208-2.18597-1.77906$
C $-3.97182-2.57292-3.14478$
$-4.42242-3.48953-3.54009$
$-2.73784-2.13132-3.63699$
$-2.23210-2.70534-4.41900$
$-2.13240-0.95720-3.14829$
$-4.85584 \quad 0.13082-0.56851$
$-4.19890 \quad 0.92591-0.17687$
$-5.28678-0.73465 \quad 0.63458$
$-5.80414-0.10748 \quad 1.38141$
$-4.42256-1.21185 \quad 1.12290$
$-5.99019-1.53166 \quad 0.33585$
$-6.08553 \quad 0.81610-1.21218$
$-6.78951 \quad 0.06670-1.61470$
$-5.79798 \quad 1.48116-2.04422$
$-6.62715 \quad 1.42015-0.46371$
$-0.82551-0.44914-3.75016$
$-0.33026 \quad 0.18097-2.99311$
$0.16145-1.57680-4.10935$
$-0.19178-2.18339-4.96247$
$0.32661-2.25096-3.25277$
$1.13417-1.14183-4.39136$
$-1.11033 \quad 0.44034-4.98436$
$-0.16542 \quad 0.84241-5.38870$
$-1.76411 \quad 1.29259-4.73132$
$-1.60681-0.14005-5.78237$
$-0.65934 \quad 2.98768 \quad 0.92734$ $0.39065 \quad 3.91921 \quad 0.71320$
C $0.96649 \quad 4.52551 \quad 1.84668$
H $\quad 1.78189 \quad 5.24258 \quad 1.71000$
C $0.52100 \quad 4.22546 \quad 3.13740$
H $\quad 0.98928 \quad 4.70368 \quad 4.00397$
$-0.53180 \quad 3.32253 \quad 3.31860$
$-0.89255 \quad 3.11015 \quad 4.32984$
C $-1.15654 \quad 2.69081 \quad 2.22609$
C $0.88282 \quad 4.32704-0.67701$
H $\quad 0.46286 \quad 3.61594-1.41042$
C $0.37476 \quad 5.74164-1.04862$
H $\quad-0.72601 \quad 5.81095-1.02472$
H $0.71076 \quad 6.01976-2.06275$
H $\quad 0.76754 \quad 6.49515-0.34366$
C $2.42141 \quad 4.27045-0.79516$
H $\quad 2.90306 \quad 5.04395 \quad-0.17184$

H	2.72979	4.45017	-1.83905
H	2.81418	3.29014	-0.48463
C	-2.38869	1.81846	2.47513
H	-2.58556	1.22920	1.56414
C	-3.62086	2	
H	-4.52417	2.09902	2.88537
H	-3.80890	3.40968	1.90288
H	-3.47850	3.32518	3.65252
C	-2.18679	0.80060	3.61553
H	-2.02259	1.29202	1
H	-1.33282	0.13866	3.40139
H	-3	8	2
C	3.36982	-2.52249	0.07034
C	3.08348	-3.66031	-0.71824
H	2.19937	-3.66892	-1.36868
C	3.91707	-4.79146	-0.68994
H	3.67727	-5.66294	6
C	5.05506	-4.80354	0.13322
H	5.70559	-5.68458	3
C	5.35273	-3.68238	0.92398
H	6.23791	-3.68675	1.57014
C	4.51542	-2.55307	0.89275
H	4.75798	-1.68668	1.51874
C	2.66165	-0.07666	-
C	3.70956	-0.63011	-2.54661
H	4.23449	-1.52241	4
C	4.09184	-0.05089	-3.77012
H	4.90641	-0.49760	4
C	3.43608	1.09630	-4.24498
H	3.73412	1.54843	-5.19730
C	2.39478	1.66068	-3.48849
H	1.87731	2.55697	-3.84975
C	2.01208	1.07330	-2.27023
H	1.18599	1.50779	-1
C	2.87212	0.31912	1.44542
C	3.94174	1.20092	1
H	4.34788	1.26876	0.15705
C	4.50485	1.98572	2.
H	5.33938	2.65927	1.96862
C	4.00289	1.90181	3.50398
H	4.44336	2.51053	4.30144
C	2.93740	1.03210	3.78734
H	2.54289	0.96196	4
C	2.37725	0.24662	2.76534
H	1.55052	-0.43513	2.99550
C	-2.18847	-4.02617	4.24312
C	-1.33175	-3.19624	3.50717
C	-1.63455	-2.84199	2.16609
C	-2.82476	-3.36273	1.59431
C	-3.66451	-4.20919	2.33071
C	-3.35995	-4.54094	3.66249
H	-1.93165	-4.28114	5.27775
H	-0.41486	-2.80883	3.96412
H	-3.06817	-3.10805	0.55730
H	-4.56860	-4.61182	1.85953
H	-4.02504	-5.19270	4.23841
C	-0.74795	-1.96853	1.40899
C	0.45111	-2.18894	0.88784
H	1.04996	-3.10765	0.81815

\footnotetext{
Compound 10
SCF (BP86) Energy $=-2364.74086034$
Enthalpy 0K $=-2363.752780$
Enthalpy 298K $=-2363.751836$
Free Energy 298K = -2363.916458
Lowest Frequency $=7.4664 \mathrm{~cm}^{-1}$
Second Frequency $=8.5196 \mathrm{~cm}^{-1}$
SCF (BP86-D3BJ) Energy = -
2365.05573728

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2364.75936950$
SCF (BS2) Energy $=-2656.184351$

Ge	-2.81625	-0.29478	0.46065
Cu	0.82510	0.01217	-0.68485
N	3.29555	1.46534	-0.04298
N	3.71492	-0.64972	-0.23512
C	2.66266	0.24713	-0.19944
C	4.68327	1.32997	0.00765
H	5.34109	2.18598	0.12979
C	4.94818	-0.00535	-0.11697
H	5.88628	-0.55287	-0.13279
C	3.58916	-2.09021	-0.34148
C	3.34315	-2.66945	-1.61168
C	3.25783	-4.07447	-1.67526
H	3.06634	-4.55243	-2.64164
C	3.42385	-4.86636	-0.53317
H	3.35749	-5.95690	-0.60908
C	3.68192	-4.26556	0.70497
H	3.81638	-4.89192	1.59282
C	3.76873	-2.86597	0.83314
C	3.22518	-1.84743	-2.89519
H	3.22223	-0.77945	-2.61730
C	1.90193	-2.12482	-3.64101
H	1.83536	-1.49147	-4.54247
H	1.03362	-1.89976	-2.99901
H	1.82976	-3.17672	-3.96901
C	4.44702	-2.09206	-3.81207
H	4.49857	-3.14623	-4.13661
H	5.39436	-1.85329	-3.29921
H	4.37984	-1.46482	-4.71789
C	4.08550	-2.24443	2.19500
H	3.92990	-1.15441	2.11559
C	3.15165	-2.75811	3.31127
H	3.30508	-3.83395	3.50760
H	2.09116	-2.60867	3.05465
H	3.36141	-2.22221	4.25323
C	5.56697	-2.48277	2.57401
H	5.80051	-2.00583	3.54175
H	6.25804	-2.07397	1.81729
H	5.77999	-3.56203	2.66910
C	2.62321	2.74567	0.06351
C	2.26578	3.21469	1.35207
C	1.65755	4.48259	1.43216
H	1.36136	4.87085	2.41193
C	1.42409	5.24934	0.28390
H	0.95624	6.23588	0.37070
C	1.78702	4.75703	-0.97569
H	1.59562	5.36092	-1.86891
C	2.39460	3.49441	-1.11799

C	2.49813	2.39792	2.62292
H	3.07840	1.49966	2.34841
C	4	3.18044	2
H	4.29424	3.51414	3.25028
H	3	2.54425	9
H	2.79063	4.07482	4.02589
C	1.15673	5	9
H	0.51219	2.76620	3.50065
H	1.33712	1.31093	4.12639
H	0.59634	6	7
C	2.78319	2.98960	-2.50719
H	3.18765	7	-2.39637
C	3.89228	3.86728	-3.13176
H	5	6	0
H	4.79090	3.90377	2
H	3.54581	4.90493	9
C	1.55261	2.89558	2
H	1.10495	3.88833	-3.61856
H	0	7	6
H	1.84525	2.47900	-4.41632
C	-	-1.03478	0
C	-4.89173	-2.42838	0.46779
H	-4.03275	-3.10382	0.37632
C	-6.18709	-2.97025	0.51189
H	-6.32774	-4.05494	0.44308
C	-7	-2.12418	2
H	-8.31020	-2.54500	0.68742
C	-7	-0.73633	0.74396
H	-7.97174	-0.07005	0.85641
C	-5.81136	-0.19893	5
H	-5.68078	0.88653	0.77629
C	-1.70781	-1.64319	1.44035
C	-1.09190	-2.70708	0.74522
H	-1.10332	-2.71265	-0.35038
C	-0.46136	-3.75329	1.44137
H	0.01147	-4.57090	0.88619
C	-0.43578	-3.74836	2.84608
H	0.04318	-4.56964	3
C	-1.02707	-2.68600	3.55061
H	-1.00428	-2.67389	4.64637
C	-1.65658	-1.64276	2.85058
H	-2.11743	-0.82223	3.41333
C	-2.83151	1.44232	1.45733
C	-3.55209	1.59237	2.66407
H	-4.13551	0.75316	3.06153
C	-3.55430	2.81545	3.35686
H	-4.12043	2.91405	4.29011
C	-2.84003	3.91234	2.84727
H	-2.84804	4.86893	3.38192
C	-2.12466	3.78007	1.64559
H	-1.56794	4.63146	1.23915
C	-2.11983	2.55399	0.95812
H	-1.55947	2.45734	0.02057
C	-0.80214	-0.00909	-1.65936
C	-2.14669	-0.06435	-1.40823
C	-3.15873	0.05418	-2.49655
C	-4.28926	0.89588	-2.37025
C	-2.99996	-0.65320	-3.71342
C	-5.20860	1.04162	-3.41891
H	-4.43086	1.46375	-1.44393

C	-3.92166	-0.51445	-4.76072
H	-2.14449	-1.32930	-3.81953
C	-5.03127	0.33571	-4.62019
H	-6.06832	1.70989	-3.29678
H	-3.77886	-1.08118	-5.68800
H	-5.75455	0.44144	-5.43590
H	-0.60980	0.14736	-2.74688

TS1 10

SCF (BP86) Energy $=-2364.70835249$
Enthalpy 0K $=-2363.722375$
Enthalpy 298K $=-2363.721431$
Free Energy 298K $=-2363.888799$
Lowest Frequency $=-55.4787 \mathrm{~cm}^{-1}$ Second Frequency $=6.7245 \mathrm{~cm}^{-1}$ SCF (BP86-D3BJ) Energy = 2365.02164114

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2364.72464322$
SCF (BS2) Energy $=-2656.150453$

Cu	-0.35550	-0	
N	-2.75132	6	-0
N	-3.33963	-0	
C	-2.22086	259	
C	-4	1.37529	
H	-4	57	
C	-4.51573	41	-0.24037
H	-5.49368	-0	
C	-3.32086	-1.39728	. 15238
C	-3.42954	-1.18834	. 55094
C	-3.45440	-2.32889	
H	-3.53785	-2.20373	
C	-3.37283	-3.61665	. 83472
H	-3.38948	-4.48967	
C	-3.	-3	
H	-3.19821	-4.80231	
C	-3.24128	-2.68970	
C	-3.56759		
H	-3.25005	4205	
C	-2.67292	31	
H	-2.72006	1.45276	
	-1.61887	654	
H	-3.00295	-0.22486	
C	-5.04639	0.50626	
H	-5.42692	-0.21299	
H	-5.69344	0.43976	
	-5.14948	10	
C	-3.18135	-2.90296	-0
H	-2.77917	-1.9	
	-2.24611	-4.05730	-1
	-2.64710	-5.03966	-1.04526
H	-1.23761	-3.94406	-0.92431
	-2.1	-4.08029	-2
C	-4.60374	-3.13182	-1.50867
H	-4.56277	-3.26537	-2.
	-5.27735	-2.28478	-1.
H	-5.05580	-4.04027	-1.
C	-1.97977	2.491	-1.59723

Ge 1.69718-1.18586-0.27751
$\mathrm{Cu}-0.35550-0.034950 .07335$ $\mathrm{N} \quad-2.75132 \quad 1.45266-0.94064$
$\mathrm{N} \quad-3.33963-0.24134 \quad 0.27476$
C $-2.22086 \quad 0.45259-0.14784$
C $-4.144071 .37529-1.01034$
H $-4.73169 \quad 2.08057-1.59145$
C $\quad-4.51573 \quad 0.30841-0.24037$
H $-5.49368-0.10630-0.01283$
C -3.32086-1.39728 1.15238
C -3.42954-1.18834 2.55094
C $-3.45440-2.32889 \quad 3.37709$
H $-3.53785-2.20373 \quad 4.46127$
C $-3.37283-3.61665 \quad 2.83472$
-3.38948-4.48967 3.49565
C $-3.26732-3.79158 \quad 1.44970$
H $-3.19821-4.80231 \quad 1.03721$
C $-3.24128-2.68970 \quad 0.57284$
$\begin{array}{llll}\text { C } & -3.56759 & 0.20582 & 3.16504\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.25005 & 0.94205 & 2.40381\end{array}$
$\begin{array}{llll}\text { C } & -2.67292 & 0.40361 & 4.40830\end{array}$
H $\quad-2.72006 \quad 1.45276 \quad 4.74674$
H $\quad-1.61887 \quad 0.15654 \quad 4.19958$
-3.00295-0.22486
H $\quad-5.42692-0.21299 \quad 4.25606$
$\begin{array}{llll}\mathrm{H} & -5.69344 & 0.43976 & 2.61919\end{array}$
H $\quad-5.14948 \quad 1.52110 \quad 3.93179$
C -3.18135-2.90296-0.93998
H $-2.77917-1.97780-1.39003$
C $-2.24611-4.05730-1.35184$
H -2.64710 -5.03966-1.04526
H $-1.23761-3.94406-0.92431$
H $-2.14373-4.08029-2.44931$
C $-4.60374-3.13182-1.50867$
H $-4.56277-3.26537-2.60358$
$-5.27735-2.28478-1.29543$

C $-1.97977 \quad 2.49132-1.59723$

C	-1.32044	2.18855	-2.81731
C	-0.60924	3191	7
H	-0.08065	3.03207	-4.37643
C	-0.56580	4.51694	-2.88447
H	-0.00737	5.31153	-3.39062
C	-1.23333	4.78664	
H	-1.19525	5.79451	
C	-1.95239	3.78093	
C	-1.42345	0.81274	
H	-1.58570	0.06999	1
C	-2.64600	0.76696	
H	-	2	2
H	-2.74207	-0.23338	-4.88381
H	-	0	2
C	-0.13972	0.39483	-4.22133
H	0.04063	2	0
H	-0.23615	-0.64938	-4.56399
H	6	0.46208	2
C	-2.68530	4.11836	0.29076
H	-3.06270	3.17532	
C	-	8	5
H	-4.45206	5.23959	
H	-	4.55947	1
H	-3.59179	5.99176	5
C	-1.75023	4.76197	1
H	-1	5.73592	0.99290
H	-0.89258	4.10692	
H	-2	4.94441	2.27722
C	2.79052	-1.54615	
C	2.14315	-1.77125	3
H	1.04718	-1.73433	2.68437
C	2.87378	-2.03265	2
H	2.34837	-2.20515	4.75622
C	4.27789	-2.06673	3.76831
H	4.85164	-2.26646	4
C	4.94071	-1.84329	
H	6.03618	-1.87022	2
C	4.20222	-1.58713	
H	4.73520	-1.40718	0.43935
C	1.55766	-3.04621	-1.09601
C	1.64643	-4.21126	-0.30137
H	1.84004	-4.11795	0.77423
C	1.50676	-5.49278	-0
H	1.58427	-6.38065	-0.22479
C	1.28097	-5.63798	-2.24238
H	1.17904	-6.63570	-2.68398
C	1.19461	-4.49272	-3.05197
H	1.02798	-4.59555	-4.13105
C	1.32725	-3.21521	-2.48102
H	1.26553	-2.33372	-3.13135
C	3.00477	-0.24914	-1.52023
C	3.93740	-0.95425	-2.31455
H	3.94984	-2.05044	-2.29120
C	4.84546	-0.27707	-3.14816
H	5.55942	-0.84669	-3.75491
C	4.83921	1.12617	-3.20393
H	5.54596	1.65560	-3.85305
C	3.92041	1.84601	-2.42250
H	3.91008	2.94174	-2.45734
C	3.01422	1.16248	-1.59320

H	2.30405	1.73827	-0.98687
C	0.16098	1.54471	2.01698
C	1.27083	2.07678	2.09745
C	2.58058	2.63583	2.13855
C	2.81610	3.95437	1.66731
C	3.66183	1.88810	2.67525
C	4.09953	4.50788	1.73628
H	1.98264	4.52848	1.25138
C	4.93992	2.45525	2.73643
H	3.48556	0.86708	3.02500
C	5.16448	3.76249	2.27157
H	4.27117	5.52553	1.36984
H	5.76779	1.86674	3.14448
H	6.16772	4.19844	2.32184
H	-0.85296	1.26842	2.24256

Int $_{10}$

SCF (BP86) Energy $=-2364.71162620$
Enthalpy 0K $=-2363.724440$
Enthalpy 298K $=-2363.723495$
Free Energy 298K $=-2363.884592$
Lowest Frequency $=7.2788 \mathrm{~cm}^{-1}$
Second Frequency $=14.7040 \mathrm{~cm}^{-1}$
SCF (BP86-D3BJ) Energy = -
2365.03611263

SCF ($\mathrm{C}_{6} \mathrm{H}_{6}$) Energy $=-2364.72709140$
SCF (BS2) Energy $=-2656.155666$

Ge	-1.74286	-0.37495	0.56134
Cu	0.21412	0.46111	-0.63074
N	2.95380	0.81450	0.52107
N	2.83389	-1.08019	-0.52803
C	2.05098	-0.01274	-0.12509
C	4.24639	0.28001	0.50746
H	5.08386	0.79100	0.97351
C	4.17149	-0.90873	-0.15718
H	4.93133	-1.64671	-0.39634
C	2.36658	-2.28547	-1.19025
C	2.19891	-2.28147	-2.59860
C	1.75653	-3.47473	-3.20270
H	1.61212	-3.50284	-4.28721
C	1.51303	-4.62546	-2.44414
H	1.16483	-5.54055	-2.93479
C	1.73039	-4.61262	-1.06185
H	1.55608	-5.52188	-0.47866
C	2.16804	-3.44846	-0.40062
C	2.57911	-1.08219	-3.46681
H	2.63096	-0.19800	-2.80949
C	1.54172	-0.77805	-4.56677
H	1.83326	0.13259	-5.11863
H	0.54156	-0.61133	-4.13640
H	1.47220	-1.59459	-5.30646
C	3.98397	-1.29852	-4.08099
H	3.99295	-2.18325	-4.74161
H	4.74891	-1.45500	-3.30153
H	4.28387	-0.42260	-4.68278
C	2.48000	-3.49539	1.09639
H	2.53098	-2.45614	1.46594
C	1.39790	-4.22416	1.91650
	1.0 .0		

H	1.36590	-5.30301	1.68289
H	0.39753	-3.80317	1.73873
H	1.62085	-4.13401	2.99289
C	3.86082	-4.15599	1.33533
H	4.10063	-4.16572	2.41276
H	4.67590	-3.62955	0.81096
H	3.85744	-5.20150	5
C	2.64993	2.09109	1.14322
C	1	8	3
C	1.88531	3.35459	3.05466
H	1.46970	3.39782	4.06475
C	2.16770	4.54639	2.37580
H	1.97238	5.50964	2.85891
C	2	4.50789	9
H	2.92737	5.44445	0.56463
C	2.95555	6	0.43616
C	1.89691	0.80957	3.25599
H	1.57820	0.03032	2.54004
C	3.21562	0.34139	3.92225
H	4.01211	0.15394	3.18379
H	3.04877	-0.59453	4
H	3.58195	1.10305	4.63326
C	0.79164	0.93539	2
H	1.09287	1.60034	5.15166
H	0.59466	-0.05523	4.76503
H	-0.15004	1.31667	3.89497
C	3.58562	3.28165	-0.95761
H	3.45468	2.27096	-1.38361
C	5.10526	3.56477	-0.87470
H	5.55921	3.54497	-1.88086
H	5.62955	2.82160	-0.25145
H	5.29352	4.56075	-0.43693
C	2.91006	4.28904	-1.91442
H	3.10880	5.33259	-1.61471
H	1.81790	4.14766	-1.94709
H	3.30931	4.16742	-2.93664
C	-3.25315	-0.84858	-0.72296
C	-2.94018	-1.51387	-1.92932
H	-1.88960	-1.70870	-2.18278
C	-3.94623	-1.93089	-2.81893
H	-3.67688	-2.44846	-3.74736
C	-5.29481	-1.67884	-2.52036
H	-6.08245	-1.99743	-3.21241
C	-5.62613	-1.01132	-1.32989
H	-6.67669	-0.80722	-1.09095
C	-4.61483	-0.60586	-0.44196
H	-4.89534	-0.08583	0.48180
C	-1.78849	-2.05704	1.72241
C	-2.23200	-3.29393	1.20097
H	-2.52110	-3.36385	0.14578
C	-2.34228	-4.43451	2.01609
H	-2.69933	-5.37826	1.58702
C	-2.01026	-4.36399	3.37918
H	-2.10432	-5.24918	4.01819
C	-1.56485	-3.14522	3.91727
H	-1.31213	-3.07581	4.98218
C	-1.45549	-2.00994	3.09524
H	-1.13508	-1.06174	3.54155
C	-2.51916	0.98850	1.86504
C	-3.56642	0.66508	2.75964

H	-3.96728	-0.35519	2.77920
C	-4.09556	1.62171	3.64359
H	-4.91025	1.34564	4.32336
C	-3.57978	2.92848	3.66052
H	-3.99058	3.67478	4.34978
C	-2.52954	3.26881	2.79305
H	-2.11336	4.28294	2.80453
C	-2.00766	2.30566	1.90968
H	-1.18083	2.58468	1.24334
C	0.61201	1.58292	-2.20836
C	-0.65169	1.64791	-2.04059
C	-1.94418	2.12022	-2.50627
C	-3.00562	2.43641	-1.63047
C	-2.12149	2.32231	-3.89963
C	-4.20459	2.95906	-2.13387
H	-2.88143	2.27916	-0.55640
C	-3.32685	2.83160	-4.39559
H	-1.30163	2.07295	-4.58078
C	-4.37233	3.15611	-3.51357
H	-5.01618	3.20331	-1.44102
H	-3.45034	2.97821	-5.47407
H	-5.31496	3.55574	-3.90225
H	1.51989	1.89223	-2.70889

TS2 ${ }_{10}$

SCF (BP86) Energy $=-2364.68229854$
Enthalpy 0K $=-2363.696731$
Enthalpy 298K $=-2363.695787$
Free Energy $298 \mathrm{~K}=-2363.855156$
Lowest Frequency $=-151.3886 \mathrm{~cm}^{-1}$ Second Frequency $=9.5605 \mathrm{~cm}^{-1}$ SCF (BP86-D3BJ) Energy = 2365.01392607
$\operatorname{SCF}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ Energy $=-2364.69799211$
SCF (BS2) Energy $=-2656.125325$

Ge	1.82440	-0.89928	-0.50624
Cu	-0.22951	0.10807	0.80968
N	-2.40245	1.96496	0.17300
N	-3.20407	-0.01922	0.53080
C	-2.00118	0.64672	0.34881
C	-3.78988	2.10269	0.25649
H	-4.27938	3.06585	0.14544
C	-4.29339	0.85384	0.47668
H	-5.31397	0.50017	0.59134
C	-3.39789	-1.44889	0.68226
C	-3.29826	-2.02774	1.97395
C	-3.57883	-3.40342	2.08391
H	-3.50969	-3.88546	3.06349
C	-3.95699	-4.16190	0.96814
H	-4.17819	-5.22861	1.08312
C	-4.05833	-3.55882	-0.28995
H	-4.35585	-4.15765	-1.15692
C	-3.78126	-2.18871	-0.46429
C	-2.98507	-1.19139	3.21544
H	-2.37965	-0.32845	2.88660
C	-2.14088	-1.94798	4.25864
H	-1.87710	-1.26640	5.08562
H	-1.20422	-2.31467	3.80977

	-2.68631	-2.79880	3
C	-4.29514	-0.66558	3.85203
H	-4.93466	-1.50289	4.18396
H	-4.88048	-0.05441	3.14444
H	-4.07094	-0.03975	4.73360
C	-3.94313	-1.55219	-1.84570
H	-3.57690	-0.51259	-1.78665
C	-3.10191	-2.27001	-2.92156
H	-3.43478	-3.31169	-3.07157
H	-2.03542	-2.29492	-2.64972
H	-3.20346	-1.74865	-3.88956
C	-5.43437	-1.50109	-2.25457
H	-5.54925	-1.01080	-3.23699
H	-6.04248	-0.94356	-1.52174
H	-5.85856	-2.51740	-2.33456
C	-1.53114	3.07464	-0.15408
C	-1.48494	3.51035	-1.50406
C	-0.65567	4.61074	-1.80151
H	-0.60125	4.97498	-2.83279
C	0.09516	5.24175	-0.80312
H	0.74026	6.08945	-1.05755
C	0.01618	4.79903	0.52394
H	0.59958	5.30771	1.29649
C	-0.80675	3.71483	0.88576
C	-2.33166	2.87299	-2.60896
H	-2.75560	1.93414	-2.21246
C	-3.51175	3.80040	-2.98837
H	-4.14951	4.03429	-2.11923
H	-4.14483	3.32545	-3.75785
H	-3.14365	4.75783	-3.39723
C	-1.51145	2.50836	-3.86447
H	-1.10633	3.40598	-4.36403
H	-2.15617	1.99220	-4.59660
H	-0.66636	1.84579	-3.62116
C	-0.97364	3.30942	2.35203
H	-1.18732	2.22527	2.37638
C	-2.18524	4.04989	2.97174
H	-2.32565	3.74314	4.02281
	-3.12100	3.83539	2.42919
H	-2.02499	5.14262	2.95434
C	0.28870	3.54120	3.20469
	0.50420	4.61611	3.34145
	1.17564	3.06132	2.76108
	0.13839	3.11385	4.21045
C	3.53424	-1.83794	0.04569
C	3.50236	-3.16492	0.52574
	2.54860	-3.70113	0.58688
	4.68163	-3.82427	0.91220
H	4.63274	-4.85592	1.27945
C	5.91941	-3.16814	0.81904
H	6.84038	-3.68226	1.11599
c	5.96869	-1.84904	0.34048
	6.92960	-1.32752	0.26395
c	4.78667	-1.19050	-0.03825
H	4.84641	-0.15860	-0.40066
C	0.74185	-2.47129	-1.17657
C	0.04879	-3.31393	-0.27761
H	-0.02473	-3.04003	0.78115
C	-0.54533	-4.50768	-0.72571
	-1.07659	-5.14839	-0.01395

C	-0.45906	-4.87555	-2.07788
H	-0.91078	-5.81167	-2.42447
C	0.20766	-4.03552	-2.98571
H	0.27440	-4.31360	-4.04392
C	0.79776	-2.84058	-2.53880
H	1.32399	-2.20046	-3.25665
C	2.38615	0.22603	-2.08856
C	3.38122	-0.23763	-2.97919
H	3.85780	-1.20960	-2.80804
C	3.78828	0.54108	-4.07695
H	4.55938	0.16242	-4.75761
C	3.21720	1.80543	-4.29434
H	3.54242	2.41806	-5.14249
C	2.23209	2.28225	-3.41461
H	1.78485	3.27026	-3.57041
C	1.81788	1.49430	-2.32620
H	1.04455	1.87681	-1.64721
C	0.56063	-0.40595	2.56177
C	1.54662	0.00124	1.77048
C	2.82869	0.70263	1.96303
C	3.22641	1.78783	1.14855
C	3.66174	0.32817	3.04498
C	4.41440	2.48496	1.41615
H	2.59346	2.08308	0.30571
C	4.85088	1.02167	3.30366
H	3.36758	-0.52232	3.66808
C	5.23311	2.10407	2.49207
H	4.70152	3.32818	0.77835
H	5.48834	0.70990	4.13832
H	6.16470	2.64311	2.69451
H	0.54036	-0.20786	3.64413

References

1. J. W. Hall, D. M. L. Unson, P. Brunel, L. R. Collins, M. K. Cybulski, M. F. Mahon and M. K. Whittlesey, Organometallics, 2018, 37, 3102-3110; A. J. Jordan, C. M. Wyss, J. Bacsa, and J. P. Sadighi, Organometallics, 2016, 35, 613-616; A. Bonet, V. Lillo, J. Ramírez, M. M. DíazRequejo, and E. Fernandez, Org. Biomol. Chem., 2009, 7, 1533-1535; L. R. Collins, I. M. Riddlestone, M. F. Mahon and M. K. Whittlesey, Chem. Eur. J., 2015, 21, 14075-14084; L. A. Goj, E. D. Blue, S. A. Delp, T. B. Gunnoe, T. R. Cundari, A. W. Pierpont, J. L. Petersen, and P. D. Boyle, Inorg. Chem., 2006, 45, 9032-9045; E. Colomer, R. J. P. Corriu, C. Marzin, and A. Vioux, Inorg. Chem., 1982, 21, 368-373; M. Suzuki, H. Son, Ryoji Noyori, and H. Masuda, Organometallics, 1990, 9, 12, 3043-3053; J. E. Griffiths and M. Onyszchuk, Can. J. Chem., 1961, 39, 339-347; A. Harinath, J. Bhattacharjee, S. Anga and T. K. Panda, Aust. J. Chem., 2017, 70, 724.
2. G. Sheldrick, Acta Cryst. A, 2015, 71, 3-80.
3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
4. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
5. H. Koglin, K. Behrends, and M. Draeger, Organometallics, 1994, 13, 2733-2742.
6. O. Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan and C. S. J. Cazin, Chem. Commun., 2013, 49, 10483-10485.
7. K. V. Zaitsev, A. A. Kapranov, Y. F. Oprunenko, A. V. Churakov, J. A.K. Howard, B. N. Tarasevich, S. S. Karlov, G. S. Zaitseva, J. Organomet. Chem., 2012, 700, 207-213.
8. I. Elser, R. J. Andrews, and D. W. Stephan, Chem. Commun., 2022, 58, 1740-1743.
9. S. Pelzer, B. Neumann, H. Stammler, N. Ignat'ev, and B. Hoge, Chem. Eur. J., 2016, 22, 47584763.
10. S. R. Foley, G. P. A. Yap, and D. S. Richeson, Organometallics, 1999, 18, 4700-4705.
11. L. A. Goj, E. D. Blue, C. Munro-Leighton, T. B. Gunnoe, and J. L. Petersen, Inorg. Chem., 2005, 44, 8647-8649.
12. K. V. Zaitsev, A. V. Kharcheva, K. Lam, Z. Zhanabil, G. Issabayeva, Y. F. Oprunenko, A. V. Churakov, G. S. Zaitseva, S. S. Karlov, J. Organomet. Chem., 2018, 867, 228-237.
13. A. G. Medvedev, M. Yu. Sharipov, D. A. Grishanov, A. V. Eshtukov, A. V. Churakov, I. A. Buldashov, P. A. Egorov, O. Levb and P. V. Prikhodchenko, Mendeleev Commun., 2022, 32, 57-59.
14. F. Wech, M. Hasenbeck, U. Gellrich, Chem. Eur. J., 2020, 26, 13445-13450.
15. A. J. Jordan, C. M. Wyss, J. Bacsa, and J. P. Sadighi, Organometallics, 2016, 35, 613-616.
16. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
17. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta, 1990, 77, 123-141.
18. (a) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213-222. (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
19. (a) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098. (b) J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, 33, 8822-8824.
20. M. Bühl, H. Kabrede, J. Chem. Theory Comput., 2006, 2, 1282-1290.
21. D. Figgen, G. Rauhut, M. Dolg, H. Stoll, J. Chem. Phys., 2005, 311, 227-244.
22. K. A. Peterson, C. Puzzarini, Theor. Chem. Acc., 2005, 114, 283-296.
23. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
24. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 2011 32, 1456-1465.
25. M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962-975.
26. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem., 2001, 22, 931-967.
