Chemical and Linguistic Considerations for Encoding Chinese Characters: An Embodiment Using Chain-End Degradable SequenceDefined Oligourethanes Created by Consecutive Solid Phase Click Chemistry

 Iverson, ${ }^{\text {a, }, *}$ Danny Law, ${ }^{\mathrm{b}, \mathrm{c},{ }^{*}}$ and Eric V. Anslyn ${ }^{\mathrm{a},{ }^{,}}$
a Department of Chemistry, The University of Texas at Austin, TX 78712, United States
b Department of Linguistics, The University of Texas at Austin, TX 78712, United States
c Linguistics Research Center, The University of Texas at Austin, TX 78712, Unites States
Emails: iversonb@austin.utexas.edu, dannylaw@austin.utexas.edu, anslyn@austin.utexas.edu

TABLE OF CONTENTS

I. General procedure and equipment 1
II. Synthesis and characterization 2
III. Sequencing experiments 8
IV. User manual for Python scripts 77

I. General procedure and equipment

All materials used in the synthesis of each compound and related tests, were purchased from SigmaAldrich Chemical Co., Acros Organics, Tokyo Chemical Industry, Chem Impex International, etc. and used without further purification. Solvents (DCM, NMP, chloroform, DMSO, DMF, MeOH, MeCN, Isopropanol) were of reagent grade or HPLC grade quality and purchased from Fischer Scientific. NMR solvents ($\mathrm{CDCl}_{3}-d$, MeOD- d_{4}) were purchased from Cambridge Isotope Laboratories.
Column chromatography was performed using silica gel 60 (230 ± 400 mesh, $0.040 \pm 0.063 \mathrm{~mm}$) from Dynamic Adsorbents.

TLC analyses were carried out using Silica TLC Plates Glass Backing 20 by 20 cm sheet UV active at 254 nm .

Reverse phase column chromatography and HPLC purifications were performed on Shimadzu Prominence HPLC system equipped with Zorbax SB-C18 preparatory column ($21.2 \times 250 \mathrm{~mm}$) with 7.0 $\mu \mathrm{m}$ packing material. Analytical HPLC traces were also carried out using a Zorbax SB-C18 analytical column ($4.6 \times 250 \mathrm{~mm}$) with $5.0 \mu \mathrm{~m}$ packing material. $5-95 \%$ gradient elution ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid). Hydrophobic urethanes utilized $30-95 \%$ gradient elution (MeCN/H2O with 0.1% formic acid).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AVIII with a BBFO Prodigy liquid nitrogen CryoProbe 600 MHz NMR spectrometers. The NMR spectra were referenced to solvent and the spectroscopic solvents were purchased from Cambridge Isotope Laboratories.
Liquid Chromatography/Mass spectra were recorded on an Agilent Technologies 6120 Single Quadrupole or 6125B Single Quadrupole mass spectrometer interfaced with an Agilent 1200 series liquid chromatography system equipped with a diode-array detector. Column: Agilent ZORBAX Eclipse Plus S2 C18 narrow bore column; 2.1 mm internal diameter; 50 mm length; 5 micron particle size; P.N. 959746902. Resulting spectra were analysed using Agilent LC/MSD ChemStation. Separations were achieved
with a gradient elution from 5 to 95% organic, using MeCN and Water w/ 50 mM ammonium acetate as the eluents. High resolution mass spectrometry was performed by the UT-Austin Mass Spectrometry Facility using an Agilent Technologies 6530 Accurate-Mass Q-TOF (G6530A) with an Agilent Technologies Jet Stream ESI source, interfaced with an Agilent Technologies 1260 Infinity liquid chromatography system (G1312B). An Agilent Technologies 6546 Accurate-Mass Q-TOF (G6546A) with an Agilent Technologies Dual Jet Stream ESI source, interfaced with an Agilent Technologies 1260 Infinity II liquid chromatography system (G7112B), was used.

II. Synthesis and characterization

II(a). Synthesis and characterization of the monomer

To a stirred solution of Fmoc-L-azidolysine ($1.972 \mathrm{~g}, 5 \mathrm{mmol}$) in anhydrous THF (19 mL) was added N,Ncarbonyldiimidazole ($1.08 \mathrm{~g}, 6.7 \mathrm{mmol}$) at room temperature. The reaction stirred for at least 10 minutes and was then cooled to $0^{\circ} \mathrm{C}$. Next, a solution of $\mathrm{NaBH}_{4}(311.7 \mathrm{mg}, 8.24 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(8.32 \mathrm{~mL})$ was added. The solution was stirred for at least 30 minutes, up to 1.5 hours. The reaction was quenched by addition of 1 M HCl and extracted with EtOAc ($3 \times 65 \mathrm{~mL}$). The combined organics were washed $1 \times$ with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by silica gel chromatography ($1: 1$ Hexanes:EtOAc) to furnish a white solid ($1.69 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , MeOD$\left.d_{4}\right) \delta 7.79(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-$ $4.43(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=6$ $\mathrm{Hz}, 2 \mathrm{H})$, , 1.55-1.64 (m, 3H), 1.35-1.49 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , MeOD- d_{4}) ס 159.13, 145.70, 145.62, 142.93, 129.05, 128.42, 126.52, 126.47, 121.21, 67.82, 65.70, 54.45, 52.65, 49.83, 32.02, 30.03, 24.56. HRMS +ESI: calculated $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+}\right)$403.1746, found 403.1741. [${ }^{+}+\mathrm{Na}$].

To a stirring solution of $\mathbf{1}(1.69 \mathrm{~g}, 4.45 \mathrm{mmol})$ in anhydrous DCM $(22 \mathrm{~mL})$ was added pyridine ($378 \mu \mathrm{~L}$, 4.67 mmol) dropwise. Next, 4-nitrophenyl chloroformate ($1.08 \mathrm{~g}, 6.67 \mathrm{mmol}$) was added, and the reaction left to stir overnight. Reaction was monitored by TLC ($2: 1$ Hexanes:EtOAc) and upon consumption of the starting material, was diluted excessively in DCM and transferred to a separatory funnel. The organic layer was washed with $1 \mathrm{M} \mathrm{NaHSO} 4(2 x)$, then $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(3 x)$, and finally brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The product was purified by silica gel chromatography ($2: 1$ Hexanes:EtOAc) and isolated as a white solid ($1.75 \mathrm{~g}, 3.20 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{d}\right) \delta 8.25(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=12 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.34$ $(\mathrm{m}, 1 \mathrm{H}), 4.21-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.67(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}-$ d) $\delta 156.17,155.50$, 152.62, 145.60, 143.92, 143.88, 141.50, 127.93, 127.22, 125.50, 125.11, 125.08, 121.89, 120.20, 70.78, 66.89, 51.26, 50.02, 47.40, 31.05, 28.64, 23.19. HRMS +ESI: calculated $\left(\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Na}^{+}\right) 568.1808$, found 568.1799. [$\mathrm{M}^{+} \mathrm{Na}$].

II(b). General procedure for the solid-supported synthesis of oligourethanes

Coupling: Phenyalaninol loaded ($0.44 \mathrm{mmol} / \mathrm{gram}, 200-400 \mathrm{mesh}$) 2-chlorotrityl polystyrene resin $(40 \mathrm{mg}$, 0.0176 mmol) was added to a small fritted solid phase synthesis apparatus (5 mL). The apparatus was then evacuated and backfilled with argon. The resin was suspended in 0.5 mL of anhydrous N -methyl-2pyrrolidinone (NMP) and left to swell for 10 minutes. Next, Hunig's base ($4.4 \mu \mathrm{~L}, 0.025 \mathrm{mmol}$) was added, followed by hydroxybenzotriazole ($13.4 \mathrm{mg}, 0.10 \mathrm{mmol}$). The suspension was swirled for 30 seconds until everything was dissolved. Finally, the activated amino alcohol $2(33.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. Reaction was shaken for 8 hours on a shaker at room temperature. Resin was washed with NMP (5×3 $\mathrm{mL})$, then $\mathrm{DCM}(5 \times 3 \mathrm{~mL})$, and finally $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. Resin was dried overnight under vacuum. Test cleavages were effected with 1% TFA in DCM $(5 \times 0.2 \mathrm{~mL})$ for 20 seconds each. Coupling efficiency was checked by LC/MS. NOTE: depending on the cleavage times and amounts of TFA used, the trifluoroacetic ester (presumably on the terminal alcohol) was observed by LC/MS. This ester was readily hydrolyzed by dissolving the sample in DCM and shaking with saturated NaHCO_{3}.
Solid phase CuAAC click chemistry: To the oligourethanes on the resin (about 40 mg resin, 0.0176 mmol) in the 5 mL fritted solid phase synthesis apparatus, a terminal alkyne (5.0 eq .), sodium ascorbate (1.0 eq.), TBTA (1.0 eq.) and copper iodide (0.5 eq.) were added along with 0.7 mL DMF. The solid phase synthesis apparatus was sealed with a septum and purged with N_{2} gas for 15 minutes. After degassing, parafilm was used to seal the septum on the solid phase synthesis apparatus to prevent oxygen from going into the apparatus. The reaction was placed on the shaker and agitated for 18 hours at room temperature. The resin was then collected by vacuum filtration and washed with NMP ($5 \times 3 \mathrm{~mL}$), then DCM ($5 \times 3 \mathrm{~mL}$), and finally $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$.

Deprotection: Resin loaded with terminal Fmoc-protected oligocarbamates (0.0176 mmol) suspended in 20% piperidine in DMF (3 mL) and shaken for 2 hours at room temperature. Cleavage of the dibenzofulvene-piperidine adduct was calculated by absorbance at 301 nm using Beer's Law. The resin was washed with DMF ($5 \times 3 \mathrm{~mL}$), DCM $(5 \times 3 \mathrm{~mL})$, $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$, and dried overnight under vacuum.
General procedure for labelling of the terminal amine with a NBD-Fluoride (on resin): To a fritted reaction vessel was added the oligomer (dimer, trimer or tetramer) on resin (0.0176 mmol). Vessel was evacuated and backfilled with argon. The resin was suspended and swelled in anhydrous DMF (2.4 mL) for 5 minutes. Next, DIPEA ($41.76 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) was added, followed by 4 -fluoro-7-nitrobenzofurazan ($33 \mathrm{mg}, 0.179 \mathrm{mmol}$). Reaction was left to shake overnight. Resin was washed with DMF ($5 \times 16 \mathrm{~mL}$), DCM $(5 \times 16 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$.
Cleavage procedure: Cleavages were effected with 1% TFA in DCM $(5 \times 1 \mathrm{~mL})$ for 20 seconds each at room temperature. Resin was filtered off, and cleaved product was concentrated. Oligomer was purified by reverse-phase preparatory HPLC ($5-95 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ formic acid gradient elution).

II(c). Determination of Conversions of Synthesized Oligourethanes

Oligomer 1: \#6027

Oligomer 2: \#8fd1

Oligomer 3: *BDRW

Oligomer 5: \#9060

Oligomer Z1: *YI

Oligomer 4: \#7fd2

Oligomer 6: *76f8

Oligomer Z2: *YT

Oligomer Z3: *UMC

Oligomer Z5: *FLVV

Oligomer Z4: *PDW

Oligomer Z6_1: \#4e5f

Table 1. The conversions of 12 synthesized oligourethanes

Oligourethane	Conversion $^{\text {a }}$	Oligourethane	Conversion $^{\text {a }}$
1	38%	Z1	80%
2	81%	Z2	90%
3	63%	Z3	83%
4	77%	Z4	65%
5	55%	Z5	65%
6	48%	Z6	68%

${ }^{\text {a }}$ Conversions were determined by the ratio of the peak area of product to the total peak area in LC trace.

III. Sequencing experiments

III(a). General procedure for self-degradation (sequencing)

The sequencing procedure is adapted from previous work. ${ }^{1}$ The oligomer (measured to be at a final concentration between $0.5-1 \mathrm{mM}$) was dissolved in methanol and added to a vial. Next, potassium phosphate tribasic monohydrate was dissolved in water and then added to the reaction solution. The final concentration of base was approximately 30 mM . The final ratio of methanol and water was $1: 2.5$, respectively. Before placing the vial on the heated shaker, the reaction was sampled for LC/MS by taking $50 \mu \mathrm{~L}$ of the reaction mixture and diluted into $50 \mu \mathrm{~L}$ of a 1:1 methanol: water mixture. The reaction was ramped quickly to $70{ }^{\circ} \mathrm{C}$ in the heated shaker and held at the temperature. The reaction was sampled every 60 minutes for 240 minutes.
III(b). Oligomer Sequencing Data:
Oligomer 1: \#6027

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}$
Exact Mass: 101.05
\#

MS Zoomed Spectrum

6

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$
Exact Mass: 267.17

MS Spectrum Peak List
Obs. $\mathbf{m / z} \mathbf{z}$ Calc. \mathbf{m} / \mathbf{z} Charge Abundance Formula Ion Species Tgt Mass Error (ppm) 268.1767 268.1768 1 1189627 C 12 H 21 N 502 $(\mathrm{M}+\mathrm{H})+$ 0.35 269.1796 269.1794 1 172121 C 12 H 21 N 502 $(\mathrm{M}+\mathrm{H})+$ -0.64 270.1816 270.1818 1 16955 C 12 H 21 N 502 $(\mathrm{M}+\mathrm{H})+$ 0.49 271.1826 271.1841 1 1973 C 12 H 21 N 502 $(\mathrm{M}+\mathrm{H})+$ 5.51

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 278.17

MS Zoomed Spectrum

Oligomer 2: \#8fd1

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

\#8fd1
Chemical Formula: $\mathrm{C}_{65} \mathrm{H}_{93} \mathrm{~N}_{21} \mathrm{O}_{13}$ Exact Mass: 1375.73

8fd1
Chemical Formula: $\mathrm{C}_{61} \mathrm{H}_{86} \mathrm{~N}_{20} \mathrm{O}_{11}$ Exact Mass: 1274.68
 Exact Mass: 965.50

mical Formula: $\mathrm{C}_{32} \mathrm{H}_{4} \mathrm{~N}_{11} \mathrm{O}_{6}$ Exact Mass: 679.36
$\times 106$ Cpd 3: C65 H93 N21 013: +ESI Scan (0.22 -0.52 min. 19 Scans) Frag=180.0V MSF22-1488(LZ_2_120min)_hrESlpos2.d Subtrat

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{4}$
Exact Mass: 387.17

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 286.14

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 292.19

Oligomer 3: \#bdrw

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

 Exact Mass: 423.17

Exact Mass: 266.17
 Exact Mass: 743.27

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}$
Exact Mass: 101.05

\#

Spectrum Peaks

Obs. $\mathbf{m / z}$	Calc. $\mathbf{m / z}$	Charge	Abund
102.0549			
103.0584	102.0550	1	30805
104.0591	103.5579	1	3115
	104.0595	1	236
			MassHunter Qual $\mathbf{1 0 . 0}$

MassHunter Qual 10.0
(End of Report)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$
Exact Mass: 320.10

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 286.14

Spectrum Peaks

Obs. \mathbf{m} / \mathbf{z}	Calc. \mathbf{m} / \mathbf{z}	Charge
287.1506	287.1503	1
288.1536	288.1531	1
289.1562	289.1557	1
290.1586	290.1581	1
291.1608	291.1606	1

Abund	Formula	Ion Species
3714401	C15H18N402	(M+H)+
685425	C15H18N402	(M+H)+
75108	C15H18N402	(M+H)+
5989	C15H18N402	$(\mathrm{M}+\mathrm{H})+$
445	C15H18N402	$(\mathrm{M}+\mathrm{H})+$

(End of Report)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 292.19

Exact Mass: 1377.74

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

 Exact Mass: 278.17

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
708.8576			721214			
961.5477	961.5479	1	455760	C45H68N1608	(M+H)+	0.18
962.5503	962.5506	1	257267	C45H68N1608	(M+H)+	0.29
963.5524	963.5532	1	74346	C45H68N1608	(M+H)+	0.84
964.5535	964.5558	1	17695	C45H68N1608	(M+H)+	2.33
965.5507	965.5582	1	3226	C45H68N1608	(M+H)+	7.82

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{4}$
Exact Mass: 415.20

Spectrum Peaks

Obs. \mathbf{m} / \mathbf{z}	Calc. \mathbf{m} / \mathbf{z}	Charge
416.2039	416.2041	1
417.2070	417.2068	1
418.2088	418.2092	1
481.2778		

Chemical Formula: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}$
Exact Mass: 101.05 \#

Spectrum Peaks						
Obs. m/z	Calc. m/z	Charge	Abund	Formula	Ion Species	Tgt Mass Error (PPM)
102.0549	102.0550	1	24958	C4H7NO2	(M+H)+	-0.36
103.0582	103.0579	1	2557	C4H7NO2	(M+H)+	2.59
104.0590	104.0595	1	363	C4H7NO2	(M+H)+	-5.09
922.0036			37361			
	Masshunter Qual(End of Report)					

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ Exact Mass: 316.15

Oligomer 6_1: *76f8

After 120 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Exact Mass: 177.08

emical Formula: $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{12} \mathrm{O}$
Exact Mass: 732.35

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$
Exact Mass: 267.17

Oligomer 6_2: *76f8

Oligomer Z1_1: *YI

Exact Mass: 1007.34

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{BrN}_{13} \mathrm{O}_{8}$ Exact Mass: 1007.34

MS Zoomed Spectrum

$\begin{aligned} & \text { MS Spectrum } \\ & \hline \text { Obs. m/z } \end{aligned}$	Calc. m / z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
330.1927			1631671			
1008.3471	1008.3474	1	139751	C47H54BrN1308	(M+H)+	0.32
1009.3488	1009.3503	1	84139	C47H54BrN1308	(M+H)+	1.51
1010.3466	1010.3466	1	164479	C47H54BrN1308	(M+H)+	-0.02
1011.3490	1011.3487	1	80795	C47H54BrN1308	(M+H)+	-0.25
1012.3585	1012.3512	1	23911	C47H54BrN1308	(M+H)+	-7.14
1013.3574	1013.3538	1	5160	C47H54BrN1308	(M+H)+	-3.59

Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{BrN}_{12} \mathrm{O}_{6}$ Exact Mass: 830.26

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrN}_{7} \mathrm{O}_{4}$ Exact Mass: 501.08

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$ Exact Mass: 177.08
*

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$ Exact Mass: 329.19

MS Spectrum Obs. $\mathbf{m / \mathbf { z }}$	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
330.1927	330.1925	1	1631610	C17H23N502	(M+H) +	-0.83
331.1958	331.1953	1	329494	C17H23N502	$(\mathrm{M}+\mathrm{H})+$	-1.67
332.1980	332.1979	1	36961	C17H23N502	$(\mathrm{M}+\mathrm{H})+$	-0.44
333.2098	333.2003	1	5255	C17H23N5O2	$(\mathrm{M}+\mathrm{H})+$	-28.5
334.2105	334.2028	1	1033	C17H23N5O2	(M+H)+	-23.2

Oligomer Z1_2: *YI

Exact Mass: 1007.34

Oligomer Z2: *YT

Exact Mass: 989.45

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{49} \mathrm{H}_{59} \mathrm{~N}_{13} \mathrm{O}_{10}$
Exact Mass: 989.45 Exact Mass: 989.45

Exact Mass: 812.37

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$ Exact Mass: 329.19

Oligomer Z3: *umc

Exact Mass: 1156.59

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{48} \mathrm{H}_{65} \mathrm{~N}_{15} \mathrm{O}_{8}$
Exact Mass: 979.51

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 300.16

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$
Exact Mass: 292.19

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$ Exact Mass: 177.08

Obs. m/z	Calc. m/z	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
301.1660	301.1659		452094	C16H2ON4O2	(M+H)+	-0.47
302.1685	302.1688	1	85743	C16H2ON4O2	(M+H)+	0.99
303.1712	303.1714	1	9452	C16H2ON4O2	(M+H)+	0.69
304.1762	304.1739	1	828	C16H2ON4O2	(M+H)+	-7.61
339.1218			1080400			

Oligomer Z4: *pdw

Exact Mass: 1182.57
*pdw

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Oligomer Z5_1: *flvv

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{4}$ Exact Mass: 415.20

MS Zoomed Spectrum

Oligomer Z5_2: *flvv

Oligomer Z6_1: *4e5f

Exact Mass: 1515.71

After 60 minutes of sequencing, all the following molecules are observed in the solution and analyzed via High-Res MS.

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{4}$
Exact Mass: 423.17

Chemical Formula:
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$
Exact Mass: 177.08
MS Zoomed Spectrum

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$ Exact Mass: 295.20

MS Zoomed Spectrum

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ Exact Mass: 300.16

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$
Exact Mass: 320.10

MS Spectrum Obs. m / z	$\frac{\text { Peak List }}{\text { Calc. } \mathrm{m} / \mathrm{z}}$	Charge	Abundance	Formula	Ion Species	Tgt Mass Error (ppm)
296.2074			2117257			
343.0932	343.0932	1	19791	C15H17CIN402	(M+Na)+	0.01
344.0967	344.0961	1	3716	C15H17CIN4O2	(M+Na)+	-1.85
345.0903	345.0908	1	6641	C15H17CIN402	(M+Na)+	1.29
346.0925	346.0934	1	1370	C15H17CIN402	(M+Na)+	2.61

Oligomer Z6_2: *4e5f

References

1. Dahlhauser, S. D.; Escamilla, P. R.; Vandewalle, A. N.; York, J. T.; Rapagnani, R. M.; Shei, J. S.; Glass, S. A.; Coronado, J. N.; Moor, S. R.; Saunders, D. P.; Anslyn, E. V. J. Am. Chem. Soc. 2020, 142 (6), 2744-2749.

III(c). Sequencing the oligomers with overlapping truncated oligomers of similar polarities in LC

The sequencing of Oligomer 4 (\#7fd2) is a scenario where multiple peaks overlap. In this case, it can be difficult to identify what peaks are overlapping, and what is the order in which these peaks show up in LCMS. The MS data can help in deconvolute that. The process is shown below:

At 0 min , there is only one peak in the LC trace and the corresponding MS for that peak is shown below:

At 60 min , there are two peaks in the LC trace, and the corresponding MS for these peaks are shown below:

At 120 min , there are three peaks in the LC trace, and the corresponding MS for these peaks are shown below:

As we keep observing the LC trace and the corresponding MS peaks for the 180 and 240 minutes, we can confidently say what peaks are overlapping and what is the order of their appearance and disappearance. From this observation, the accurate sequence of the given oligomer can be determined.

III（d）．The oligomers and corresponding Chinese characters．

6027
性

8fd1
近

$7 f d 2$
習

9060
遠

7648
相

4e5f
也

也
（1）Unicode encoding

UMC
性

YT

(2) Zhengma encoding

III(e). The zoomed in mass spectra of Oligomer Z5 (*flvv) and Z6 (* 4 e 5 f).

IV. User manual for Python scripts

To use this program, download the zip file, which can be located by clicking on "Code" on the GitHub website.

- To convert from Chinese characters to Zhengma codes

1. Go to the "code" folder.

\square code	Added all Zheng Ma code and data files current as of 2023/06/21	3 weeks ago
- data	Added all Zheng Ma code and data files current as of 2023/06/21	3 weeks ago
\square drafts	Added all Zheng Ma code and data files current as of 2023/06/21	3 weeks ago
$\square \mathrm{img}$	Added all Zheng Ma code and data files current as of 2023/06/21	3 weeks ago
\square raw	Added all Zheng Ma code and data files current as of 2023/06/21	3 weeks ago
[) .gitignore	Added MacOS file .DS_Store to .gitignore	3 weeks ago
(1) README.md	Update README.md	3 weeks ago

2. Open the "4_converter.ipynb" file.

Name	Last commit message	Last commit date
－．．		
［．1＿background．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［0．2＿data．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［］3＿tests．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［］4＿converter．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［ zm＿helpers．py	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago

3．Load and run the codes $1-4$ shown below．

```
In [1]: # If running in Google colab
#from google.colab import drive
#drive.mount('/content/gdrive')
##
#path_prefix = "/content/gdrive/My Drive/CoLab Notebooks/zhengma/raw/"
#data_prefix = '/content/gdrive/My Drive/Colab Notebooks/zhengma/data/'
In [2]: # If running on local system
path_prefix = "../raw/"
data_prefix = '../data/'
In [3]: import pickle
# Load pickle
with open(data_prefix + 'df_zm_merged.pkl', 'rb') as pickle_file:
    df_zm_merged = pickle.load(pickle_file)
In [4]: def characters_to_codes_simplistic(cjk_string, zm_dataframe, db_column='RIME Characters', zm_column='ZM Codes'):
    # Input:
    # string of CJK characters
    # database of Zheng Ma codes as a pandas DataFrame
    # name of column to check for characters
    # name of column containing Zheng Ma codes
    # Output:
    # list (dictionary?) of Zheng Ma codes
    # - In case of multiple code correspondences, choose the longest
    characters = cjk_string.strip().replace(' ', '')
    codes = []
    for character in characters:
        # Find any rows in the desired column that have the desired character
        # Take the ZM codes in those rows as a list
        possible_codes = zm_dataframe[zm_dataframe[db_column] == character][zm_column].tolist()
            # Choose the **longest code** in that list of ZM codes
            max_code = max(possible_codes, key=len) if possible_codes else None
            # There could be several, so order alphabetically and pick the first
            desired_codes = [c for c in possible_codes if len(c) == len(max_code)] if max_code else None
            desired_code = sorted(desired_codes)[0] if desired_codes else 'N/A: no match''
            codes.append([character, desired_code])
    return codes
```

4．In code line 5，enter the Chinese characters to be encoded，encased in quotation marks as shown in the red box．The example below reads＂Zhengma Method＂in Chinese．

5．Run code 6 to obtain the Zhengma codes that correlate to the Chinese characters．

In［6］：new＿test＿codes＿output1＝characters＿to＿codes＿simplistic（new＿test＿string1，df＿zm＿merged） print（new＿test＿codes＿output1）
［［＇郑＇，＇uagy＇］，［＇码＇，＇gxvv＇］，［＇输＇，＇heqk＇］，［＇入＇，＇oda＇］，［＇法＇，＇vbzs＇］］

－To convert from Zhengma codes to Chinese characters

1．Go to the＂code＂folder．

－code	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
－data	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
－drafts	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
$\square \mathrm{img}$	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
\square raw	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［）．gitignore	Added MacOS file ．DS＿Store to ．gitignore	3 weeks ago
（1）README．md	Update README．md	3 weeks ago

2．Open the＂4＿converter．ipynb＂file．

Name	Last commit message	Last commit date
■ ..		
［0 1＿background．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［．2＿data．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［］3＿tests．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［ 4＿converter．ipynb	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago
［ zm＿helpers．py	Added all Zheng Ma code and data files current as of 2023／06／21	3 weeks ago

3．Load and run the codes 1－3 and 8 shown below．

```
In [1]: # If running in Google Colab
#from google.colab import drive
#drive.mount('/content/gdrive')
#
#path_prefix = "/content/gdrive/My Drive/Colab Notebooks/zhengma/raw/"
#data_prefix = '/content/gdrive/My Drive/Colab Notebooks/zhengma/data/'
In [2]: # If running on local system
path_prefix = "../raw/"
data_prefix = '../data/'
import pickle
# Load pickle
with open(data_prefix + 'df_zm_merged.pkl', 'rb') as pickle_file:
    df_zm_merged = pickle.load(pickle_file)
In [8]: def codes_to_characters_simplistic(code_list, zm_dataframe, db_column='RIME Characters', zm_column='ZM Codes'):
    # Inpüt:
    # list of ZM codes
    # database of Zheng Ma codes as a pandas DataFrame
    # name of column to check for characters
    # name of column containing zheng Ma codes
    # Output:
    # string of СJK characters
    # - In case of multiple character correspondences for a code, choose...
    cjk_string = ''
    for code in code_list:
        # Make sure the code is a valid ZM code:
        # - fewer than 5 letters
        # - no spaces
        if ' ' not in code:
            if len(code) < 5:
                    # Get the characters for that code
                    possible_characters = zm_dataframe[zm_dataframe[zm_column] == code][db_column].tolist()
                    # Remove any empty strings
                    viable_characters = [x for x in possible_characters if (len(x) > 0)]
                    # Add the smallest string (hopefully 1 character)
                    # ... watch out: there might be more than one minimum...
                    # ... what does min() do? return the first it finds in the list?
                    cjk_string += min(viable_characters, key=len)
            else:
                    print('Code too long: {}'.format(code))
        else:
            print('Code should not contain spaces: {}'.format(code))
    return cjk_string
```

4．In code line 10，enter the Zhengma codes to be decoded back to Chinese characters as shown in the red box below．Each Zhengma code should be encased in quotation marks as well as separated from the other Zhengma codes by commas．Then，all Zhengma codes should be encased in a pair of brackets．Running this code will return the Chinese characters correlating to the Zhengma codes．

[^0]
[^0]: In［10］：new＿test＿string＿output1＝codes＿to＿characters＿simplistic［＇uagy＇，＇gxvv＇，＇heqk＇，＇oda＇，＇vbzs＇］，df＿zm＿merged） print（new＿test＿string＿output1）

 郑码输入法

