Electronic Supplementary Information

Multi-site isomerization of synergistically regulated stimuli-responsive AIE materials toward multi-level decryption

Weiren Zhong,^{+[a,b]} Jianyu Zhang,^{+[c]} Yuting Lin,^[a] Shouji Li,^[a] Yalan Yang,^[a] Wen-Jin Wang,^[d] Chuanling Si,^{*[c]} Fritz E. Kühn,^[f] Zheng Zhao,^[d] Xu-Min Cai,^{*[a,b]} and Ben Zhong Tang ^{*[c,d]}

^[a]Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. ^[b]Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, China. ^[c]Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hongkong 999077, China. ^[d]School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. ^[e]State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. ^[f]Molecular Catalysis, Department of Chemistry & Catalysis Research Center, School of Natural Sciences, Technische Universität München, München D-85747, Germany. ^[+]These authors contributed equally: Weiren Zhong and Jianyu Zhang.

*Corresponding author:

xumin.cai@njfu.edu.cn; sichli@tust.edu.cn; tangbenz@cuhk.edu.cn.

Contents

Experimental Section	1-3
Materials and instrumentations	1
Synthetic procedures	1
Schemes, Figures, and Tables	4-16
Scheme S1. The synthesis routes of <i>p</i> -TPA-Br, <i>o</i> -Br-TPA, and <i>p</i> -Br-TPA.	4
Figure S1. ¹ H NMR spectrum of <i>p</i> -TPA-Br.	4
Figure S2. ¹³ C NMR spectrum of p -TPA-Br.	5
Figure S3. HRMS spectrum of <i>p</i> -TPA-Br.	5
Figure S4. ¹ H NMR spectrum of <i>o</i> -Br-TPA.	6
Figure S5. ¹³ C NMR spectrum of <i>o</i> -Br-TPA.	6
Figure S6. HRMS spectrum of <i>o</i> -Br-TPA.	7
Figure S7. ¹ H NMR spectrum of <i>p</i> -Br-TPA.	7
Figure S8. ¹³ C NMR spectrum of p -Br-TPA.	8
Figure S9. HRMS spectrum of <i>p</i> -Br-TPA.	8
Figure S10. Absorption spectra of o-TPA-Br, p-TPA-Br, o-Br-TPA, and p-Br-TPA	in dilute
ACN solution (20 µM).	9
Figure S11. PL spectra of <i>o</i> -Br-TPA in ACN solution with different concentrations.	9
Figure S12. (a) PL spectra of <i>o</i> -Br-TPA in EtOH/glycerol mixtures with different frac	ctions of
glycerol. (b) The plots of the enol and keto emission intensity at the maximum ve	rsus the
composition of the glycerol mixture of <i>o</i> -Br-TPA. (c) The plot of keto/enol emission	intensity
at the maximum versus the composition of the glycerol mixture of <i>o</i>-Br-TPA .	10
Figure S13. Fluorescence photographs of o-Br-TPA (in ACN), and p-Br-TPA (in TH	F) at RT
and 77 K, respectively.	10
Figure S14. Absorption spectra of (a) <i>o</i> -TPA-Br, (b) <i>p</i> -TPA-Br, (c) <i>o</i> -Br-TPA, and (d) <i>p</i> -Br-
TPA in solvents of varying polarity.	11
Figure S15. The PL spectra of (a) o-TPA-Br, (b) p-TPA-Br, (c) o-Br-TPA, and (d) <i>p</i> -Br-
TPA in solvents of varying polarity.	12
Figure S16. The molecular structures of isomers that regulate excited-state processes.	13
Table S1. Crystallographic data for <i>o</i> -Br-TPA and <i>p</i> -Br-TPA.	14
Figure S17. The photographs of (a) o-TPA-Br and (b) o-Br-TPA before and after	grinding
tanken under 365 nm lamp irradiation.	15
Figure S18. The chemical conformations, dimers, and packings of (a) <i>o</i> -TPA-Br and (b) <i>o-</i> Br-
TPA.	15
Figure S19. Fluorescence photographs of (a) <i>o</i> -TPA-Br and (b) <i>o</i> -Br-TPA as solid (pristine,
sample fumed with TFA, sample fumed with TEA).	16
Figure S20. Absorption spectra of (a) o-TPA-Br, (b) p-TPA-Br, and (c) o-Br-TPA	in pure

ACN by adding different equivalents of TFA.	16
Figure S21. ¹ H NMR spectra of (a) <i>o</i> -TPA-Br and (b) <i>o</i> -Br-TPA in CDCl ₃ before a	und after
TFA fuming in 6.0–14.0 ppm region.	17
Figure S22. Fluorescence photographs of the ground <i>p</i> -TPA-Br before and after TI	FA/TEA
treatments.	17
References	17

Experimental Section

Materials and instrumentations

Unless specific requirements, all the organic solvents are purchased and used without additional purifications. o-TPA-Br is synthesized according to a previous report ^[1]. 4-(Diphenylamino) phenylboronic acid (Aladdin, 98%), 5-bromosalicylaldehyde (Aladdin, 98%), 4-bromoaniline (Aladdin, 99%), 2-bromoaniline (Aladdin, 98%), tetrakis (triphenylphosphine) palladium (Energy Chemical, 99%), trifluoroacetic acid (TFA) (Energy Chemical, 99%), and triethylamine (TEA) (Sinopharm Chemical Reagent Co., Ltd., 99.0%) are purchased and used directly without further purification. Nuclear magnetic resonance (NMR) spectra are obtained using a Bruker AVANCE III HD spectrometer (600 MHz for ¹H and 150 MHz for ¹³C) in a solution of CDCl₃. High-resolution mass spectrometry (HRMS) spectra are acquired using a Q Exactive (Thermo Scientific, Germany) mass spectrometer operating with an ESI mode. Ultraviolet-visible (UV-Vis) absorption spectra are measured on a Shimadzu UV-2450 spectrometer. Photoluminescence (PL) spectra are performed on a Fluoromax-4 spectrofluorometer. UV-Vis diffuse reflectance (UV-DRS) spectra are acquired utilizing a PE Lambda 950 UV-Vis-NIR spectrometer. Powder X-ray diffraction (PXRD) experiments are conducted using a Rigaku Ultima IV diffractometer with Cu Ka radiation. Single-crystal data of *o*-TPA-Br (CCDC = 2190006) is from a previous report ^[1]. Single-crystal data of *o*-Br-TPA (CCDC = 2293108) is selected and mounted on CCD area detector using Mo Ka radiation (λ = 0.71073 Å). Single-crystal data of p-Br-TPA (CCDC = 2252820) is selected and mounted on an Xcalibur, Eos, Gemini diffractometer using Cu Ka radiation ($\lambda = 1.54184$ Å).

Synthetic procedures

p-TPA-Br: 4-(Diphenylamino) phenylboronic acid (300 mg, 1.04 mmol), 4-bromoaniline (214 mg, 1.25 mmol), tetrakis (triphenylphosphine) palladium (48 mg, 0.04 mmol), and 1 mL of saturated K_2CO_3 are added rapidly to a 3 mL solution of toluene. These feeding processes are conducted under N₂ atmosphere. After stirring the reaction mixture at 115 °C for 6 h, it is extracted with DCM/H₂O and then purified by silica gel column chromatography using eluents of petroleum ether/ethyl acetate (volume ratio: 20/1). Then, the intermediate of A-TPA is

obtained with a yield of 60%. A-TPA (100 mg, 0.30 mmol) is slowly added to a vigorously stirred solution of 5-bromosalicylaldehyde (72 mg, 0.36 mmol) in 20 mL of EtOH. The reaction mixture is refluxed for 3 h and cooled to room temperature afterward. Yield: 80%. ¹H NMR (600 MHz, CDCl₃) δ 13.37 (s, 1H), 8.61 (s, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.52 (d, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.45 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.28 (t, *J* = 7.9 Hz, 4H), 7.15 (d, *J* = 8.4 Hz, 6H), 7.06 (t, *J* = 7.3 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 160.55, 160.32, 147.69, 140.02, 135.77, 134.30, 129.46, 127.69, 124.70, 123.84, 123.25, 121.80, 120.83, 119.40, 110.65. HRMS (ESI, m/z): [M+H]⁺ calcd for C₃₁H₂₄BrN₂O: 519.1067; found: 519.1053.

4-(Diphenylamino) phenylboronic acid (300 1.04 5*o*-Br-TPA: mg, mmol). bromosalicylaldehyde (250 mg, 1.25 mmol), tetrakis (triphenylphosphine) palladium (48 mg, 0.04 mmol), and 1 mL of saturated K_2CO_3 are added rapidly to a 3 mL solution of toluene. The subsequent reaction conditions and post-treatment methods are consistent with ATPA-p-SAB. The intermediate of TPA-SA is obtained with a yield of 60%. TPA-SA (100 mg, 0.27 mmol) is slowly added to a vigorously stirred solution of 2-bromoaniline (56 mg, 0.32 mmol) in 20 mL of EtOH. The reaction mixture is refluxed for 3 h and cooled to room temperature afterward. Yield: 80%. ¹H NMR (600 MHz, CDCl₃) δ 13.13 (s, 1H), 8.67 (s, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.66 - 7.60 (m, 2H), 7.45 (d, J = 8.1 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.32 - 7.26 (m, 4H), 7.22 - 7.08 (m, 9H), 7.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.32, 160.56, 147.80, 147.05, 146.84, 134.17, 133.46, 132.23, 130.41, 128.64, 127.33, 124.47, 124.26, 123.05, 120.16, 119.23, 118.07. HRMS (ESI, m/z): [M+H]⁺ calcd for C₃₁H₂₄BrN₂O: 519.1067; found: 519.1046.

p-Br-TPA: TPA-SA (100 mg, 0.27 mmol) is slowly added to a vigorously stirred solution of 4-bromoaniline (56 mg, 0.32 mmol) in 20 mL of EtOH. The reaction mixture is refluxed for 3 h and cooled to room temperature afterward. Yield: 80%.¹H NMR (600 MHz, CDCl₃) δ 12.97 (s, 1H), 8.66 (s, 1H), 7.62 (dd, J = 8.6, 2.3 Hz, 1H), 7.59 (d, J = 2.3 Hz, 1H), 7.57–7.53 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.27 (m, 4H), 7.19–7.17 (m, 2H), 7.16–7.12 (m, 6H), 7.09 (d, J = 8.6 Hz, 1H), 7.04 (t, J = 7.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 163.20, 160.42, 147.84, 147.67, 147.12, 134.18, 132.69, 132.24, 132.02, 129.44, 127.34, 124.52, 124.27, 123.09,

122.98, 120.63, 119.27. HRMS (ESI, m/z): $[M+H]^+$ calcd for $C_{31}H_{24}BrN_2O$: 519.1067; found: 519.1055.

Scheme S1. The synthesis routes of *p*-TPA-Br, *o*-Br-TPA, and *p*-Br-TPA. (a) Toluene, $Pd(PPh_3)_4$, K_2CO_3 , 6 h. (b) EtOH, 3 h.

Figure S1. ¹H NMR spectrum of *p*-TPA-Br.

Figure S2. ¹³C NMR spectrum of *p*-TPA-Br.

Figure S3. HRMS spectrum of *p*-TPA-Br.

Figure S4. ¹H NMR spectrum of *o*-Br-TPA.

Figure S5. ¹³C NMR spectrum of *o*-Br-TPA.

Figure S6. HRMS spectrum of *o*-Br-TPA.

Figure S7. ¹H NMR spectrum of *p*-Br-TPA.

Figure S8. ¹³C NMR spectrum of *p*-Br-TPA.

Figure S9. HRMS spectrum of *p*-Br-TPA.

Figure S10. Absorption spectra of *o*-TPA-Br, *p*-TPA-Br, *o*-Br-TPA, and *p*-Br-TPA in dilute ACN solution (20 µM).

Figure S11. PL spectra of *o*-Br-TPA in ACN solution with different concentrations. $\lambda_{ex} = 326$ nm.

Figure S12. (a) PL spectra of *o*-Br-TPA in EtOH/glycerol mixtures with different fractions of glycerol. (b) The plots of the enol and keto emission intensity at the maximum versus the composition of the glycerol mixture of *o*-Br-TPA. $\alpha_{AIE} = I/I_0$, $I_0 = PL$ intensity in pure EtOH. (c) The plot of keto/enol emission intensity at the maximum versus the composition of the glycerol mixture of *o*-Br-TPA. Concentration: 20 μ M. λ_{ex} : 326 nm.

Figure S13. Fluorescence photographs of *o*-Br-TPA (in ACN), and *p*-Br-TPA (in THF) at RT and 77 K, respectively. λ_{ex} : 365 nm. Concentration: 20 μ M.

Figure S14. Absorption spectra of (a) *o*-TPA-Br, (b) *p*-TPA-Br, (c) *o*-Br-TPA, and (d) *p*-Br-TPA in solvents of varying polarity. Concentration: 20μ M.

Figure S15. The PL spectra of (a) *o*-TPA-Br, (b) *p*-TPA-Br, (c) *o*-Br-TPA, and (d) *p*-Br-TPA in solvents of varying polarity. Concentration: 20μ M.

Figure S16. The molecular structures of isomers that regulate excited-state processes.

	o -Br-TPA	p-Br-TPA
empirical formula	$\rm C_{31}H_{23}BrN_2O$	$C_{31}H_{23}BrN_2O$
M _r	519.42	519.42
cryst syst	monoclinic	monoclinic
space group	P21/c	l2/a
a (Å)	19.02(3)	15.4196(10)
b (Å)	13.300(18)	7.0728(5)
c (Å)	9.799(14)	44.912(2)
α (°)	90	90
β(°)	100.93(3)	93.069(5)
γ (°)	90	90
V (Å ³)	2434(6)	4891.1(5)
Z	4	8
$ ho_{ m c}$ (g cm $^{-3}$)	1.418	1.411
F (000)	1064.0	2128.0
Т (К)	296.15	293(2)
μ (mm ⁻¹)	1.716	2.495
data / restraints / parameters	4284/0/317	4699/0/317
GOF (<i>F</i> ²)	1.065	1.065
R ₁ ^a , wR ₂ ^b (I > 2 <i>c</i> (I))	0.0952, 0.1768	0.0780, 0.1931
R _{int}	0.1181	0.0598

Table S1. Crystallographic data for *o*-Br-TPA and *p*-Br-TPA.

^a $R_1 = \Sigma(||F_o| - |F_c||) / \Sigma|F_o|;$ ^b $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{1/2}$

Figure S17. The photographs of (a) *o*-TPA-Br and (b) *o*-Br-TPA before and after grinding tanken under 365 nm lamp irradiation.

Figure S18. The chemical conformations, dimers, and packings of (a) o-TPA-Br and (b) o-Br-TPA.

Figure S19. Fluorescence photographs of (a) *o*-TPA-Br and (b) *o*-Br-TPA as solid (pristine, sample fumed with TFA, sample fumed with TEA).

Figure S20. Absorption spectra of (a) *o*-TPA-Br, (b) *p*-TPA-Br, and (c) *o*-Br-TPA in pure ACN by adding different equivalents of TFA. Concentration: $20 \mu M$.

Figure S21. ¹H NMR spectra of (a) *o*-TPA-Br and (b) *o*-Br-TPA in CDCl₃ before and after TFA fuming in 6.0–14.0 ppm region.

Figure S22. Fluorescence photographs of the ground p-TPA-Br before and after TFA/TEA treatments.

References

[1] X.-M. Cai, W. Zhong, Z. Deng, Y. Lin, Z. Tang, X. Zhang, J. Zhang, W. Wang, S. Huang, Z. Zhao, and B. Z. Tang, *Chem. Eng. J.*, 2023, 466, 143353.