Supporting Information

Late-Stage gem-Difluoroallylation of Phenol in Bioactive Molecules and Peptides

with 3,3-Difluoroallyl Sulfonium Salts

Minqi Zhou¹, Jin-Xiu Ren², Xiao-Tian Feng¹, Hai-Yang Zhao², Xia-Ping Fu², Qiao-Qiao Min² & Xingang Zhang^{1,2*}

¹ College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.

² Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

xgzhang@mail.sioc.ac.cn

Table of Contents

1.	Materials and Methods	S2
2.	Preparation of 3,3-Difluoroallyl Sulfonium Salts (DFASs) 2	S3
3.	Optimizations of the Reaction Conditions for the gem-Difluoroallylation of Protected Ty	rosine 1a
	with DFAS 2a	S5
4.	General Procedures for the gem-Difluoroallylation of Phenols 1 with DFASs 2	S9
5.	Characterization Data for gem-Difluoroallylated Compounds 3 and 5	S9
6.	Successive Modification of Peptides and Bioactive Molecules from Compounds 3 and 5	S27
7.	References	S34
8.	Copies of ¹ H, ¹⁹ F and ¹³ C NMR Spectra of Compounds S-3 and 2f	S35
9.	Copies of ¹ H, ¹⁹ F, and ¹³ C NMR Spectra of Compounds 3-12	S41

1. Materials and Methods

General information: ¹H NMR and ¹³C NMR spectra were recorded on Bruker AM400, AM500 or AM600 spectrometers and were calibrated using residual undeuterated solvent (CHCl₃ at 7.26 ppm ¹H NMR, 77.00 ppm ¹³C NMR; DMSO-d₆ at 2.50 ppm ¹H NMR, 39.52 ppm ¹³C NMR; CD₃OD at 3.31 ppm ¹H NMR, 49.00 ppm ¹³C NMR). ¹⁹F NMR spectra were recorded on a Bruker AM400, AM500 or AM600 spectrometer (CFCl₃ was used as the external standard, and the low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. The NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction. The electrospray ionization mass spectrometry (ESI-MS) and the subsequent tandem mass spectrometry (ESI-MS/MS) experiments were performed using a Thermo TSQ Quantum AccessTM triple-quadrupole mass spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA).

Materials: Unless otherwise noted, reagents were used as received from commercial sources and used without further purification. Peptides were customized from GenScript and TACHEM. All solvents were not superdry. DFASs were prepared according to literature¹. 12 W blue LED strips (GreeThink 12V-5050-60; $1 \text{ m} \times 12.5 \text{ mm} \times 4.4 \text{ mm}$) was purchased from Taobao.com.

2. Preparation of 3,3-Difluoroallyl Sulfonium Salts (DFASs) 2

Figure S1. Structures of DFASs 2

Note: DFASs **2a-2h** are prepared according to the literature¹, and **2a-2e**, and **2g-2h** are known compounds.

Preparation of DFAS 2f.

Procedure: To a 100 mL Schlenk tube equipped with a magnetic stir bar were added Pd(PPh₃)₂Cl₂ (5 mol%) and *t*-BuDavePhos (10 mol%). The tube was evacuated and backfilled with Ar (3 times). Aryl zinc reagent **S-2** (1.5 equiv, in THF), **S-1** (5.0 mmol, 1.0 equiv), and MeCN (20.0 mL) were added. The resulting reaction mixture was stirred at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The organic layer was separated. The aqueous layer was extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by reverse-phase flash column chromatography (CH₃CN: H₂O = 9: 1) to afford **S-3** (0.88 g, 46% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.6 Hz, 2 H), 7.38 – 7.29 (m, 4 H), 7.27 – 7.21 (m, 1 H), 7.18 (d, *J* = 7.2 Hz, 2 H), 3.53 (s, 2 H), 2.88 (t, *J* = 6.8 Hz, 2 H), 2.74 (t, *J* = 6.8 Hz, 2 H), 0.27 (s, 9 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -87.4 (d, *J* = 33.8 Hz, 1 F), -87.6 (d, *J* = 33.8 Hz, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ

154.5 (dd, J = 295.5 Hz, 291.1 Hz), 140.2, 132.0, 131.8, 131.5, 128.49, 128.46, 126.4, 122.5, 104.6, 95.0, 90.3 (dd, J = 20.3 Hz, 14.0 Hz), 36.0, 33.1, 29.5, -0.1. MS (DART): m/z (%) 387 (M+H)⁺. HRMS (DART): Calcd. for C₂₂H₂₅F₂SSi: 387.1409 (M+H)⁺; Found: 387.1404 (M+H)⁺.

Procedure: To a 100 mL round bottom flask equipped with a magnetic stir bar was added **S-3** (2.3 mmol, 1.0 equiv, 0.5 M in DCM). MeOTf (2.4 mmol, 1.05 equiv) was added dropwise at room temperature. The reaction mixture was stirred at room temperature overnight. Part of the solvent was removed. Ethyl ether was added to the mixture until a large amount of solid was precipitated. The solid was filtered and washed with ethyl ether three times to afford **2f** (0.77g, 61% yield) as a white solid (m.p. 87-90 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2 H), 7.35 – 7.24 (m, 5 H), 7.18 (d, *J* = 7.2 Hz, 2 H), 4.64 (d, *J* = 14.4 Hz, 1 H), 4.42 (d, *J* = 14.4 Hz, 1 H), 3.76 (t, *J* = 6.8 Hz, 2 H), 3.14 – 3.02 (m, 2 H), 2.71 (s, 3 H), 0.25 (s, 9 H). ¹⁹F NMR (376 MHz, CDCl₃) δ 156.2 (t, *J* = 299.5 Hz), 135.6, 132.9, 129.4, 128.6, 128.01, 127.99 (t, *J* = 3.3 Hz), 124.3, 119.2 (t, *J* = 320.5 Hz), 103.7, 96.6, 84.2 (t, *J* = 20.3 Hz), 43.7, 40.8 (d, *J* = 4.4 Hz), 30.8, 22.5, -0.2. MS (ESI): m/z (%) 401 (M-OTf)⁺. HRMS (ESI): Calcd. for C₂₃H₂₇F₂SSi: 401.1565 (M-OTf)⁺; Found: 401.1560 (M-OTf)⁺.

3. Optimizations of the Reaction Conditions for the *gem*-Difluoroallylation of Protected Tyrosine 1a with DFAS 2a.

Table S1. Optimization of the Solvents^a

BocHN	CO_2Me +	Me + BocHN CO ₂ N	F F Me
	1a 2a 3a (α-	selectivity) 4a (γ-se	lectivity)
		3a and 4	a
Entry	Entry Solvent	3a / 4a , yield $(\%)^b$	α/γ
1	DCM	nd	/
2	DMSO	nd	/
3	DMF	nd	/
4	$DMSO + Na_2CO_3 (1.0 equiv)$	7/11	1:1.6
5	PBS (pH = 7.6, 0.1 M) / DMSO (1:1, v/v)	36/4	9:1
6	Tris (pH = 8.9, 0.1 M) / DMSO (1:1, v/v)	5.5/3.5	1.6:1
7	CBS (pH = 8.30, 0.1 M) / DMSO (1:1, v/v)	37/	>20:1
8	CBS (pH = 9.40, 0.1 M) / DMSO (1:1, v/v)	63/	>20:1
9	CBS (pH = 9.72, 0.1 M) / DMSO (1:1, v/v)	71/	>20:1
10	CBS (pH = 10.08, 0.1 M) / DMSO (1:1, v/v)	78/	>20:1
11	CBS (pH = 11.62, 0.1 M) / DMSO (1:1, v/v)	>99 (95)/	>20:1
12	CBS (pH = 11.62, 0.1 M) / DMF (1:1, v/v)	95/	>20:1
13	CBS (pH = 11.62, 0.1 M) / DCM (1:1, v/v)	96/	>20:1
14	CBS (pH = 11.62, 0.1 M) / MeCN (1:1, v/v)	94/	>20:1
15	CBS $(pH = 11.62, 0.1 \text{ M}) / \text{acetone} (1:1, v/v)$	95/	>20:1
16	CBS (pH = 11.62, 0.1 M) / MeOH (1:1, v/v)	61/	>20:1

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2a** (0.2 mmol, 1.0 equiv), solvent (4 mL), 37 °C, 1 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard; the number given in parentheses is the isolated yield; nd, not detected.

Table S2. Control Experiments^a

BocHN CO ₂ Me	+ - - - - - - - - - -	CBS/DMSO 37 °C, 1 h	BocHN CO ₂ Me	BocHN CO ₂ Me
Br Br	Me F _ N.± F _ OTf DFPA	Me S - OTf 2a'	CI S -OTF 2g	S -OTF 2h
Entry	Cond	ditions	3 a,	Yield $(\%)^b$
1	Standard	conditions		>99
2	BDFP instead of 2a		nd	
3	DFPA instead of 2a		25	
4	2a' instead of 2a		15^c	
5	2g instead of 2a		25 ^d (formation of many uncertain by- products)	
6	2h inst	ead of 2a		trace ^d

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2a** (1.0 equiv), CBS (2 mL), DMSO (4 mL), 37 °C, 1 h. ^{*b*}Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard; nd, not determined. ^{*c*}The yield is for **3a'**. ^{*d*}The yield is for the corresponding product.

BocHN CO ₂ Me 1a , 1.0 equiv	+ -OTf F CBS/DMSO 37 °C 2a, 1.0 equiv	BocHN CO ₂ Me
Entry	Reaction time (min)	Yield $(\%)^b$
1	1	78
2	5	90
3	15	97
4	30	98
5	60	100

Table S3. Kinetic Studies of the gem-Difluoroallylation of 1a with 2a.

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2a** (1.0 equiv), CBS (2 mL), DMSO (4 mL), 37 °C. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.

Figure S1. Kinetic Studies of the gem-Difluoroallylation of 1a with 2a.

BocHN CO ₂ Me 1a , 1.0 equiv	+ $He \\ He \\ -OTf \\ H \\ 37 ^{\circ}C$ 2a , 1.0 equiv	BocHN CO ₂ Me
Entry	Reaction time (h)	Yield $(\%)^b$
1	0.5	12
2	1	15
3	3	16
4	6	14
5	12	17
6	18	18
7	24	15

Table S4. Kinetic Studies of the Allylation of 1a with 2a'.

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2a** (1.0 equiv), CBS (2 mL), DMSO (4 mL), 37 °C. ^{*b*}Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Figure S2. Kinetic Studies of *the* Allylation of 1a with 2a'.

4. General Procedures for the gem-Difluoroallylation of Phenols 1 with DFASs 2.

A 25 mL vial equipped with a stirring bar, was added phenol **1** (0.2 mmol, 1.0 equiv) and DFAS **2** (0.2 mmol, 1.0 equiv) under air. DMSO (4.0 mL) and CBS buffer (2.0 mL) were added subsequently. The vial was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature, and fluorobenzene (1.0 equiv) was added. The yield was determined by ¹⁹F NMR before working up. The reaction mixture was then diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered through a pad of Celite[®], and concentrated. The residue was purified with silica gel chromatography to provide the desired product.

5. Characterization Data for gem-Difluoroallylated Compounds 3 and 5.

 $\begin{array}{l} \label{eq:sphere$

2-(4-((1,1-Difluoroallyl)oxy)phenyl)chroman-4-one (3b). Compound **3b** (57.2 mg, 90% yield, $\alpha/\gamma > 20:1$) as a white solid (m.p. 76-78 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 6: 1). ¹H NMR (400 MHz,

CDCl₃) δ 7.94 (dd, J = 7.6 Hz, 1.2 Hz, 1 H), 7.55 – 7.45 (m, 3 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.10 – 7.03 (m, 2 H), 6.13 – 6.01 (m, 1 H), 5.94 (d, J = 17.2 Hz, 1 H), 5.62 (d, J = 10.4 Hz, 1 H), 5.48 (dd, J = 13.6 Hz, 2.8 Hz, 1 H), 3.08 (dd, J = 16.8 Hz, 13.6 Hz, 1 H), 2.89 (dd, J = 16.8 Hz, 2.8 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8 (d, J = 6.8 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 191.8, 161.4, 150.5, 136.3, 135.9, 129.2 (t, J = 33.3 Hz), 127.3, 127.1, 122.2, 122.0 (t, J = 6.4 Hz), 121.7, 120.9, 120.7 (t, J = 260.7

Hz), 118.1, 79.0, 44.6. MS (EI): m/z (%) 316 (M⁺, 100), 299, 239, 223, 196, 183, 147, 120, 92, 77. HRMS (EI): Calcd. for C₁₈H₁₄O₃F₂: 316.0906 (M)⁺; Found: 316.0904 (M)⁺.

(8*R*,9*S*,13*S*,14*S*)-3-((1,1-Difluoroallyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one

(3c). Compound 3c (44.1 mg, 64% yield, $\alpha/\gamma > 20:1$) as a yellow solid (m.p. 144-147 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 7: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.4 Hz, 1 H), 6.98 (d, *J* = 8.4 Hz, 1 H), 6.94 (s, 1 H), 6.11 – 5.99 (m, 1 H), 5.91 (d, *J* = 17.2 Hz, 1 H), 5.58 (d, *J* = 10.4 Hz, 1 H), 2.94 – 2.88 (m, 2 H), 2.51 (dd, *J* = 19.2 Hz, 9.2 Hz, 1 H), 2.45 – 2.37 (m, 1 H), 2.32 – 2.23 (m, 1 H), 2.21 – 1.93 (m, 4 H), 1.69 – 1.39 (m, 6 H), 0.91 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.5 (d, *J* = 6.0 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 220.7, 148.1, 137.9, 137.0, 129.5 (t, *J* = 34.2 Hz), 126.2, 121.9, 121.6 (t, *J* = 6.6 Hz), 120.6 (t, *J* = 260.0 Hz), 119.1, 50.4, 47.9, 44.1, 38.0, 35.8, 31.5, 29.4, 26.3, 25.7, 21.5, 13.8. MS (DART): m/z (%) 347 (M+H)⁺. HRMS (DART): Calcd. for C₂₁H₂₅O₂F₂: 347.1817 (M+H)⁺; Found: 347.1814 (M+H)⁺.

Gram-Scale Synthesis of 3c

To a 250 mL vial equipped with a stirring bar were added Estrone **1c** (5 mmol, 1.0 equiv) and DFAS **2a** (5.25 mmol, 1.05 equiv) under air. DMSO (100 mL) and CBS buffer (0.1 M, 50 mL) were added subsequently. The vial was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature, and fluorobenzene (1.0 equiv) was added. The yield was determined by ¹⁹F NMR before working up. The reaction mixture was then diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered through a pad of Celite[®], and concentrated. The residue was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 10: 1) to provide the desired product **3c** (1.25 g, 73%).

7-((1,1-Difluoroallyl)oxy)-3-(4-methoxyphenyl)-4H-chromen-4-one (3d).

Compound **3d** (51.7 mg, 75% yield, $\alpha/\gamma > 20:1$) as a white solid (m.p. 116-117 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate

= 5: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.8 Hz, 1 H), 7.97 (s, 1 H), 7.50 (d, J = 8.4 Hz, 2 H), 7.33 (s, 1 H), 7.25 (d, J = 8.8 Hz, 1 H), 6.97 (d, J = 8.4 Hz, 2 H), 6.15 – 6.03 (m, 1 H), 5.99 (d, J = 17.6 Hz, 1 H), 5.67 (d, J = 10.4 Hz, 1 H), 3.84 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.4 (d, J = 6.0 Hz, 2 S10 F). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 159.6, 156.6, 154.1, 152.5, 130.0, 128.6 (t, *J* = 33.0 Hz), 127.8, 125.0, 123.7, 122.5 (t, *J* = 6.5 Hz), 121.7, 120.8 (t, *J* = 263.3 Hz), 118.7, 113.9, 109.6, 55.3. MS (DART): m/z (%) 345 (M+H)⁺. HRMS (DART): Calcd. for C₁₉H₁₅O₄F₂: 345.0933 (M+H)⁺; Found: 345.0929 (M+H)⁺.

$(8R,9S,13S,14S,17R)-3-((1,1-\text{Difluoroallyl})\text{oxy})-17-\text{ethynyl-13-methyl-}\\7,8,9,11,12,13,14,15,16,17-\text{decahydro-}6H-\text{cyclopenta}[a]\text{phenanthren-}17-\text{ol}$

(3e). Compound 3e (56.5 mg, 76% yield, $\alpha/\gamma > 20.1$) as a white solid (m.p. 90-96

°C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 12: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.0 Hz, 1 H), 6.99 (d, *J* = 8.0 Hz, 1 H), 6.94 (s, 1 H), 6.13 – 6.00 (m, 1 H), 5.93 (d, *J* = 17.2 Hz, 1 H), 5.59 (d, *J* = 10.8 Hz, 1 H), 2.91 – 2.84 (m, 2 H), 2.65 – 2.61 (m, 1 H), 2.43 – 2.31 (m, 2 H), 2.31 – 2.22 (m, 1 H), 2.10 – 2.00 (m, 2 H), 1.99 – 1.87 (m, 2 H), 1.87 – 1.67 (m, 3 H), 1.59 – 1.35 (m, 4 H), 0.90 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.5 (d, *J* = 6.0 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 138.0, 137.5, 129.5 (t, *J* = 33.9 Hz), 126.2, 121.9, 121.5 (t, *J* = 6.5 Hz), 120.6 (t, *J* = 262.2 Hz), 119.0, 87.4, 79.8, 74.1, 49.4, 47.0, 43.6, 39.0, 38.9, 32.7, 29.5, 27.0, 26.2, 22.8, 12.6. MS (DART): m/z (%) 373 (M+H)⁺. HRMS (DART): Calcd. for C₂₃H₂₇O₂F₂: 373.1974 (M+H)⁺; Found: 373.1971 (M+H)⁺.

(R)-6-((1,1-Difluoroallyl)oxy)-2,8-dimethyl-2-((4R,8R)-4,8,12-

trimethyltridecyl)chromane (3f). DCM instead of DMSO was used. Compound 3f (72.8 mg, 76% yield, $\alpha/\gamma > 20:1$) as a colorless oil was purified

with silica gel chromatography (Petroleum ether: Ethyl acetate = 100: 1). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 1 H), 6.76 (s, 1 H), 6.11 – 5.99 (m, 1 H), 5.90 (d, *J* = 17.2 Hz, 1 H), 5.56 (d, *J* = 10.8 Hz, 1 H), 2.81 – 2.67 (m, 2 H), 2.16 (s, 3 H), 1.86 – 1.70 (m, 2 H), 1.62 – 1.50 (m, 3 H), 1.46 – 1.21 (m, 13 H), 1.19 – 1.01 (m, 8 H), 0.91 – 0.84 (m, 12 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.4 (d, *J* = 5.3 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 141.8, 129.7 (t, *J* = 34.0 Hz), 127.1, 122.2, 121.3 (t, *J* = 6.2 Hz), 120.8, 120.6 (t, *J* = 258.2 Hz), 120.1, 76.1, 40.1, 39.4, 37.44, 37.40, 37.3, 32.8, 32.7, 31.0, 28.0, 24.8, 24.4, 24.2, 22.7, 22.6, 22.4, 20.9, 19.74, 19.65, 16.1. MS (DART): m/z (%) 478 (M)⁺. HRMS (DART): Calcd. for C₃₀H₄₈O₂F₂: 478.3617 (M)⁺; Found: 478.3611 (M)⁺.

(4R,4aS,7aR,12bS)-3-(cyclopropylmethyl)-9-((1,1-difluoroallyl)oxy)-4ahydroxy-2,3,4,4a,5,6-hexahydro-1*H*-4,12-methanobenzofuro[3,2-

e]isoquinolin-7(7a*H*)-one (3g). Compound 3g (48.1 mg, 58% yield, $\alpha/\gamma = 8.7:1$) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl

acetate = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 8.4 Hz, 1 H), 6.64 (d, *J* = 8.4 Hz, 1 H), 6.17 – 6.05 (m, 1 H), 5.90 (dm, *J* = 17.2 Hz, 1 H), 5.56 (d, *J* = 10.8 Hz, 1 H), 4.69 (s, 1 H), 3.19 (d, *J* = 6.0 Hz, 1 H), 3.07 (d, *J* = 18.4 Hz, 1 H), 3.00 (dd, *J* = 14.4 Hz, 4.4 Hz, 1 H), 2.70 (dd, *J* = 12.0 Hz, 4.4 Hz, 1 H), 2.60 (dd, *J* = 18.4 Hz, 6.0 Hz, 1 H), 2.47 – 2.37 (m, 4 H), 2.30 (dt, *J* = 14.4 Hz, 2.8 Hz, 1 H), 2.11 (td, *J* = 12.0 Hz, 3.6 Hz, 1 H), 1.88 (ddd, *J* = 13.6 Hz, 4.4 Hz, 2.8 Hz, 1 H), 1.61 (td, *J* = 14.0 Hz, 3.2 Hz, 1 H), 1.54 (dd, *J* = 12.8 Hz, 2.4 Hz, 1 H), 0.91 – 0.80 (m, 1 H), 0.58 – 0.52 (m, 2 H), 1.17 – 1.11 (m, 2 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8 (dd, *J* = 148.5 Hz, 6.8 Hz, 1 F), -69.3 (dd, *J* = 148.9 Hz, 7.5 Hz, 1 F), -84.1 (dm, *J* = 32.7 Hz, 1 F, γ -isomer), -85.5 – -85.6 (m, γ -isomer). ¹³C NMR (126 MHz, CDCl₃) δ 207.6, 148.7, 131.9, 130.5, 130.1, 128.9 (t, *J* = 33.3 Hz), 124.4, 122.1 (t, *J* = 6.4 Hz), 121.0 (t, *J* = 260.9 Hz), 119.2, 90.6, 69.9, 61.8, 59.1, 50.6, 43.3, 36.0, 31.2, 30.7, 22.8, 9.3, 3.9, 3.8. MS (ESI): m/z (%) 418 (M+H)⁺. HRMS (ESI): Calcd. for C₂₃H₂₆O₄NF₂: 418.1824 (M+H)⁺; Found: 418.1824 (M+H)⁺.

(3*R*,4*S*)-4-(4-((1,1-Difluoroallyl)oxy)phenyl)-1-(4-fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3-hydroxypropyl)azetidin-2-one (3h). Compound 3h (70.5 mg, 73% yield, $\alpha/\gamma > 20:1$) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (400

MHz, CDCl₃) δ 7.32 – 7.25 (m, 4 H), 7.24 – 7.18 (m, 4 H), 7.00 (d, *J* = 8.8 Hz, 2 H), 6.94 (t, *J* = 8.8 Hz, 2 H), 6.11 – 5.99 (m, 1 H), 5.93 (d, *J* = 17.2 Hz, 1 H), 5.61 (d, *J* = 10.4 Hz, 1 H), 4.73 – 4.68 (m, 1 H), 4.62 (d, *J* = 2.0 Hz, 1 H), 3.12 – 3.03 (m, 1 H), 2.13 (br, 1 H), 2.05 – 1.84 (m, 4 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.9 (d, *J* = 6.0 Hz, 2 F), -114.9 (m, 1 F), -117.8 (m, 1 F). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 162.1 (d, *J* = 246.9 Hz), 159.0 (d, *J* = 244.7 Hz), 150.4, 140.0 (d, *J* = 3.0 Hz), 134.6, 133.6 (d, *J* = 2.6 Hz), 129.1 (t, *J* = 33.5 Hz), 127.4 (d, *J* = 8.2 Hz), 126.9, 122.5, 122.0 (t, *J* = 6.5 Hz), 120.6 (t, *J* = 261.5 Hz), 118.4 (d, *J* = 7.6 Hz), 115.9 (d, *J* = 22.8 Hz), 115.3 (d, *J* = 21.5 Hz), 73.0, 60.8, 60.3, 36.5, 25.0. MS (DART): m/z (%) 486 (M+H)⁺. HRMS (DART): Calcd. for C₂₇H₂₄O₃NF₄: 486.1687 (M+H)⁺; Found: 486.1683 (M+H)⁺.

(3R,4R)-3-(4-((1,1-Diffuoroallyl)oxy)-3-methoxybenzyl)-4-(3,4-

dimethoxybenzyl)dihydrofuran-2(3H)-one (3i). Compound 3i (74.7 mg, 83% yield,

 $\alpha/\gamma = 14.3:1$) as a white solid (m.p. 115-118 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 8.0 Hz, 1 H), 6.76 – 6.72 (m, 2 H), 6.65 (dd, J = 8.0 Hz, 2.0 Hz, 1 H), 6.52 (dd, J = 8.0 Hz, 2.0 Hz, 1 H), 6.48 (d, J = 2.0 Hz, 1 H), 6.12 – 6.00 (m, 1 H), 5.91 (dm, J = 17.2 Hz, 1 H), 5.56 (d, J = 10.8Hz, 1 H), 4.16 (dd, J = 9.2 Hz, 7.2 Hz, 1 H), 3.92 - 3.86 (m, 1 H), 3.85 (s, 3 H), 3.82 (s, 3 H), 3.79 (s, 3 H), 3.02 - 2.90 (m, 2 H), 2.66 - 2.44 (m, 4 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8 (d, J = 6.8 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 178.4, 152.2, 148.9, 147.7, 137.8, 136.3, 130.2, 129.0 (t, J = 33.9 Hz), 123.5, 121.8 (t, J = 6.2 Hz), 121.1, 120.8 (t, J = 259.8 Hz), 120.4, 113.4, 111.7, 111.2, 71.1, 55.8, 55.73, 55.66, 46.2, 41.0, 37.9, 34.5. MS (DART): m/z (%) 466 (M+NH₄)⁺. HRMS (DART): Calcd. for $C_{24}H_{27}O_6F_2$: 449.1770 (M+H)⁺; Found: 449.1766 (M+H)⁺.

(S)-10-((1,1-Difluoroallyl)oxy)-4-ethyl-4-hydroxy-1,12-dihydro-14Hpyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H)-dione (3j). Compound **3i** (37.0 mg, 42% yield, $\alpha/\gamma > 20:1$) as a yellow solid (decomposed at 190 °C)

was purified with silica gel chromatography (Dichloromethane: Methanol = 25: 1). ¹H NMR (400 MHz, DMSO-d₆) δ 8.67 (s, 1 H), 8.17 (d, J = 9.2 Hz, 1 H), 8.03 – 7.92 (m, 1 H), 7.69 (d, J = 7.6 Hz, 1 H), 7.31 (s, 1 H), 6.54 (s, 1 H), 6.39 - 6.20 (m, 1 H), 6.01 (d, J = 17.2 Hz, 1 H), 5.79 (d, J = 10.8 Hz, 1 H), 5.41 (s, 2 H), 5.24 (s, 2 H), 1.93 – 1.79 (m, 2 H), 0.89 (t, J = 7.2 Hz, 3 H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -67.4 (d, J = 5.3 Hz, 2 F). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.4, 156.7, 152.6, 150.0, 148.0, 145.7, 145.2, 131.3, 130.9, 130.5, 128.7 (t, J = 32.8 Hz), 128.3, 125.4, 123.6 (t, J = 6.4 Hz), 121.1 (t, J = 260.3 Hz), 119.2, 118.7, 96.8, 72.4, 65.3, 50.2, 30.3, 7.8. MS (DART): m/z (%) 441 (M+H)⁺. HRMS (DART): Calcd. for C₂₃H₁₉O₅N₂F₂: 441.1257 (M+H)⁺; Found: 441.1254 (M+H)⁺.

4-(3-(4-(2-(4-((1,1-difluoroallyl)oxy)phenyl)acetyl)piperazine-1-

carbonyl)-4-fluorobenzyl)phthalazin-1(2H)-one (3k). Compound 3k (95.5 mg, 83% yield, $\alpha/\gamma > 20:1$) as a colorless oil was purified with silica gel chromatography (Dichloromethane: Methanol = 15: 1). ¹H NMR (500

MHz, CDCl₃) δ 11.6 (d, J = 22.0 Hz, 1 H), 8.47 – 8.42 (m, 1 H), 7.77 – 7.71 (m, 2 H), 7.71 – 7.67 (m, 1 H), 7.34 – 7.27 (m, 2 H), 7.23 – 7.19 (m, 2 H), 7.18 – 7.09 (m, 3 H), 7.04 – 6.95 (m, 1 H), 6.07 – 5.96 (m, S13 1 H), 5.89 (d, J = 17.5 Hz, 1 H), 5.57 (d, J = 11.0 Hz, 1 H), 4.30 – 4.23 (m, 2 H), 3.77 – 3.66 (m, 3 H), 3.62 – 3.49 (m, 3 H), 3.40 (m, 1 H), 3.25 (br, 1 H), 3.11 (br, 1 H). ¹⁹F NMR (471 MHz, CDCl₃) δ -68.6 – -68.7 (m, 2 F), -117.8 (m, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 169.4 (d, J = 20.5 Hz), 165.0 (d, J = 25.8 Hz), 160.9, 157.8 (d, J = 6.8 Hz), 155.8 (d, J = 7.1 Hz), 149.1 (d, J = 6.7 Hz), 145.4 (d, J = 4.8 Hz), 134.4, 133.5, 131.7, 131.7 – 131.5 (m), 131.5, 130.2, 129.5, 129.39, 129.36, 129.2 (d, J = 3.7 Hz), 129.1 – 129.0 (m), 128.8, 128.1, 127.0, 124.9, 123.4 (dd, J = 17.9 Hz, 7.3 Hz), 122.1, 121.9, 121.8 (t, J = 6.6 Hz), 120.5 (t, J = 259.9 Hz), 116.0 (dd, J = 21.8 Hz, 12.0 Hz), 46.6 (d, J = 20.9 Hz), 45.8 (d, J = 63.3 Hz), 41.8, 41.5 (d, J = 50.3 Hz), 40.7, 40.0 (d, J = 24.1 Hz), 37.5 (d, J = 9.6 Hz). MS (ESI): m/z (%) 577 (M+H)⁺. HRMS (ESI): Calcd. for C₃₁H₂₈O₄N₄F₃: 577.2057 (M+H)⁺; Found: 577.2050 (M+H)⁺.

(2S,3R,4S,5S,6R)-2-(4-((1,1-difluoroallyl)oxy)phenoxy)-6-

(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triol (31). Compound 31 (37.0 mg, 53% yield, 77% determined by ¹⁹F NMR, $\alpha/\gamma > 20:1$) as a yellow oil was purified with reverse-phase flash column chromatography (CH₃CN: H₂O = 7: 3). ¹H NMR (400

MHz, DMSO-d₆) δ 7.14 (d, *J* = 8.8 Hz, 2 H), 7.05 (d, *J* = 8.8 Hz, 2 H), 6.28 – 6.15 (m, 1 H), 5.89 (d, *J* = 17.2 Hz, 1 H), 5.71 (d, *J* = 10.8 Hz, 1 H), 5.32 (br, 1 H), 5.08 (br, 1 H), 5.03 (br, 1 H), 4.83 (d, *J* = 6.8 Hz, 1 H), 4.57 (br, 1 H), 3.69 (d, *J* = 11.2 Hz, 1 H), 3.50 – 3.42 (m, 1 H), 3.31 – 3.20 (m, 3 H), 3.20 – 3.12 (m, 1 H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -67.3 (d, *J* = 6.4 Hz, 2 F). ¹³C NMR (126 MHz, DMSO-d₆) δ 155.3, 143.8, 129.1 (t, *J* = 33.6 Hz), 123.1, 123.0 (t, *J* = 6.6 Hz), 120.8 (t, *J* = 257.2 Hz), 117.1, 100.7, 77.1, 76.6, 73.3, 69.7, 60.7. MS (DART): m/z (%) 366 (M+NH₄)⁺. HRMS (DART): Calcd. for C₁₅H₂₂O₇NF₂: 366.1359 (M+NH₄)⁺; Found: 366.1355 (M+NH₄)⁺.

Representative Procedure for the Preparation of Protected Carbohydrates.

After the corresponding phenol-containing carbohydrate reacted with DFAS **2a** for 1 h, the reaction mixture was then diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, the combined organic layers were washed with brine, dried over Na₂SO₄, filtered through a pad of Celite[®] and concentrated. The resulting crude *gem*-difluoroallylated product was reacted with Ac₂O (5 mmol, 25 equiv) and pyridine (5 mmol, 25 equiv) for 6 h at room temperature. The reation mixture was concentrated under vacuum. The residue was purified with silica gel chromatography to provide the desired product **3l'-3o'**.

F F G GAC

(2R,3R,4S,5R,6S)-2-(Acetoxymethyl)-6-(4-((1,1-

difluoroallyl)oxy)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (31').

Compound **3**I' (75.5 mg, 72% yield, $\alpha/\gamma > 20:1$) as a white solid (m.p. 99-101 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 1).

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.8 Hz, 2 H), 6.96 (d, *J* = 8.8 Hz, 2 H), 6.10 – 5.97 (m, 1 H), 5.90 (d, *J* = 17.2 Hz, 1 H), 5.58 (d, *J* = 10.8 Hz, 1 H), 5.32 – 5.22 (m, 2 H), 5.16 (t, *J* = 9.6 Hz, 1 H), 5.04 (d, *J* = 7.6 Hz, 1 H), 4.28 (dd, *J* = 12.4 Hz, 5.2 Hz, 1 H), 4.16 (dd, *J* = 12.4 Hz, 2.0 Hz, 1 H), 3.87 – 3.81 (m, 1 H), 2.07 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 2.03 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.1 (d, *J* = 6.4 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.2, 169.4, 169.3, 154.3, 145.7, 129.2 (t, *J* = 33.8 Hz), 123.2, 121.8 (t, *J* = 6.8 Hz), 120.5 (t, *J* = 260.3 Hz), 117.8, 99.3, 72.6, 72.0, 71.1, 68.2, 61.9, 20.64, 20.61, 20.58, 20.56. MS (DART): m/z (%) 534 (M+NH₄)⁺. HRMS (DART): Calcd. for C₂₃H₃₀O₁₁NF₂: 534.1781 (M+NH₄)⁺; Found: 534.1770 (M+NH₄)⁺.

(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)-2*H*-chromen-2-one (3m). Compound 3m (17.9 mg, 21% yield, 55% yield determined by ¹⁹F NMR, α/γ > 20:1) as a yellow oil was purified with reverse-phase flash column chromatography

(CH₃CN: H₂O = 3: 7). ¹H NMR (400 MHz, CD₃OD) δ 7.93 (d, J = 9.6 Hz, 1 H),

7-((1,1-difluoroallyl)oxy)-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-

7.54 (s, 1 H), 7.28 (s, 1 H), 6.41 (d, J = 9.6 Hz, 1 H), 6.28 – 6.16 (m, 1 H), 5.99 (dm, J = 17.2 Hz, 1 H), 5.66 (d, J = 10.8 Hz, 1 H), 4.99 (d, J = 7.2 Hz, 1 H), 3.92 (dd, J = 12.0 Hz, 2.0 Hz, 1 H), 3.70 (dd, J = 12.0 Hz, 6.0 Hz, 1 H), 3.54 – 3.45 (m, 3 H), 3.42 – 3.36 (m, 1 H). ¹⁹F NMR (376 MHz, CD₃OD) δ -69.8 (d, J = 6.4 Hz, 2 F). ¹³C NMR (126 MHz, DMSO-d₆) δ 159.8, 148.1, 146.3, 143.7, 141.6, 128.4, (t, J = 32.8 Hz), 124.1 (t, J = 6.6 Hz), 121.3 (t, J = 260.2 Hz), 116.8, 116.2, 115.3, 110.9, 100.9, 77.2, 76.9, 73.2, 69.6, 60.6. MS (DART): m/z (%) 417 (M+H)⁺. HRMS (DART): Calcd. for C₁₈H₁₉O₉F₂: 417.0992 (M+H)⁺; Found: 417.0988 (M+H)⁺.

(2R,3R,4S,5R,6S)-2-(Acetoxymethyl)-6-((7-((1,1-difluoroallyl)oxy)-2-oxo-2H-

chromen-6-yl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (3m'). Compound 3m' (65.0 mg, 56% yield, $\alpha/\gamma > 20:1$) as a white solid (m.p. 128-131 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 9.6 Hz, 1 H), 7.27 (s, 1 H), 7.24 S15 (s, 1 H), 6.39 (d, J = 9.6 Hz, 1 H), 6.11 – 5.98 (m, 1 H), 5.93 (d, J = 17.2 Hz, 1 H), 5.63 (d, J = 10.4 Hz, 1 H), 5.33 – 5.23 (m, 2 H), 5.20 – 5.12 (m, 1 H), 5.04 (d, J = 6.8 Hz, 1 H), 4.26 (dd, J = 12.4 Hz, 4.8 Hz, 1 H), 4.22 – 4.15 (m, 1 H), 3.89 – 3.83 (m, 1 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 2.01 (m, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.5 (dd, J = 149.3 Hz, 4.9 Hz, 1 F), -70.0 (dd, J = 149.3 Hz, 7.5 Hz, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 170.3, 170.1, 169.3, 169.1, 160.0, 149.9, 145.5, 143.1, 142.3, 128.1 (t, J = 32.5 Hz), 123.1 (t, J = 6.3 Hz), 120.9 (t, J = 266.0 Hz), 116.7, 116.4, 116.3, 112.0, 99.8, 72.4, 72.1, 70.8, 68.1, 61.7, 20.6, 20.5 (3C). MS (DART): m/z (%) 585 (M+H)⁺. HRMS (DART): Calcd. for C₂₆H₂₇O₁₃F₂: 585.1414 (M+H)⁺; Found: 585.1406 (M+H)⁺.

(2R,3R,4S,5R)-2-(6-((3-((1,1-difluoroallyl)oxy)benzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (3n). Compound 3n (42.4 mg, 47% yield, 74% determined by ¹⁹F NMR, $\alpha/\gamma >$

20:1) as a colorless oil was purified with reverse-phase flash column chromatography (CH₃CN: H₂O = 5: 5). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1 H), 7.75 (s, 1 H), 7.20 (t, *J* = 7.6 Hz, 1 H), 7.15 (s, 1 H), 7.11 (d, *J* = 7.6 Hz, 1 H), 7.06 (d, *J* = 7.6 Hz, 1 H), 6.86 – 6.75 (m, 1 H), 6.04 – 5.91 (m, 1 H), 5.84 (dm, *J* = 17.2 Hz, 1 H), 5.74 (d, *J* = 6.4 Hz, 1 H), 5.51 (d, *J* = 10.4 Hz, 1 H), 4.92 – 4.71 (m, 3 H), 4.65 – 4.50 (m, 1 H), 4.37 – 4.30 (m, 1 H), 4.13 (s, 1 H), 3.79 (d, *J* = 12.4 Hz, 1 H), 3.59 (d, *J* = 12.0 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.5 (d, *J* = 6.0 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 152.4, 150.4, 147.2, 140.2, 139.7, 129.6, 129.1 (t, *J* = 33.5 Hz), 124.6, 121.9 (t, *J* = 6.4 Hz), 121.0, 120.9, 120.6 (t, *J* = 260.4 Hz), 120.4, 90.7, 87.3, 73.9, 72.2, 62.8, 43.9. MS (DART): m/z (%) 450 (M+H)⁺. HRMS (DART): Calcd. for C₂₀H₂₂O₅N₅F₂: 450.1584 (M+H)⁺; Found: 450.1577 (M+H)⁺.

(2R,3R,4R,5R)-2-(acetoxymethyl)-5-(6-((3-((1,1-difluoroallyl)oxy)benzyl)amino)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (3n'). Compound 3n' (83.1 mg, 72% yield, $\alpha/\gamma >$

20:1) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 3). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H), 7.85 (s, 1 H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.18 (m, 2 H), 7.11 (d, *J* = 8.4 Hz, 1 H), 6.53 (br, 1 H), 6.16 (d, *J* = 5.2 Hz, 1 H), 6.07 – 5.96 (m, 1 H), 5.94 – 5.84 (m, 2 H), 5.69 – 5.64 (m, 1 H), 5.56 (d, *J* = 10.4 Hz, 1 H), 4.86 (br, 2 H), 4.46 – 4.40 (m, 2 H), 4.39 – 4.32 (m, 1 H), 2.13 (s, 3 H), 2.09 (s, 3 H), 2.06 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.6 (d, *J* = 6.4 Hz, 2 F). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 169.6, 169.3, 154.6, 153.4, 150.5, 140.2, 138.2, 129.6, 129.3 (t, *J* S16 = 33.5 Hz), 124.6, 121.8 (t, J = 6.6 Hz), 121.0, 120.7, 120.6 (t, J = 259.4 Hz), 120.1, 86.1, 80.2, 73.1, 70.6, 63.1, 43.9, 20.7, 20.5, 20.3. MS (DART): m/z (%) 576 (M+H)⁺. HRMS (DART): Calcd. for C₂₆H₂₈O₈N₅F₂: 576.1900 (M+H)⁺; Found: 576.1886 (M+H)⁺.

(5R,5aR,8aR,9S)-5-(4-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-(((2R,4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-9-((1,1-difluoroallyl)oxy)-3,5-dimethoxy)-7,8-dihydroxy-2-(1,1-difluoroallyl)oxy)-3,5-dimethoxy)-3,5-dim

methylhexahydropyrano[3,2-d][1,3]dioxin-6-yl)oxy)-5,8,8a,9-

tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one (30).

Compound **30** (44.8 mg, 34% yield, 71% determined by ¹⁹F NMR, $\alpha/\gamma = 4.0:1$) as a white solid was purified with reverse-phase flash column chromatography (CH₃CN: $H_2O = 6: 4$). ¹H NMR (600 MHz, DMSO-d₆) δ 7.28 (s, γ -isomer), 7.03 (s, 1 H), 7.02 (s, γ -isomer), 6.70 (s, γ -isomer), 6.57 (s, γ -isomer), 6.55 (s, 1 H), 6.33 (s, 2 H), 6.28 (s, γ -isomer), 6.13 – 6.03 (m, 1 H), 6.03 – 6.00 (m, 2 H), 5.80 (dm, J = 16.8Hz, 1 H), 5.58 (d, J = 10.8 Hz, 1 H), 5.10 (d, J = 5.4 Hz, γ -isomer), 4.98 (d, J = 3.6 Hz, 1 H), 4.91 (d, J = 1.00 Hz, 1 H), 5.10 (d, J = 5.4 Hz, γ -isomer), 4.98 (d, J = 3.6 Hz, 1 H), 4.91 (d, J = 1.00 Hz, 1 Hz, 1 H), 4.91 (d, J = 1.00 Hz, 1 Hz, 4.8 Hz, 1 H), 4.86 (d, J = 4.8 Hz, 1 H), 4.76 – 4.72 (m, 1 H), 4.61 – 4.56 (m, 2 H), 4.34 – 4.26 (m, 2 H), 4.17 (dd, J = 9.6 Hz, 3.6 Hz, γ -isomer), 4.09 (dd, J = 10.2 Hz, 4.8 Hz, 1 H), 3.95 (dd, J = 9.6 Hz, 4.2 Hz, γ -isomer), 3.66 (s, 6 H), 3.52 (t, J = 9.6 Hz, 1 H), 3.47 (t, J = 10.2 Hz, γ -isomer), 3.42 – 3.33 (m, 2 H), 3.28 - 3.23 (m, 1 H), 3.20 (d, J = 9.0 Hz, 1 H), 3.16 - 3.10 (m, 1 H), 2.94 - 2.86 (m, 1 H), 1.27 (d, J = 4.8Hz, 3 H), 1.24 (d, J = 5.4 Hz, γ-isomer). ¹⁹F NMR (565 MHz, DMSO-d₆) δ -65.9 (dd, J = 148.6 Hz, 7.3 Hz, 1 F), -66.1 (dd, J = 148.6 Hz, 6.8 Hz, 1 F), -86.0 (d, J = 37.9 Hz, γ -isomer), -87.5 (dd, J = 37.9 Hz, 26.0 Hz, γ-isomer). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.9, 153.2 (γ-isomer), 152.4, 152.0 (γ-isomer), 147.53, 147.47 (y-isomer), 146.1, 140.0 (y-isomer), 138.9, 131.7, 128.9 (t, J = 33.7 Hz), 128.7, 126.6 (yisomer), 121.3 (t, J = 6.2 Hz), 120.9 (t, J = 258.5 Hz), 109.6, 109.3, 108.4 (y-isomer), 107.9, 106.6 (yisomer), 105.3, 102.2 (y-isomer), 101.3, 100.9, 100.5 (y-isomer), 98.3, 98.2 (y-isomer), 79.9, 79.8 (yisomer), 78.7, 74.3, 72.70 (y-isomer), 72.67, 71.63 (y-isomer), 71.58, 67.3, 67.2 (y-isomer), 67.11, 67.08 (y-isomer), 65.55, 65.46 (y-isomer), 55.9 (y-isomer), 55.8, 42.9, 42.3 (y-isomer), 38.0 (y-isomer), 37.2, 19.8. MS (DART): m/z (%) 682 (M+NH4)⁺. HRMS (DART): Calcd. for C₃₂H₃₈O₁₃NF₂: 682.2306 (M+NH₄)⁺; Found: 682.2301 (M+NH₄)⁺.

(2R,4aR,6R,7R,8S,8aR)-6-(((5S,5aR,8aR,9R)-9-(4-((1,1-Difluoroallyl)oxy)-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9hexahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-5-yl)oxy)-2methylhexahydropyrano[3,2-d][1,3]dioxine-7,8-diyl diacetate (3o').

Compound **30'** (97.7 mg, 65% yield, $\alpha/\gamma = 4.0:1$) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 6.76 (s, 1 H), 6.52 (s, 1 H), 6.24 (s, 2 H), 6.09 – 5.94 (m, 3 H), 5.86 (d, *J* = 17.6 Hz, 1 H), 5.49 (d, *J* = 10.8 Hz, 1 H), 5.19 (t, *J* = 9.6 Hz, 1 H), 4.89 (t, *J* = 8.0 Hz, 1 H), 4.83 (d, *J* = 3.2 Hz, 1 H), 4.79 (d, *J* = 8.0 Hz, 1 H), 4.67 (q, *J* = 4.8 Hz, 1 H), 4.59 – 4.54 (m, 1 H), 4.41 – 4.33 (m, 1 H), 4.24 – 4.14 (m, 2 H), 3.67 (s, 6 H), 3.56 (t, *J* = 10.4 Hz, 1 H), 3.45 (t, *J* = 9.6 Hz, 1 H), 3.40 – 3.35 (m, 1 H), 3.18 – 3.12 (m, 1 H), 2.89 – 2.77 (m, 1 H), 2.03 (s, 3 H), 1.81 (s, 3 H), 1.32 (d, *J* = 4.8 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.4 (s, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 170.2, 169.3, 153.3, 148.7, 147.0, 137.9, 132.2, 129.1 (t, *J* = 33.9 Hz), 128.1, 127.3, 121.4 (t, *J* = 6.2 Hz), 121.2 (t, *J* = 260.8 Hz), 110.7, 108.9, 107.8, 101.6, 100.3, 99.7, 77.6, 74.5, 72.0, 71.4, 67.8, 67.6, 66.3, 56.2, 43.8, 40.9, 37.4, 20.7, 20.3, 20.1. MS (DART): m/z (%) 766 (M+NH4)⁺. HRMS (DART): Calcd. for C₃₆H₄₂O₁₅NF₂: 766.2517 (M+NH4)⁺; Found: 766.2508 (M+NH4)⁺.

(8*R*,9*S*,13*S*,14*S*,17*R*)-3-((1,1-Difluoro-2-phenylallyl)oxy)-17-ethynyl-13methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-

cyclopenta[a]phenanthren-17-ol (3p). Compound 3p (86.1 mg, 96% yield, $\alpha/\gamma >$

^{ph} 20:1) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 10: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2 H), 7.44 – 7.36 (m, 3 H), 7.28 (d, *J* = 8.4 Hz, 1 H), 7.02 (d, *J* = 8.4 Hz, 1 H), 6.95 (s, 1 H), 6.02 (s, 1 H), 5.74 (s, 1 H), 2.91 – 2.84 (m, 2 H), 2.63 (s, 1 H), 2.44 – 2.33 (m, 2 H), 2.32 – 2.23 (m, 1 H), 2.12 – 2.02 (m, 2 H), 2.00 – 1.88 (m, 2 H), 1.88 – 1.69 (m, 3 H), 1.60 – 1.35 (m, 4 H), 0.92 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4 (s, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 141.7 (t, *J* = 29.7 Hz), 138.0, 137.5, 135.3, 128.4, 128.3, 127.7, 126.2, 121.9, 121.5 (t, *J* = 264.0 Hz), 119.4 (t, *J* = 5.4 Hz), 119.0, 87.4, 79.8, 74.1, 49.4, 47.0, 43.6, 39.0, 38.9, 32.7, 29.5, 27.0, 26.2, 22.8, 12.6. MS (DART): m/z (%) 466 (M+NH₄)⁺. HRMS (DART): Calcd. for C₂₉H₃₄O₂NF₂: 466.2552 (M+NH₄)⁺; Found: 466.2548 (M+NH₄)⁺.

(3*R*,4*S*)-4-(4-((1,1-difluoro-2-(4-methoxyphenyl)allyl)oxy)phenyl)-1-(4-fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3-hydroxypropyl)azetidin-2-one (3q). Compound 3q (108.9 mg, 92% yield, $\alpha/\gamma > 20:1$) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.8 Hz, 2 H),

7.31 – 7.25 (m, 4 H), 7.24 – 7.18 (m, 4 H), 7.00 (t, J = 8.8 Hz, 2 H), 6.96 – 6.87 (m, 4 H), 5.92 (s, 1 H), 5.66 (s, 1 H), 4.69 (t, J = 6.0 Hz, 1 H), 4.62 (d, J = 2.4 Hz, 1 H), 3.81 (s, 3 H), 3.10 – 3.04 (m, 1 H), 2.77 (br, 1 H), 2.02 – 1.84 (m, 4 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.6 (s, 2 F), -114.9 (m, 1 F), -117.7 (m, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 162.1 (d, J = 245.7 Hz), 159.8, 159.0 (d, J = 244.2 Hz), 150.5, 140.6 (t, J = 29.0 Hz), 140.0 (d, J = 2.9 Hz), 134.6, 133.6 (d, J = 2.8 Hz), 127.4, 127.3 (d, J = 8.1 Hz), 126.8, 122.5, 121.7 (t, J = 265.1 Hz), 118.3 – 118.2 (m), 118.3 (d, J = 7.4 Hz), 115.8 (d, J = 22.4 Hz), 115.3 (d, J = 21.2 Hz), 113.7, 72.9, 60.7, 60.3, 55.2, 36.5, 24.9. MS (ESI): m/z (%) 592 (M+H)⁺. HRMS (ESI): Calcd. for C₃₄H₃₀O₄NF₄: 592.2105 (M+H)⁺; Found: 592.2098 (M+H)⁺.

Ethyl 4-(3,3-difluoro-3-(4-((2*S*,3*R*)-1-(4-fluorophenyl)-3-((*S*)-3-(4fluorophenyl)-3-hydroxypropyl)-4-oxoazetidin-2-yl)phenoxy)prop-1en-2-yl)benzoate (3r). Compound 3r (59.0 mg, 93% yield, $\alpha/\gamma > 20:1$) as a colorless oil was purified with silica gel chromatography (Petroleum

ether: Ethyl acetate = 3: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2 H), 7.59 (d, *J* = 8.4 Hz, 2 H), 7.32 – 7.25 (m, 4 H), 7.23 – 7.16 (m, 4 H), 7.00 (t, *J* = 8.4 Hz, 2 H), 6.93 (t, *J* = 8.4 Hz, 2 H), 6.08 (s, 1 H), 5.80 (s, 1 H), 4.70 (t, *J* = 6.0 Hz, 1 H), 4.62 (d, *J* = 2.0 Hz, 1 H), 4.38 (q, *J* = 7.2 Hz, 2 H), 3.10 – 3.04 (m, 1 H), 2.15 (br, 1 H), 2.07 – 1.82 (m, 4 H), 1.40 (t, *J* = 7.2 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4 (s, 2 F), -114.9 (m, 1 F), -117.7 (m, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 166.2, 162.1 (d, *J* = 246.1 Hz), 159.0 (d, *J* = 244.2 Hz), 150.2, 140.7 (t, *J* = 29.6 Hz), 140.0 (d, *J* = 3.0 Hz), 139.4, 134.8, 133.6 (d, *J* = 2.5 Hz), 130.4, 129.5, 127.6, 127.3 (d, *J* = 7.7 Hz), 126.9, 122.5, 121.3 (t, *J* = 264.7 Hz), 121.1 (t, *J* = 5.2 Hz), 118.3 (d, *J* = 7.8 Hz), 115.9 (d, *J* = 22.7 Hz), 115.3 (d, *J* = 21.4 Hz), 73.0, 61.1, 60.7, 60.3, 36.5, 25.0, 14.3. MS (ESI): m/z (%) 634 (M+H)⁺. HRMS (ESI): Calcd. for C₃₆H₃₂O₅NF₄: 634.2211 (M+H)⁺; Found: 634.2202 (M+H)⁺.

(3*R*,4*S*)-4-(4-(((*E*)-1,1-difluoronon-2-en-1-yl)oxy)phenyl)-1-(4fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3-

hydroxypropyl)azetidin-2-one (3s). Compound 3s (63.8 mg, 56% yield, E: Z > 20:1, $\alpha/\gamma > 20:1$) as a colorless oil was purified with

silica gel chromatography (Petroleum ether: Ethyl acetate = 3: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 4 H), 7.24 – 7.17 (m, 4 H), 7.01 (t, *J* = 8.4 Hz, 2 H), 6.94 (t, *J* = 8.4 Hz, 2 H), 6.43 – 6.34 (m, 1 H), 5.74 – 5.65 (m, 1 H), 4.71 (t, *J* = 5.6 Hz, 1 H), 4.62 (d, *J* = 2.4 Hz, 1 H), 3.11 – 3.05 (m, 1 H), 2.18 – 2.10 (m, 2 H), 2.05 – 1.82 (m, 5 H), 1.48 – 1.39 (m, 2 H), 1.36 – 1.23 (m, 6 H), 0.89 (t, *J* = 6.8 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.4 (d, *J* = 5.3 Hz, 2 F), -114.8 (m, 1 F), -117.8 (m, 1 F). ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 162.2 (d, *J* = 245.7 Hz), 159.1 (d, *J* = 244.2 Hz), 150.7, 140.0 (d, *J* = 2.4 Hz), 139.3 (t, *J* = 5.7 Hz), 134.4, 133.7, 127.4 (d, *J* = 8.2 Hz), 126.8, 122.5, 121.24 (t, *J* = 32.9 Hz), 121.18 (t, *J* = 260.2 Hz), 118.4 (d, *J* = 8.2 Hz), 115.9 (d, *J* = 23.1 Hz), 115.4 (d, *J* = 21.1 Hz), 73.1, 60.8, 60.4, 36.5, 31.6, 31.5, 28.7, 28.1, 25.0, 22.5, 14.0. MS (ESI): m/z (%) 592 (M+Na)⁺. HRMS (ESI): Calcd. for C₃₃H₃₅O₃NF₄Na: 592.2445 (M+Na)⁺; Found: 592.2453 (M+Na)⁺.

(5*R*,5a*R*,8a*R*,9*S*)-9-(((2*R*,4a*R*,6*R*,7*R*,8*R*,8a*S*)-7,8-dihydroxy-2methylhexahydropyrano[3,2-*d*][1,3]dioxin-6-yl)oxy)-5-(4-((2-(4ethynylphenyl)-1,1-difluoroallyl)oxy)-3,5-dimethoxyphenyl)-5,8,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-*d*][1,3]dioxol-

6(5a*H***)-one (3t).** Compound **3t** (61.2 mg, 80% yield, $\alpha/\gamma > 20:1$) as a white solid (m.p. 133-140 °C) was purified with silica gel chromatography (Methanol: Dichloromethane = 1: 15). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 2 H), 7.48 (d, *J* = 8.0 Hz, 2 H), 6.80 (s, 1 H), 6.45 (s, 2 H), 6.41 (s, 1 H), 6.09 (s, 1 H), 5.98 (s, 1 H), 5.96 (s, 1 H), 5.76 (s, 1 H), 4.93 (d, *J* = 3.2 Hz, 1 H), 4.72 (q, *J* = 5.2 Hz, 1 H), 4.57 – 4.45 (m, 2 H), 4.26 (d, *J* = 4.4 Hz, 1 H), 4.16 (d, *J* = 10.4 Hz, 4.4 Hz, 1 H), 3.93 (d, *J* = 7.6 Hz, 1 H), 3.77 (s, 6 H), 3.63 – 3.53 (m, 2 H), 3.44 (t, *J* = 8.0 Hz, 1 H), 3.33 (t, *J* = 9.2 Hz, 1 H), 3.22 – 3.12 (m, 2 H), 3.12 (s, 1 H), 3.02 – 2.90 (m, 2 H), 1.73 – 1.60 (m, 1 H), 1.36 (d, *J* = 5.2 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5 (d, *J* = 145.5 Hz, 1 F), -68.0 (d, *J* = 145.5 Hz, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 180.1, 154.6, 148.7, 146.4, 142.4, 141.0 (t, *J* = 30.1 Hz), 135.8, 132.5, 131.7, 127.8, 127.0, 126.0, 121.9 (t, *J* = 266.1 Hz), 120.0 (t, *J* = 5.4 Hz), 109.7, 108.5, 105.6, 101.4, 99.7, 98.8, 83.4, 79.7, 77.9, 77.2, 75.3, 74.4, 72.9, 69.5, 68.1, 66.2, 56.3, 44.4, 44.0, 39.4, 20.3. MS (ESI): m/z (%) 787 (M+Na)⁺. HRMS (ESI): Calcd. for C₄₀H₃₈O₁₃F₂Na: 787.2173 (M+Na)⁺; Found: 787.2183 (M+Na)⁺.

 \mathbb{P}_{H} **N-(4-((1,1-Difluoroallyl)oxy)phenyl)acetamide (3u).** 10 mmol-scale synthesis. To a 250 mL round bottom flask equipped with a stirring bar were added *N*-(4-hydroxyphenyl)acetamide (1.66 g, 11 mmol, 1.1 equiv) and DFAS **2a** (3.64 g, 10 mmol, 1.0 equiv) under air. DMSO (100 mL) and Na₂CO₃ aqueous solution (0.1 M, 50 mL) were added subsequently. The reaction mixture was stirred at 37 °C. After stirring for 1 h, the reaction mixture was then diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered through a pad of Celite[®], and concentrated. Compound **3u** (1.88 g, 83% yield) as a light yellow solid (m.p. 80-83 °C) was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1 H), 7.47 (d, *J* = 8.8 Hz, 2 H), 7.11 (d, *J* = 8.8 Hz, 2 H), 6.08 – 5.96 (m, 1 H), 5.89 (d, *J* = 17.2 Hz, 1 H), 5.57 (d, *J* = 10.8 Hz, 1 H), 2.12 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8 (d, *J* = 6.4 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 146.3, 135.5, 129.2 (t, *J* = 33.8 Hz), 122.4, 121.8 (t, *J* = 6.6 Hz), 121.0, 120.6 (t, *J* = 259.8 Hz), 24.3. MS (ESI): m/z (%) 228 (M+H)⁺. HRMS (ESI): Calcd. for C₁₁H₁₂O₂NF₂: 228.0831 (M+H)⁺; Found: 228.0831 (M+H)⁺.

Methyl2-(2-((*tert*-butoxycarbonyl)amino)acetamido)-3-(4-((1,1-difluoroallyl)oxy)phenyl)propanoate(3v). Compound3v(70.3 mg, 82%)yield) as a colorless oil was purified with silica gel chromatography (Petroleum)

ether: Ethyl acetate = 1: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.04 (m, 4 H), 6.83 – 6.74 (br, 1 H), 6.08 – 5.95 (m, 1 H), 5.88 (d, *J* = 17.2 Hz, 1 H), 5.56 (d, *J* = 10.4 Hz, 1 H), 5.29 (t, *J* = 5.2 Hz, 1 H), 4.84 (dd, *J* = 13.2 Hz, *J* = 6.0 Hz, 1 H), 3.86 – 3.69 (m, 2 H), 3.67 (s, 3 H), 3.14 – 3.01 (m, 2 H), 1.41 (s, 9 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8 (d, *J* = 5.6 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 169.3, 156.0, 149.3, 132.9, 130.1, 129.3 (t, *J* = 33.9 Hz), 121.9, 121.7 (t, *J* = 6.3 Hz), 120.5 (t, *J* = 259.8 Hz), 80.2, 53.0, 52.3, 44.1, 37.1, 28.2. MS (ESI): m/z (%) 429 (M+H)⁺. HRMS (ESI): Calcd. for C₂₀H₂₇O₆N₂F₂: 429.1832 (M+H)⁺; Found: 429.1829 (M+H)⁺.

δ -83.7 (d, J = 30.8 Hz, 1 F), -84.7 (dd, J = 30.8 Hz, 24.1 Hz, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 157.5 (t, J = 292.1 Hz), 153.7, 139.8, 133.6, 130.2, 121.0, 118.4, 114.7, 75.0 (dd, J = 27.6 Hz, 18.3 Hz), 26.5 (d, J = 7.2 Hz), 24.4. MS (ESI): m/z (%) 312 (M+H)⁺. HRMS (ESI): Calcd. for C₁₂H₁₂ON₅F₂S: 312.0725 (M+H)⁺; Found: 312.0717 (M+H)⁺.

AcO (2R,3R,4R,5R)-2-(Acetoxymethyl)-5-(6-((3,3-difluoroallyl)thio)-9Hpurin-9-yl)tetrahydrofuran-3,4-diyl diacetate (3x). Compound 3x was AcO obtained from 6-thioinosine with difluoroallylation and acetylation in succession. Compound 3x (83.7 mg, 86% yield, $\gamma/\alpha > 20:1$) as a colorless oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 1: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.69 (s, 1 H), 8.11 (s, 1 H), 6.18 (d, J = 5.0 Hz, 1 H), 5.93 (t, J = 5.0 Hz, 1 H), 5.63 (t, J = 5.0 Hz, 1 H), 4.60 (dt, J = 24.0 Hz, 8.0 Hz, 1 H), 4.45 – 4.38 (m, 2 H), 4.36 - 4.31 (m, 1 H), 3.95 (d, J = 8.0 Hz, 2 H), 2.11 (s, 3 H), 2.08 (s, 3 H), 2.04 (s, 3 H). ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -86.0 (d, J = 36.1 Hz, 1 F), -86.7 (dd, J = 36.1 Hz, 24.1 Hz, 1 F). ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 169.5, 169.2, 160.5, 157.1 (t, *J* = 289.3 Hz), 152.0, 148.1, 141.2, 131.7, 86.4, 80.3, 76.1 (dd, J = 26.3 Hz, 18.4 Hz), 72.9, 70.4, 62.9, 21.9 (d, J = 6.7 Hz), 20.6, 20.4, 20.2. MS (ESI): m/z (%) 487 (M+H)⁺. HRMS (ESI): Calcd. for C₁₉H₂₁O₇N₄F₂S: 487.1094 (M+H)⁺; Found: 487.1095 (M+H)⁺.

(S)-2-((2S,11S)-2-Benzyl-11-(4-((1,1-

difluoroallyl)oxy)benzyl)-4,7,10,13-tetraoxo-3,6,9,12-

tetraazatetradecanamido)-4-methylpentanamide (5a). 0.1

mmol-scale synthesis. To a 25 mL vial equipped with a stirring bar were added peptide (0.1 mmol, 1.0 equiv) and DFAS 2a (0.15 mmol, 1.5 equiv) under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The mixture was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product 5a, which was washed by H₂O and petroleum ether to provide pure compound 5a (68.7 mg, 72% yield, α/γ > 20:1). ¹H NMR (400 MHz, CD₃OD) δ 7.33 – 7.18 (m, 7 H), 7.12 (d, J = 8.0 Hz, 2 H), 6.17 – 6.03 (m, 1 H), 5.88 (dm, J = 17.2 Hz, 1 H), 5.62 (d, J = 10.8 Hz, 1 H), 4.60 (dd, J = 8.8 Hz, J = 5.6 Hz, 1 H), 4.53 (dd, J = 8.8 Hz, J = 6.0 Hz, 1 H), 4.38 - 4.30 (m, 1 H), 3.91 - 3.82 (m, 2 H), 3.80 - 3.68 (m, 2 H), 3.23 - 3.68 (m, 2 H), 3.24 (m, 2 H), 3.25 (m, 2 H), 3.23.11 (m, 2 H), 3.05 - 2.90 (m, 2 H), 1.94 (s, 3 H), 1.68 - 1.54 (m, 3 H), 0.93 (d, J = 5.6 Hz, 3 H), 0.89 (d, J = 5.6 Hz, 3 H),J = 5.6 Hz, 3 H). ¹⁹F NMR (376 MHz, CD₃OD) δ -69.9 (d, J = 6.1 Hz, 2 F). ¹³C NMR (126 MHz, CD₃OD) δ 177.3, 174.5, 173.8, 173.4, 172.3, 171.9, 150.5, 138.4, 136.0, 131.3, 130.8 (t, *J* = 33.9 Hz), 130.4, 129.6, S22 127.9, 122.9, 122.4 (t, J = 6.6 Hz), 122.1 (t, J = 258.7 Hz), 56.7, 56.6, 53.0, 43.9, 43.6, 41.7, 38.3, 37.7, 25.8, 23.6, 22.5, 21.7. MS (ESI): m/z (%) 695 (M+Na)⁺. HRMS (ESI): Calcd. for C₃₃H₄₂O₇N₆F₂Na: 695.2975 (M+Na)⁺; Found: 695.2961 (M+Na)⁺.

(S)-2-((S)-2-((S)-2-((S)-2-acetamido-3-(1*H*-indol-3yl)propanamido)-3-(4-((1,1-

difluoroallyl)oxy)phenyl)propanamido)-4-

(methylthio)butanamido)-N¹-((S)-1-amino-3-hydroxy-1-

oxopropan-2-yl)succinamide (5b). 0.1 mmol-scale synthesis. To a 25 mL vial equipped with a stirring bar was added pentapeptide (0.1 mmol, 1.0 equiv) and DFAS 2a (0.15 mmol, 1.5 equiv) under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The mixture was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product 5b, which was washed by H₂O and petroleum ether to provide pure compound **5b** (67.6 mg, 83% yield, $\alpha/\gamma > 20:1$). ¹H NMR (400 MHz, DMSO-d₆) δ 10.70 (s, 1 H), 8.19 (d, J = 6.8 Hz, 1 H), 8.13 - 8.05 (m, 2 H), 7.97 (d, J = 8.0 Hz, 1 H), 7.79 (d, J = 7.2 Hz, 1 H), 7.52 (d, J = 7.6Hz, 1 H), 7.43 (s, 1 H), 7.31 – 7.25 (m, 2 H), 7.23 (d, J = 7.6 Hz, 2 H), 7.11 – 6.89 (m, 7 H), 6.23 – 6.10 (m, 1 H), 5.85 (d, J = 17.2 Hz, 1 H), 5.65 (d, J = 10.8 Hz, 1 H), 4.76 (m, 1 H), 4.57 – 4.39 (m, 3 H), 4.38 -4.30 (m, 1 H), 4.12 - 4.05 (m, 1 H), 3.65 - 3.57 (m, 1 H), 3.57 - 3.50 (m, 1 H), 3.07 - 2.92 (m, 2 H), 2.85 - 2.72 (m, 2 H), 2.61 - 2.53 (m, 1 H), 2.45 - 2.37 (m, 3 H), 1.99 (s, 3 H), 1.94 - 1.84 (m, 1 H), 1.82 -1.73 (m, 1 H), 1.69 (s, 3 H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -66.9 (d, J = 6.0 Hz, 2 F). ¹³C NMR (126 MHz, DMSO-d₆) § 172.0, 171.86, 171.85, 171.00, 170.96, 170.7, 169.3, 148.1, 136.1, 135.7, 130.6, 129.1 (t, J = 33.6 Hz), 127.3, 123.4, 123.0 (t, J = 6.3 Hz), 121.3, 120.9, 120.8 (t, J = 258.2 Hz), 118.4, 118.2, 118.4, 118.2, 118.4,111.3, 110.3, 61.5, 55.3, 53.7, 53.4, 52.0, 49.8, 36.9, 36.3, 32.0, 29.4, 27.5, 22.5, 14.6. MS (ESI): m/z (%) 817 (M+H)⁺. HRMS (ESI): Calcd. for $C_{37}H_{47}O_9N_8F_2S$: 817.3149 (M+H)⁺; Found: 817.3160 (M+H)⁺.

(S)-2-((2S,5S,8S,11S,14S,17S,20S)-2-((1Himidazol-4-yl)methyl)-20-((1H-indol-3-yl)methyl)-11-(4-((1,1-difluoroallyl)oxy)benzyl)-17-((R)-1-

hydroxyethyl)-14-isobutyl-5-methyl-8-(2-

(methylthio)ethyl)-4,7,10,13,16,19,22-heptaoxo-

3,6,9,12,15,18,21-heptaazatricosanamido)succinamide (5c). 0.05 mmol-scale synthesis. To a 25 mL S23

vial equipped with a stirring bar were added peptide (0.05 mmol, 1.0 equiv) and DFAS 2a (0.075 mmol, 1.5 equiv) under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The mixture was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product 5c, which was washed by H₂O and petroleum ether to provide pure compound 5c (47.2 mg, 82% yield, $\alpha/\gamma > 20:1$). ¹H NMR (600 MHz, DMSO-d₆) δ 10.7 (s, 1 H), 8.10 (d, J = 7.2 Hz, 1 H), 8.08 - 8.04 (m, 2 H), 7.99 - 7.94 (m, 2 H), 7.92 (d, 10.10) = 0.000 (m, 2 H), 7.92 (d, 10.10) (m, 2 H), 7.92 (m, 2 J = 7.8 Hz, 1 H), 7.79 – 7.74 (m, 2 H), 7.54 (d, J = 7.8 Hz, 1 H), 7.49 (s, 1 H), 7.29 – 7.25 (m, 2 H), 7.22 (d, J = 8.4 Hz, 2 H), 7.11 (d, J = 1.8 Hz, 1 H), 7.05 - 6.98 (m, 4 H), 6.91 (t, J = 7.8 Hz, 1 H), 6.81 (s, 2 Hz)H), 6.20 - 6.12 (m, 1 H), 5.85 (dm, J = 17.4 Hz, 1 H), 5.66 (d, J = 11.4 Hz, 1 H), 4.95 (br, 1 H), 4.57 - 1004.52 (m, 1 H), 4.49 – 4.44 (m, 1 H), 4.43 – 4.38 (m, 1 H), 4.35 – 4.26 (m, 2 H), 4.24 – 4.14 (m, 3 H), 3.98 -3.92 (m, 1 H), 3.08 (dd, J = 15.0 Hz, 4.2 Hz, 1 H), 3.00 (dd, J = 13.8 Hz, 3.6 Hz, 1 H), 2.93 - 2.86 (m, 2 H), 2.82 (dd, J = 14.4 Hz, 6.0 Hz, 1 H), 2.79 – 2.74 (m, 1 H), 2.47 – 2.45 (m, 4 H), 2.42 – 2.35 (m, 3 H), 1.97 (s, 3 H), 1.92 - 1.83 (m, 1 H), 1.74 (s, 3 H), 1.55 - 1.48 (m, 1 H), 1.37 - 1.29 (m, 2 H), 1.17 (d, J =7.2 Hz, 3 H), 0.93 (d, J = 6.6 Hz, 3 H), 0.80 (d, J = 6.6 Hz, 3 H), 0.76 (d, J = 6.6 Hz, 3 H). ¹⁹F NMR (376) MHz, DMSO-d₆) δ -66.9 (d, J = 6.0 Hz, 2 F). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.2, 172.2, 172.0, 171.9, 170.82, 170.78, 170.3, 169.9, 169.7, 148.1, 136.1, 135.4, 134.8, 130.4, 129.1 (t, *J* = 33.4 Hz), 127.4, 123.6, 122.9 (t, J = 6.3 Hz), 121.3, 120.9, 120.8 (t, J = 258.1 Hz), 118.4, 118.2, 111.3, 110.2, 66.4, 58.2, 53.8, 53.6, 53.0, 51.9, 51.3, 49.7, 48.5, 40.5, 40.1, 36.8, 36.3, 31.9, 29.5, 27.3, 24.1, 23.0, 22.5, 21.6, 19.5, 17.8, 14.6. MS (ESI): m/z (%) 1152 (M+H)⁺. HRMS (ESI): Calcd. for C₅₃H₇₂O₁₂N₁₃F₂S: 1152.5107 (M+H)⁺; Found: 1152.5110 (M+H)⁺.

(S)-1-((4R,7S,10S,13S,16S,19R)-19-Acetamido-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-((S)-sec-butyl)-16-(4-((1,1-difluoroallyl)oxy)benzyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentaazacycloicosane-4-carbonyl)-N-((S)-1-((2-amino-2-oxoethyl)amino)-4-methyl-1-

oxopentan-2-yl)pyrrolidine-2-carboxamide (5d). 0.05 mmol-

scale synthesis. To a 25 mL vial equipped with a stirring bar was added peptide (0.05 mmol, 1.0 equiv) and DFAS **2a** (0.075 mmol, 1.5 equiv) under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The mixture was stirred at 37 °C. After stirring for 1 h, the reaction was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product **5d**, S24

which was washed by H₂O and petroleum ether to provide pure compound **5d** (36.5 mg, 65% yield, $\alpha/\gamma > 20:1$). ¹H NMR (400 MHz, CD₃OD) δ 7.40 (d, *J* = 8.0 Hz, 2 H), 7.11 (d, *J* = 8.0 Hz, 2 H), 6.18 – 6.06 (m, 1 H), 5.89 (d, *J* = 17.6 Hz, 1 H), 5.63 (d, *J* = 10.8 Hz, 1 H), 5.27 (t, *J* = 7.2 Hz, 1 H), 4.89 – 4.79 (m, 3 H), 4.71 (dd, *J* = 8.0 Hz, 4.8 Hz, 1 H), 4.47 – 4.42 (m, 1 H), 4.29 (t, *J* = 7.6 Hz, 1 H), 4.10 (dd, *J* = 8.4 Hz, 4.8 Hz, 1 H), 3.91 (d, *J* = 9.6 Hz, 1 H), 3.88 (s, 1 H), 3.83 – 3.76 (m, 1 H), 3.75 – 3.65 (m, 1 H), 3.44 (dd, *J* = 13.6 Hz, 4.4 Hz, 1 H), 3.40 – 3.33 (m, 1 H), 3.17 (dd, *J* = 13.6 Hz, 6.8 Hz, 1 H), 3.07 – 2.87 (m, 3 H), 2.80 – 2.72 (m, 2 H), 2.44 – 2.32 (m, 2 H), 2.31 – 2.21 (m, 1 H), 2.20 – 2.09 (m, 2 H), 2.08 – 1.96 (m, 3 H), 1.94 – 1.86 (m, 5 H), 1.75 – 1.57 (m, 4 H), 1.31 – 1.19 (m, 1 H), 1.04 – 0.94 (m, 9 H), 0.92 (d, *J* = 6.0 Hz, 3 H). ¹⁹F NMR (376 MHz, CD₃OD) δ -69.8 (d, *J* = 6.3 Hz, 2 F). ¹³C NMR (126 MHz, CD₃OD) δ 178.0, 175.2, 175.0, 174.7, 174.4, 173.6, 172.6, 172.2, 171.5, 170.6, 150.4, 136.3, 131.8, 130.8 (t, *J* = 34.0 Hz), 122.6, 122.3 (t, *J* = 6.2 Hz), 122.1 (t, *J* = 258.3 Hz), 62.7, 62.4, 56.2, 54.9, 54.2, 53.8, 53.1, 52.3, 43.5, 43.3, 41.1, 40.8, 40.4, 38.5, 37.0, 36.9, 32.8, 30.4, 27.1, 27.0, 26.0, 23.5, 22.4, 21.8, 16.1, 11.6. MS (ESI): m/z (%) 1125 (M+H)⁺. HRMS (ESI): Calcd. for C₄₈H₇₁O₁₃N₁₂F₂S₂: 1125.4668 (M+H)⁺; Found: 1125.4658 (M+H)⁺.

(4R,7S,10S,13R,16S,19R)-13-((1H-indol-3-yl)methyl)-19-((R)-2-(2-acetamidoacetamido)-3-phenylpropanamido)-10-(4acetamidobutyl)-N-((2S,3S)-1-amino-3-hydroxy-1-oxobutan-2yl)-16-(4-((1,1-difluoroallyl)oxy)benzyl)-7-((S)-1-hydroxyethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-

pentaazacycloicosane-4-carboxamide (5e). 0.05 mmol-scale synthesis. To a 25 mL vial equipped with a stirring bar, was added peptide (0.05 mmol, 1.0 equiv) and DFAS **2a** (0.075 mmol, 1.5 equiv)

under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The vial was heated to 37 °C. After stirring for 1 h, the reaction was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product **5e**, which was washed by H₂O and petroleum ether to provide pure compound **5e** (46.1 mg, 73% yield). ¹H NMR (600 MHz, DMSO-d₆) δ 10.81 (s, 1 H), 8.94 (d, *J* = 9.0 Hz, 1 H), 8.79 (d, *J* = 5.4 Hz, 1 H), 8.52 (d, *J* = 6.6 Hz, 1 H), 8.47 (d, *J* = 9.0 Hz, 1 H), 8.36 (d, *J* = 8.4 Hz, 1 H), 8.24 (d, *J* = 8.4 Hz, 1 H), 8.01 (d, *J* = 8.4 Hz, 1 H), 7.87 (t, *J* = 5.4 Hz, 1 H), 7.73 (t, *J* = 5.4 Hz, 1 H), 7.53 (d, *J* = 9.0 Hz, 1 H), 7.49 – 7.43 (m, 2 H), 7.35 – 7.29 (m, 4 H), 7.25 (t, *J* = 7.2 Hz, 2 H), 7.18 (t, *J* = 7.2 Hz, 1 H), 7.11 – 7.04 (m, 4 H), 7.03 – 6.96 (m, 3 H), 6.24 – 6.16 (m, 1 H), 5.89 (d, *J* = \$25

17.4 Hz, 1 H), 5.69 (d, J = 10.8 Hz, 1 H), 5.36 – 5.27 (m, 2 H), 5.20 (d, J = 4.8 Hz, 1 H), 4.81 – 4.73 (m, 2 H), 4.66 – 4.60 (m, 1 H), 4.54 – 4.48 (m, 1 H), 4.28 – 4.20 (m, 2 H), 4.12 – 4.06 (m, 1 H), 4.03 – 3.91 (m, 2 H), 3.66 (dd, J = 16.8 Hz, 6.0 Hz, 1 H), 3.50 (dd, J = 16.8 Hz, 5.4 Hz, 1 H), 3.15 (d, J = 10.8 Hz, 1 H), 3.01 (dd, J = 13.2 Hz, 9.0 Hz, 1 H), 2.93 – 2.77 (m, 9 H), 2.70 (dd, J = 13.8 Hz, 6.0 Hz, 1 H), 1.80 (s, 3 H), 1.73 – 1.65 (m, 1 H), 1.32 – 1.23 (m, 1 H), 1.23 – 1.13 (m, 2 H), 1.10 (d, J = 6.6 Hz, 3 H), 1.05 (d, J = 6.0 Hz, 3 H), 0.83 – 0.71 (m, 2 H). ¹⁹F NMR (565 MHz, DMSO-d₆) δ -66.9 (d, J = 6.4 Hz, 2 F). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.0, 172.5, 172.4, 171.7, 171.0, 170.9, 170.0, 169.9, 169.49, 169.47, 169.1, 148.6, 138.4, 136.6, 135.1, 130.7, 129.8, 129.6 (t, J = 34.1 Hz), 128.4, 127.4, 126.7, 124.3, 123.4 (t, J = 6.5 Hz), 121.8, 121.4, 121.2 (t, J = 257.9 Hz), 118.7, 118.5, 111.8, 109.4, 67.7, 67.6, 58.7, 58.5, 55.7, 54.2, 53.2, 52.8, 52.4, 45.5, 44.8, 42.1, 40.9, 40.5, 39.3, 38.7, 38.5, 31.2, 29.2, 26.6, 23.1, 22.9, 20.5, 19.8 MS (ESI): m/z (%) 1265 (M+H)⁺. HRMS (ESI): Calcd. for C₅₈H₇₅O₁₄N₁₂F₂S₂: 1265.4930 (M+H)⁺; Found: 1265.4933 (M+H)⁺.

(S)-2-((2S,11S)-2-benzyl-11-(4-((2-(4ethynylphenyl)-1,1-difluoroallyl)oxy)benzyl)-

4,7,10,13-tetraoxo-3,6,9,12-

tetraazatetradecanamido)-4-methylpentanamide

(**5f**). The reaction mixture was cooled to room temperature and then diluted with H₂O. The resulting white solid was filtered to give crude product **5f**, which was washed by H₂O and petroleum ether to give pure **5f** (56.3 mg, 73% yield, $\alpha/\gamma > 20:1$). ¹H NMR (500 MHz, DMSO-d₆) δ 8.33 (t, *J* = 6.0 Hz, 1 H), 8.17 (d, *J* = 8.0 Hz, 1 H), 8.09 (d, *J* = 8.0 Hz, 1 H), 8.05 (t, *J* = 6.0 Hz, 1 H), 7.99 (d, *J* = 8.5 Hz, 1 H), 7.60 – 7.57 (m, 2 H), 7.55 – 7.52 (m, 2 H), 7.29 – 7.26 (m, 2 H), 7.26 – 7.23 (m, 4 H), 7.20 – 7.15 (m, 1 H), 7.14 – 7.10 (m, 3 H), 6.99 (s, 1 H), 6.04 (s, 1 H), 6.01 (s, 1 H), 4.53 – 4.46 (m, 2 H), 4.29 (s, 1 H), 4.22 – 4.16 (m, 1 H), 3.77 – 3.65 (m, 3 H), 3.61 (dd, *J* = 16.5 Hz, 5.5 Hz, 1 H), 3.06 – 3.00 (m, 2 H), 2.81 – 2.71 (m, 2 H), 1.76 (s, 3 H), 1.60 – 1.52 (m, 1 H), 1.49 – 1.44 (m, 2 H), 0.87 (d, *J* = 7.0 Hz, 3 H), 0.82 (d, *J* = 6.0 Hz, 3 H). ¹⁹F NMR (471 MHz, DMSO-d₆) δ -65.8 (s, 2 F). ¹³C NMR (126 MHz, DMSO-d₆) δ 174.1, 171.8, 170.9, 169.6, 169.2, 168.8, 148.0, 139.4 (t, *J* = 29.9 Hz), 137.8, 136.2, 134.7, 132.0, 130.5, 129.3, 128.2, 127.6, 126.4, 123.5, 121.5 (m), 121.41, 121.38 (t, *J* = 262.8 Hz), 83.1, 82.1, 54.2, 54.1, 51.1, 42.2, 42.0, 40.9, 37.5, 36.8, 24.3, 23.1, 22.5, 21.7. MS (ESI): m/z (%) 773 (M+H)⁺. HRMS (ESI): Calcd. for C₄₁H₄₇O₇N₆F₂: 773.3469 (M+H)⁺; Found: 773.3471 (M+H)⁺.

6. Successive Modification of Peptides and Bioactive Molecules from Compounds 3 and 5

6.1 Click Reactions

Synthesis of Compound 5f or 3t: To a 25 mL vial equipped with a stirring bar were added phenol **1** (0.1 mmol, 1.0 equiv) and DFAS **2f** (0.1 mmol, 1.0 equiv) under air. DMSO (4 mL) and CBS buffer (2 mL) were added subsequently. The mixture was stirred at 37 °C. After stirring for 3 h, the reaction was cooled to room temperature, and the corresponding product **5f** or **3t** was purified by the following method.

Synthesis of Compound 8 or 9: To a 25 mL vial equipped with a stirring bar were added CuSO₄ (0.05 mmol, 1.0 equiv), sodium ascorbate (0.05 mmol, 1.0 equiv), the corresponding azide compound 6 or 7 (0.075 mmol, 1.5 equiv), and *gem*-difluoroallylated phenol 5f or 3t (0.05 mmol, 1.0 equiv) under air. THF (2 mL) and H₂O (2 mL) were added subsequently. The mixture was stirred for 6 h, and the corresponding product 8 or 9 was purified by the following method.

(S)-2-((2S,11S)-2-benzyl-11-(4-((1,1difluoro-2-(4-(1-(((2R,3R,4S,5R,6S)-3,4,5,6-tetrahydroxytetrahydro-2Hpyran-2-yl)methyl)-1H-1,2,3-triazol-4-

yl)phenyl)allyl)oxy)benzyl)-4,7,10,13-tetraoxo-3,6,9,12-tetraazatetradecanamido)-4methylpentanamide (8). Compound 8 (37.1 mg, 76% yield) was purified by washing with H₂O and petroleum ether. ¹H NMR (400 MHz, CD₃OD) δ 8.11 (d, *J* = 7.2 Hz, 1 H), 7.58 (d, *J* = 8.0 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 7.03 – 6.90 (m, 8 H), 6.84 (d, *J* = 8.4 Hz, 2 H), 5.73 (s, 1 H), 5.58 (s, 1 H), 4.42 (dd, *J* = 14.8 Hz, 6.4 Hz, 2 H), 4.37 – 4.13 (m, 4 H), 4.10 – 4.04 (m, 1 H), 3.80 – 3.73 (m, 1 H), 3.67 – 3.51 (m, 5 H), 3.49 – 3.41 (m, 2 H), 3.29 – 3.24 (m, 1 H), 3.05 (s, 2 H), 2.95 – 2.85 (m, 2 H), 2.78 – 2.63 (m, 2 H), 1.67 (s, 3 H), 1.42 – 1.28 (m, 3 H), 0.65 (d, J = 4.8 Hz, 3 H), 0.61 (d, J = 4.8 Hz, 3 H). ¹⁹F NMR (376 MHz, CD₃OD) δ -68.1 (s, 2 F). ¹³C NMR (126 MHz, CD₃OD) δ 177.4, 174.5, 173.8, 173.5, 172.3, 171.9, 150.5, 142.6 (t, J = 29.7 Hz), 138.3, 136.2 (d, J = 3.3 Hz), 136.1, 132.0 (d, J = 5.2 Hz), 131.4, 130.4, 129.6, 129.3, 127.9, 126.5, 123.7 (d, J = 19.7 Hz), 123.0 (t, J = 262.7 Hz), 120.5, 98.7, 94.3, 74.7 (d, J = 14.7 Hz), 73.4, 71.5, 70.8 (d, J = 19.2 Hz), 70.2 (d, J = 19.2 Hz), 56.6 (d, J = 10.6 Hz), 53.1, 52.7 (d, J = 15.8 Hz), 49.8, 43.9, 43.6, 41.7, 38.3, 37.8, 25.8, 23.6, 22.5, 21.7. MS (ESI): m/z (%) 978 (M+H)⁺. HRMS (ESI): Calcd. for C₄₇H₅₈O₁₂N₉F₂: 978.4168 (M+H)⁺; Found: 978.4163 (M+H)⁺.

N-(3-(4-(4-(3-(4-((5R,5aR,8aR,9S)-9-(((2R,4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2methylhexahydropyrano[3,2-d][1,3]dioxin-6yl)oxy)-6-oxo-5,5a,6,8,8a,9-

hexahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-5-yl)-2,6-dimethoxyphenoxy)-3,3-difluoroprop-1-en-2-yl)phenyl)-1H-1,2,3-triazol-1-yl)propyl)-5-(dimethylamino)naphthalene-1-sulfonamide (9). Compound 9 (46.7 mg, 85% yield) as a yellow solid (m.p. 159-164 °C) was purified with silica gel chromatography (Methanol: Dichloromethane = 1: 35). ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, J = 8.0 Hz, 1 H), 8.28 (d, J = 8.5 Hz, 1 H), 8.20 (d, J = 7.0 Hz, 1 H), 7.80 – 7.69 (m, 5 H), 7.55 (t, J = 8.0 Hz, 1 H), 7.49 (t, J = 8.0 Hz, 1 H), 7.19 (d, J = 7.5 Hz, 1 H), 6.80 (s, 1 H), 6.44 (s, 2 H), 6.40 (s, 1 H), 6.07 (s, 1 H), 5.96 (s, 1 H), 5.95 (s, 1 H), 5.78 (s, 1 H), 5.34 (br, 1 H), 4.93 (d, J = 3.0 Hz, 1 H), 4.71 (q, J = 5.0 Hz, 1 H), 4.54 (d, J = 9.0 Hz, 1 H), 4.51 - 4.46 (m, 1 H), 4.41 (t, J = 6.0 Hz, 2 H), 4.28 (d, J = 4.5 Hz, 1 H), 4.15 (dd, J = 10.0 Hz, 5.0 Hz, 1 H), 3.96 (d, J = 7.5 Hz, 1 H), 3.75 (s, 6 H), 3.62 - 3.54 (m, 2 H), 3.44 (t, J = 8.0 Hz, 1 H), 3.32 (t, J = 9.0 Hz, 1 H), 3.21 (dd, J = 9.5 Hz, 5.0 Hz, 1 H), 3.17 - 3.11 (m, 1 H), 3.02 -2.96 (m, 1 H), 2.91 – 2.85 (m, 8 H), 2.09 – 2.03 (m, 2 H), 1.34 (d, J = 5.0 Hz, 3 H), 1.26 – 1.24 (m, 2 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.1 (m, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 180.2, 154.5, 148.6, 146.4, 142.2, 141.1 (t, *J* = 30.1 Hz), 135.1, 134.2, 132.5, 130.7, 130.2, 129.8, 129.7, 129.4, 128.6, 128.3, 127.1, 126.1, 125.2, 123.3, 122.1 (t, J = 266.0 Hz), 120.6, 119.4, 115.4, 109.6, 108.5, 105.6, 101.4, 99.6, 99.0, 79.7, 75.3, 74.4, 73.0, 69.5, 68.1, 66.2, 56.3, 46.9, 45.4, 44.3, 44.1, 39.8, 39.4, 30.2, 29.7, 20.3. MS (ESI): m/z (%) 1098 (M+H)⁺. HRMS (ESI): Calcd. for C₅₅H₅₈O₁₅N₅F₂S: 1098.3613 (M+H)⁺; Found: 1098.3601 $(M+H)^{+}$.

6.2 Radical Addition to the Alkenes

Procedure: To a 25 mL of Schlenk tube were added Hantzsch ester (0.2 mmol, 2.0 equiv), redox ester 10^3 (0.2 mmol, 2.0 equiv), compound **3** or **5** (0.1 mmol, 1.0 equiv) under air. The reaction mixture was then evacuated and backfilled with Ar (3 times). DMF (2 mL) was added. The reaction mixture was stirred for 12 h under irradiation of blue LED (12W, 460-465 nm). The reaction mixture was diluted with ethyl acetate and H₂O. The organic layers were washed with brine three times, dried over Na₂SO₄, filtered, and concentrated. The residue was purified with silica gel chromatography to give the product **11**.

¹H NMR (400 MHz, DMSO-d6) δ 10.00 (s, 1 H), 7.59 (d, J = 8.8 Hz, 2 H), 7.11 (d, J = 8.8 Hz, 2 H), 3.78 – 3.69 (m, 1 H), 3.32 – 3.16 (m, 2 H), 2.23 – 2.06 (m, 2 H), 2.03 (s, 3 H), 1.98 – 1.86 (m, 2 H), 1.84 – 1.69 (m, 2 H), 1.68 – 1.56 (m, 2 H), 1.39 (s, 9 H). ¹⁹F NMR (565 MHz, DMSO-d6, 80 °C) δ -68.5 (t, J = 11.3 Hz, 2 F). ¹³C NMR (151 MHz, DMSO-d6, 80 °C) δ 167.7, 153.4, 144.8, 136.6, 124.8 (t, J = 264.2 Hz), 121.3, 119.9, 77.9, 55.6, 45.8, 31.6 (t, J = 29.5 Hz), 29.6, 27.8, 26.7, 23.3, 22.5. MS (ESI): m/z (%) 421 (M+Na)⁺. HRMS (ESI): Calcd. for C₂₀H₂₈O₄N₂F₂Na: 421.1909 (M+Na)⁺; Found: 421.1906 (M+Na)⁺.

BocHN H O O O F F

Methyl (S)-2-(2-((tert-butoxycarbonyl)amino)acetamido)-3-

(4-((7-(2,5-dimethylphenoxy)-1,1-difluoro-4,4-

dimethylheptyl)oxy)phenyl)propanoate (11b). Compound

11b (38.6 mg, 61% yield) as a yellow oil was purified with silica gel chromatography (Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.03 (m, 4 H), 7.01 (d, *J* = 7.2 Hz, 1 H), 6.70 – 6.59 (m, 3 H), 5.20 – 5.08 (m, 1 H), 4.91 – 4.81 (m, 1 H), 3.93 (t, *J* = 6.0 Hz, 2 H), 3.88 – 3.79 (m, 1 H), 3.76 (d, *J* = 5.6 Hz, 1 H), 3.70 (s, 3 H), 3.16 – 3.04 (m, 2 H), 2.31 (s, 3 H), 2.19 (s, 3 H), 2.16 – 2.03 (m, 2 H), 1.84 – 1.71 (m, 2 H), 1.62 – 1.53 (m, 2 H), 1.44 (s, 9 H), 1.47 – 1.36 (m, 2 H), 0.95 (s, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.9 (t, *J* = 10.5 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 169.2, 157.0, S29

156.0, 149.6, 136.4, 132.6, 130.2, 130.1, 125.5 (t, J = 266.6 Hz), 123.5, 121.7, 120.6, 111.9, 80.3, 68.3, 53.0, 52.4, 44.2, 37.7, 37.1, 33.5, 31.8, 31.0 (t, J = 28.6 Hz), 28.2, 26.9, 24.1, 21.4, 15.8. MS (ESI): m/z (%) 657 (M+Na)⁺. HRMS (ESI): Calcd. for C₃₄H₄₈O₇N₂F₂Na: 657.3322 (M+Na)⁺; Found: 657.3327 (M+Na)⁺.

(3a*S*,4*S*,6a*R*)-4-(7,7-Difluoro-7-(4-((2*S*,3*R*)-1-(4fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3hydroxypropyl)-4-oxoazetidin-2-

yl)phenoxy)heptyl)tetrahydro-1H-thieno[3,4-

d]imidazol-2(3*H*)-one (11c). Compound 11c (19.1 mg, 28%

yield, 78% purity) as a colorless oil was purified with purified silica gel chromatography (Methanol: Dichloromethane = 1: 15). Analytical sample was purified by reverse-phase preparative HPLC (SHIMADZU, Shim-pack GIS, 5 um C18, 20*250 mm, methol:water = 7:3). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4 H), 7.24 – 7.19 (m, 2 H), 7.17 (d, *J* = 8.0 Hz, 2 H), 7.04 – 6.97 (m, 2 H), 6.96 – 6.89 (m, 2 H), 5.11 (br, 1 H), 4.70 (t, *J* = 6.4 Hz, 1 H), 4.63 – 4.59 (m, 1 H), 4.54 – 4.47 (m, 1 H), 4.33 – 4.27 (m, 1 H), 3.20 – 3.12 (m, 1 H), 3.11 – 3.05 (m, 1 H), 2.92 (dd, *J* = 12.8 Hz, 4.4 Hz, 1 H), 2.73 (d, *J* = 12.8 Hz, 1 H), 2.18 – 1.84 (m, 8 H), 1.70 – 1.57 (m, 4 H), 1.47 – 1.33 (m, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.6 (t, *J* = 11.3 Hz, 2 F), -115.0 (m, 1 F), -117.9 (m, 1 F). ¹³C NMR (126 MHz, CD₃OD) δ 169.5, 166.2, 163.5 (d, *J* = 244.2 Hz), 160.5 (d, *J* = 242.9 Hz), 152.0, 142.2 (d, *J* = 2.5 Hz), 136.4, 135.1, 128.8 (d, *J* = 8.4 Hz), 128.4, 126.6 (t, *J* = 266.0 Hz), 123.5, 119.9 (d, *J* = 7.8 Hz), 116.8 (d, *J* = 23.6 Hz), 115.9 (d, *J* = 21.5 Hz), 73.7, 63.5, 61.7, 61.6, 61.3, 57.2, 41.0, 37.4, 36.6 (t, *J* = 29.4 Hz), 30.3, 30.2, 29.8, 29.7, 26.1, 23.6 MS (ESI): m/z (%) 686 (M+H)⁺. HRMS (ESI): Calcd. for C₃₆H₃₉O₄N₃F₄SNa: 708.2490 (M+Na)⁺; Found: 708.2486 (M+Na)⁺.

Synthesis of O-Link Type DOTA-TATE

To a 100 mL round bottle equipped with a magnetic stir bar were added TFA-Gly-Pro-OMe (1.8 g, 6 mmol, 1.2 equiv), BOP (2.65 g, 6 mmol, 1.2 equiv), 2-(4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (2.86 g, 5 mmol, 1.0 equiv) and DMF (20 mL). Subsequently, DIPEA (1.94 g, 15 mmol, 3.0 equiv) was added. After the reaction was stirred at room temperature for 24 h, H₂O and EA were added. The resulting mixture was then extracted by EA 2 times. Then, the organic layer was washed with brine three times. The combined organic phase was dried over Na₂SO₄, filtered, and concentrated. The DOTA-Gly-Pro-OMe (1.43 g, 39% yield) as a yellow oil was purified with silica gel chromatography (Methanol: Dichloromethane = 1: 100).

To a 100 mL round bottle equipped with a magnetic stir bar were added DOTA-Gly-Pro-OMe (1.4 g, 1.9 mmol, 1.0 equiv) and a solution of LiOH·H₂O (239.2 mg, 5.7 mmol, 3.0 equiv) in MeOH (16 mL) and H₂O (4 mL). After stirring at room temperature for 12 h, the reaction mixture was quenched with saturated NH₄Cl solution. The resulting mixture was then extracted by EA 3 times. The combined organic phase was dried over Na₂SO₄, filtered, and concentrated. Compound **12** (490.9 mg, 36% yield) as a white solid (m.p. 127-130 °C) was purified with silica gel chromatography (Methanol: Dichloromethane = 1: 10). ¹H

NMR (400 MHz, DMSO-d₆) δ 8.49 – 8.32 (m, 1 H), 4.26 – 4.05 (m, 2 H), 3.81 – 3.22 (m, 17 H), 3.03 – 2.76 (m, 6 H), 2.18 – 2.04 (m, 4 H), 1.98 – 1.84 (m, 4 H), 1.47 – 1.34 (m, 27 H). ¹³C NMR (151 MHz, DMSO-d₆, 80 °C) δ 172.7, 172.4, 172.1 – 171.3 (m), 166.2, 80.9, 80.7, 69.5, 58.3, 56.0, 55.3, 51.0 – 48.9 (m), 45.2, 40.9, 28.2, 27.4, 27.3, 23.9. MS (ESI): m/z (%) 727 (M+H)⁺. HRMS (ESI): Calcd. for C₃₅H₆₃O₁₀N₆: 727.4600 (M+H)⁺; Found: 727.4586 (M+H)⁺.

To a 25 mL Schlenk tube were added **12** (0.05 mmol), *N*-hydroxyphthalimide (0.05 mmol), DCC (0.05 mmol), DMAP (0.005 mmol) under air, followed by DMF (0.5 mL). The reaction mixture was stirred for 6 h to give the redox esters solution. To another Schlenk tube were added Hantzsch ester (0.05 mmol) and compounds **5e** (0.01 mmol) under air. The reaction mixture was then evacuated and backfilled with Ar (3 times). The redox ester solution was added to the reaction. The resulting reaction mixture was stirred for 12 h under irradiation of blue LED (12W, 460-465 nm). The reaction mixture was diluted with ethyl acetate and H₂O. The water layers were washed with ethyl acetate three times, compound **11d** (16.2 mg, 83% yield) as a brown solid was obtained after vacuum freeze-drying. ¹⁹F NMR (376 MHz, CDCl₃) δ - 69.2 (s, 1 F), -71-1 (s, 1 F). MS (ESI): m/z (%) 974 (M+2H)²⁺. HRMS (ESI): Calcd. for C₉₂H₁₃₈O₂₂N₁₈F₂S₂: 974.4816 (M+2H)²⁺; Found: 974.4809 (M+2H)²⁺.

AcHN R R	+ + O Hantzsch ester O N O Hantzsch ester DMF, blue-LED	0, , , , , , , , , , , , , , , , , , ,
Entry	Substruct	Yield
1	$\mathbf{R} = \mathbf{F}$	11e, 99%
2	$\mathbf{R} = \mathbf{H}$	11e' , 10%

6.3 Control experiment with the nonfluorinated compound.

N-(4-((7-(2,5-dimethylphenoxy)-1,1-difluoro-4,4-

dimethylheptyl)oxy)phenyl)acetamide (11e). Compound **11e** (43.3 mg, 99% yield) as a yellow solid (m.p. 83-85 °C) was purified with silica gel

chromatography (Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1 H), 7.51 (d, *J* = 8.5 Hz, 2 H), 7.16 (d, *J* = 8.5 Hz, 2 H), 7.06 (d, *J* = 7.5 Hz, 1 H), 6.71 (d, *J* = 7.5 Hz, 1 H), 6.68 (s, 1 H), 3.97 (t, *J* = 6.5 Hz, 2 H), 2.36 (s, 3 H), 2.24 (s, 3 H), 2.14 (s, 3 H), 2.21 – 2.09 (m, 2 H), 1.86 – 1.78 (m, 2 H), 1.66 – 1.60 (m, 2 H), 1.48 – 1.42 (m, 2 H), 0.99 (s, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.6 (t, *J* = 10.9 Hz, 2 F). ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 157.0, 146.6, 136.4, 135.2, 130.2, 125.5 (t, *J* = 266.0 Hz), 123.5, 122.3, 120.9, 120.6, 111.9, 68.2, 37.7, 33.5, 31.8, 30.9 (t, *J* = 28.6 Hz), 26.9, 24.2, 24.1, 21.3, 15.7. MS (ESI): m/z (%) 434 (M+H)⁺. HRMS (ESI): Calcd. for C₂₅H₃₄O₃NF₂: 434.2501 (M+H)⁺; Found: 434.2502 (M+H)⁺.

N-(4-((7-(2,5-dimethylphenoxy)-4,4-

dimethylheptyl)oxy)phenyl)acetamide (11e'). Compound **11e'** (8.1 mg, 10% yield) as a colorless oil was purified with silica gel chromatography

(Petroleum ether: Ethyl acetate = 2: 1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.8 Hz, 2 H), 7.13 (s, 1 H), 7.00 (d, *J* = 7.6 Hz, 1 H), 6.84 (d, *J* = 8.8 Hz, 2 H), 6.65 (d, *J* = 7.6 Hz, 1 H), 6.62 (s, 1 H), 3.91 (t, *J* = 6.0 Hz, 4 H), 2.31 (s, 3 H), 2.18 (s, 3 H), 2.15 (s, 3 H), 1.80 – 1.69 (m, 4 H), 1.42 – 1.33 (m, 4 H), 0.93 (s, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 157.1, 156.0, 136.4, 130.7, 130.2, 123.5, 121.9, 120.5, 114.8, 111.9, 69.0, 68.5, 37.9, 37.7, 32.3, 27.1, 24.3, 24.2, 24.1, 21.4, 15.8. MS (ESI): m/z (%) 398 (M+H)⁺. HRMS (ESI): Calcd. for C₂₅H₃₆O₃N: 398.2690 (M+H)⁺; Found: 398.2684 (M+H)⁺.

7. References

- X.-T. Feng, J.-X. Ren, X. Gao, Q.-Q. Min, X. Zhang, Angew. Chem., Int. Ed. 2022, 61, e202210103; Angew. Chem. 2022, 134, e202210103.
- 2. T. J. Cogswell, A. Dahlén, L. Knerr, Chem. Eur. J. 2019, 25, 1184-1187.
- 3. H. Song, R. Cheng, Q.-Q. Min, X. Zhang, Org. Lett. 2020, 22, 7747-7751.

8. Copies of ¹H, ¹⁹F and ¹³C NMR Spectra of Compounds S-3 and 2f.

¹H NMR spectrum of **S-3** (400 MHz, CDCl₃)

19 F NMR spectrum of **S-3** (376 MHz, CDCl₃)

¹³C NMR spectrum of **S-3** (126 MHz, CDCl₃)

¹H NMR spectrum of **2f** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2f** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2f** (126 MHz, CDCl₃)

9. Copies of ¹H, ¹⁹F, and ¹³C NMR Spectra of Compounds 3-12.

¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3a** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3a** (126 MHz, CDCl₃)

¹H NMR spectrum of **3b** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3b** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3b** (126 MHz, CDCl₃)

¹H NMR spectrum of **3c** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3c** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3c** (126 MHz, CDCl₃)

¹H NMR spectrum of **3d** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3d** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3d** (101 MHz, CDCl₃)

¹H NMR spectrum of **3e** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3e** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (101 MHz, CDCl₃)

¹H NMR spectrum of **3f** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3f** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3f** (126 MHz, CDCl₃)

¹H NMR spectrum of **3g** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3g** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (126 MHz, CDCl₃)

¹H NMR spectrum of **3h** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3h** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3h** (101 MHz, CDCl₃)

¹H NMR spectrum of **3i** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3i** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (126 MHz, CDCl₃)

¹H NMR spectrum of **3j** (400 MHz, DMSO-d6)

¹⁹F NMR spectrum of **3j** (376 MHz, DMSO-d6)

¹³C NMR spectrum of **3j** (101 MHz, DMSO-d6)

¹H NMR spectrum of **3k** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3k** (471 MHz, CDCl₃)

¹³C NMR spectrum of **3k** (126 MHz, CDCl₃)

¹H NMR spectrum of **3l** (400 MHz, DMSO-d6)

¹⁹F NMR spectrum of **3l** (376 MHz, DMSO-d6)

¹³C NMR spectrum of **3l** (126 MHz, DMSO-d6)

¹H NMR spectrum of **3l'** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3l'** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3l'** (101 MHz, CDCl₃)

¹H NMR spectrum of **3m** (400 MHz, CD₃OD)

19 F NMR spectrum of **3m** (376 MHz, CD₃OD)

¹³C NMR spectrum of **3m** (126 MHz, DMSO-d6)

¹H NMR spectrum of **3m'** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3m'** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3m'** (126 MHz, CDCl₃)

¹H NMR spectrum of **3n** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3n** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (126 MHz, CDCl₃)

¹H NMR spectrum of **3n'** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3n'** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3n'** (151 MHz, CDCl₃)

¹H NMR spectrum of **30** (600 MHz, DMSO-d6)

¹⁹F NMR spectrum of **3o** (565 MHz, DMSO-d6)

¹³C NMR spectrum of **30** (151 MHz, DMSO-d6)

¹H NMR spectrum of **30'** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **30'** (376 MHz, CDCl₃)

¹³C NMR spectrum of **30'**(126 MHz, CDCl₃)

¹H NMR spectrum of **3p** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3p** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3p** (126 MHz, CDCl₃)

¹H NMR spectrum of **3q** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3q** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (126 MHz, CDCl₃)

¹H NMR spectrum of **3r** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3r** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3r** (126 MHz, CDCl₃)

¹H NMR spectrum of **3s** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3s** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3s** (151 MHz, CDCl₃)

¹H NMR spectrum of **3t** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3t** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3t** (126 MHz, CDCl₃)

¹H NMR spectrum of **3u** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3u** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3u** (126 MHz, CDCl₃)

¹H NMR spectrum of **3v** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3v** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3v** (126 MHz, CDCl₃)

¹H NMR spectrum of **3w** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3w** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3w** (126 MHz, CDCl₃)

¹H NMR spectrum of **3x** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3x** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3x** (126 MHz, CDCl₃)

¹H NMR spectrum of **5a** (400 MHz, CD₃OD)

19 F NMR spectrum of **5a** (376 MHz, CD₃OD)

¹³C NMR spectrum of **5a** (126 MHz, CD₃OD)

¹H NMR spectrum of **5b** (400 MHz, DMSO-d6)

¹⁹F NMR spectrum of **5b** (376 MHz, DMSO-d6)

¹³C NMR spectrum of **5b** (126 MHz, DMSO-d6)

¹H NMR spectrum of **5c** (600 MHz, DMSO-d6)

¹⁹F NMR spectrum of **5c** (376 MHz, DMSO-d6)

¹³C NMR spectrum of **5c** (151 MHz, DMSO-d6)

¹H NMR spectrum of **5d** (400 MHz, CD₃OD)

 19 F NMR spectrum of **5d** (376 MHz, CD₃OD)

¹³C NMR spectrum of **5d** (126 MHz, CD₃OD)

¹H NMR spectrum of **5e** (600 MHz, DMSO-d6)

¹⁹F NMR spectrum of **5e** (565 MHz, DMSO-d6)

¹³C NMR spectrum of **5e** (151 MHz, DMSO-d6)

¹H NMR spectrum of **5f** (500 MHz, DMSO-d6)

¹⁹F NMR spectrum of **5f** (471 MHz, DMSO-d6)

¹³C NMR spectrum of **5f** (126 MHz, DMSO-d6)

¹H NMR spectrum of **8** (400 MHz, CD₃OD)

¹⁹F NMR spectrum of **8** (376 MHz, CD₃OD)

¹³C NMR spectrum of **8** (126 MHz, CD₃OD)

¹H NMR spectrum of **9** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **9** (376 MHz, CDCl₃)

¹³C NMR spectrum of **9** (126 MHz, CDCl₃)

¹H NMR spectrum of **11a** (400 MHz, DMSO-d6)

 ^{19}F NMR spectrum of **11a** (565 MHz, DMSO-d6, 80 °C)

¹³C NMR spectrum of **11a** (151 MHz, DMSO-d6, 80 °C)

¹H NMR spectrum of **11b** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **11b** (376 MHz, CDCl₃)

¹³C NMR spectrum of **11b** (126 MHz, CDCl₃)

¹H NMR spectrum of **11c** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **11c** (376 MHz, CDCl₃)

¹³C NMR spectrum of **11c** (126 MHz, CD₃OD)

¹⁹F NMR spectrum of **11d** (376 MHz, DMSO-d6)

LRMS of 11d (ESI)

LRMS of 11d (ESI)

D:\data\...\09\0902\17-32_20220905110052

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI-MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E221597

Sample Serial Number: 17-32

Operator: Songw Date: 2022/09/02

Operation Mode: ESI Positive Ion Mode

Charge: z = +2

Elemental composition search on mass 974.4809

m/z= 969.4809-979.4809

 m/z
 Theo.
 Delta
 RDB
 Composition

 Mass
 (ppm)
 equiv.
 974.4809
 974.4816
 -0.70
 32.0
 C92 H138 O22 N18 F2 S2

¹H NMR spectrum of **11e** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **11e** (376 MHz, CDCl₃)

¹³C NMR spectrum of **11e** (126 MHz, CDCl₃)

¹H NMR spectrum of **11e'** (400 MHz, CDCl₃)

¹³C NMR spectrum of **11e'** (126 MHz, CDCl₃)

¹H NMR spectrum of **12** (400 MHz, DMSO-d6)

 ^{13}C NMR spectrum of 12 (151 MHz, DMSO-d6, 80 °C)

