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Experimental Procedures
1. General Information

All chemical reactions were conducted in oven-dried or flame-dried glassware. All the
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chemicals and starting materials were purchased from commercial sources without further
treatment unless specially noted. Compounds 1, 2, 3 are synthesized according to literature
procedures. Solvents for chemical synthesis were purified according to the standard procedures.
Triethylamine (EtsN) and 1,2-dichlorobenzene (DCB) was freshly distilled from calcium hydride
under nitrogen prior to use. Toluene was redistilled from sodium under nitrogen and degassed by
three freeze-pump-thaw cycles. Column chromatography was performed with silica gel (200-300
mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm silica gel-coated glass
sheets with F254 indicator. All yields given referred to isolated yields. Conductive additives (super
P) and carboxymethyl cellulose (CMC) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., Ltd.. The ethylene glycol dimethyl ether (DME) and potassium
hexafluorophosphate (KPFs) were purchased from duoduochem Co., Ltd., respectively.

'H NMR and 3C NMR spectra were measured on Bruker DRX 500. MALDI-TOF Mass
spectrum was measured with AB Sciex 5800. UV-vis spectrum was recorded on Shimadzu UV-
1800. Fluorescence measurements were carried out using a Shimadzu RF-6000
spectrophotometer. The cyclic voltammetry (CV) in solution were measured using CHI660E, with
a polished platinum-disk electrode as the working electrode, a platinum-wire as counter
electrode, an Ag/Ag* electrode as reference electrode, using ferrocene/ferrocenium (Fc/Fc*) as
internal standard and tetrabutylammonium hexafluorophosphate as electrolyte. Fourier
transform infrared spectroscopy (FTIR) was used Thermos Scientific Nicolet 6700 spectrometer.

Thermogravimetric analysis (TGA) was carried out on a tainstruments SDT Q-600 under a
nitrogen atmosphere at a heating rate of 10 °C/min. The alky chains were replaced by methyl
groups to reduce the computation cost. All the optimized ground-state structures were shown
to be minimum by the absence of imaginary frequencies.

A mixture, fabricated by the active materials, conductive additives (Super P) and binder
(carboxymethyl cellulose in deionized water) in a weight ratio of 6:3:1, was coated on the surface
of copper foil current collectors to fabricate the cathode. Subsequently, the electrode film was then
dried at 100 2C overnight and cut into circles with diameter of 0.8 cm. It is worth noting that the
loading mass of active materials in each coin cell is ca. 1.3 = 0.2mg cm™. The cathode was

assembled in 2032—type coin cells with potassium metal as the counter electrode under the argon
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atmosphere. The glass fiber filters (Whatman GF/F) acted as separators and 1 M KPFg dissolved in

ethylene glycol dimethyl ether (DME) served as electrolytes. The Land—2001A (Wuhan, China)

automatic battery tester was used to evaluated the galvanostatic charge/discharge performance

and the cyclic voltammograms (CVs), electrochemical impedance spectroscopy (EIS) and

galvanostatic intermittent titration technique (GITT) tests were investigated by the VSP

multichannel potentiostatic-galvanostatic system (Bio—Logic SAS, France).

Generally, the measured current (i) and scan rate (v) in CV curves obey the power law:

i =av? (Equations S1)

logi =loga+ blogv (Equations S2)

a and b are adjustable parameters, and the limiting cases of the b-value estimates kinetic

limitations, where a b-value of 0.5 indicates a total diffusion-driven behavior and a b-value of 1

demonstrates to a surface-controlled capacitive-controlled electrochemical process.

2. Material Synthesis

2.1 Synthesis of PDI2BN, trans- and cis-PDI3BN
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Scheme S1. Synthetic route of compound PDI2ZNH.

Synthesis of PDI2NH: A Schlenk flask was charged with 2 (1.39 g, 2.40 mmol), Cs,C03(1.17 g,
3.60 mmol), Pd(OAc); (13.47 mg, 0.06 mmol) and DPE-phos (64.63 mg, 0.12 mmol), then added
100 mL degassed anhydrous toluene at 0 °C. In an additional flask, the compound 1 (1 g, 1.20
mmol) was also dissolved in 60 mL degassed anhydrous toluene and then dropwise to the
Schlenk flask at 0 °C. After stirred at 0 °C for more 30 minutes, the reaction was warm to room
temperature slowly and then further stirred at 80 °C for 2 h. After cool down to room

temperature, the mixture was filtered through celite. The organic solvent was dried over
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anhydrous Na,SO4 and concentrated using vacuum rotary evaporator and obtained black solid.
The crude materials were purified with column chromatography (eluent: PE:DCM from 3:1 to
1:2), 1.17 g target PDI2NH was obtained as black solid yield of 64%.

PDI2NH: 'H NMR (400 MHz, Chloroform-d) 6 9.04 (s, 2H), 8.75-8.58 (m, 10H), 8.36-8.31 (m, 2H),
7.55 (s, 1H), 5.07-5.17 (m, 4H), 2.13 (s, 8H), 1.77 (s,8H), 1.32-1.16 (m, 64H), 0.85-0.75 (m, 24H). 13C
NMR (126 MHz, Chloroform-d) 6 164.7, 164.6, 164.1, 163.7, 163.0, 140.6, 134.7, 133.9, 131.9,
131.2, 130.2, 129.7, 129.0, 127.5, 126.7, 125.6, 124.8, 124.3, 123.8, 123.3, 122.9, 122.7, 122.4,
122.2,55.1,54.7,32.4,32.3,31.7,31.7,29.2, 29.2, 27.0, 26.9, 22.6, 22.6, 14.1, 14.0.

HRMS (MALDI-TOF) m/z: [M]* calcd for [Ci00H123NsOs]* 1522.9405, found 1522.9457.
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Scheme S2. Synthetic route of compound PDI2BN.

Synthesis of PDI2BN: In a pressure-resistant reaction tube, the dried compound PDI2NH (300
mg, 0.20 mmol), triethylamine (1.5 mL), 10 mL anhydrous DCB and 1.5 mL boron trichloride in
DCM was added under nitrogen atmosphere. The black reaction mixture was turned to red while
stirred at 190 °C for 40 min. After cool down to room temperature, the mixture was extracted
with DCM and washed with brine. Combined organic layers were dried over Na;SOs and
concentrated under reduced pressure. The crude materials were purified with column
chromatography (eluent: PE:DCM from 3:1 to 1:1), 229.17 mg target PDI2BN was obtained as
red solid yield of 76%.

PDI2BN: 'H NMR (500 MHz, Chloroform-d) & 10.40 (d, J = 23.7 Hz, 2H), 9.55 (s, 2H), 9.23 (dd, J =
13.0, 8.2 Hz, 4H), 9.15-9.00 (m, 4H), 5.35 (s, 2H), 5.23 (s, 2H), 2.45-2.14 (m, 8H), 2.04-1.81 (m,
8H), 1.31 (m, 62H), 0.92 (m, 12H), 0.74 (m, 12H). 13C NMR (126 MHz, Chloroform-d) & 165.0,

164.8, 164.4, 163.9, 163.2, 138.6, 137.9, 135.9, 135.0, 134.6, 133.8, 132.3, 131.5, 130.4, 129.9,
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129.6, 125.8, 124.4, 123.9, 123.5, 123.1, 122.7, 122.4, 122.3, 55.1, 32.9, 32.6, 32.4, 32.2, 31.9,
31.8, 29.6, 29.3, 29.2, 27.2, 27.0, 26.8, 22.8, 22.7, 22.6, 14.2, 14.0. HRMS (MALDI-TOF) m/z:

[M+H]* calcd for [C100H121BNsOs]* calculated for 1530.9308, found 1530.9247.
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Scheme S3. Synthetic route of compound trans-PDI3NH,.

Synthesis of trans-PDI3NH2: A Schlenk flask was charged with 2 (1 g, 1.02 mmol), Cs2CO3 (1.66
g, 5.10 mmol), Pd(OAc), (44.90 mg, 0.20 mmol) and DPE-phos (219.73 mg, 0.41 mmol), then
added 100 mL degassed anhydrous toluene at 0 °C. In an additional flask, the compound 3 (1.57
g, 2.04 mmol) was also dissolved in 60 mL degassed anhydrous toluene and then dropwise to
the Schlenk flask at 0 °C. After stirred at 0 °C for more 30 minutes, the reaction was warm to
room temperature slowly and then further stirred at 80 °C for 6 h. After cool down to room
temperature, the mixture was filtered through celite. The organic solvent was dried over
anhydrous Na,SO4 and concentrated using vacuum rotary evaporator and obtained black solid.
The crude materials were purified with column chromatography (eluent: PE:DCM from 3:1 to
1:2), 1.26 g target trans-PDI3NH; was obtained as black solid yield of 54%.

trans-PDI3NH,: H NMR (500 MHz, Chloroform-d) & 9.03-8.28 (m, 20H), 5.10 (d, J = 36.4 Hz, 6H),
2.19-2.12 (m, 12H), 1.82 (s, 12H), 1.25-1.20 (m, 98H), 0.87-0.78 (m, 36H). 1*C NMR (126 MHz,
Chloroform-d) 6 164.7, 164.6, 164.1, 163.7, 163.1, 162.9, 140.4, 139.7, 134.7, 134.0, 133.6,
132.1, 131.3, 130.4, 129.8, 127.5, 126.7, 126.5, 124.9, 124.4, 124.0, 123.5, 123.2, 123.0, 122.5,
122.5,122.3,54.9,54.7,32.3,31.7,31.7,31.7,29.2,29.2,29.1, 27.0, 26.9, 22.6, 22.6, 22.6, 14.0,

14.0,14.0. HRMS (MALDI-TOF) m/z: [M]* calcd for [C1s0H184NsO12]* 2290.4067, found 2290.4643.
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Scheme S4. Synthetic route of compound trans-PDI3BN.

Synthesis of trans-PDI3BN: In a pressure-resistant reaction tube, the dried compound trans-
3PDINH; (300 mg, 0.13 mmol), triethylamine (1.5 mL), 10 mL anhydrous DCB and 2.5 mL boron
trichloride in DCM was added under nitrogen atmosphere. The black reaction mixture was
turned to red while stirred at 190 °C for 40 min. After cool down to room temperature, the
mixture was extracted with DCM and washed with brine. Combined organic layers were dried
over Na;S0s and concentrated under reduced pressure. The crude materials were purified with
column chromatography (eluent: PE:DCM from 3:1 to 1:1), 126.9 mg target trans-PDI3BN was
obtained as red solid yield of 42%.

trans-PDI3BN: 'H NMR (500 MHz, Toluene-ds) 6 11.11 (d, J = 43.7 Hz, 2H), 10.90 (d, J = 22.9 Hz,
2H), 10.25 (d, J = 33.2 Hz, 2H), 9.94 (d, J = 20.9 Hz, 2H), 9.13 (s, 2H), 8.99 (s, 2H), 8.46 (t, /= 8.8
Hz, 4H), 5.71-5.61 (m, 6H), 2.85-2.49 (m, 12H), 2.03-1.96 (m, 12H), 1.54-1.06 (m, 94H), 0.97-0.90
(m, 12H), 0.85-0.56 (m, 24H). 3C NMR (126 MHz, Chloroform-d) 6 165.07, 164.8, 163.9, 163.6,
163.3, 137.3, 136.4, 135.8, 135.6, 135.3, 134.8, 133.9, 132.4, 131.6, 130.9, 130.4, 130.0, 129.7,
129.6, 127.5, 126.8, 125.9, 125.9, 125.7, 124.5, 124.5, 124.0, 123.6, 123.2, 122.7, 122.3, 112.3,
122.0, 55.5, 55.2, 53.5, 32.9, 32.3, 31.9, 31.8, 29.6, 29.4, 29.2, 27.2, 26.9, 26.7, 22.8, 22.7, 22.5,
14.2, 14.0. HRMS (MALDI-TOF) m/z: [M]* calcd for [CisoH178B2NsO12]* 2306.3784, found

2306.3881.
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Scheme S5. Synthetic route of compound cis-PDI3NH,.

Synthesis of cis-PDI3NH,: A Schlenk flask was charged with 2 (500 mg, 0.48 mmol), Cs2CO3
(782.97 mg, 2.40 mmol), Pd(OAc); (22.45 mg, 0.10 mmol) and DPE-phos (107.19 mg, 0.20 mmol),
then added 100 mL degassed anhydrous toluene at 0 °C. In an additional flask, the compound 3
(739.27 g, 0.96 mmol) was also dissolved in 60 mL degassed anhydrous toluene and then
dropwise to the Schlenk flask at O °C. After stirred at 0 °C for more 30 minutes, the reaction was
warm to room temperature slowly and then further stirred at 80 °C for 6 h. After cool down to
room temperature, the mixture was filtered through celite. The organic solvent was dried over
anhydrous Na,SO4 and concentrated using vacuum rotary evaporator and obtained black solid.
The crude materials were purified with column chromatography (eluent: PE:DCM from 3:1 to
1:1), 659.86 mg target cis-PDI3NH; was obtained as black solid yield of 60%.

cis-PDI3NH,: 'H NMR (500 MHz, Chloroform-d) & 9.00-8.64(m, 16H), 8.40 (m, 4H), 5.20- 5.07 (m,
6H), 2.19 (s, 12H), 1.81 (s, 12H), 1.60-1.19 (m, 98H), 0.78 (m, 36H). 3C NMR (126 MHz,
Chloroform-d) 6 164.6, 164.2, 163.6, 163.1, 163.0, 141.7, 134.6, 134.3, 134.0, 131.9, 131.6,
131.1, 130.4, 130.0, 139.9, 129.0, 127.5, 126.9, 125.6, 124.5, 124.3, 124.0, 123.5, 123.3, 122.8,
122.5,121.4,55.3,55.1,54.7,32.4,32.3,32.2,31.8,31.7,31.7,31.6, 31.6, 29.7, 29.2, 29.2, 29.1,
29.0, 27.0, 26.9, 26.8, 22.6, 22.6, 22.6, 22.6, 22.50, 14.1, 14.0, 14.0. HRMS (MALDI-TOF) m/z:

[M]* calcd for [Cis0H184NsO12]* 2290.4067, found 2290.3775.
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Scheme S6. Synthetic route of compound cis-PDI3BN.

Synthesis of cis-PDI3BN: In a pressure-resistant reaction tube, the dried compound cis-PDI3NH;
(300 mg, 0.13 mmol), triethylamine (1.5 mL), 10 mL anhydrous DCB and 2.5 mL boron trichloride
in DCM was added under nitrogen atmosphere. The black reaction mixture was turned to red
while stirred at 190 °C for 40 min. After cool down to room temperature, the mixture was
extracted with DCM and washed with brine. Combined organic layers were dried over Na;SO4
and concentrated under reduced pressure. The crude materials were purified with column
chromatography (eluent: PE:DCM from 3:1 to 1:1), 117.8 mg target cis-PDI3BN was obtained as
red solid yield of 39%.

cis-PDI3BN: *H NMR (500 MHz, Toluene-ds) 6 11.24 (d, J = 20.7 Hz, 2H), 10.88 (s, 2H), 10.18-9.85
(m, 4H), 9.05 (d, J = 65.7 Hz, 4H), 8.47-8.44 (m, 4H), 5.81-5.57 (m, 6H), 2.74-2.48 (m, 12H), 2.07
(m, 12H), 1.71-1.18 (m, 98H), 0.98-0.49 (m, 36H). 13C NMR (126 MHz, Chloroform-d) & 165.0,
163.9, 136.9, 136.4, 135.3, 134.8, 133.9, 131.6, 130.4, 130.0, 129.7, 129.4, 125.6, 125.3, 124.5,
123.5,123.2,122.8,122.4,122.0,121.6,121.2,55.5,55.2,33.0,32.9,32.6,32.3,32.3,31.9, 31.8,
29.7, 29.6, 29.4, 29.2, 27.2, 27.1, 22.7, 22.5, 14.1, 14.1, 14.1, 14.0. HRMS (MALDI-TOF) m/z:

[M+Na]* calculated for [C150H178B2NsNaQO1,]* 2329.3682, found 2329.3459.

2.2 Preparation of the PTCDI oligomers
The pure PDI oligomers were heated at 400 °C for 2 h to remove those soluble alkyl chains in
tube furnace under the protection of nitrogen. Afterwards, the materials after the reaction were

cooled to room temperature naturally to obtain targeted PTCDI oligomers.
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Scheme S$10. Synthetic route of PTCDI2.

3. Normalized UV-vis absorption spectra of of PDI3, trans- and cis-PDI3BN
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Figure S1. Normalized UV-vis absorption spectra of of PDI3, trans- and cis-PDI3BN

4. Cyclic Voltammograms (CVs) of PDI2, PDI2BN, trans-PDI3BN and cis-PDI3BN.
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Figure S2. CV of PDI2 vs (Fc/Fc*), PDI2BN vs (Fc/Fc*), trans-PDI3BN vs (Fc/Fc*) and cis-PDI3BN

vs (Fc/Fc*) (a) at multiple scanning and (b) at different scan rates in dichloromethane solution.

Table S1. Photoluminescence quantum yields of PDI2, PDI2BN, trans-PDI3BN and cis-PDI3BN in

toluene.

FLQY
Tol

PDI2

PDI2BN

Trans-PDI3BN cis-PDI3BN

74%

67.8%

58.2% 43.9%

5. 'H, 3C NMR and HRMS Spectra
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Figure S6. 13C NMR spectra of PDI2BN. (126 MHz)
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Figure S9. 'H NMR spectra of trans-PDI3BN. (500 MHz)
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Figure S14. '3C NMR spectra of cis-PDI3BN. (126 MHz)
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6. Electrochemical Data
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Figure S21. Thermogravimetric analysis (TGA) plots of PDI2, PDI2BN, trans-PDI3BN and cis-
PDI3BN in N, atmosphere at a scan rate of 10 2C min™.
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Figure S22. The contrastive FTIR spectrum of PDI oligomers before and after vacuum

thermolysis.

The resulting organics were then identified through fourier transform infrared (FTIR)
spectroscopy, in which, those vibrational modes of alkyl chains (between 2856 and 2927 cm™2)
disappear, accompanied by new signals indexed to N-H stretching vibration (range from 3034

to 3165 cm™) emerging.
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Figure S25. Nyquist plots and its simulation lines during the initial three cycles of oligomers.
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Figure S26. The CV curves at different scan rates of PTCDI derivates.
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Figure S27. The log(/) vs log(v) plots for cathodic and anodic peaks of PTCDI oligomers.
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Table S2. Charge transfer resistance of PTCDI2, PTCDI2BN, trans-PTCDI3BN and cis-PTCDI3BN

during the initial three cycles.

Rct (Q) 1st 2nd 3rd
PTCDI2 27.7 142.0 160.0
PTCDI2BN 21.5 26.4 34.9
trans-PTCDI3BN 8.9 15.4 213
cis-PTCDI3BN 17.23 20.74 23.65
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