Supplementary Materials for controlled non-radical chlorine activation pathway on hematite photoanodes for efficient oxidative chlorination reactions

Daojian Tang, ^{a,c†} Lei Wu, ^{a,c†} Liubo Li, ^b Niankai Fu, ^{b,c} Chuncheng Chen, ^{a,c} Yuchao Zhang *^{a,c} and Jincai Zhao ^{a,c}

^a Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

^b Key Laboratory of Molecular Recognition and Function, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Corresponding author. Email: yczhang@iccas.ac.cn_

[†]<u>These authors contributed equally.</u>

Experimental Details

Materials: Fluorine-doped tin oxide substrates (FTO, 2.2 mm) were purchased from Nippon Plate Glass Co., Ltd. Iron (III) chloride anhydrous (98%) and titanium (IV) butoxide (97%) was purchased from Alfa Aesar. Sodium perchlorate (99%) and sodium nitrate (99%) were purchased from Acros Organics. Titanium tetrachloride (99.9%), sodium chloride (99.9%), acetanilide (99%), tetraethylammonium tetrafluoroborate (NEtBF₄, 98%) and acetonitrile (99.9%, extra dry with molecular sieves, Water \leq 50 ppm) were purchased from Innochem. All chemicals were used as received without further purification.

Instrumentation: X-ray diffraction (XRD) patterns was collected on an X-ray diffractometer (Empyrean, PANalytical) with Cu - K α radiation at a scan rate of 0.05° 20 s⁻¹. Scanning electron microscopy (SEM) images were obtained with an SU8010 (Hitachi, Japan). X-ray photoelectron spectroscopy (XPS) data was collected on an ESCALAB 250Xi spectrometer equipped with 300 W Al K α radiation. Adventitious carbon with the binding energy of 284.8 eV was used as a reference for calibration. UV-vis spectra were recorded with a UV-vis Hitachi U-3900 spectrophotometer. X-ray absorption fine structure spectra (XAFS) were obtained at the Beijing Synchrotron Radiation Facility (1W1B). The energy was calibrated by a standard Fe foil before each experiment. The high-resolution transmission electron microscopy (HRTEM) images and elemental mappings were recorded with a high-resolution transmission electron microscope (Thermo Fisher Scientific, FEI Talos 200X) operated at 200 kV. High-performance liquid chromatography (HPLC) was conducted using Agilent 1260

infinities system. Chromatography-mass spectrometry (GC-MS) was conducted using an Agilent GC-MS instrument (5977A MSD and 7890B GC system). Nuclear magnetic resonance (NMR) spectra were measured on a Bruker 400 MHz instrument. Photoelectrochemical (PEC) measurements were controlled by a CHI 1040c potentiostat. The electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) experiments were performed with a potentiostat (PGSTAT302N autolab, Metrohm).

Photoanodes preparation: Hematite(α -Fe₂O₃) photoanodes were fabricated in accordance with our previously reported procedures.¹ FTO substrates were first cleaned with acetone, ethanol and deionized water by ultrasonication for 30 min. 7.5 mL aqueous solution containing 0.15 M FeCl₃, 0.1 M NaNO₃ and 9 µL of 0.5 M TiCl₄ solution were prepared in a Teflon-lined stainless-steel autoclave. Cleaned FTO substrates were placed in the autoclave and heated at 95°C for 4 h. After the hydrothermal treatment, a uniform layer of Ti-doped iron oxyhydroxides (Ti:FeOOH) was coated on the FTO glass, which was washed with deionized water to remove any residual salts. The obtained films were annealed in air at 550°C for 2 h and annealed at 650°C for 20 min to convert the Ti:FeOOH nanowires into Ti-doped α -Fe₂O₃ nanowires. Subsequently, the second growth of Ti:FeOOH layer on the obtained Tidoped a-Fe₂O₃ nanowires was performed in the same conditions but with half the precursors and adding 375 µL of 0.15 M NH₄F. Finally, the as-prepared Ti:α-Fe₂O₃@Ti:FeOOH nanowires were further annealed at 550°C for 2 h and annealed at 650 °C for 20 min to prepare Ti-doped α -Fe₂O₃ nanowires.

TiO₂ photoanodes were synthesized using a previously reported method.² 15 mL of deionized water and 15 mL of concentrated HCl (37 wt %) were mixed in a 100 mL beaker followed by addition of 500 μ L of Ti(IV) butoxide and stirred for 30 min. Then, 7.5 ml of mixed precursor solution was transferred into a Teflon-lined stainless-steel autoclave. Cleaned FTO substrates were placed in the autoclave and heated in an oven at 150°C for 6 h. The obtained films were annealed in air at 450°C for 1.5 h to improve the crystallinity of TiO₂ nanorods and enhance their contact to the FTO substrate.

PEC measurement: PEC experiments were performed in a three-electrode electrochemical cell with Pt as the counter electrode and Ag/AgCl as the reference electrode. Nafion proton exchange membrane was used to separate the photoanode from the cathode chamber. Under general reaction conditions, PEC electrolysis measurements were conducted in a 10 mL solution of CH₃CN/H₂O (1:1, v/v) containing 0.1 M NaCl (pH 6.4), 0.1 mmol of substrate under AM1.5 G simulated sunlight obtained by a Xenon lamp with an AM 1.5 G filter. Photoelectrolysis was performed with magnetic stirring at 900 rpm, and a water recycling system was used to prevent the solution from heating up during photoelectrolysis. For EIS measurements, a 470 nm LED lamp was used as the light source for α -Fe₂O₃, and a 365nm LED lamp was used for TiO₂. The measurements were conducted over a frequency range from 10^4 Hz to 0.1 Hz. For IMPS measurements, a light intensity of 100 mW cm⁻² with a 10% modulation intensity was used, and the frequency was varied from 10⁴ Hz to 0.1 Hz with 20 points per decade. EIS and IMPS experimental data were fitted and simulated using Nova 2.1.4 from Metrohm Inc. Unless otherwise specified, the tests were conducted without iR compensation and in a non-conditioned air atmosphere.

Oxygen (O₂) detection: The PEC electrolysis experiments with different Cl⁻ concentration were conducted after purged with Ar (15 sccm) for 15 min in a sealed H-type cell. After 1 h electrolysis, 1.0 mL of gas products from PEC electrolysis on the headspace (9.6 mL) of anode chamber were analyzed using a gas chromatograph (GC, 9790plus, Ar carrier, Fuli) equipped with a thermal conductivity detector (TCD). The volume of the headspace in the anode chamber was calculated by a drainage water method. The non-absolute tightness allows air to inevitably enter the cell. The extra oxygen from the air was subtracted based on the quantity of nitrogen (N₂) content in the anode chamber, with a ratio of 1:3.7. To obtain the calibration curve of O₂ and N₂, different volumes (0~1 mL) of O₂ and N₂ standard gas were quantified by GC. According to the ideal gas law, the moles of O₂ and N₂ standard gas can be calculated, and the calibration curve of O₂ and N₂ (i.e., peak area against moles of O₂ standard gas) was thus obtained (**Fig. S5**). The Faradaic efficiency of O₂, *FE*(*O*₂), could be calculated by the following equation:

$$FE(O_2) = \frac{\left[n_{O_2}(mol) - \frac{n_{N_2}(mol)}{3.7}\right] \times 4 \times F(96500 \ C/mol)}{Q(C)} \times 100\%$$

where 3.7 was the ratio of N_2 to O_2 in the air. 4 was the number of transferred electrons for O_2 . F was the Faradaic constant and equal to 96500 C mol⁻¹, and Q represented the passed charge during the photoelectrolysis.

Active chlorine detection: The concentration of produced active chlorine was

quantitated by using the N, N-diethyl-p-phenylenediamine (DPD) method.³ Specifically, DPD reagent solution (250 mM, 50 mL) was prepared by the addition of 3.28 g DPD in 0.05 M H₂SO₄, and stored in dark. After the electrolysis reaction, take 1.0 mL of electrolyte and dilute it with deionized water to a total volume of 10 mL. Then, add 1 mL of phosphoric acid buffer (pH = 6.5) and 1.0 mL of DPD reagent to the solution. Subsequently, measure the fully mixed solution using a UV-vis spectrometer as soon as possible at an absorbance wavelength of 550 nm. The calibration curve was plotted from absorbance versus the concentration of ClO⁻ (**Fig. S6a**). The active chlorine selectivity was calculated according to the following equation:

$$FE = \frac{2nF}{Q} \times 100\%$$

where 2 was the number of transferred electrons for active Cl⁺ species, n was the amount of detected active Cl⁺ species by DPD method, F was the Faradaic constant (96500 C mol⁻¹), Q was the passed charge.

Electron paramagnetic resonance (EPR) measurements: 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used as the spin-trap reagent to capture the possible radicals that generated in the photoelectrolysis. To *in-situ* trap those radicals, an open-type cell (**Fig. S34**) was used based on the previously reported method.¹ In general, 10 μ L DMPO solution was added onto the photoanode surface through a pipette during the photoelectrolysis. Notably, the pipette and photoanodes needed to be in close contact. If radicals were produced during photoelectrolysis, they would react with DMPO *in situ* to form corresponding species. Afterwards, the final solution was promptly collected

for EPR measurements.

Substrate generation/tip collection mode of scanning electrochemical microscope (SG/TC SECM) measurement for Cl₂ detection: The measurement method was in accordance with our previously reported procedures.¹ The SG/TC SECM was performed on the Sensolytics SECM instrument consisting of a stepper-motor positioning system (Sensolytics, BsaeSECM), a Xenon lamp source (Ceaulight, CEL-HXF300-T3) and a bipotentiostat (Metrohm, Autolab PGSTAT302N). The Cl₂ detection were performed in a four-electrode cell with a coiled Pt wire as the counter electrode, a saturated Ag/AgCl electrode as the reference electrode, a Pt-disk ultramicroelectrode (UME) with a diameter of 25 µm as working electrode 1 (WE1, also called tip electrode), and α -Fe₂O₃ or TiO₂ as working electrode 2 (WE2, also called substrate electrode). The status of the probe was checked by the CV measurement in a 0.1 M KCl solution containing 5 mM K[Fe(CN)₆] as redox mediator. Subsequently, an applied potential of -0.2 V vs. Ag/AgCl was applied to the tip electrode for the approach curve measurement. By fitting the negative feedback approach curve to the theoretical equations,4, 5 the distance scale between tip electrode and substrate electrode was approximately 13 μ m for both α -Fe₂O₃ and TiO₂ as substrate electrode. Finally, a potential sweep (5 mV s⁻¹) from -0.2 to 1.2 V vs. Ag/AgCl was conducted on the substrate electrode, while maintaining a constant potential of 0.3 V vs. Ag/AgCl for the tip electrode to monitor the Cl_2 reduction current.

Product analysis: All the products generated by PEC reactions were analyzed by GC-MS or NMR to confirm the identity. The GC-MS measurements were run on an Agilent GC-MS instrument with a HP-5ms GC column and electron ionization ion source. The solvent delay time was 3 min. For acetanilide (1a), the chlorination products were quantified by HPLC. Measurements were run on an Agilent HPLC instrument with a C18 column and DAD detector. Detection wavelength was 240 nm and mobile phase ratio was 70% H₂O: 30% CH₃CN. The chlorination products (2-6) were quantified by GC. Measurements were run on an Agilent GC instrument with a DB-VRX GC column and FID detector. The chlorination products (7-11, 13-15) were quantified by NMR analysis with 1,3,5-trimethoxybenzene as the internal standard substrate after extraction treatment by ethyl acetate.

The values of selectivity, faradaic efficiency and conversion rate were calculated by the following equations:

Selectivity = $\frac{\text{content of corresponding product}}{\text{consumption of reactant}} \times 100\%;$

Faradaic efficiency (FE) = $\frac{2nF}{Q} \times 100\%$ (where n was the productivity of products, F was the Faradaic constant), and Q was the quantity of electric charge);

Yield rate = $\frac{the \ productivity \ of \ products}{t \ x \ A}$ (where t is the reaction time, and A)

is the area of photoanode (2 cm^{-2})).

Fig. S1. Bandgaps and band edge positions of TiO₂, WO₃ and α -Fe₂O₃ with respect to the energy position of redox couples involving O₂, Cl₂, ClO⁻, •Cl, and •OH.⁶⁻⁸

Fig. S2. Structural characterizations of α -Fe₂O₃. (a) XRD patterns, (b-c) HRTEM images and (d) SEM image of an α -Fe₂O₃ photoanode. (e) UV-vis spectrum and (f) the corresponding Tauc plot of an α -Fe₂O₃ photoanode.

According to the previous reports, the diffraction peaks at $2\theta = 35.6^{\circ}$ and 64.0° were indexed to the (110) and (300) planes of the α -Fe₂O₃ phase.^{1, 9-11} No other reflection was observed, indicating the oriented growth of α -Fe₂O₃ nanorods with respect to the FTO substrate. Furthermore, the lattice fringes of 0.25 nm attributed to the (110) plane of α -Fe₂O₃ could be well resolved in the HRTEM image.^{12, 13} The SEM image of α -Fe₂O₃ photoanodes indicated that the as-prepared α -Fe₂O₃ film consisted of numerous nanorods. Subsequent UV-vis spectrum highlighted the excellent visible light absorption of the as-prepared sample. And the corresponding Tauc plot gave a narrow optical band gap of 2.1 eV, consistent with the reported values in the literature.¹⁴⁻¹⁶ These results confirmed the successful fabrication of α -Fe₂O₃ photoanodes.

Fig. S3. The effect of Cl⁻ concentrations on the photocurrent. (a) LSV curves (50 mV/s) at varying Cl⁻ concentrations. (b) The photocurrent behavior was observed at 1.0 V vs. Ag/AgCl with different concentration of Cl⁻. The total concentration of Na⁺ was kept at 0.1 M by adding NaClO₄ when the Cl⁻ concentration was below 0.1 M.

Fig. S4. IMPS measurements. The normalized IMPS spectra of an α -Fe₂O₃ photoanode at 1.0 V vs. Ag/AgCl in 0.1 M NaClO₄ without or with 10 mM NaCl under 470 nm irradiation.

Fig. S5. The calibration curves of (a) O_2 and (b) N_2 .

Fig. S6. The selectivity of Cl⁻ oxidation on an α -Fe₂O₃ photoanode. (a) The standard curve of absorbance against the concentration of ClO⁻. (b) The FE of Cl⁻ oxidation after 10 min of photoelectrolysis at 1.0 V vs. Ag/AgCl with different concentrations of Cl⁻ in a CH₃CN/H₂O (1:1 v/v) solution.

Fig. S7. Performance of Cl⁻ oxidation in the EC system only, PC system only, and PEC system. The electrochemical (EC) experiment was carried out in 0.1 M NaCl solution at 1.0 V vs. AgCl for 10 min. The photochemical (PC) experiment was carried out in 0.1 M NaCl solution under AM 1.5G irradiation for 10 min. The PEC experiment was performed in 0.1 M NaCl solution under AM 1.5G irradiation at 1.0 V vs. AgCl for 10 min.

Fig. S8. The FE of Cl⁻ oxidation after 10 min of photoelectrolysis at 1.0 V vs. Ag/AgCl with different concentrations of Cl⁻ in an aqueous solution.

Fig. S9. The equivalent model circuit for EIS fit and simulation.

Hamann and co-workers have proven that the surface reaction on the α -Fe₂O₃ photoanode mainly takes place from surface trapped holes (i.e., high-valent iron-oxo species), and not directly from valence band holes through the EIS analysis.^{17, 18} And they also established an EIS method including the equivalent circuit (Fig. S9) to investigate the role of surface states. In this model, R_{trapping} represents the resistance in surface hole trapping, R_{ct,trap} represents the charge transfer resistance via surface states, and C_{trap} represents the hole accumulated at surface states (surface-state capacitance). The Nyquist plots exhibit two semicircles for this model. The high-frequency semicircle represents the process of hole trapping by surface states (hole accumulation at surface states), while the radius of the low-frequency semicircle reflects the process of interfacial hole transfer to electrolyte for substrate oxidation. we also exploited the equivalent circuit displayed in Fig. S9 to fit EIS data with Nova 2.1.4 software (Metrohm). The fitted data for water oxidation and chlorine oxidation could be found in Table S3 and Table S4, which allows us to obtain the surface-state capacitance shown in Fig. 1f.

To understand the effect of surface hole density on the reaction pathway, rate law

analysis was conducted by modulating the illumination intensity during EIS measurements. The water oxidation and Cl^- oxidation rate can be estimated from the steady-state photocurrent density (*J*), and the surface-trapped hole density [hole] can be estimated from the following equation:^{19, 20}

$$[\text{hole}] = C_{\text{trap}} \times V_{\text{appl}} \times \overline{R_s \times R_{trapping} \times R_{ct, trap}} / S$$

where V_{appl} is the applied potential and S is the active area of the α -Fe₂O₃ photoanode. Correspondingly, the reaction order of surface holes can be calculated by the following equation:

$$J = k \text{ [hole]}^{\beta}$$

where *k* is the rate constant of the reaction, and β is the reaction order.

Fig. S10. The behavior of C_{trap} with different concentrations of Cl⁻.

Fig. S11. LSV curves of an α -Fe₂O₃ photoanode under AM 1.5G irradiation measured in 0.1 M NaCl solution with and without 10 mM 1a.

Fig. S12. LSV curves of the oxidation of Cl^- and 1a in a 100% MeCN solution with 0.1M NEtBF₄ as the supporting electrolyte under AM 1.5G irradiation.

Fig. S13. The quantification of aromatic chlorination products. (a) HPLC spectra of aromatic chlorination products on α -Fe₂O₃ after 2 h of photoelectrolysis. (b-e) The external standard curves of acetanilide and chlorination products.

Fig. S14. Structural characterizations of TiO_2 . (a) XRD and (b) SEM image of an TiO_2 photoanode. (c) UV-vis spectrum and (d) the corresponding Tauc plot of an TiO_2 photoanode.

XRD showed that TiO₂ displayed a typical rutile phase of TiO₂. The SEM image of TiO₂ photoanodes indicated that the as-prepared TiO₂ film consisted of nanorod array structure. UV-vis spectrum showed the UV light absorption of the as-prepared sample. And the corresponding Tauc plot gave an optical band gap of 3.0 eV. These results are consistent with those reported in the literature and confirm the successful fabrication of TiO₂ photoanodes.^{8, 21}

Fig. S15. Photoelectrolysis experiments of aromatic chlorination on α -Fe₂O₃. (a) Potential-dependent conversions of **1a** to **2a** and **3a** in 0.1 M NaCl solution. (b) Time-dependent conversions of **1a** to **2a** and **3a** in 0.1 M NaCl solution. (c) Cl-dependent conversions of **1a** to **2a** and **3a**. (d) The selectivity as a function of Cl⁻ concentrations after 2 h photoelectrolysis at 1.0 V vs. Ag/AgCl.

Fig. S16. Structural characterizations of α -Fe₂O₃ before and after photoelectrolysis. (a) XRD patterns. (b) XAFS spectra of fresh α -Fe₂O₃ and used α -Fe₂O₃. (c)EXAFS spectra of at Fe K-edge. (d) The q space spectra at Fe K-edge.

Fig. S17. XPS and TEM characterizations of α -Fe₂O₃ before and after photoelectrolysis. (a) XPS spectra of the Fe 2p core level and (b) the O 1s core level for α -Fe₂O₃. (c) TEM combined EDS Cl mapping images of α -Fe₂O₃ before photoelectrolysis and after photoelectrolysis. (d) XPS spectra of the Cl 2p core level for α -Fe₂O₃.

After 6 h of photoelectrolysis, no obvious change was observed for the binding energy of Fe and O. However, the obvious adsorption of Cl⁻ was observed. As shown in **Fig. S17**a, the two peaks at 710.6 and 724.3 eV were attributed to Fe³⁺ $2p_{3/2}$ and Fe³⁺ $2p_{1/2}$, accompanied with their satellite peaks. The peak position and shape of the XPS spectra were consistent with typical reports of α -Fe₂O₃ phase.^{22, 23} The high-resolution XPS spectra of O 1s were deconvoluted into two peaks at 529.6 and 531.9 eV, which were corresponded to the lattice oxygen (Fe–O) and adsorbed Fe–OH groups (**Fig. S17**b). The little difference (~0.1 eV) between the pristine α -Fe₂O₃ and the tested α - Fe_2O_3 may originate from the random errors.²⁴

Fig. S18. The yield rate of H_2 generation and the photocurrent density on an α -Fe₂O₃ photoanode for H_2O oxidation and electrophilic aromatic chlorination.

Fig. S19. (a) Variations in ClO_3^- concentrations over time. (b) The IC signals of Cl^- oxidation on α -Fe₂O₃ with or without 1a after 2 h of photoelectrolysis at 1.0 V vs. Ag/AgCl.

Fig. S20. The quantification of alkene chlorination products. (a) HPLC spectra of styrene chlorination products on α -Fe₂O₃ after 2 h of photoelectrolysis. (b-d) The external standard curves of styrene and chlorination products. Measurements were run on an Agilent LC instrument with a C18 column and DAD detector. Detection wavelength was 216 nm and mobile phase ratio was 30% H₂O : 70% CH₃CN.

Fig. S21. PEC aromatic chlorination of toluene. (a) GC spectrum of the products of PEC aromatic chlorination of toluene (compound 2) on α -Fe₂O₃ photoanode in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol toluene at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h. (b) The MS spectra of aromatic chlorination products.

Fig. S22. PEC aromatic chlorination of anisole. (a) GC spectrum of the products of PEC aromatic chlorination of anisole (compound 3) on the α -Fe₂O₃ photoanode in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol anisole at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h. (b) The MS spectra of aromatic chlorination products.

Fig. S23. PEC aromatic chlorination of benzanilide. (a) GC spectrum of the products of PEC aromatic chlorination of benzanilide (compound 4) on the α -Fe₂O₃ photoanode in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol benzanilide at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h. (b) The MS spectra of aromatic chlorination products.

Fig. S24. PEC aromatic chlorination of diphenyl ether. (a) GC spectrum of the products of PEC aromatic chlorination of diphenyl ether (compound 5) on the α -Fe₂O₃ photoanode in 0.1 M NaCl electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol diphenyl ether at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h. (b) The MS spectra of aromatic chlorination products.

Fig. S25. 1H NMR spectrum of the products of PEC aromatic chlorination of N-methyl-N-(4-methylphenyl)acetamide (compound 7) in 0.1 M NEtBF₄ electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol N-methyl-N-(4-methylphenyl)acetamide and 50 mM NaCl at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 5 h.

Fig. S26. 1H NMR spectrum of the products of PEC aromatic chlorination of 4-(trifluoromethoxy)acetanilide (compound 8) in 0.1 M NEtBF₄ electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol 4-(trifluoromethox)acetanilide and 50 mM NaCl at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 5 h.

Fig. S27. 1H NMR spectrum of the products of PEC aromatic chlorination of 4fluoroacetanilide (compound 9) in 0.1 M NEtBF₄ electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol 4-fluoroacetanilide and 50 mM NaCl at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 5 h.

Fig. S28. 1H NMR spectrum of the products of PEC aromatic chlorination of 4chloroacetanilide (compound 10) in 0.1 M NEtBF₄ electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol 4-chloroacetanilide and 50 mM NaCl at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 5 h.

Fig. S29. 1H NMR spectrum of the products of PEC aromatic chlorination of 4-(trifluoromethyl)acetanilide (compound 11) in 0.1 M NEtBF₄ electrolyte (16% H₂O, 84% MeCN) with 0.1 mmol 4-(trifluoromethyl)acetanilide and 50 mM NaCl at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 5 h.

Fig. S30. 1H NMR spectrum of the products of PEC chlorohydrination of 4chlorostyrene (compound 13) in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol 4-chlorostyrene at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h.

Fig. S31. 1H NMR spectrum of the products of PEC chlorohydrination of 2-phenyl-1propene (compound 14) in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol 2-phenyl-1-propene at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h.

Fig. S32. 1H NMR spectrum of the products of PEC chlorohydrination of 1-bromo-4-(1-methylethenyl)benzene (compound 15) in 0.1 M NaCl electrolyte (50% H₂O, 50% MeCN) with 0.1 mmol 1-bromo-4-(1-methylethenyl)benzene at 1.0 V vs. Ag/AgCl under AM 1.5G, 100 mW cm⁻² irradiation for 2 h.

Fig. S33. Scheme of the products formed during toluene chlorination when reacting with various active chlorine species.

Fig. S34. The optical image of the open-type cell used in EPR measurements.

Fig. S35. CV curves of UME measured in 0.1 M NaClO₄ with a scan rate of 20 mV s⁻¹.

The negative current was originated from the reduction of dissolved oxygen (ORR). The formed Cl_2 was monitored by applying a potential of 0.3 V vs. Ag/AgCl to the tip electrode for the Cl_2 reduction reaction (ClRR). At this potential, neither O_2 nor the formed active chlorine species (e.g., HClO or ClO⁻) were detected due to the sluggish reduction reactions on Pt.⁹

Fig. S36. SECM experiments. (a) CV curves of UME measured in a 0.1 M KCl solution containing 5 mM K[Fe(CN)₆] as the redox mediator. The negative feedback approach curves of the tip electrode for (b) TiO_2 and (c) α -Fe₂O₃ were measured under dark conditions.

The cut off value of the approach curve was 80%. By fitting the experimental data to the theoretical equations, we determined that the distance between the tip and substrate (referred to as d) when the tip stopped was approximately 13 μ m for both α -Fe₂O₃ and TiO₂. Therefore, the formation of Cl₂ on the two photoanodes can be directly compared by SECM experiments.

Fig. S37. EIS data of (a) α -Fe₂O₃ and (b) TiO₂ photoanodes for Cl⁻ oxidation. The EIS data were measured at the bias of 0.6 and 0.2 V vs. Ag/AgCl for the α -Fe₂O₃ and TiO₂ photoanodes, respectively.

Fig. S38. Comparison of PEC aromatic chlorination and HClO mediated aromatic chlorination.

Chlorination products were detected after 1 h of photoelectrolysis at 1.0 V vs. Ag/AgCl for PEC chlorination. In the case of aromatic chlorination by using HClO as the chlorinating reagent, the chlorination products were detected by HPLC after a reaction with 0.1 mmol **1a** and 2 eq HClO at pH=4 in a 10 mL solution (50% H₂O, 50% MeCN) for 1 h.

Fig. S39. The additional proposed mechanisms.

Considering that the rate-determining step (RDS) involved two surface-trapped holes, there was also a possibility of the formation of an isolated Fe^V=O species for the non-radical Cl activation process. However, it has been reported that the Fe^V=O species were primarily involved in the rate-determining step of water oxidation on α -Fe₂O₃, which involved a three-electron transfer (with a reaction order of 3).²⁵⁻²⁷ In this process, two adjacent Fe^{IV}=O species were firstly formed by the two-hole oxidation of two neighboring surface Fe sites. Subsequently, the third hole oxidized one of the Fe^{IV}=O groups to form Fe^V=O, providing sufficient oxidation power for water oxidation. This suggested that the accumulation of two adjacent Fe^{IV}=O species was prior to the formation of Fe^V=O species. Additionally, previous studies have observed that ironoxo species with a reaction order of 1 and 2 exhibited similar lifetimes, indicating that the nature of iron-oxo species remained unchanged in both cases. The transition in reaction orders was attributed to the varied accumulation states of high-value iron-oxo species.²⁸ In our study, the EIS analysis suggested that Cl⁻ oxidation was more favorably mediated by the high-valent iron-oxo species formed on α -Fe₂O₃ than H₂O oxidation (**Fig. 1c and f**). As a result, we are more inclined towards the formation of two adjacent Fe^{IV}=O species than the isolated Fe^V=O species.

C _{NaCl} (mM)	Q (C)	<i>A</i> ₀₂	A _{N2}	$FE(O_2)$
0	4.83	194537	50149	97.6%
10	7.90	52779	30060	14.5%
25	8.10	21682	32687	3.8%
50	8.14	16142	29077	2.3%
100	8.51	18056	46211	1.2%
200	10.12	18071	38371	1.6%

Table S1. The calculations of FEs(O₂).

There are some systematic errors. (1) To determine the moles of standard gas, we assumed that O_2 standard gas and N_2 standard gas were the ideal gas. (2) The ratio between the leaked N_2 and leaked O_2 was assumed to be equal to that in the air (i.e., 3.7) to exclude the extra oxygen from the air leakage. These systematic errors and random errors resulted in the FE(O_2) being less than 100%.

Entry	Photoanode	Electrolyte	Light sources	bias	FE	Ref.
1	a-Fe ₂ O ₃	50 mM NaCl (pH 6.4)	1 sun ^a	1.0 V (vs. Ag/AgCl).	92%	This work
2	WO ₃	0.5 M NaCl (pH 2.5)	1 sun	0.9 V (vs. Ag/AgCl)	~70%	1 ²⁹
3	WO3:B	0.5 M NaCl (pH 2)	1 sun	1.23 V (vs. RHE)	~25%	2 ³⁰
4	WO ₃	Seawater (pH 6.4)	1 sun	1.23 V (vs. RHE)	~56%	331
5	BiVO ₄ @WO ₃	4 M NaCl (pH 1)	1 sun	1.42 V (vs. RHE)	~74%	4 ³²
6	WO ₃ @ BiVO ₄	5 M NaCl (neutral)	1 sun	0.22 (vs. Pt CE)	~80%	5 ³³
7	WO3@ BiVO4@CoOx	0.5 M NaCl (pH 5.9)	1 sun	1 V (vs. RHE)	~100%	6 ³⁴
8	BiVO ₄ :Mo@R hO ₂	Seawater (pH 6)	1 sun	1 V (vs. RHE)	~25%	735

Table S2. Summary of recent PEC studies on the selectivity of Cl⁻ oxidation to active chlorine.

^a1 sun: AM 1.5 G (100 mW cm⁻²)

Potential	C _{trap}	R _s	R _{trapping}	R _{ct,trap}
(V vs. Ag/AgCl)	(μF)	(Ω)	(Ω)	(Ω)
0.40	87.7	55.7	35.9	98249.0
0.45	100.7	56.2	55.1	94964.0
0.50	146.0	56.3	56.9	38724.0
0.55	210.9	56.2	53.1	10406.0
0.60	275.2	55.9	51.2	3295.8
0.65	326.9	55.6	51.4	1288.2
0.70	386.1	55.0	52.6	634.8
0.75	487.1	54.7	52.5	365.6
0.80	606.7	55.1	52.0	238.6
0.85	647.4	55.5	55.6	178.1
0.90	599.0	55.7	65.0	152.2
0.95	490.3	56.0	82.8	150.3
1.00	360.2	56.2	115.7	170.1
1.05	242.0	56.4	175.1	218.8
1.10	149.8	56.6	282.3	302.1

 Table S3. Electrochemical parameters fitted from EIS data for water oxidation.

Reaction conditions: 0.1 M NaClO₄, 50% H_2O in 15 mL of CH₃CN solution, under 470nm LED irradiation.

Potential	C _{trap}	R _s	R _{trapping}	R _{ct,trap}
(V vs. Ag/AgCl)	(μF)	(Ω)	(Ω)	(Ω)
0.40	283.6	58.7	46.3	7461.2
0.45	274.7	58.5	46.9	3844.8
0.50	278.4	58.2	47.5	1690.4
0.55	301.2	57.9	48.8	753.1
0.60	325.2	57.6	51.4	379.9
0.65	350.3	57.3	54.2	223.9
0.70	382.5	57.2	56.3	152.7
0.75	416.2	57.2	58.0	118.4
0.80	438.6	57.5	60.6	102.4
0.85	452.8	57.9	65.3	96.3
0.90	427.5	58.2	76.0	95.7
0.95	388.9	58.6	94.1	103.2
1.00	321.0	58.9	127.6	120.3
1.05	249.1	59.1	189.9	152.6
1.10	179.0	59.3	295.0	216.4

Table S4. Electrochemical parameters fitted from EIS data for Cl⁻ oxidation.

Reaction conditions: 10 mM NaCl, 90 mM NaClO₄, 50% H_2O in 15 mL of CH₃CN solution, under 470nm LED irradiation.

Light Intensity (mW cm ⁻²)	J (μA cm ⁻²)	C _{trap} (μF)	R _s (Ω)	R _{trapping} (Ω)	R _{ct,trap} (Ω)
20	10.0	83.7	57.2	464.6	1764.4
40	23.2	139.4	56.8	162.2	784.7
60	35.9	182.2	56.4	96.7	508.7
80	46.9	209.5	56.1	71.3	382.8
100	56.5	228.4	55.7	57.6	313.0
120	66.3	240.6	55.4	49.3	267.4
140	74.7	268.6	55.2	41.2	236.4
160	81.8	277.9	55.0	36.9	213.1
180	88.6	284.6	54.7	33.7	195.0

Table S5. The detailed data of fitted EIS for a $\alpha\text{-}Fe_2O_3$ photoanode.

Reaction conditions: 0.1 M NaCl, 50% H_2O in 15 mL of CH_3CN solution, reaction at 0.6 V vs. Ag/AgCl under 470 nm LED irradiation.

Light Intensity	J (u A cm ⁻²)	C _{trap}	R _s	R _{trapping}	R _{ct,trap}
	(µA cm ⁻)	(μr)	(32)	(32)	(32)
5	26.5	178.0	53.6	4318.5	391.5
10	46.0	428.5	53.1	2285	181.8
15	63.6	502.7	52.9	1553.5	157.8
20	80.0	553.7	52.6	1176	150.9
25	95.7	614.5	52.2	962.4	129.2
30	110.5	663.3	51.9	815.0	117.9
35	124.8	589.9	51.7	694.5	123.5
40	138.4	599.6	51.4	617.1	112.3
45	151.4	601.2	51.1	555.9	107.3

Table S6. The detailed data of fitted EIS for a TiO_2 photoanode.

Reaction conditions: 0.1 M NaCl, 50% H_2O in 15 mL of CH_3CN solution, reaction at 0.2 V vs. Ag/AgCl under 365 nm LED irradiation.

Reference

- L. Wu, D. Tang, J. Xue, S. Liu, J. Wang, H. Ji, C. Chen, Y. Zhang and J. Zhao, Competitive non-radical nucleophilic attack pathways for NH₃ oxidation and H₂O oxidation on hematite photoanodes, *Angew. Chem. Int. Ed.*, 2022, 61, e202214580.
- J. Xue, L. Wu, C. Deng, D. Tang, S. Wang, H. Ji, C. Chen, Y. Zhang and J. Zhao, Plasmon-mediated electrochemical activation of Au/TiO₂ nanostructure-based photoanodes for enhancing water oxidation and antibiotic degradation, ACS Appl. Nano Mater., 2022, 5, 11342-11351.
- Y. Yao, L. Zhao, J. Dai, J. Wang, C. Fang, G. Zhan, Q. Zheng, W. Hou and L. Zhang, Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction, *Angew. Chem. Int. Ed.*, 2022, 61, e202208215.
- 4. C. Lefrou and R. Cornut, Analytical Expressions for quantitative scanning electrochemical microscopy (SECM), *ChemPhysChem*, 2010, **11**, 547-556.
- 5. P. Sun, F. O. Laforge and M. V. Mirkin, Scanning electrochemical microscopy in the 21st century, *Phys. Chem. Chem. Phys.*, 2007, **9**, 802-823.
- S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang and Z. Mi, Roadmap on solar water splitting: current status and future prospects, *Nano Futures*, 2017, 1, 022001.
- A. G. Breuhaus-Alvarez, Q. Cheek, J. J. Cooper, S. Maldonado and B. M. Bartlett, Chloride oxidation as an alternative to the oxygen-evolution reaction on H_xWO₃ Photoelectrodes, *J. Phys. Chem. C*, 2021, **125**, 8543-8550.

- Z. Li, L. Luo, M. Li, W. Chen, Y. Liu, J. Yang, S.-M. Xu, H. Zhou, L. Ma, M. Xu, X. Kong and H. Duan, Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO₂ photoanode, *Nat. Commun.*, 2021, **12**, 6698.
- M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. A.-O. X.
 Fang, Y. Tong and Y. A.-O. Li, Morphology and doping engineering of Sndoped hematite nanowire photoanodes, *Nano Lett.*, 2017, 17, 2490-2495.
- C. Wang, X. Long, S. Wei, T. Wang, F. Li, L. Gao, Y. Hu, S. Li and J. Jin, Conformally coupling CoAl-Layered double hydroxides on fluorine-doped hematite: surface and bulk Co-modification for enhanced photoelectrochemical water oxidation, *ACS Appl. Mater. Interfaces*, 2019, **11**, 29799-29806.
- Q. Guo, Q. Zhao, R. Crespo-Otero, D. Di Tommaso, J. Tang, S. D. Dimitrov, M.-M. Titirici, X. Li and A. B. Jorge Sobrido, Single-atom iridium on hematite photoanodes for solar water splitting: catalyst or spectator?, *J. Am. Chem. Soc.*, 2023, 145, 1686-1695.
- T. H. Jeon, G.-h. Moon, H. Park and W. Choi, Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays, *Nano Energy*, 2017, **39**, 211-218.
- J. Y. Kim, D. H. Youn, K. Kang and J. S. Lee, Highly conformal deposition of an ultrathin FeOOH Layer on a hematite nanostructure for efficient solar water splitting, *Angew. Chem. Int. Ed.*, 2016, 55, 10854-10858.
- 14. S. Shen, S. A. Lindley, X. Chen and J. Z. Zhang, Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge

carrier dynamics, Energy Environ. Sci., 2016, 9, 2744-2775.

- C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang and J. Tang, Photoelectrochemical devices for solar water splitting – materials and challenges, *Chem. Soc. Rev.*, 2017, 46, 4645-4660.
- 16. P. Sharma, J.-W. Jang and J. S. Lee, Key Strategies to sdvance the photoelectrochemical water splitting performance of α -Fe₂O₃ Photoanode, *ChemCatChem*, 2019, **11**, 157-179.
- B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert and T. W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes, *Energy Environ. Sci.*, 2012, 5, 7626-7636.
- B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann and J. Bisquert, Water oxidation at hematite photoelectrodes: The role of surface states, *J. Am. Chem. Soc.*, 2012, **134**, 4294-4302.
- Y. Zhang, H. Zhang, A. Liu, C. Chen, W. Song and J. Zhao, Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode, *J. Am. Chem. Soc.*, 2018, **140**, 3264-3269.
- Y. Zhang, H. Zhang, H. Ji, W. Ma, C. Chen and J. Zhao, Pivotal role and regulation of proton transfer in water oxidation on hematite photoanodes, *J. Am. Chem. Soc.*, 2016, **138**, 2705-2711.
- F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D. G. Evans and X. Duan, TiO₂/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting, *Energy Environ. Sci.*, 2016, 9,

2633-2643.

- S.-S. Yi, B.-R. Wulan, J.-M. Yan and Q. Jiang, Highly efficient photoelectrochemical water splitting: surface modification of cobalt-phosphate-loaded Co₃O₄/Fe₂O₃ p–n heterojunction nanorod arrays, *Adv. Funct. Mater.*, 2019, **29**, 1801902.
- 23. P. S. Shinde, S. H. Choi, Y. Kim, J. Ryu and J. S. Jang, Onset potential behavior in α-Fe₂O₃ photoanodes: the influence of surface and diffusion Sn doping on the surface states, *Phys. Chem. Chem. Phys.*, 2016, **18**, 2495-2509.
- 24. A. G. Shard, Practical guides for x-ray photoelectron spectroscopy: quantitative XPS, *J. Vac. Sci. Technol. A*, 2020, **38**, 041201.
- C. A. Mesa, L. Francàs, K. R. Yang, P. Garrido-Barros, E. Pastor, Y. Ma, A. Kafizas, T. E. Rosser, M. T. Mayer, E. Reisner, M. Grätzel, V. S. Batista and J. R. Durrant, Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT, *Nat. Chem.*, 2020, 12, 82-89.
- Y. Zhao, C. Deng, D. Tang, L. Ding, Y. Zhang, H. Sheng, H. Ji, W. Song, W. Ma,
 C. Chen and J. Zhao, α-Fe₂O₃ as a versatile and efficient oxygen atom transfer catalyst in combination with H₂O as the oxygen source, *Nat. Catal.*, 2021, 4, 684-691.
- F. Le Formal, E. Pastor, S. D. Tilley, C. A. Mesa, S. R. Pendlebury, M. Grätzel and J. R. Durrant, Rate law analysis of water oxidation on a hematite surface, *J. Am. Chem. Soc.*, 2015, 137, 6629-6637.

- L. Wu, D. Tang, J. Xue, S. Wang, H. Ji, C. Chen, Y. Zhang and J. Zhao, Boosting multi-hole water oxidation catalysis on hematite photoanodes under low bias, *Sci. China Chem.*, 2023, 66, 896-903.
- 29. M. Jadwiszczak, K. Jakubow-Piotrowska, P. Kedzierzawski, K. Bienkowski and J. Augustynski, Highly efficient sunlight-driven seawater splitting in a photoelectrochemical cell with chlorine evolved at nanostructured WO₃ photoanode and hydrogen stored as hydride within metallic cathode, *Adv. Energy Mater.*, 2020, **10**, 1903213.
- P. J. Barczuk, A. Krolikowska, A. Lewera, K. Miecznikowski, R. Solarska and J. Augustynski, Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films, *Electrochim. Acta*, 2013, 104, 282-288.
- Y. Shi, Y. Li, X. Wei, J. Feng, H. Li and W. Zhou, Facile preparation of porous WO₃ film for photoelectrochemical splitting of Natural Seawater, *J. Electron. Mater.*, 2017, 46, 6878-6883.
- 32. A. M. Rassoolkhani, W. Cheng, J. Lee, A. McKee, J. Koonce, J. Coffel, A. H. Ghanim, G. A. Aurand, C. Soo Kim, W. Ik Park, H. Jung and S. Mubeen, Nanostructured bismuth vanadate/tungsten oxide photoanode for chlorine production with hydrogen generation at the dark cathode, *Commun. Chem.*, 2019, 2, 57.
- 33. S. Iguchi, Y. Miseki and K. Sayama, Efficient hypochlorous acid (HClO) production via photoelectrochemical solar energy conversion using a BiVO₄-

based photoanode, Sustainable Energy Fuels, 2018, 2, 155-162.

- S. Okunaka, Y. Miseki and K. Sayama, Improvement of photoelectrochemical HClO production under visible light irradiation by loading cobalt oxide onto a BiVO₄ photoanode, *Catal. Sci. Technol.*, 2021, 11, 5467-5471.
- 35. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, Solar hydrogen generation from seawater with a modified BiVO₄ photoanode, *Energy Environ. Sci.*, 2011, **4**, 4046-4051.