Tumor Targeted Alpha Particle Therapy with an Actinium-225 Labelled Antibody for Carbonic Anhydrase IX

Katherine A. Morgan,^a Christian W. Wichmann,^{b,c,d} Laura Osellame,^{b,c} Zhipeng Cao,^{b,c} Nancy Guo,^b Andrew M. Scott,^{b,c,d,e} and Paul S. Donnelly^{*a}

^aSchool of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ^bTumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia, ^cSchool of Cancer Medicine, La Trobe University, Melbourne, Australia, ^dDepartment of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia, ^eDepartment of Medicine, University of Melbourne, Melbourne, Australia

Supporting Information

Table of Contents

1.1	Materials and Reagents	5
1.2	Instrumentation	5
1.3	Supporting Information Figures	8
1.4	Synthesis and Characterisation of H ₂ MacropaSqOEt	14
1.4.1	2-Chloromethyl 4-(prop-2-yn-1-yloxy)pyridine-6-ethylcarboxylate (3)	14
1.4.2	2 Compound 5	17
1.4.3	Compound 6	20
1.4.4	Compound 7	23
1.4.5	H ₂ MacropaSqOEt (8)	26
1.5	Antibody Conjugates	30
1.5.1	$H_2MacropaSq-hG250$	30
1.5.2	ELISA	30
1.5.3	Flow Cytometry of hG250 Antibodies and Conjugates	31
1.6	Radiochemistry	32
1.6.1	Cell culture and tumor models	32
1.6.2	Radiolabelling of H ₂ MacropaSq Antibodies with Actinium-225	32
1.6.3	Lindmo-Scatchard Assay	32
1.6.4	Biodistribution Study in BALB/c Nude Mice bearing Established SK-RC-52 Xenografts	34
1.6.5	In vivo Longitudinal Studies with [²²⁵ Ac]Ac(MacropaSq-hG250)	36
1.6.6	5 Immunofluorescence assays	

1.7	References	43
1.6.9	Statistical Analysis	42
1.6.8	Confocal Microscopy and gH2AX foci quantitation	41
1.6.7	Immunohistochemical assays	39

Table of Figures

Figure S1: Chemical Structure of compound 5_27
Figure S2: The preparative RP-HPLC/MS trace of the one-pot reaction of compound 5. Highlighted peaks
were collected and used in future reactions. (Method C: 5 – 95 $\%$ CH ₃ CN in MilliQ with 0.1 $\%$ formic acid at
15 mL/min7
Figure S3: ¹ H NMR (500 MHz; D ₂ O) of H ₂ MacropaSqOEt. Internal reference to Acetone (δ = 2.20 ppm)8
Figure S4: RP-HPLC of H ₂ Macropa-SqOEt stored at 4°C for >18 months. RP-HPC shows >95% purity8
Figure S5: HR-MS of H_2 Macropa-SqOEt stored at 4°C for >18 months. ESI-MS is comparable to freshly
prepared H ₂ Macropa-SqOEt9
Figure S6: SE-HPLC of (a) hG250 and (b) H ₂ MacropaSq-hG250 (column D)
Figure S7: SE-HPLC chromatogram of [²²⁵ Ac]Ac(MacropaSq-hIgG1). Radioactive fractions in red, compared
to the UV trace of H_2MacropaSq-hG250 in blue (λ = 280 nm), column C10
Figure S8: RadioTLC showing radiochemical yield of [225Ac]Ac(MacropaSq-hG250), when incubated in
human serum at 37°C on (a) day zero (RCP 100%) and (b) day seven (RCP 97.8%). [²²⁵ Ac]Ac(MacropaSq-
hG250 is retained at the baseline (green) and $[^{225}Ac]Ac^{III}$ travels to solvent front (red)10
Figure S9: Biodistribution in Balb/c nude mice bearing SK-RC-52 tumors (n = 5). Mice were injected with
14.8 kBq (0.4 μ Ci) of [²²⁵ Ac]Ac(MacropaSq-IgG1) control and sacrificed at Days 0 and 311
Figure S10: (a) Mean tumor volume (mm ³) as a function of time post-treatment with [²²⁵ Ac]Ac(MacropaSq-
hG250) (14.8 kBq, 30 μg), [²²⁵ Ac]Ac(MacropaSq-IgG1) (14.8 kBq, 30 μg) or hG250 (30 μg) in mice with SK-
RC-52 tumor xenografts, (b) individual tumor volume (mm ³) as a function of time post-treatment with
$[^{225}Ac]Ac(MacropaSq-hG250)$ (14.8 kBq, 30 µg), (c) Kaplan Meier plot shows the percentage survival of the
cohort as a function of time (days); (d) Percentage body weight change after treatment with
$\space{225}\mbox{Ac}\space{225}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\mbox{Ac}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}\space{225}2$
days11
Figure S11: [²²⁵ Ac]Ac(MacropaSq-hG250) induces double-strand DNA breaks in an SK-RC-52 tumor model.
Average foci per nuclei from each treatment group (mean ± SEM). Nuclei quantitated for
$[^{225}Ac]Ac(MacropaSq-hG250) = ≥55$. Nuclei quantitated for $[^{225}Ac]Ac-MacropaSq-lgG1$ and hG250 = ≥36
****p= ≤0.000112
Figure S12: Spleen morphology and ultrastructure (A) Day 7 H&E staining of Spleens from treatment groups
as indicated (B) Day 125 H&E staining of Spleens from $[^{225}Ac]Ac(MacropaSq-hG250)$ group. Scale bar = 1
mm. For all insets T; trabecula, WP; white pulp, RP; red pulp12
Figure S13: Kidney morphology and ultrastructure (A) Day 7 H&E staining of Kidneys from treatment groups
as indicated (B) Day 125 H&E staining of Kidneys from [²²⁵ Ac]Ac(MacropaSq-hG250) group. Scale bar = 800
μm. For all insets G; glomerulus, RT; Renal tubes12

Figure S14: HR-MS of compound 3 , [M+H] ⁺ = 254.058014
Figure S15: ¹ H NMR (500 MHz; DMSO-d ₆) of compound 3 14
Figure S16 : ¹³ C NMR (126 MHz; DMSO-d ₆) of compound 3 15
Figure S17: RP-HPLC of Compound 3 (method B)15
Figure S18: HR-MS of compound <i>5</i> , [M+2H] ²⁺ 315.163217
Figure S19: ¹ H NMR (500 MHz; CDCl ₃) of compound 5 . Formic acid (δ = 8.33 ppm)18
Figure S20: ¹³ C NMR (126 MHz; CDCl ₃) of Compound 5 . Formic acid (δ = 165.5 ppm)18
Figure S24: RP-HPLC of compound 5 (R _t = 10.3 min)
Figure S21: HR-MS of compound 6 , [M+2H] ²⁺ = 294.139620
Figure S22: ¹ H NMR (500 MHz; CDCl ₃) of Compound <i>6</i> . Formic acid (δ = 8.48 ppm)21
Figure S23: ¹³ C NMR (126 MHz; CDCl ₃) of Compound <i>6</i>
Figure S24: RP-HPLC of compound <i>6</i> (R _t = 8.54 min)
Figure S25: HR-MS of compound 7 , [M+H] ⁺ = 343.1613, [2M+H] ⁺ = 685.315523
Figure S26: ¹ H NMR (500 MHz, DMSO-d ₆) of compound 7 24
Figure S27: ¹³ C NMR (126 MHz, DMSO-d ₆) of compound 7
Figure S28: RP-HPLC of compound 7 (R _t = 7.33 min)25
Figure S29: HR-MS of H ₂ MacropaSqOEt [M+2H] ²⁺ = 465.216127
Figure S30: ¹³ C NMR (126 MHz; D ₂ O) of H ₂ MacropaSqOEt27
Figure S31: RP-HPLC of H ₂ MacropaSqOEt (R _t = 9.78 mins)28
Figure S32: Flow Cytometry of hG250 antibodies, including $H_2MacropaSq-hG250$, against SK-RC-52 cells.
Figure S33: (a) Lindmo Assay showing the fraction of [²²⁵ Ac]Ac(MacropaSq-hG250) binding to SK-RC-52 cells
as a function of cell number, (b) the inverse of specific binding plotted against the inverse of SK-RC-52 cell
number
Figure S34: Scatchard Assay of [225 Ac]Ac(MacropaSq-hG250) binding to SK-RC-52 cells (K _a = 2.5 x 10 ⁹ M ⁻¹ ,
with the maximum binding capacity to the antigen determined to be 5.1×10^{5} /cell)
Figure S35: Treatment with [225Ac]Ac(MacropaSq-hG250) inhibits cell proliferation in tumors compared to
control groups. Tumor H&E and Ki67 staining. H&E and Ki67 Insets are area matched. Scale bar = 700 $\mu m.$
Figure S36: Treatment with 225Ac G250 induces dsDNA breaks and inhibits cell proliferation in tumor cells.
Percentage of Ki67 cells of immunohistochemically stained 4 μ m tumor sections, n= 6 representative 20 x
images quantitated per treatment group ***p<0.000140

1.1 Materials and Reagents

All solvents and reagents were purchased from standard commercial suppliers and were used as received.

1.2 Instrumentation

¹H, ¹³C, COSY, HSQC, HMBC were all recorded using a Varian FT-NMR 400 or FT NMR 500 spectrometer with a cryoprobe (Bruker). All ¹H NMR spectra were acquired at 400 MHz or 500 MHz and ¹³C spectra were acquired at 101 MHz or 126 MHz. The reported peaks were all referenced to solvent peaks in the order of parts per million at 25°C. Microwave reactions were performed on a Biotage Initiator. Non-radioactive analytical HPLC were performed on Agilent 1200 series HPLC system (System A) or a 1290 LC System (System B) fitted with an Alltech Hypersil BDS-C18 (4.6 x 150 nm, 5um, column A) or a Phenomonex Luna C18(2) column (4.6 mm x 150 mm, 5 µm, column B) and Phenomenex SecurityGuard[™] C18 guard cartridge (4 mm x 30 mm) with a 1 mL/min flow rate; gradient elution of Buffer A = 0.1% TFA in H_2O and Buffer B = 0.1% TFA in acetonitrile (method A: 5 to 100% B in A over 25 min, method B: 0 to 100% B in A over 25 min) and UV detection at 214, 254, 280 nm and 350 nm. Semipreparative RP- HPLC (1260 Infinity II Preparative LC System with a mass detector on a Lunar C18 column, 100Å, 21.2 x 250 mm, 5 µm) with a 15 mL/min flow rate. Gradient elution of Buffer B = 0.1% FA in H₂O and Buffer B = 0.1% FA in acetonitrile Method C (5 to 95% B in A at 23 min, 95 % B in A at 25 min, 5 % B at 26 min) and detection at 280 nm and 254 nm or an Agilent 1200 LC System on a Lunar C18 column, 100Å, 21.2 x 250 mm, 5 μm) with an 8 mL/min flow rate. Gradient elution of Buffer B = 0.1% TFA in H₂O and Buffer B = 0.1% TFA in acetonitrile. Method D: 5 to 60 % B in A at 20 min, 60 to 95% B at 26 min, 95 to 5 % B in A at 30 min). ESI-QTOF MS was collected on an Exactive Plus Orbitrap Infusion mass spectrometer (Exactive Series, 2.8 Build 268801, ThermoFisher Scientific). Analysis was performed using Xcalibur 4.0.27.10 (ThermoFisher Scientific). Protein samples were analysed on Agilent 6220 ESI-TOF LC/MS Mass Spectrometer coupled to an Agilent 1200 LC system (Agilent, Palo Alto, CA). All data were acquired, and reference mass corrected via a dual-spray electrospray ionisation (ESI) source. Acquisition was performed using the Agilent Mass Hunter Acquisition software version B.02.01 (B2116.30). Ionisation mode: Electrospray Ionisation; Drying gas flow: 7 L/min; Nebuliser: 35 psi; Drying gas temperature: 325°C; Capillary Voltage (Vcap): 4000 V; Fragmentor: 300 V; Skimmer: 65 V; OCT RFV: 250 V; Scan range acquired: 300–3200 m/z Internal Reference ions: Positive Ion Mode = m/z = 121.050873 & 922.009798. Protein desalting and chromatographic separation was performed using an Agilent Poroshell C18 2.1 x 75 mm, 5 μ m column using 5% (v/v) acetonitrile ported to waste (0 – 5min). Upon desalting of the sample, the flow was ported back into the ESI source for subsequent gradient elution with (5% (v/v) to 100% (v/v)) acetonitrile / 0.1% formic acid over 8 min at 0.25 mL/min. Analysis was performed using Mass Hunter version B.06.00 with BioConfirm software using the maximum entropy protein deconvolution algorithm; mass step 1 Da; Baseline factor 3.00; peak width set to uncertainty. ELISA assay measurements were performed on a FLUOstar Omega microplate reader (BMG Labtech) and analyzed with MARS data analysis software. Radio-TLC was analyzed using a Raytest Rita-Star TLC scanner. Non-radioactive SE-HPLC was performed on an Agilent 1260 Infinity II HPLC system fitted with a Phenomenex BioSep LC column (1 mL/min, 5 μm, 300 x 7.8 mm, 290Å, column C), or an Agilent 1200 series HPLC system fitted with a Phenomenex Yarra column (0.35 mL/ min, 3 μ m, 300 x 4.6 mm, 290Å, column D) in 0.2M phosphate buffer, pH 6.8 as mobile phase. For analysis of radioactive SE-HPLC, samples were collected in 15-second intervals, allowed to reach secular equilibrium with daughter isotopes (>8 hours) and fractions were read on a Perkin Elmer 2470 Automatic Gamma Counter Wizard² (30 seconds of counting time).

1.3 Supporting Information Figures

Figure S1: Chemical Structure of compound 5_2.

Figure S2: The preparative RP-HPLC/MS trace of the one-pot reaction of compound **5**. Highlighted peaks were collected and used in future reactions. (Method C: 5 - 95 % CH₃CN in MilliQ with 0.1% formic acid at 15 mL/min.

Figure S3: ¹H NMR (500 MHz; D₂O) of H₂MacropaSqOEt. Internal reference to Acetone (δ = 2.20 ppm).

Figure S4: RP-HPLC of H_2 Macropa-SqOEt stored at 4°C for >18 months. RP-HPC shows >95% purity.

Figure S5: HR-MS of H₂Macropa-SqOEt stored at 4°C for >18 months. ESI-MS is comparable to freshly prepared H₂Macropa-SqOEt.

Figure S6: SE-HPLC of (a) hG250 and (b) H₂MacropaSq-hG250 (column D).

Figure S7: SE-HPLC chromatogram of [225 Ac]Ac(MacropaSq-hlgG1). Radioactive fractions in red, compared to the UV trace of H₂MacropaSq-hG250 in blue (λ = 280 nm), column C.

Figure S8: RadioTLC showing radiochemical yield of [²²⁵Ac]Ac(MacropaSq-hG250), when incubated in human serum at 37°C on (a) day zero (RCP 100%) and (b) day seven (RCP 97.8%). [²²⁵Ac]Ac(MacropaSq-hG250 is retained at the baseline (green) and [²²⁵Ac]Ac^{III} travels to solvent front (red).

Table S1: Competition experiment of [²²⁵ Ac]Ac(MacropaSq-hG250) over seven day	/S.

Day 0 (RCP = 100 %)	Hour 1	Day 1	Day 2	Day 7
PBS	99.9	99.9	99.7	99.7
PBS + La ^{III} (5x)	99.8	99.9	100	99.4
PBS + La ^{III} (50x)	99.9	100	99.9	99.4
PBS + La ^{III} (500x)	99.9	99.9	99.8	99.2
PBS + H₄EDTA (5x)	98.4	99.2	99.5	99.6
PBS + H ₄ EDTA (50x)	99.9	100	99.8	99.1

Figure S9: Biodistribution in Balb/c nude mice bearing SK-RC-52 tumors (n = 5). Mice were injected with 14.8 kBq (0.4μ Ci) of [²²⁵Ac]Ac(MacropaSq-lgG1) control and sacrificed at Days 0 and 3.

Figure S10: (a) Mean tumor volume (mm³) as a function of time post-treatment with [²²⁵Ac]Ac(MacropaSq-hG250) (14.8 kBq, 30 µg), [²²⁵Ac]Ac(MacropaSq-lgG1) (14.8 kBq, 30 µg) or hG250 (30 µg) in mice with SK-RC-52 tumor xenografts, (b) individual tumor volume (mm³) as a function of time post-treatment with [²²⁵Ac]Ac(MacropaSq-hG250) (14.8 kBq, 30 µg), (c) Kaplan Meier plot shows the percentage survival of the cohort as a function of time (days); (d) Percentage body weight change after treatment with [²²⁵Ac]Ac(MacropaSq-hG250) (14.8 kBq), [²²⁵Ac]Ac(MacropaSq-hIgG1(14.8 kBq) or hG250(30 µg) over 84 days.

Figure S11: [²²⁵Ac]Ac(MacropaSq-hG250) induces double-strand DNA breaks in an SK-RC-52 tumor model. Average foci per nuclei from each treatment group (mean ± SEM). Nuclei quantitated for [²²⁵Ac]Ac(MacropaSq-hG250) = \geq 55. Nuclei quantitated for [²²⁵Ac]Ac-MacropaSq-lgG1 and hG250 = \geq 36 ****p = \leq 0.0001.

Figure S12: Spleen morphology and ultrastructure (A) Day 7 H&E staining of Spleens from treatment groups as indicated (B) Day 125 H&E staining of Spleens from [²²⁵Ac]Ac(MacropaSq-hG250) group. Scale bar = 1 mm. For all insets T; trabecula, WP; white pulp, RP; red pulp.

Figure S13: Kidney morphology and ultrastructure (A) Day 7 H&E staining of Kidneys from treatment groups as indicated (B) Day 125 H&E staining of Kidneys from [225 Ac]Ac(MacropaSq-hG250) group. Scale bar = 800 μ m. For all insets G; glomerulus, RT; Renal tubes.

1.4 Synthesis and Characterisation of H₂MacropaSqOEt

1.4.1 2-Chloromethyl 4-(prop-2-yn-1-yloxy)pyridine-6-ethylcarboxylate (3)

Thionyl Chloride (6 mL) was slowly added to 2-Hydroxymethyl 4-(prop-2-yn-1-yloxy)pyridine-6-ethylcarboxylate (0.4 g, 1.7 mmol) at 0 °C under an atmosphere of N₂ and stirred for 3 hours. After 3 hours, the thionyl chloride was removed in vacuo to yield a pale-yellow residue, which was dissolved in ethyl acetate (20 mL) and washed with saturated NaHCO₃ (30 mL) and water (30 mL). The organic fractions were dried over MgSO₄, filtered and the solvent was removed under reduced pressure to yield a pale-yellow powder (0.33g, 77%). R_t = 13.7 mins (system B, method B, column B). ESI-MS [M+H]⁺: 254.0580 calculated for (C₁₂H₁₃ClNO₃)⁺: 254.0578. ¹H NMR (500 MHz; DMSO-d6): δ 7.60 (d, *J* = 2.4 Hz, 1H, CH_{Ar}), 7.41 (d, *J* = 2.4 Hz, 1H, CH_{Ar}), 5.03 (d, *J* = 2.4 Hz, 2H, CH₂C≡), 4.79 (s, 2H, CH₂Cl), 4.36 (q, *J* = 7.1 Hz, 2H, CH₂), 3.72 (t, *J* = 2.4 Hz, 1H, CH≡), 1.33 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (126 MHz; DMSO-d6): δ 165.0 (COO), 164.3 (C_{Ar}), 158.45 (C_{Ar}), 149.3 (C_{Ar}), 113.3 (CH_{Ar}), 111.0 (CH_{Ar}), 79.6 (CH₂≡), 77.8 (CH≡), 61.5(CH₂), 56.2 (CH₂C≡), 46.3 (CH₂Cl), 14.1 (CH₃).

Figure S14: HR-MS of compound 3, [M+H]⁺ = 254.0580.

Figure S15:¹H NMR (500 MHz; DMSO-d₆) of compound **3**.

Figure S17: RP-HPLC of Compound 3 (method B).

1.4.2 Compound 5

Two-step synthesis: Methyl 6-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecan-7yl)methyl)picolinate (0.149 g, 0.4 mmol), 2-chloromethyl 4-(prop-2-yn-1-yloxy)pyridine-6ethylcarboxylate (0.138 g, 0.54 mmol) and DIPEA (0.14 mL, 0.8 mmol) in CH₃CN (2 mL) were combined and the reaction was heated with microwave irradiation at 85°C for 1 hour. The resulting solution was taken to dryness under reduced pressure to yield a pale-yellow oil, which was purified via semi-preparative HPLC (method D), and appropriate fractions were combined and lyophilized to give a colorless oil (131 mg, 52%). One-pot synthesis: Diaza-18crown-6 (50 mg, 0.19 mmol), compound 3 (46 mg, 0.24 mmol), compound 2 (76.2 mg, 0.31 mmol), DIPEA (70 µL 0.4 mmol) were dissolved in CH₃CN (2 mL) and heated with microwave irradiation at 90 °C for 1 hour. The resulting solution was diluted to a final ratio of MilliQ: CH₃CN of 2:1 and lyophilized. The resulting crude product was purified via semipreparative HPLC (method C). Pure fractions of compounds 5, 5_2, and H₂Macropa were separated and lyophilized, giving compound 5 (57 mg, 48%). $R_t = 10.38$ min (system A, method A, column B). ESI-MS [M+2H]²⁺: 315.1630 calculated for (C₃₂H₄₆N₄O₉)²⁺: 315.1627, [M+H]⁺: 629.3186 calculated for $(C_{32}H_{44}N_4O_9)^+$: 629.3181. ¹H NMR (500 MHz; CDCl₃): δ 8.04 (d, J = 7.5 Hz, 2H, CH_{Ar}), 7.89 (t, J = 7.8 Hz, 1H, CH_{Ar}), 7.73 (d, J = 2.3 Hz, 1H, CH_{Ar}), 7.62 (d, J = 2.5 Hz, 1H, CH_{Ar}), 4.88 (d, J = 2.4 Hz, 2H, CH₂C=), 4.44 (q, J = 7.1 Hz, 2H, N-CH₂-), 4.31 (s, 2H, N-CH₂-), 4.26 (s, 2H, N-CH₂), 3.98 (s, 3H, CH₃), 3.80 (td, J = 5.1, 2.0 Hz, 8H, -OCH₂), 3.61 (s, 8H, CH₂-O), 3.21 (q, J = 5.1 Hz, 8H, -NCH₂), 2.63 (t, J = 2.4 Hz, 1H, CH=), 1.41 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR (126 MHz;

CDCl3): δ 165.55 (FA), 165.52 (COO), 164.8 (C_{Ar}-O), 164.3 (C_{Ar}), 149.4 (C_{Ar}), 147.5 (C_{Ar}), 138.3 (CH_{Ar}), 128.0 (CH_{Ar}), 124.5 (CH_{Ar}), 113.4 (CH_{Ar}), 112.2 (CH_{Ar}), 77.09 (C=), 76.91 (CH=), 70.51 (CH₂N), 70.48 (CH₂N), 67.76 (OCH₂), 67.73 (OCH₂), 62.2 (CH₂CH₃), 59.57 (OCH₂) 59.44 (OCH₂), 54.74 (NCH₂), 54.62 (NCH₂), 56.6 (CH₂C=), z), 53.1 (CH₃), 14.4 (CH₃CH₂).

Figure S18: HR-MS of compound *5*, [M+2H]²⁺ 315.1632.

Figure S20: ¹³C NMR (126 MHz; CDCl₃) of Compound **5**. Formic acid (δ = 165.5 ppm).

Figure S21: RP-HPLC of compound **5** (R_t = 10.3 min).

1.4.3 Compound 6

4-(prop-2-yn-1-yloxy)-6-((16-((6-carboxypyridin-2-yl)methyl)-1,4,10,13-tetraoxa-7,16diazacyclooctadecan-7-yl)methyl)picolinic acid was synthesized using an adapted literature protocol.¹ To a solution of **5** (18.5 mg, 0.03 mmol) in DCM (450 mL), was added a suspension of NaOH in methanol (50 mL, 3 M), so the final concentration of NaOH was 0.3 M, and the final DCM: MeOH ratio was 9:1. The reaction mixture was stirred at room temperature for 1 hour, the reaction mixture was neutralized and the solvent was removed under reduced pressure. R_t = 8.54 mins (System A, method A, column B). ESI-MS $[M+2H]^{2+}$: 294.1396 calculated for $(C_{29}H_{40}N_4O_9)^{2+}$: 294.1393. $[M+H]^+$: 587.2715 calculated for $(C_{29}H_{39}N_4O_9)^+$: 587.2712.¹H NMR (500 MHz; CDCl₃): δ 8.10 (d, *J* = 7.7 Hz, 1H, CH_{Ar}), 7.89 (t, *J* = 7.7 Hz, 1H, CH_{Ar}), 7.71 (d, *J* = 2.4 Hz, 1H, CH_{Ar}), 7.67 (d, *J* = 7.4 Hz, 1H, CH_{Ar}), 7.30 (d, *J* = 2.5 Hz, 1H, CH_{Ar}), 4.86 (d, J = 2.4 Hz, 2H, CH₂C=), 4.37 (s, 2H, N-CH₂-), 4.17 (s, 2H, N-CH₂-), 3.78 (t, J = 5.0 Hz, 4H, -OCH₂), 3.70 (t, J = 5.0 Hz, 4H, -OCH₂), 3.57 (q, J = 5.3 Hz, 8H, CH₂-O), 3.21 (t, J = 4.7 Hz, 4H, -NCH₂), 3.07 (t, J = 4.9 Hz, 4H, -NCH₂), 2.64 (t, J = 2.4 Hz, 1H, CH=). ¹³ C NMR (126 MHz; CDCI3): δ 166.8 (FA), 166.00 (COO), 165.89 (COO), 164.8 , 149.6, 147.6, 138.8 (CH_{Ar}), 126.9 (CH_{Ar}), 123.2 (CH_{Ar}), 113.5 (CH_{Ar}), 109.3 (CH_{Ar}), 77.49 (C=), 76.46 (CH=), 70.44 (CH₂N), 70.37 (CH₂N), 68.4 (CH₂O), 67.8 (CH₂O), 59.2 (OCH₂), 58.9 (OCH₂), 56.7 (NCH₂), 55.1 (NCH₂), 54.7 (CH₂C=).

Figure S22: HR-MS of compound **6**, [M+2H]²⁺ = 294.1396.

Figure S25: RP-HPLC of compound **6** (R_t = 8.54 min).

1.4.4 Compound 7

Freshly prepared diethyl squarate (0.23g, 1.32 mmol) was dissolved in ethanol (4 mL) before adding 1-Amino-11-azido-3,6,9-trioxaundecane (0.28g, 1.29 mmol) and DIPEA (1 eq) under nitrogen. The mixture was stirred at room temperature for 8 hours; then the colorless solution was taken to dryness under reduced pressure and purified *via* semi-preparative HPLC (method C). Fractions were combined and lyophilized to yield a colorless oil (209 mg, 49%). ESI-MS [M+H]⁺: 343.1613 calculated for ($C_{14}H_{23}N_4O_6$)⁺: 343.1612, [M+2H]⁺: 685.3152 calculated for ($C_{28}H_{45}N_8O_{12}$)⁺: 685.3151. R_t = 7.33 mins (system A, method A, column B). ¹H- NMR (500 MHz; DMSO-d₆): δ 8.78 (s, 0.5 H, NH_a), 8.61 (s, 0.5 H,NH_b), 4.64 (dd, *J* = 6.8, 4.6 Hz, 2H, CH₂), 3.59 (d, *J* = 5.4 Hz, 1H, CH₂NH_b), 3.57 (t, *J* = 4.8 Hz, 2H, CH₂O), 3.51 (t, *J* = 8.6 Hz, 10H, CH₂O), 3.42 (d, *J* = 5.4 Hz, 1H, CH₂NH_a), 3.36 (t, *J* = 4.9 Hz, 2H, CH₂-N₃), 1.35 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (126 MHz; DMSO-d₆): δ 189.31 (CO-C-O), 189.16 (CO-C-O), 182.20 (CO-C-N), 182.04 (CO-C-N), 176.9 (C=C-O), 176.6 (C=C-O), 173.0 (HN-C=C), 172.5 (HN-C=C), 69.83 (CH₂-O), 69.78 (CH₂-O), 69.74 (CH₂-O), 69.69 (CH₂-O), 69.61 (CH₂-O), 69.25 (CH₂-O), 69.21 (CH₂-O), 68.79 (CH₂-O), 68.74 (CH₂CH₃), 50.0 (CH₂-N₃), 43.7 (CH₂-NH), 15.6 (CH₃CH₂).

Figure S26: HR-MS of compound **7**, [M+H]⁺ = 343.1613, [2M+H]⁺ = 685.3155.

Figure S29: RP-HPLC of compound **7** (R_t = 7.33 min).

1.4.5 H₂MacropaSqOEt (8)

CuSO₄ (0.22 mg, 0.0014 mmol, 8% mmol) and Sodium Ascorbate (0.64 mg, 0.0032 mmol, 18% mmol) were combined to ensure complete reduction to copper (I) species. TBTA (2.8 mg, 0.0057 mmol, 32% mmol in DMF) was added as a stabilizing ligand with **7** (6.42 mg, 0.016 mmol) and reacted for 10 minutes. **6** (11 mg, 0.018 mmol) was added, and the reaction mixture was purged for 15 minutes with a stream of nitrogen. The reaction was monitored by RP-HPLC to ensure the complete removal of azide species (280 nm). After one hour, Na₂EDTA

was added to the reaction species to remove the catalytic copper. The pale green solution was taken to dryness under reduced pressure and dried in vacuo. The resulting precipitate was purified via semi-preparative HPLC (method D), and fractions were combined and lyophilized to yield an off-white powder (6.5 mg, 41 %). ESI-MS [M+2H]²⁺: 465.2161 calculated for $(C_{43}H_{62}N_8O_{15})^{2+}$: 465.2162. Rt = 9.78 mins (system A, method B, column B). ¹H NMR (500 MHz, D₂O) δ 8.24 (d, J = 2.3 Hz, 1H, CH_{tz}), 8.10 (t, J = 7.8 Hz, 1H, CH_{Ar}), 8.04 (s, 1H, CH_{Ar}), 7.75 $(d, J = 7.8 Hz, 1H, CH_{Ar}), 7.67 (d, J = 9.0 Hz, 1H, CH_{Ar}), 7.42 (d, J = 2.2 Hz, 1H, CH_{Ar}), 5.41 (s, 2H, 2H)$ CH₂C_{tz}), 4.74 (s, 2H, N-CH₂), 4.63 (m, 4H, N-CH₂ & CH₂CH₃), 3.98 (d, J = 4.9 Hz, 2H, CH₂O), 3.94 (t, J = 4.8 Hz, 8H, CH₂O), 3.72 (t, J = 5.0 Hz, 2H, CH₂N_{tz}), 3.69 (s, 8H, OCH₂), 3.64 (dq, J = 15.1, 5.0 Hz, 16H, CH₂O & NCH₂), 3.59 – 3.52 (m, 4H, N_{sq}CH₂CH₂), 1.37 (q, J = 7.4 Hz, 3H, CH₃).¹³C NMR (126 MHz, D₂O) δ 191.20 (C_{sq}=O), 185.60 (C_{sq}=O), 179.69 (O-C_{sqa}), 179.47 (O-C_{sqb}), 176.04 (C_{sq}-NH_a), 175.99 (C_{sq}-NH_b) 169.48 (COO), 168.73 (COO), 165.81 – 164.96, (q, TFA), 153.90 (C_{Ar}), 153.85 (C_{Ar}), 152.35 (C_{Ar}), 150.78 (C_{Ar}), 148.92 (C_{Ar}), 144.34 (C_{tz}), 142.60 (CH_{Ar}), 130.59 (CH_A), 128.55 (CH_{tz}), 128.53 (29), 127.75 (CH_{Ar}), 116.77 (CH_{Ar}), 122.29 – 115.32 (q, TFA), 114.88 (CH_{Ar}), 114.80 (CH_{Ar}), 73.08 (CH₂CH_{3a}), 73.02 (CH₂CH_{3b}), 72.39 (OCH₂), 72.22 (OCH₂), 72.11 (OCH₂), 72.01 (OCH₂), 71.85 (OCH₂), 71.15 (OCH₂), 66.39 (OCH₂), 64.34 (CH₂C_{tz}), 59.82 (-CH₂N), 59.69, (CH₂N) 57.20 (NCH₂), 57.13 (NCH₂), 52.72 (CH₂N_{tz}), 46.47 (N_{sq}CH_{2a}), 46.33 (N_{sq}CH_{2b}), 17.51 (CH_{3a}), 17.46 (CH_{3b}).

Figure S30: HR-MS of H_2 MacropaSqOEt [M+2H]²⁺ = 465.2161.

Figure S32: RP-HPLC of H₂MacropaSqOEt (R_t = 9.78 mins).

1.5 Antibody Conjugates

1.5.1 H₂MacropaSq-hG250

Humanized girentuximab, hG250 (5.03 mg/ mL, 200 μ L), and IgG1 (3.0 mg/mL) in PBS were buffer exchanged into borate buffer (0.25 M, pH 9.0) and reconstituted to a final concentration of 5 mg/ mL. To the reaction mixture was added H₂MacropaSqOEt (15 mg / mL stock solution in DMSO – final DMSO concentration less than 4 %, 15 equivalents) and shaken at room temperature for four hours. Excess reagents were removed, and buffer was exchanged (sodium acetate, 0.15 M, pH 5.5) *via* spin filtration (50 KDa MW cut-off). H₂MacropaSq-IgG1 required further purification due to excess aggregation above suitable levels (> 4%). SE-HPLC was performed with the antibody conjugate collected at 15-second aliquots to separate aggregated protein.

1.5.2 ELISA

The ELISA protocol was adapted from Pantheon Biologics.² Human CAIX protein (50 µg) was reconstituted in MilliQ (stock concentration of 200 µg/mL), then diluted (3µg/ mL), coated on a 96-well plate (100 µL), sealed, and incubated overnight at 2-8 °C before washing with PBST wash solution (1x, 4 x 300 µL). Blocking buffer (1% BSA in PBS) was added, and the plate was sealed and incubated (60 mins), then washed with PBST wash solution. hG250, H₂MacropaSqhG250, and the isotype control, IgG1 were diluted to 100 µg/mL in assay diluent. The dilutions were performed in a deep well dilution plate from a maximum concentration of 5000 ng/ mL to 2.28 ng/mL before 100 µL of the appropriate dilution was used for the assay. The assay plate was sealed and incubated (75 min) before washing with PBST wash solution. Secondary antibody-HRP conjugate was diluted to (15 ng/mL) and added to the assay plate (100 µL), then incubated in darkness (75 min) before washing with PBST wash solution. Ensure the TMB substrate has sufficient time to equilibrate to room temperature in the absence of light. After at least 60 minutes, TMB substrate was added to the assay plate and incubated for 15 minutes in darkness before stop solution (2M H_2SO_4 , 100 μ L) was added to stop the reaction. The plate was checked to ensure no air bubbles, and then samples were run on a FLUOstar Omega microplate reader (BMG Labtech) and analyzed with MARS data analysis software.

1.5.3 Flow Cytometry of hG250 Antibodies and Conjugates

SK-RC-52 cells cultured in RPMI media were lifted with trypsin and pelleted *via* gentle centrifugation. Cells were resuspended in fresh media with a final concentration of 1×10^6 cells/ mL. Antibody samples (20 µg) were added and incubated at 4°C for 1 hour before excess antibody was removed *via* centrifugation and washing (x3 PBS). Populations of cells with no fluorescence will have a fluorescence intensity displayed on the histogram at approximately 0. The binding of hG250, as well as the conjugate H₂MacropaSq-hG250 to SK-RC-52 cells was confirmed by flow cytometry. There is no change in binding between the unmodified hG250 antibody and the H₂MacropaSq-hG250 conjugate.

Figure S33: Flow Cytometry of hG250 antibodies, including H_2 MacropaSq-hG250, against SK-RC-52 cells.

1.6 Radiochemistry

1.6.1 Cell culture and tumor models

SK-RC-52 was derived from a mediastinal metastasis of a primary RCC. SK-RC-52 cells were cultured in RPMI-1640 medium, supplemented with 20% fetal bovine serum (FBS) at 37 °C in a humidified atmosphere with 5% CO₂. Before *in vitro* and *in vivo* experiments, cells were trypsinized and washed with RPMI-1640 supplemented with 20% FBS.

1.6.2 Radiolabelling of H₂MacropaSq Antibodies with Actinium-225

Actinium-225 was obtained from Oak Ridge National Laboratory as $[^{225}Ac]Ac(NO_3)_{3.}$ $[^{225}Ac]Ac(NO_3)_3$ was reconstituted in HCl (0.2 M, 50 µL). $[^{225}Ac]AcCl_3$ (25µCi/ 925kBq, 5 µL) was neutralized with NaCH₃CO₂ buffer (0.15 M, 45 µL, pH 5.5, stock 1). To a solution of H₂MacropaSq-hG250 (1mg/ mL NaCH₃CO₂ buffer, pH 5.5, 10 µL) was added stock 1 (20 µL, 10 µCi/ 370 kBq) and left for 5 minutes. The radiolabelled constructs were used without further purification, RCP, <99% performed *via* radioTLC (Radio detector: raytest RITA, stationary phase glass microfiber chromatography paper impregnated with silica gel, mobile phase: 0.05 M citrate buffer, pH 5.0).

Time (min)	1.5 ×10 ⁻⁷ M	1.5 ×10 ⁻⁶ M
1	94.6	99.3
5	99.8	99.9
15	99.9	99.9
30	99.9	99.9

Table 32. RCP as a function of time at various concentrations of Π_2 viacropasy-iiG250.	Table S2: RCP	as a function	of time at various	s concentrations	of H ₂ MacropaSq-hG250.
--	---------------	---------------	--------------------	------------------	------------------------------------

Table S3: Immunoreactivity of [225Ac]Ac(MacropaSq-hG250) incubated in human serum over sevendays.

Immunoreactivity	Day 0 (%)	Day 2 (%)	Day 7 (%)
[²²⁵ Ac]Ac(MacropaSq-hG250)	99.9	86.0	86.9
Nonspecific binding	4.47	4.07	9.03

1.6.3 Lindmo-Scatchard Assay

Lindmo-Scatchard assays were performed as previously described.³ Briefly, SK-RC-52 cells were suspended at concentrations of 5.0, 2.5, 1.25, 0.625, 0.31, 0.15, and 0.07 x 10⁶ cells/mL in 500 µL PBS (pH 7.4). Aliquots of either [²²⁵Ac]Ac(MacropaSq-hG250) (1µg of radiolabelled conjugate per 150µL of saline) were added to each tube, and the samples were gently shaken for 60 minutes at room temperature. The treated cells were then pelleted via centrifugation (3000 rpm for 5 minutes), re-suspended, and washed twice with cold PBS before removing the supernatant and counting the activity associated with the cell pellet. Self-blocking experiments with the radiolabelled antibody of extremely low specific activity (i.e., 1000-fold excess of unlabelled antibody) were performed as a negative control. The activity data were background-corrected and compared with the total number of counts in appropriate control samples. Immunoreactive fractions were determined by linear regression analysis of a plot of (total/bound) activity against (1/[normalized cell concentration]). In the radioactive Lindmo assay, [225Ac]Ac(MacropaSq-hG250) was determined to have an immunoreactive fraction > 0.99. The Scatchard assay determined the number of antibody molecules bound per cell and extrapolated the association constant of the antibody-antigen binding interaction, calculated as $K_a = 2.5 \times 10^9 \text{ M}^{-1}$.

Figure S34: (a) Lindmo Assay showing the fraction of [²²⁵Ac]Ac(MacropaSq-hG250) binding to SK-RC-52 cells as a function of cell number, (b) the inverse of specific binding plotted against the inverse of SK-RC-52 cell number

Figure S35: Scatchard Assay of [²²⁵Ac]Ac(MacropaSq-hG250) binding to SK-RC-52 cells ($K_a = 2.5 \times 10^9$ M⁻¹, with the maximum binding capacity to the antigen determined to be 5.1×10^5 /cell).

1.6.4 Biodistribution Study in BALB/c Nude Mice bearing Established SK-RC-52 Xenografts

All animal studies were approved by the Austin Health Animal Ethics Committee. To characterise the biodistribution properties of [²²⁵Ac]Ac(MacropaSg-hG250) in mice bearing SK-RC-52 renal cell carcinoma tumors BALB/c nude mice with established SK-RC-52 tumor xenografts $(TV = 155.89 \pm 21.47 \text{ mm}^3)$ received intravenous injections of ^{[225}Ac]Ac(MacropaSq-hG250) (30 μ g, 0.4 μ Ci/14.8 kBq, *n* = 30) or isotype control $[^{225}Ac]Ac(MacropaSq-IgG1)$ (30 µg, 0.4µCi/14.8 kBq; n = 10 mice). Following injection on day 0 of $[^{225}Ac]Ac-MacropaSq-hG250$, groups of mice (n = 5) were sacrificed by over-inhalation of isoflurane anesthesia and biodistribution was assessed on Day 0 (3 hrs p.i.) and day 1, 2, 3, 5, and 7 post-injection. Mice injected with isotype control were assessed at day 0 and 3 postinjection only. Mice were exsanguinated by cardiac puncture, and tumors and organs [liver, spleen, kidney, muscle, skin, bone (femur), lungs, heart, stomach, brain, small intestines, large intestines, tail, and colon] were collected immediately. All samples were counted in a dualchannel gamma scintillation counter (Wizard, PerkinElmer, Australia). Triplicate standards prepared from the injected material were counted at each time point with tissue and tumor samples enabling calculations to be corrected for the physical decay of the isotope. The tissue

distribution data were calculated as the mean \pm SD percent injected activity per gram tissue

(%IA g⁻¹) for each construct per time point.

	Day 1				Day 2			Day 3		
	IA g ⁻¹ %	SD	n	<i>IA</i> g⁻¹ <i>%</i>	SD	n	IA g ⁻¹ %	SD	п	
Blood	41.597	5.072	5	26.157	2.025	5	23.981	4.76	5	
Brain	1.604	0.279	5	0.887	0.262	5	0.634	0.143	5	
Heart	8.771	1.011	5	5.423	0.813	5	5.016	1.389	5	
Lung	16.412	2.394	5	10.888	1.527	5	10.894	2.355	5	
Stomach	3.192	0.583	5	2.986	0.397	5	2.834	0.862	5	
Spleen	11.378	2.072	5	12.047	1.886	5	12.02	3.205	5	
Liver	r 12.734	1.804	5	10.816	1.932	5	10.987	1.637	5	
Kidney	12.07	2.129	5	9.122	0.97	5	8.705	1.749	5	
S.Intestine	3.65	0.741	5	2.883	0.467	5	2.859	0.561	5	
Colon	2.873	0.515	5	2.673	0.382	5	2.522	0.535	5	
Muscle	2 1.528	0.312	5	2.33	0.542	5	1.91	0.414	5	
Bone	2.869	0.437	5	3.274	0.498	5	3.356	1.016	5	
Skin	4.441	0.369	5	7.162	1.101	5	5.827	0.654	5	
Tai	5.516	1.39	5	3.335	0.356	5	2.895	0.235	5	
Tumor	r 5.272	1.433	5	12.344	1.864	5	16.095	4.767	5	
		Day 4		1	Day 5			Day 7		
	IA g ⁻¹ %	SD	n	IA g ⁻¹ %	SD	n	IA g ⁻¹ %	SD	n	
Blood	23.362	4.282	5	17.32	4.109	5	14.793	3.334	5	
Brain	0.918	0.19	5	0.625	0.251	5	0.351	0.137	5	
Heart	5.28	0.856	5	3.32	1.196	5	2.624	1.251	5	
Lung	10.54	1.2	5	7.976	2.191	5	6.573	1.681	5	
Stomach	3.148	0.349	5	2.67	0.684	5	1.544	0.529	5	
Spleen	13.899	2.567	5	10.221	3.027	5	8.288	1.788	5	
Liver	10.464	1.345	5	8.629	2.176	5	9.149	2.04	5	
Kidney	9.143	0.882	5	7.165	1.857	5	7.008	1.156	5	
S.Intestine	2.462	0.225	5	2.092	0.33	5	1.777	0.476	5	
Colon	2.78	0.432	5	1.924	0.406	5	1.297	0.446	5	
Muscle	1.682	0.323	5	1.219	0.238	5	0.871	0.28	5	

SI Table 1: Biodistribution data of [²²⁵Ac]Ac(MacropaSq-hG250).

Bone	3.525	0.734	5	2.594	0.798	5	1.425	0.468	5
Skin	5.96	0.464	5	4.677	1.24	5	3.854	1.227	5
Tail	2.75	0.29	5	2.021	0.28	5	1.891	0.416	5
Tumor	21.26	6.45	5	19.119	7.064	5	21.416	10.134	5

SI Table 2: Biodistribution of [²²⁵Ac]Ac(MacropaSq-IgG1).

		Day 0			Day 3	
Organ	IA g ⁻¹ %	SD	n	IA g ⁻¹ %	SD	n
Blood	31.286	3.407	5	2.095	1.282	5
Brain	0.997	0.155	5	0	0	5
Heart	7.351	0.942	5	0.673	0.286	5
Lung	13.004	2.29	5	1.536	0.834	5
Stomach	2.673	0.486	5	0.585	0.386	5
Spleen	12.745	2.562	5	10.525	2.223	5
Liver	23.642	2.837	5	19.848	6.589	5
Kidney	12.721	1.408	5	4.876	1.168	5
S.Intestine	3.606	0.562	5	1.224	0.278	5
Colon	2.87	0.286	5	1.235	0.479	5
Muscle	1.238	0.231	5	0.297	0.181	5
Bone	2.899	0.545	5	1.267	0.328	5
Skin	3.97	1.145	5	2.66	0.745	5
Tail	4.534	1.299	5	1.945	0.386	5
Tumor	4.194	0.637	5	3.649	0.485	5

1.6.5 In vivo Longitudinal Studies with [²²⁵Ac]Ac(MacropaSq-hG250)

All animal studies were approved by the Austin Health Animal Ethics Committee. For the longitudinal therapy study in mice bearing SK-RC-52 renal cell carcinoma tumors BALB/c nude mice with established SK-RC-52 tumor xenografts received intravenous injections of [²²⁵Ac]Ac(MacropaSq-hG250) (30 µg, 0.4µCi/14.8 kBq, *n* =14, mean TV 127.6 ± 23.42 mm³), isotype control [²²⁵Ac]Ac(MacropaSq-lgG1) (30 µg, 0.4uCi/14.8 kBq; *n* = 11 mice, mean TV 129.7 ± 21.98 mm³) or cold hG250 (30 µg, *n* = 8, mean TV 128.91 ± 13.94 mm³). Following

injection on Day 0 of the three groups, the mice were sacrificed by over-inhalation of isoflurane anesthesia once they reached their ethical endpoint (tumor volume >1000m³) or at the following collection time points: 3 mice per group at the time of growth curve separation (when anti-tumor effect becomes apparent), 3 mice per group at the time of hG250 cold control cull due to ethical endpoint + all tissues from hG250 cold control group (n = 5 remaining), 3 mice from [²²⁵Ac]Ac(MacropaSq-hG250) group on the day of [²²⁵Ac]Ac-MacropaSq-IgG1) cull due to ethical endpoint + all tissues from [²²⁵Ac]Ac(MacropaSq-lgG1) group (n = 5 remaining), and all remaining tissues from [²²⁵Ac]Ac(MacropaSq-hG250) at ethical endpoint (n = 5 remaining). The tumor volumes were measured every 3 – 4 days for the first 49 days, then every 3 – 7 days until day 126. A Logrank test of the Kaplan Meier survival determined the difference in survival between [²²⁵Ac]Ac(MacropaSq-hG250) and the control groups to be statistically significant (p ≤0.0001).

SI Table 3: Average tun	nor volumes of mice	receiving [225Ac]Ac(Macro	paSg-hG250
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Time post	Tumor Volume	SD	n	Time post	Tumor Volume	SD	n
treatment (d)	(mm³)			treatment	(mm³)		
				(d)			
0	127.6	23.42	14	49	38.3	26.12	5
3	206.69	110.33	14	55	42.69	39.86	5
6	210.73	140.77	14	63	37.2	44.03	5
10	169.04	42.6	11	70	84.03	142.7	5
13	141.5	47.56	8	73	90.62	150.85	5
17	110.37	16.07	8	76	151.92	272.85	5
20	107.92	15.65	5	84	245.01	429.24	5
23	108.15	28.74	5	91	98.81	158.08	4
27	95.34	25.95	5	98	128.29	201.77	4
31	94.2	19.85	5	105	115.84	177.71	4
35	82.87	17.43	5	112	190.62	287.57	4

38	64.35	19.16	5	119	263.76	405.57	4
42	61.34	29.99	5	126	81.12	140.5	3
45	45.34	21.43	5				

SI Table 4: Average tumor volumes of mice receiving [²²⁵Ac]Ac(MacropaSq-IgG1) and hG250.

	[²²⁵ Ac]Ac(Macropa	Sq-IgG1)		hG250		
Time post	Tumor Volume	SD	n	Tumor Volume (mm ³)	SD	n
treatment	(mm³)					
0	129.66	21.98	11	128.91	13.94	8
3	227.81	93.34	11	288.11	139.21	8
6	329.83	163.22	11	553.2	353.17	8
10	375.55	76.2	8	1054.13	546.29	5
13	520.24	127.17	5	-	-	-
17	1092.35	243.84	5	-	-	-

1.6.6 Immunofluorescence assays

Formalin-fixed, paraffin-embedded tumors were dewaxed by two washes in xylene, followed by rehydration in decreasing concentrations of alcohol (two washes in 100% ethanol for 5 minutes each, 95% ethanol, 5 minutes and 70% ethanol for 5 minutes). Slides were placed in water before antigen retrieval using citrate buffer, pH 6.0 (Sigma) at 90°C for 20 mins. Slides were left to cool for 1 hour at room temperature, washed with water, and blocked with 5% bovine serum albumin (BSA; Sigma) and 5% normal goat serum (Thermo Fisher Scientific) in Tris Buffered Saline with Tween 20 (TBST20; Sigma). Slides were incubated with anti-gH2AX (1:200; Cell Signalling Technologies) and anti-F-actin (1:200; Abcam) primary antibodies in with 5% BSA (Sigma) and 5% normal goat serum (Thermo Fisher Scientific) in TBST20 (Sigma) overnight at 4°C. Primary antibodies were removed by three washes in TBST20, followed by rinsing in water. Primary antibodies were labeled using goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific) and goat anti-rat Alexa Fluor 568 (Abcam) for 1 hour at room temperature. DAPI (1 µg/mL) was used to stain nuclei. Fluoromount-G mounting media (Thermo Fisher Scientific) was used to set slides for microscopy and left overnight at 4°C prior to imaging. A one-way analysis of variance (ANOVA) determined the difference in both the hG250 and [225 Ac]Ac(MacropaSq-hG250) to be statistically significant (p ≤0.0001). The same is true when comparing [225 Ac]Ac(MacropaSq-lgG1) to and [225 Ac]Ac(MacropaSq-hG250) (p ≤0.0001).

1.6.7 Immunohistochemical assays

Hematoxylin/eosin staining was completed by Austin Pathology Services (Austin Health). Formalin-fixed, paraffin-embedded tumors were dewaxed by two washes in xylene, followed by rehydration in decreasing concentrations of alcohol (two washes in 100% ethanol for 5 minutes each, 95% ethanol, 5 minutes and 70% ethanol for 5 minutes). Slides were placed in water before antigen retrieval using citrate buffer, pH 6.0 (Sigma) at 90°C for 20 mins. Slides were left to cool for 1 hour at room temperature, washed with water and samples quenched in 3% hydrogen peroxide for 5 mins at room temperature. Slides blocked with 5% bovine serum albumin (BSA; Sigma) and 5% normal goat serum (Thermo Fisher Scientific) in Tris Buffered Saline with Tween 20 (TBST20; Sigma) for 1 hour. Anti Ki-67 antibody was applied overnight (1:200; 5% BSA 5% NGS in TBST20) at 4°C. Primary antibodies were removed by one wash in TBST20 followed by one wash in TBS. Slides were incubated with anti-rabbit Dako Envision+ Dual Link System HRP secondary antibodies for 1 hour at room temperature (Aligent). DAB substrate (Abcam) was used to detect the presence of antibody staining at room temperature. Sections were thoroughly washed prior to counterstaining with Heamatoxylin followed by blueing in Scotts Tap water and dehydration in increasing ethanol percentages. Finally, slides were washed in xylene, and dehydrated in increasing concentrations of ethanol, followed by mounting in DPX mounting media (Sigma-Aldrich). Images of all H&E and Ki67 IHC sections were acquired on an Aperio AT2 Slide Scanner (Leica Biosystems). Images were processed using Aperio ImageScope software (Leica Biosystems). DAB Staining was quantitated using QuPath Software.⁴ SK-RC-52 tumor sections that were treated with [²²⁵Ac]Ac(MacropaSq-hG250) were compared to corresponding tumor sections treated with [²²⁵Ac]Ac(MacropaSq-IgG1) and hG250 to evaluate tumor growth and inhibition. Hematoxylin and eosin (H&E), and Ki67 staining were used to assess tumor proliferation and apoptosis. Ki-67 staining indicated that tumors treated with [²²⁵Ac]Ac(MacropaSq-hG250) exhibited reduced proliferation (20.2 ± 6.0%) compared with tumors treated with hG250 or $[^{225}Ac]Ac(MacropaSq-IgG1)$ (84.3 ± 8.5% and 74.1 ± 6.4%, respectively) ANOVA determined the difference in both the hG250 and [²²⁵Ac]Ac(MacropaSq-hG250) to be statistically significant (p ≤ 0.0001). The same is true when comparing [²²⁵Ac]Ac(MacropaSq-lgG1) and. and $[^{225}Ac]Ac(MacropaSq-hG250)$ (p ≤ 0.0001).

Figure S36: Treatment with [²²⁵Ac]Ac(MacropaSq-hG250) inhibits cell proliferation in tumors compared to control groups. Tumor H&E and Ki67 staining. H&E and Ki67 Insets are area matched. Scale bar = $700 \ \mu m$.

Treatment group

Figure S37: Treatment with 225Ac G250 induces dsDNA breaks and inhibits cell proliferation in tumor cells. Percentage of Ki67 cells of immunohistochemically stained 4 μ m tumor sections, n= 6 representative 20 x images quantitated per treatment group ***p<0.0001.

1.6.8 Confocal Microscopy and gH2AX foci quantitation

Confocal microscopy was performed on a Zeiss LSM 980 Airyscan 2 microscope equipped with

2 x MA-PMT detectors, using 405 nm, 568, and 633 nm laser lines. Images were acquired on

either the 40 x or 63 x Axio oil objectives. Where required, Z-sectioning was performed using 1 μm sections. Images in all experimental groups were obtained with the same settings, except for detector gain adjustments that were performed to normalize saturation levels. All images were processed using either Zeiss ZEN software (Zeiss), MetaMorph software (Visitron Systems), and/or Image J software. Following image processing, average gH2AX foci per nuclei were determined by creating a region of interest around each tumor nuclei (mouse stroma were manually excluded) on deconvoluted, greyscale images. Each image was thresholded a maximum edge projection was performed and foci per nuclei counted.

1.6.9 Statistical Analysis

Visualization of gH2AX foci and Ki67 quantitation was performed using GraphPad Prism. A one-way ANOVA with Tukey's multiple comparisons test was used. All data is mean ± SEM with >36 nuclei analyzed per treatment group for H2AX quantitation and n=6 20 x images quantitated (>6000 cells/treatment group) for Ki67 staining.

1.7 References

1. Theodorou, V.; Skobridis, K.; Tzakos, A. G.; Ragoussis, V. A simple method for the alkaline hydrolysis of esters. *Tetrahedron Lett.* **2007**, 48, 8230-8233.

2. Reen, D. J. Enzyme-Linked Immunosorbent Assay (ELISA). In *Basic Protein and Peptide Protocols*, Walker, J. M., Ed. Humana Press: Totowa, NJ, 1994; pp 461-466.

3. Lindmo, T.; Boven, E.; Cuttitta, F.; Fedorko, J.; Bunn, P. A., Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. *J. Immunol. Methods.* **1984**, 72, 77-89.

4. Bankhead, P.; Loughrey, M. B.; Fernández, J. A.; Dombrowski, Y.; McArt, D. G.; Dunne, P. D.; McQuaid, S.; Gray, R. T.; Murray, L. J.; Coleman, H. G.; James, J. A.; Salto-Tellez, M.; Hamilton, P. W. QuPath: Open source software for digital pathology image analysis. *Scientific Reports* **2017**, 7, 16878.