Supporting Information for

Frustrated Lewis Pairs on Pentacoordinated Al³⁺-Enriched Al₂O₃ Promote

Heterolytic Hydrogen Activation and Hydrogenation

Qingyuan Wu,[‡]^{a,b} Ruixuan Qin,[‡]^{a,c} Mengsi Zhu,^b Hui Shen,^a Shenshui Yu,^a Yuanyuan Zhong,^a Gang Fu,^a Xiaodong Yi,^{*,a} and Nanfeng Zheng ^{*,a,b}

^a New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^b Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China.

^c Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials, Longyan 366300, China.

*Corresponding author. Email: nfzheng@xmu.edu.cn; Xiaodong Yi: xdyi@xmu.edu.cn.

‡ These authors contributed equally.

This PDF file includes:

Experimental Section; Figure S1 to S14; Table S1.

Figure S1. Fitting of solid state 27 Al MAS-NMR spectra of d-Al₂O₃ (a) and NH₃ treated d-Al₂O₃ (b).

Figure S2. (a) *In-situ* NH₃-FTIR of d-Al₂O₃ treated with NH₃. (b) *In-situ* NH₃-FTIR of d-Al₂O₃ treated with NH₃ for 10 min and then purged with N₂. (c) *In-situ* NH₃-FTIR of γ -Al₂O₃ treated with NH₃. (d) *In-situ* NH₃-FTIR of γ -Al₂O₃ treated with NH₃ for 10 min and then purged with N₂. (e) *In-situ* NH₃-FTIR of d-Al₂O₃ and γ -Al₂O₃ treated with NH₃ for 10 min and then purged with N₂. (e) *In-situ* NH₃-FTIR of d-Al₂O₃ and γ -Al₂O₃ treated with NH₃ for 10 min and then purged with N₂ for another 10 min. (f) NH₃-TPD-MS of d-Al₂O₃ and γ -Al₂O₃.

Figure S3. (a) *In-situ* CO₂-FTIR of d-Al₂O₃ treated with CO₂. (b) *In-situ* CO₂-FTIR of d-Al₂O₃ treated with CO₂ for 10 min and then purged with N₂. (c) *In-situ* CO₂-FTIR of γ -Al₂O₃ treated with CO₂. (d) *In-situ* CO₂-FTIR of γ -Al₂O₃ treated with CO₂ for 10 min and then purged with N₂. (e) *In-situ* CO₂-FTIR of d-Al₂O₃ and γ -Al₂O₃ treated with CO₂ for 10 min and then purged with N₂. (e) *In-situ* CO₂-FTIR of d-Al₂O₃ and γ -Al₂O₃ treated with CO₂ for 10 min and then purged with N₂ for another 10 min. (f) CO₂-TPD-MS of d-Al₂O₃ and γ -

Al₂O₃. *In-situ* CO₂-FTIR of d-Al₂O₃ is different from γ -Al₂O₃, which varies in adsorption intensity and absorption peak position. Compared to commercial γ -Al₂O₃, there are only a few bicarbonate species (1656-1628, 1436 and 1228 cm⁻¹) derived from the reaction of CO₂ and -OH on the surface of d-Al₂O₃, while a large number of monodentate coordinated carbonate species (1538 and 1370 cm⁻¹) derived from the reaction of CO₂ and surface exposure O atom, and bidentate coordinated carbonate species (1670 and 1320 cm⁻¹) derived from the reaction of CO₂ and Al atom. According to literature reports, ¹⁻² d-Al₂O₃ is similar to γ -Al₂O₃ dehydroxylated at high temperature, containing less surface -OH and more exposed O and Al atom. That is, d-Al₂O₃ contains rich FLPs.

Figure S4. N₂ adsorption/desorption isotherm of γ -Al₂O₃ (a) and d-Al₂O₃ (b). The specific surface areas of γ -Al₂O₃ (176 m²/g) is higher than that of d-Al₂O₃ (78 m²/g).

Figure S5. XRD of γ -Al₂O₃ and d-Al₂O₃.

Figure S6. HAADF-STEM images and FFT measurements of d-Al $_2O_3$.

Figure S7. (a) ¹H NMR spectra of $d-Al_2O_3$ catalyzed styrene hydrogenation. (b) Magnified spectra. Before reaction (black trace), only toluene (marked as #) and styrene (marked as *) were present. After reaction (red trace), only toluene (marked as #) and ethylbenzene (marked as +) were present.

Figure S8. Catalytic performances of $d-Al_2O_3$ in styrene hydrogenation for 8 cycles. Reaction time: 150 min

Figure S9. 2D solid state ¹H-²⁷Al HETCOR experiment of H₂ treated d-Al₂O₃ (a) and γ -Al₂O₃ (b). Cross correlation peaks between Al₀ and H species both on H₂-treated d-Al₂O₃ and γ -Al₂O₃ proved the occurrence of H species were very adjacent to Al₀ sits with a short CP contact time of 50 µs. Cross correlation peak between Al_p and H species on H₂-treated d-Al₂O₃ proved the occurrence of H species were very adjacent to Al_p sits with a short CP contact time of 50 µs.

Figure S10. Solid state ²H MAS-NMR spectra of D₂O.

Figure S11. In-situ D₂-FTIR of γ -Al₂O₃, d-Al₂O₃ treated without D₂ and d-Al₂O₃ treated with D₂ at 100°C.

Figure S12. Top-view and side-view structures of (a) γ -Al₂O₃ with exposing (110) facet, transition state (b) and steady state (c) of heterolytic dissociation of H₂ on γ -Al₂O₃ with reconstructed surface Al site.

Figure S13. Top-view and side-view structures of the transition states (TS1) of heterolytically dissociation of H_2 on d-Al₂O₃, and transition states (TS2, TS3) and intermediate state (III) involved in C₂H₄ hydrogenation.

Figure S14. Pathways for the catalytic hydrogenation of styrene over FLPs on $d-Al_2O_3$ surface.

Table S1.	²⁷ Al	MAS	NMR	peak	integration.

Sample	Alt	Alp	Alo
d-Al ₂ O ₃	21.6%	39.1%	39.3%
NH_3 -d- Al_2O_3	21.1%	23.8%	55.1%

References

1 Parkyns, N. D., J. Phys. Chem., 1971, 75, 526.

2 Szanyi, J.; Kwak, J. H., *Phys. Chem. Chem. Phys.*, 2014, *16*, 15117.