Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

# **1** Supporting Information

### 2 Conductive and Sodiophilic Ag Coating Layer Regulating Na Deposition

# 3 Behaviors for Highly Reversible Sodium Metal Battery

- 4
- 5 Xiaomin Chen,<sup>+a</sup> Xunzhu Zhou,<sup>+a,b</sup> Zhuo Yang,<sup>a</sup> Zhiqiang Hao,<sup>a,b</sup> Jian Chen,<sup>a</sup> Wenxi Kuang,<sup>a</sup> Xiaoyan
- 6 Shi,<sup>a</sup> Xingqiao Wu,<sup>a,b</sup> Lin Li\*<sup>a,b</sup>, and Shu-Lei Chou\*<sup>a,b</sup>
- 7
- 8 [a] X. Chen, Dr. X. Zhou, Z. Yang, Dr. Z. Hao, J. Chen, W. Kuang, X. Shi, Prof. X. Wu, Prof. L. Li,
- 9 Prof. S.-L. Chou
- 10 Department Institute for Carbon Neutralization, College of Chemistry and Materials Engineering,
- 11 Wenzhou University
- 12 Wenzhou, Zhejiang 325035, China
- 13 E-mail: linli@wzu.edu.cn; chou@wzu.edu.cn
- 14 [b] Dr. X. Zhou, Dr. Z. Hao, Prof. X. Wu, Prof. L. Li, Prof. S.-L. Chou
- 15 Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation
- 16 Institute for Carbon Neutralization
- 17 Wenzhou, Zhejiang 325035, China
- 18
- $19^{-+}$  These authors contributed equally: Xiaomin Chen, Xunzhu Zhou

#### **1 Experimental Procedures**

Materials. Sodium hexafluorophosphate (NaPF<sub>6</sub>, battery-grade) and diethylene glycol dimethyl ether
(G2, battery-grade) were purchased from Duoduo chemical reagent Co., Ltd. The electrolyte of 1.0 M
NaPF<sub>6</sub>-G2 was mixed inside a glove box with O<sub>2</sub> and H<sub>2</sub>O content < 0.1 ppm. Na metal (99.7%, Aladdin)</li>
was rolled and pressed as Na chips (10 mm diameter) before assembling batteries.
Preparation of Zn@Ag electrode: Ag was deposited on commercial Zn foil by thermal evaporation

7 and magnetron sputtering. 50 nm is the set value on high vacuum resistance evaporation coating machine
8 (ZD-400). The Cu/Zn/Zn@Ag foils were then cut into 10 mm circular pieces.

9 80% commercial Prussian blue (PB), 10% ketjen black (KB) and 10% water-based binder was used 10 to prepare the cathode slurry. And then, the slurry was coated onto an aluminum foil and dried at 80 °C 11 for 12 h in vacuum. In addition, the cathode electrodes were dehydrated at 180 °C for 2 h before 12 assembling the batteries. The active material loading is ca. 1.0 mg cm<sup>-2</sup> on each electrode. High loading 13 PB cathode for assembling the anode-free batteries is ca. 12.0 mg cm<sup>-2</sup>.

Electrochemical measurements and cell assembly. CR2032-type coin cells were assembled in an Ar-filled glovebox. Al<sub>2</sub>O<sub>3</sub>-Polypropylene (PP) separator is selected as the separator with 60  $\mu$ L electrolyte. The performance of these cells was tested on a NEWARE battery cycler (CT-3008W). The Tafel plot, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were measured on a CHI600C electrochemical workstation (Chenhua).

**Tafel plots:** Symmetric Zn-Na||Zn-Na and Zn@Ag-Na||Zn@Ag-Na cells are assembled in Figure 3d, where 1.0 mAh cm<sup>-2</sup> Na was pre-deposited. The exchange current density was calculated by Tafel curve to evaluate the ion transfer kinetics at the electrode-electrolyte interface. The scan rate is 1.0 mV s<sup>-1</sup>, the voltage range is from -0.02 V to 0.02 V. The relationship between overpotential ( $\eta$ ) and current density (i) in Tafel formula is as follows:<sup>[1]</sup>

24  $\eta = a + b \times log|i|$  (Eq. S1)

where the constant a is the overpotential when i is equal to the unit current density, and the constantb is termed the Tafel slope.

Electrochemical impedance spectroscopy (EIS): Symmetric Zn-Na||Zn-Na and Zn@Ag Na||Zn@Ag-Na cells are assembled in Figure 3e, 5a and S6, where 1.0 mAh cm<sup>-2</sup> Na was pre-deposited.
 EIS was recorded from 100 kHz to 0.01 Hz. The activation energy is calculated through varying temperature EIS from 273 to 323 K based on the Arrhenius formula.

5 Cyclic voltammetry (CV): Zn-Na||PB and Zn@Ag-Na||PB cells are assembled in Figure 4a, where
6 1.0 mAh cm<sup>-2</sup> Na was pre-deposited. CV was carried out with the scan rate of 0.1 mV s<sup>-1</sup> at 1.5-3.7 V.

7 **Other electrochemical performance:** Long-term cycling performance of Zn-Na||Na and Zn@Ag-8 Na||Na cells were assembled in Figure 3a and 3b with the current density of 0.5 mA cm<sup>-2</sup> for 3 h, where 9 2.0 mAh cm<sup>-2</sup> Na was pre-deposited. The rate performance of Zn-Na||Na and Zn@Ag-Na||Na cells were 10 assembled in Figure 3c with the current density of 1.0 to 5.0 mA cm<sup>-2</sup> for 1 h, where 6.0 mAh cm<sup>-2</sup> Na 11 was pre-deposited. The thickness of Na foil is 0.448 mm.

12 Long-term cycling of symmetric Zn-Na and Zn@Ag-Na Zn@Ag-Na cells were assembled in

13 Figure S5 with the current density of  $0.5 \text{ mA cm}^{-2}$  for 3 h, where 2.0 mAh cm<sup>-2</sup> Na was pre-deposited.

Nucleation overpotential is tested by the asymmetric Zn||Na, Zn@Ag||Na, Cu||Na or Al||Na cells in Figure 2a and S1 with the current density of 0.5 mA cm<sup>-2</sup>. And the same assembly is appropriate for the Coulombic efficiency in Figure 3f and S7-10. The current density is 0.5 mA cm<sup>-2</sup> in Figure 3f and S7-9 and 1.0 mA cm<sup>-2</sup> in Figure S10.

Half Na||PB cells are assembled in Figure S11 for comparison with the current density of 50 mA g<sup>-1</sup>.
Anode-less Zn-Na||PB, Zn@Ag-Na||PB, Cu-Na||PB, and Al-Na||PB cells are assembled in Figure 4b4g, S10 and S12-15, where 1.0 mAh cm<sup>-2</sup> Na was pre-deposited. The current density is 50 mA g<sup>-1</sup> or
100 mA g<sup>-1</sup>.

Anode-free Zn||PB, Zn@Ag||PB, Cu||PB, and Al||PB cells are assembled in Figure 5c-5e and S16,
with the charge current density of 20 mA g<sup>-1</sup> and discharge current density of 50 mA g<sup>-1</sup>.

24 Characterizations. The morphology and thickness of deposited Na on Zn and Zn@Ag foils were

25 observed via scanning electron microscopy (SEM 3100, CIQTEK Ltd.). The wettability of electrolyte

26 on Zn foil or Zn@Ag foil was tested by contact angle system (CA100C, INNUO Ltd.).

**Theoretical calculations.** Density functional theory (DFT) calculations were carried out using the Gaussian 09 package. Such calculations were performed using Vienna ab-initio simulation package (VASP) with the generalized gradient approximation (GGA) and the Perdew-Burke-Eznerhof (PBE) functional (GGA-PBE) to describe the exchange-correlation energy of electrons.<sup>[2]</sup> DFT calculations were applied to calculate the adsorption energy between a Na atom and the metal surfaces with largest XRD intensity, namely, Ag (100) and Zn (101).



2 Figure S1. (a) SEM image of Zn@Ag substrate and (b-d) the corresponding elemental mapping images.



2 Figure S2. (a) Schematic diagram of tip overpotential (η<sub>t</sub>), plateau overpotential (η<sub>p</sub>) and nucleation
3 overpotential (η<sub>n</sub>), where η<sub>n</sub> is defined as the voltage gap between η<sub>t</sub> and η<sub>p</sub>. (b) Galvanostatic discharge
4 voltage profiles of Na deposition at 0.5 mA cm<sup>-2</sup> on Al, Cu, Zn and Zn@Ag substrate.

1

6 According to the classical nucleation theory, the Gibbs free energy of the heterogeneous nucleus is
7 calculated as following:<sup>[3-5]</sup>

$$\Delta g_{nuli} = \Delta g_{bulk} + \Delta g_{surf} = -\frac{2\pi r^3 z F \eta}{3 V_m} + 2\pi r^2 \gamma_{SL} \qquad (Eq. S2)$$

9 where  $V_m$  is the molar volume of Zn,  $\gamma_{SL}$  the surface free energy of Zn-electrolyte interface, z the number 10 of electrons per monomer unit, F the Faraday's constant,  $\eta$  the nucleation overpotential. From the 11 equation  $d\Delta g_{nuli}/dr = 0$ , the critical nucleation radius  $r_{crit}$  can be obtained:

$$r_{crit} = \frac{2V_m \gamma_{SL}}{zF\eta} \qquad (Eq. S3)$$

13 For a semi-spherical nucleus, the critical nucleation volume  $V_{crit} = \frac{1}{2} \frac{4\pi}{3} r_{crit}^3$ . By inserting V<sub>crit</sub> one 14 obtains the areal nucleation density N<sub>crit</sub>:

$$N_{crit} = \frac{3z^3 F^3 \eta^3}{16\pi N_A V_m^2 \gamma_{SL}^3} \quad (Eq. S4)$$

16 where  $N_A$  is the Avogadro constant.

1 In a fixed electrolyte, nucleation overpotential  $\eta_n$  play a crucial role on regulating the initial nucleation 2 behavior. That is, the initial nucleus size is inversely proportional to nucleation overpotential, and the 3 nucleation density is proportional to the cube of nucleation overpotential.



2 Figure S3. Contact angle of 1.0 M NaPF<sub>6</sub>-G2 electrolyte on (a) Zn and (b) Zn@Ag substrates.



- 2 Figure S4. Cross-sectional SEM images of pristine (a) Zn foil and (b) Zn@Ag foil.



Figure S5. (a) Long-term cycling of Zn-Na||Zn-Na and Zn@Ag-Na||Zn@Ag-Na cells and (b) the
corresponding enlarged voltage-time profiles with the current density is 0.5 mA cm<sup>-2</sup> for 3 h. The predeposited Na is 2.0 mAh cm<sup>-2</sup>.



4 Figure S6. Comparison of EIS of (a) Zn-Na||Na and (b) Zn@Ag-Na||Na cells after the first and fifth
5 cycles.



2 Figure S7. Galvanostatic Na plating/stripping voltage profiles at selected cycles of (a, b) Cu||Na, (c, d)

Zn||Na, and (e, f) Zn@Ag||Na cells.



2 Figure S8. Coulombic efficiency of (a) Cu||Na cell and (b) Al||Na cell at 0.5 mA cm<sup>-2</sup> for 0.5 mAh

3 cm<sup>-2</sup>.



2 Figure S9. (a) Coulombic efficiency of Na on Al, Cu, Zn, and Zn@Ag substrates at 0.5 mA cm<sup>-2</sup> for

3 1.0 mAh cm<sup>-2</sup>. (b) Enlarged curve of (a).





2 Figure S10. Coulombic efficiency of Zn||Na and Zn@Ag||Na cells at 1.0 mA cm<sup>-2</sup> for 1.0 mAh cm<sup>-2</sup>.





2 Figure S11. Cycling performance of anode-less Cu-Na||PB and Al-Na||PB half-cell at 50 mA g<sup>-1</sup>.



2 Figure S12. Cycling performance of Na||PB half-cell at 50 mA g<sup>-1</sup>.





2 Figure S13. Cycling performance of anode-less Zn-Na||PB and Zn@Ag-Na||PB cells at 100 mA g<sup>-1</sup>.



2 Figure S14. Charge/discharge profiles of anode-less (a) Zn-Na||PB and (b) Zn@Ag-Na||PB cells during

<sup>3</sup> the rate performance.



2 Figure S15. Charge/discharge profiles of anode-less Zn-Na||PB cell from 55 to -20 °C.



2 Figure S16. Long-term cycling of anode-less (a) Al-Na||PB, Cu-Na||PB cell and (b) Zn-Na||PB,

3 Zn@Ag-Na||PB cells at -20 °C.





2 Figure S17. Average Coulombic efficiency of anode-free Zn||PB and Zn@Ag||PB cells.

| Substrate | $\eta_t  (mV)$ | $\eta_{p}\left(mV\right)$ | $\eta_n(mV)$ | $\Delta E (mV)$ | Initial Na loss |
|-----------|----------------|---------------------------|--------------|-----------------|-----------------|
| Cu        | 20.7           | 4.7                       | 16.0         | 10.0            | 3.5%            |
| Al        | 33.3           | 8.6                       | 24.7         | 21.2            | 17.7%           |
| Zn        | 17.7           | 7.7                       | 10.0         | 15.9            | 9.1%            |
| Zn@Ag     | 7.3            | 3.9                       | 3.3          | 8.0             | 2.6%            |

1 Table S1. Radar map of various overpotentials and initial Na loss of Cu||Na, Al||Na, Zn||Na and

3

### 4

#### 5

### 6 References:

2 Zn@Ag||Na cells.

7 [1] Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J. Energy Storage Chemistry in Aqueous Zinc Metal

8 Batteries. ACS Energy Lett. 2020, 5, 3569-3590.

9 [2] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys.

10 Rev. Lett. 1996, 77, 3865.

11 [3] Plieth, W. Electrochemistry for Materials Science; *Elsevier: Amsterdam*, 2008; pp 195-203.

12 [4] Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited

- 13 Lithium Metal. Nano Lett. 2017, 17, 1132-1139.
- 14 [5] Zhou, X.; Zhang, Q.; Hao, Z.; Ma, Y.; Drozhzhin, O. A.; Li, F. Unlocking the Allometric Growth
- 15 and Dissolution of Zn Anodes at Initial Nucleation and an Early Stage with Atomic Force Microscopy.
- 16 ACS Appl. Mater. Interfaces 2021, 13, 53227-53234.