Supporting Information

5 High-throughput single-cell mass spectrometry enabling lipid structure elucidation and in-depth lipid metabolic pathway studies

Simin Cheng^{1 #}, Chenxi Cao^{2#}, Yao Qian², Huan Yao³, Xiaoyun Gong¹, Xinhua Dai^{1*}, Zheng Ouyang^{2*},

10 Xiaoxiao Ma²*

¹Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.

² State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.

³ Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China.

[#]Equal contributions.

Table of Contents

Experimental Procedures:

Reagents and materials.

Cell culture and pretreatment.

25 Device and single cell analysis.

Lipid extraction.

Mass spectrometry.

Data analysis.

30 Supplementary Figures:

Fig. S1. CyESI MS-SCSL device structure.

Fig. S2. CyESI MS-SCSL platform analysis performance optimization of MS intensity.

Fig. S3. CyESI MS-SCSL platform analysis performance optimization of single cell analysis throughput.

Fig. S4. Single cell MS detection and outflow in the capillary.

35 Fig. S5. Solvent optimization for the sheath liquid.

Fig. S6. Schematic diagram for the identification of lipid C=C position and relative quantitative analysis of C=C isomers based on PB photochemical derivatization.

Fig. S7. MS² analysis expanded single cell lipid identification scope.

Fig. S8. Spectra of neutral loss of 141 (PEs) and neutral loss of 185 (PSs) before after cell fixation.

40 Fig. S9. The recovery rate of PCs after fixation (a) and derivatization (b).

Fig. S10. Chain composition of PC 36:2 (a) and PC 36:1 (b) analyzed by MS/MS in negative ion mode.

Fig. S11. The heterogeneity analysis of lipid n-10 and n-6,9 C=C location isomers between breast epithelial cells MCF-10A and cancer cells MDA-MB-468.

Fig. S12. T-SNE plot of breast cancer single cells and normal breast epithelial cells calculated by relative quantitation of lipid C=C location isomers of PC 36:2.

Fig. S13. CyESI MS-SCSL enabled metabolic network analysis of lipid C=C location isomers.

Fig. S14. Segmental scanning between MS^1 and MS^2 of *m/z* 760, 758, 732, 788 and 786, corresponding to PC 34:1, PC 34:2, PC 32:1, PC 36:1 and PC 36:2 in lipid extracts.

Fig. S15. MS segmental scanning to multi-target lipid analysis for single cell analysis.

50

75

Supplementary Tables:

Table S1. Lipid species detected by tandem MS at the single cell level in positive ion mode.

Table S2. PCs' C=C location isomers identified at the single cell level.

Table S3. Correlation analysis of C16:1 and C18:1-containing lipids in single cells with C=C location55isomers.

Experimental Procedures

Reagents and materials. Ammonium formate (LC-grade), ammonium acetate (LC-grade) and 2acetylpyridine (2-AP, 99%) were purchased from Meryer Chemical (Shanghai, China). Glutaraldehyde 60 (50% in H₂O, AR-grade) was obtained from Aladdin Chemicals (Shanghai, China). HPLC-grade MeOH, EtOH, acetone, ACN, water, and LC-MS grade formic acid were purchased from Fisher Scientific (NJ, USA). Internal standards (PC 26:0, PE 30:0 and PS 28:0) were purchased from Avanti Polar Lipids, Inc. Fused silica capillary tubes were purchased from Polymicro Technologies (Molex, USA), while metal tee connectors were obtained from Yijia Technology Co., Ltd. (Beijing, China). An industrial camera (MV-HP900GM, MicroVision, China) was used to observe the flow of cells in the capillary. The MDA-MB-65 468 cells were purchased from Shanghai Enzyme Research Biotechnology Co. Ltd (Shanghai, China), while the MCF-10A cell line and its specific epithelial culture medium (CL-0525) were purchased from Procell Life Science & Technology Co., Ltd. (Wuhan, China). All cell cultured reagents, including Dulbecco's modified Eagle's medium (DMEM), Dulbecco's phosphate buffered saline (DPBS), fetal bovine serum (FBS), Trypsin-EDTA (0.25%) and penicillin-streptomycin (100 U·ml⁻¹) were purchased from 70

Gibco Life Technologies (Carlsbad, CA).

Cell culture and pretreatment. MDA-MB-468 cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. The MCF-10A cell line was cultured in its specific culture medium. All three types of cells were cultured with breathable dishes in a humidified atmosphere containing 5% CO₂ at 37°C and passaged every two or three days. Upon reaching 80%-90% confluence, cells were detached using Trypsin-EDTA (0.25%), collected by centrifugation, and then washed twice with phosphate-buffered saline (PBS) for later use. Prior to MS analysis, there are still some necessary processing steps:

(i) For the optimization of the CyESI-MS platform using unfixed and underivatized cells, a simple pretreatment was performed on the freshly prepared cell suspension. The cells were centrifuged (1500 rpm, 3 minutes) to remove PBS, followed by resuspension in 140 mM HCOONH₄ aqueous solution (pH = 7.3) at a concentration of approximately 5×10^4 cells/mL.

(ii) For CyESI MS-SCSL in-depth lipidomics analysis, cells were fixed and derivatized collectively first. Specifically, cells in 2 mL PBS were mixed with 2 mL 5% glutaraldehyde in PBS and incubated on a shaker for 20 minutes for fixation. Subsequently, the cells were washed with water and resuspended in

85 100 mM 2-AP aqueous solution. The cell derivatization device, consisting of a low-pressure mercury lamp with emission centered around 254 nm (BHK Inc., USA) and a quartz cell, is shown in Fig. S1a. The cells in quartz cell were exposed to UV lamp irradiation for 8 minutes, with shaking of the quartz cell every 2 minutes to ensure even cell distribution. Afterwards, the water containing 2-AP was removed by centrifugation (2500 rpm, 3 min), and cells were resuspended in water. This process was repeated twice, and cell suspension was finally diluted with water to a concentration of ~ 5×10^4 cells/mL. Cell concentrations were finally determined using a hemocytometer.

90

Device and single cell analysis. Cell preparation, introduction, lipid extraction, electrospray ionization and MS analysis were achieved by the homemade CyESI MS-SCSL platform. Fig. S1 illustrates the key components of the device, which consisted of a quartz cell, a UV lamp, and three coaxial capillaries connected through metal tee connectors. The quartz cell and the UV lamp were employed to conduct batch PB derivatization for in-depth lipid structural analysis. The three-layered tubing structure of CyESI was used for high throughput single cell analysis, in which the inner capillary (150 μm O.D., 50 μm I.D.) was employed to introduce the cell suspension, which was driven by a pressure-based flow controller (Flow EZ, Fluigent, France). The middle capillary (360 μm O.D., 200 μm I.D.) was used to transported the sheath liquid, which was served for better extraction of lipid and formation of electrospray. The outer capillary (700 μm O.D., 530 μm I.D.) positioned 2 mm shorter than the end of the middle capillary, was responsible for delivering the carrier gas. Nitrogen, served as the carrier gas, could assist the electrospray formation to promote lipid ionization and improve signal intensity. High voltage direct current was applied to the sheath liquid for the electrospray ionization. The distance between the outlet end of inner and

- 105 middle capillary could be adjusted flexibly between 2-6 mm to balance the number of cells passing per unit time and the duration of each cell signal. The ion source was placed approximately 1 cm away from the MS inlet. For the acquisition of single-cell lipid profiles, cell suspension $(5 \times 10^4 \text{ cells/mL})$ was introduced into the inner capillary at the flow rate of 1 µL/min, while the flow rate of the sheath liquid (methanol containing 1% formic acid) in the middle capillary was set to 10 µL/min. For in-depth lipidomics
- analysis, cell suspension $(3 \times 10^4 \text{ cells/mL})$ was introduced into the inner capillary at the flow rate of 0.8 μ L/min, and the flow rate of the sheath liquid in the middle capillary was set to 6 μ L/min. The pressure of nitrogen, acting as the carrier gas, was set at around 0.6 MPa. A high positive DC voltage of 3 kV was applied to the sheath liquid.

Lipid extraction. A modified Folch method was employed for phospholipid extraction from cultured MDA-MB-468 cells as previously reported^[1,2]. In short, the cell suspension in methanol (1 mL) was mixed with deionized water (1 mL), and extracted by 2 mL of chloroform twice. The bottom layer of chloroform was collected together and dried under nitrogen flow. Finally, the dried lipid extract was redissolved with 1 mL of ACN containing 10 mM ammonium acetate and stored at -20°C before MS analysis for lipid chain information identification.

For PC recovery analysis, cells were divided into two equal subsets. For cell fixation step, one subset was treated with 2.5% glutaraldehyde in PBS for fixation while the other subset was treated with PBS as a control. For cell derivatization step, one subset was resuspended in 0.5 mL 100 mM 2-AP aqueous solution for derivatization while the other was resuspended in 0.5 mL water as a control. After centrifugation, cells were resuspended in the mixture of water (1 mL), methanol (1 mL) and chloroform (2 mL) for lipid extraction. The internal standard (PC 26:0, PE 30:0 and PS 28:0) was added at a concentration of 5 μM for quantification.

Mass spectrometry. Mostmass spectrometry measurements were performed on a LTQ XL linear ion trap (LIT) mass spectrometer (Thermo Scientific, San Jose, CA). The instrument parameters were set as follows: capillary temperature = 275 $^{\circ}$ C, capillary voltage = 19 V, tube lens voltage = 110 V, microscans =

130 1. For SCSL MS settings, the maximum injection time was set to 10 ms. For lipid C=C location analysis by SCSL MS/MS in positive ion mode and lipid chain information analysis by nano-ESI MS/MS in negative ion mode, the maximum injection time was set to 100 ms, and a normalized collision energy of 35

eV was used, with a 2.0 Da isolation window for precursor ion selection. Lipid sum composition analysis was performed on QTRAP 4500 mass spectrometry (Sciex, Toronto, CA). Neutral loss scan (NLS) 141 for PEs, NLS 185 for PSs, and precursor ion scan (PIS) 184 for PCs in positive mode were applied.

Data analysis. The MS raw data generated from the mass spectrometer were recorded with Xcalibur version 2.2 software (Thermo Scientific, San Jose, CA), and converted to mzXML format by the MSConvert software (ProteoWizard, version 3.0). Then, the converted mzXML format file was imported into MATLAB (MathWorks, Natick, MA, version R2022a) and processed using self-developed

- MATLAB code. To identify successful single-cell detection, the pulse peaks of phosphatidylcholine (PC) 34:1 at *m/z* 760.58 were selected as markers, with a signal-to-noise ratio (S/N ratio) threshold of 3. The mass spectra corresponding to these pulse peaks were extracted as single-cell events, and ion signals associated with single cells, exhibiting a S/N ratio greater than 3, were retained for further analysis. For in-depth lipidomics analysis, the intensities of C=C-specific diagnostic ions within the single-cell events were utilized to quantify lipid C=C location isomers relatively. To ensure reliable quantitation,
- the S/N ratio of the diagnostic ions was required to be greater than 5. All data processing including histogram distribution analysis and kernel density estimation were performed using Python (version 3.7).

The convert yield of PB reaction was defined as:

$$Yield = \frac{\sum Int.({}^{PB}(PCs))}{\sum Int.({}^{PB}(PCs)) + \sum Int.(remaining PCs)} \times 100\%$$

150 The recovery ratio of PCs after fixation or derivatization was defined as:

$$Recovery = \frac{Int. (PC_{with treated})/Int. (IS_{with treated})}{Int. (PC_{without treated})/Int. (IS_{without treated})} \times 100\%$$

155

135

Supplementary Figures

Fig. S1. CyESI MS-SCSL device structure. (a) Experiment setup and schematic of batch cell PB derivatization. (b) Physical diagram of the device. The solid red line indicates the direction of liquid flow, including cell suspension and sheath fluid; The blue dashed line indicates the sheath gas flow direction; The green label indicates mass spectrometry inlet and its high voltage direct current. (c) Dimensions and assembly instructions for the three-layered tubing structure.

Fig. S2. CyESI MS-SCSL platform analysis performance optimization of MS intensity in single cell analysis characterized by m/z 760 ions, including the influence of ESI voltages (a, b), the influence of gas pressure for ESI (c), the influence of sheath fluid flow rate (d), and the influence of the inner and the middle capillary distance (e).

Fig. S3. CyESI MS-SCSL platform analysis performance optimization of single cell analysis throughput, including the influence of cell concentration (a) the influence of cell injection pressure (b), and the flow rate measurements of the precision pump that controls cell outflow (c).

Fig. S4. Single cell MS detection and outflow in the capillary. (a) MS detection of single cells at different concentrations. ((b) Enlarged yellow area in (a). When the cell concentration is too high, such as 1 × 10⁵ cells/mL, there will be many consecutive peaks. (c) Cells morphology after flowing out of the capillary, at 5 × 10⁴ cells/mL concentration, 600 mbar flow pressure, with methanol as the sheath fluid. (i) fresh cells, no ESI high voltage and carrier gas; (ii) fresh cells disruption, with 3 kV high voltage and no carrier gas. (iii, iv) enlarged morphology of cells in (i) and (ii).

Solvent optimization for the sheath liquid with different polarities

Fig. S5. Solvent optimization for the sheath liquid. (a, b) Single-cell lipids intensities and detected MS signals using sheath fluids of different polarities, with MeOH showing the highest intensities and cell numbers detected. (c-e) The addition of 1%FA suppressed [M+Na]+ while increased the intensities of [M+H]+ ions

Fig. S6. Schematic diagram for the identification of lipid C=C position and relative quantitative analysis of C=C isomers based on PB photochemical derivatization.

Fig. S7. MS² analysis expanded single cell lipid identification scope. (a) Lipid MS¹ spectrum of unfixed single cells.
(b) MS² spectrum of *m/z* 744 ion reveals the simultaneous presence of PC and PE. (c) MS² spectrum of *m/z* 820 ion reveals the simultaneous presence of PC, PE, PS and TAG.

Fig. S8. Spectra of neutral loss of 141 (PEs) and neutral loss of 185 (PSs) before after cell fixation, which indicated PEs and PSs were lost. Internal standard (IS): PE 30:0 ($[M+H]^+$ m/z 664, $[M+Na]^+$ m/z 686), PS 28:0 (m/z 680).

280 Fig. S9. The recovery rate of PCs after fixation (a) and derivatization (b).

Fig. S10. Chain composition of PC 36:2 (a) and PC 36:1 (b) analyzed by MS/MS in negative ion mode.

Fig. S11. The heterogeneity analysis of lipid n-10 and n-6,9 C=C location isomers between breast epithelial cells MCF-10A and cancer cells MDA-MB-468. (a, b) The distribution of n-10 isomers in PC 36:2 and PC 36:1. (c, d) The distribution of n-6,9 isomers in PC 36:2 and PC 34:2.

Fig. S12. T-SNE plot of breast cancer single cells and normal breast epithelial cells calculated by relative quantitation of lipid C=C location isomers of PC 36:2. T-SNE plot of 200 single cells selected randomly from each cell lines. Number of cells: MDA-MB-468: n = 150 single cells, MCF 10A: n = 50 single cells.

345 Fig. S13. CyESI MS-SCSL enabled metabolic network analysis of lipid C=C location isomers. (a) Biosynthetic pathways of monounsaturated FA 18:1. (b) Correlation analysis of n-7, n-9, and n-10 C=C isomers in lipid PC 36:2.

Fig. S14. Segmental scanning between MS¹ and MS² of *m/z* 760, 758, 732, 788 and 786, corresponding to PC 34:1, PC 34:2, PC 32:1, PC 36:1 and PC 36:2 in lipid extracts.

380

Fig. S15. MS segmental scanning to multi-target lipid analysis for single cell analysis. (a) MS² segmental scanning of PBPC 34:1 and PBPC 32:1 in single cells. (b, c) Chain composition of PC 32:1 (a) and PC 34:1 (b) analyzed by MS/MS in negative ion mode. (d) Chemical structures of C=C location and their specific diagnostic ions for PC 16:0 18:1, where the C=C in C18:1 was located at n-9, n-10, n-7. (e) MS/MS spectrum of PBPC 16:0 18:1 (m/z 881) from a single MDA-MB-468 cell. (f) Chemical structures of C=C location and their specific diagnostic ions for PC 16:0 16:1, where the C=C in C16:1 was located at n-9, n-10, n-7. (g) MS/MS spectrum of PBPC 16:0 16:1 (m/z 853) from a single MDA-MB-385 468 cell.

Supplementary Tables

No.	Lipid Subclass	Name	Adduct	Observed m/z	MS/MS fragments	
1		LPC 16:0	M+H	496	184	
2	LPC	LPC 18:0	M+H	522	184	
3		LPC 18:1	M+H	524	184	
4		SM 34:2	M+H	701	184	
5	SM	SM 34:1	M+H	703	184	
6		SM 36:2	M+H	729	184	
7		PC 30:1	M+H	704	184	
0		DC 20.0	M+H	706	184	
8		PC 30:0	M+Na	728	669, 545	
9		PC 31:2	M+H	716	184	
10		DC 21.1	M+H	718	184	
10		PC 31:1	M+Na	740	681, 577	
11		DC 21.4	M+H	720	184	
11		PC 31:0	M+Na	742	683	
12		PC 32:2	M+H	730	184	
12		DC 22.1	M+H	732	184	
15		PC 32:1	M+Na	754	695, 571	
14		DC 22.0	M+H	734	184	
14		FC 32:0	M+Na	756	697, 573	
15		PC 33:3	M+Na	764	705, 581	
16		DC 22.2	M+H	744	184	
10	PC	FC 33:2	M+Na	766	707, 583	
17		PC 33:1	M+H	746	184	
1/		10,55.1	M+Na	768	709, 585	
18		DC 33.0	M+H	748	184	
10		10.33.0	M+Na	770	711, 587	
19		PC 34:3	M+H	756	184	
20		PC 34-2	M+H	758	184	
20		10.54.2	M+Na	780	721, 597	
21		PC 34·1	M+H	760	184	
21		10,54,1	M+Na	782	723, 599	
22		PC 34·0	M+H	762	184	
		100400	M+Na	784	725, 601	
23		PC 35+2	M+H	772	184	
			M+Na	794	735, 611	
24		PC 35·1	M+H	774	184	
			M+Na	796	737	
25		PC 35.0	M+H	776	184	
23		1 0 33.0	M+Na	798	739	

390 Table S1. Lipid species detected by tandem MS at the single cell level in positive ion mode.

26		DC 26.4	M+H	782	184
20		PC 30:4	M+Na	804	745, 621
27		DC 26.2	M+H	784	184
21		PC 30:3	M+Na	806	747, 623
20		PC 36-2		786	184
28		PC 30:2	M+Na	808	749, 625
20			M+H	788	184
29		FC 50:1	M+Na	810	751, 627
30		PC 37.5	M+H	794	184
50		10 57.5	M+Na	816	757, 633
31		PC 37.4	M+H	796	184
- 51		10.57.4	M+Na	818	759, 635
32		PC 37·3	M+H	798	184
52		1057.5	M+Na	820	761, 637
33		PC 37:2	M+H	800	184
34		PC 38:6	M+H	806	184
35		PC 38:5	M+H	808	184
36		PC 38:4	M+H	810	184
		100001	M+Na	832	773, 649
37		PC 38:3	M+H	812	184
			M+Na	834	775, 651
38		PC 38:2	M+H	814	184
39	-	PS 30:1	M+H	706	521
40	-	PS 34:2	M+H	760	575
41	-	PS 34:1	M+H	762	577
42	-	PS 34:0	M+H	764	579
43		PS 35:1	M+H	776	591
44		PS 36:3	M+H	786	601
45		PS 36:2	M+H	788	603
46	PS	PS 36:1	M+H	790	605
47		PS 36:0	M+H	792	607
48	-	PS 38:4	M+H	812	627
49		PS 38:3	M+H	814	629
50	-	PS 38:2	M+H	816	631
51	-	PS 38:1	M+H	818	633
52		PS 38:0	M+H	820	635
53	-	PS 40:6	M+H	836	651
54		PS 40:5	M+H	838	653
55		PE 34:2	M+H M+H	716	575
50	4	PE 34:1	M+H	/18	577
57	4	PE 34:0	M+H	720	5/9
50	PE	PE 35:3	M+H M+H	720	58/
59 60	4	PE 35:2 DE 25.1	M+H M+U	730	501
0U 21		ГЕ 33:1 DE 26.4	M+H	740	500
01	4	<u>ГЕ 30:4</u> ре 26-2	M+H	740	<u> </u>
02		PE 30:3	M+H	742	601

63]	PE 36:2	M+H	744	603	
64		PE 36:1	M+H	746	605	
65		PE 36:0	M+H	748	607	
66		PE 38:7	M+H	762	621	
67		PE 38:6	M+H	764	623	
68		PE 38:5	M+H	766	625	
69		PE 38:4	M+H	768	627	
70		PE 38:3	M+H	770	629	
71		PE 38:2	M+H	772	631	
72		PE 38:1	M+H	774	633	
73		PE 39:2	M+H	786	645	
74		PE 39:1	M+H	788	647	
75		PE 40:7	M+H	790	649	
76		PE 40:6	M+H	792	651	
77		PE 40:5	M+H	794	653	
78		PE 40:4	M+H	796	655	
79		PE 40:3	M+H	798	657	
80		PE 40:2	M+H	800	659	
81		PE 41:3	M+H	812	671	
82		PE 41:2	M+H	814	673	
83	PE 41:1		M+H	816	675	
84	PE 41:0		M+H	818	677	
85		PE 42:6	M+H	820	679	
86		PE 42:5	M+H	822	681	
87		PE 42:4	M+H	824	683	
88		PE 42:3	M+H	826	685	
89		PE 42:2	M+H	828	687	
90		TAG 14:0_16:1_18:1	M+NH4	818	573, 547, 519	
91		TAG 14:0_16:0_18:2	M+NH4	818	573, 545, 521	
92		TAG 16:0_16:1_16:1	M+NH4	820	547, 549	
93		TAG 14:0_16:1_18:1	M+NH4	820	575, 549, 521	
94		TAG 14:0_16:0_18:2	M+NH4	820	575, 547, 523	
95	-	TAG 14:0_16:0_18:1	M+NH4	822	577, 549, 523	
96	-	TAG 14:0_16:1_18:0	M+NH4	822	577, 551, 521	
97	-	TAG 14:0_17:0_18:1	M+NH4	836	591, 551, 537	
98	TAG	TAG 14:0_17:1_18:0	M+NH4	836	591, 553, 535	
99	-	TAG 15:0_16:0_18:1	M+NH4	836	577, 563, 537	
100)	TAG 15:0_16:1_18:0	M+NH4	836	577, 565, 535	
101	ļ	TAG 15:0_17:0_17:1	M+NH4	836	577, 551, 553	
102		TAG 16:0_16:0_17:1	M+NH4	836	563, 553	
103		TAG 16:0_16:1_17:0	M+NH4	836	563, 565, 551	
104		TAG 16:0_16:0_18:1	M+NH4	850	551, 577	
105		TAG 16:0_16:1_18:0	M+NH4	850	577, 579, 549	
106		TAG 16:1_18:1_18:1	M+NH4	874	603, 575	
107		TAG 16:0_18:1_18:2	M+NH4	874	601, 575, 577	

108] [TAG 16:0_18:0_18:3	M+NH4	874	601, 579, 573
109] [TAG 14:0_18:0_20:3	M+NH4	874	629, 579, 551
110		TAG 16:0_18:0_18:2	M+NH4	876	575, 579, 603
111		TAG 16:0_18:1_18:1	M+NH4	876	577, 603
112		TAG 16:0_18:0_18:2	M+NH4	876	603, 575, 579
113		TAG 16:0_16:1_20:1	M+NH4	876	603, 605, 551
114		TAG 16:1_18:0_18:1	M+NH4	876	605, 575, 577
115		TAG 18:1_18:1_18:2	M+NH4	900	601, 603
116		TAG 16:0_18:1_20:3	M+NH4	900	627, 601, 577
117		TAG 16:1_18:1_20:2	M+NH4	900	629, 601, 575
118		TAG 16:1_18:0_20:3	M+NH4	900	629, 599, 577
119		TAG 16:0_16:0_22:4	M+NH4	900	627, 551
120		TAG 16:0_18:0_22:6	M+NH4	924	651, 623, 579
121		TAG 16:0_18:1_22:5	M+NH4	924	651, 625, 577
122		TAG 16:0_18:2_22:4	M+NH4	924	651, 627, 575
123		TAG 16:0_18:3_22:3	M+NH4	924	651, 629, 573
124		TAG 16:1_18:0_22:5	M+NH4	924	653, 623, 577
125		TAG 16:1_18:1_22:4	M+NH4	924	653, 625, 575
126		TAG 16:1_18:2_22:3	M+NH4	924	653, 627, 573
127		TAG 18:0_18:2_20:4	M+NH4	924	623, 627, 603
128		TAG 18:0_18:3_20:3	M+NH4	924	623, 629, 601
129		TAG 18:1_18:1_20:4	M+NH4	924	625, 603
130		TAG 18:1_18:2_20:3	M+NH4	924	625, 627,601
131		TAG 18:1_18:3_20:2	M+NH4	924	625, 629, 599
132		TAG 18:2_18:2_20:2	M+NH4	924	627, 599
133		TAG 18:2_18:3_20:1	M+NH4	924	627, 629, 597
134		TAG 16:0_20:5_22:3	M+NH4	948	675, 629, 597
135		TAG 16:0_20:4_22:4	M+NH4	948	675, 627, 599
136		TAG 16:0_20:3_22:5	M+NH4	948	675, 625, 601
137		TAG 16:0_20:2_22:6	M+NH4	948	675, 625, 603
138		TAG 18:0_20:3_20:5	M+NH4	948	647, 625, 629
139		TAG 18:0_20:4_20:4	M+NH4	948	647, 627
140		TAG 18:1_20:2_20:5	M+NH4	948	649, 623, 629
141		TAG 18:1_20:3_20:4	M+NH4	948	649, 625, 627
142		TAG 18:1_20:3_20:3	M+NH4	950	651, 627
143] [TAG 18:1_20:2_20:4	M+NH4	950	651, 625, 629
144] [TAG 18:1_18:2_22:4	M+NH4	950	651, 653, 601
145		TAG 18:1_18:1_22:5	M+NH4	950	651, 603

PC Spieces	Adduct	Ob- served m/z	PB Product m/z	C=C location	MS/MS Fragments m/z
	M+H	732	853	n-10	608, 697
PC 32:1				n-9	622, 711
				n-7	650, 739
		758	879	n-10	634, 723
DC 24-2	M+H			n-9	648, 737
PC 34:2				n-7	676, 765
				n-6,9	650, 739; 690, 779
	M+H	760	881	n-10	636, 725
PC 34:1				n-9	650, 739
				n-7	678, 767
	M+H	786	907	n-10	662, 751
DC 26.2				n-9	676, 765
FC 30:2				n-7	704, 793
				n-6,9	678, 767; 718, 807
PC 36:1	M+H	788	909	n-10	664, 753
				n-9	678, 767
				n-7	706, 795

Table S2. PCs' C=C location isomers identified at the single cell level.

Table S3. Correlation analysis of C16:1 and C18:1-containing lipids in single cells with C=C location isomers.

Correlation Analysis		PC 32:1			PC 34:1		
		n-7	n-9	n-10	n-7	n-9	n-10
	n-7	1	-0.74984	-0.51829	0.256567	-0.0949	-0.10563
PC 32:1	n-9		1	-0.17718	-0.11275	0.223452	-0.01356
	n-10			1	-0.0679	-0.00788	0.174649
PC 34:1	n-7				1	-0.90836	-0.15012
	n-9					1	-0.27708
	n-10						1

-1 0 0.4

410 **Reference**

- [1] W. Zhang, D. Zhang, Q. Chen, J. Wu, Z. Ouyang, Y. Xia, Nat Commun 2019, 10, 79.
- [2] S. Cheng, D. Zhang, J. Feng, Q. Hu, A. Tan, Z. Xie, Q. Chen, H. Huang, Y. Wei, Z. Ouyang, X. Ma, *Research* 2023, *6*, research.0087.