Supporting Information

Dual role of nitroarenes as electrophiles and arylamine surrogates in Buchwald-Hartwig-type coupling for C–N bond construction

Zhiguo Lei,^[a] Jiaxin Yao,^[a] Yuxuan Xiao,^[a] Wenbo H. Liu,^[c] Lin Yu,*^[a] Wengui Duan,*^[a] and Chao-Jun Li *^[b]

^[a] School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, No. 100, East Daxue Road, Nanning, Guangxi 530004, P. R. China.

^[b] Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

^[c] School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China

*E-mail: linyu@gxu.edu.cn; *E-mail: cj.li@mcgill.ca

Table of Contents

1.	General Information	S2
2.	Optimization of Reaction Conditions for the Synthesis of Symmetrical	
Dia	rylamines	S2
3.	Optimization of Reaction Conditions for the Synthesis of Symmetrical	
Tria	arylamine	S6
4.	General Procedure for Product 2 or 3	S6
5.	General Procedure for Product 4 or 5	S7
6.	Mechanistic Studies	S8
7.	General Procedure for Synthesis of Hole-Transporting Material TCTA	S9
8.	Scale-Up Experiments	S10
9.	Characterization Data of Starting Materials and Products	S12
10.	References	S40
11.	NMR Spectra of Starting Materials and Products	S41

1. General Information

¹H NMR spectra were recorded on Bruker 500 MHz or 600 MHz spectrometer and the chemical shifts were reported in parts per million (δ) relative to internal solvent signal (7.261 ppm in CDCl₃ or 2.500 ppm in (CD₃)₂SO). The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; m, multiplet. The coupling constants, J, are reported in Hertz (Hz). ¹³C NMR spectra were obtained at Bruker 125 MHz and 151 MHz and referenced to the internal solvent signals (central peak is 77.00 ppm in CDCl₃ or 40.000 ppm in (CD₃)₂SO). CDCl₃ was used as the NMR solvent. APEX II (Bruker Inc.) was used for HR-MS and APCI-MS.

Unless otherwise noted, all reagents were purchased from commercial suppliers (Energy-Chemical, Bidepharm, Heowns, or TCI) and used without further purification. Flash column chromatography was performed over silica gel 200-300. The reagents were weighed and handled in a glove box. All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

2. Optimization of Reaction Conditions for the Synthesis of Symmetrical Diarylamines

	NO ₂	Pd(acac) ₂ (5.0 mol%) BrettPhos (15 mol%) TBAB (20 mol%)	H N N	+ NH ₂
MeO) 1a	Cs_2CO_3 (2.0 equiv) reductant (1.5 equiv) PhCF ₃ , N ₂ , 130 °C, 18 h	MeO 2a	DMe MeO 8
	entry	reductant	2a ^b /yield/%	8 ^b /yield/%
-	1 c	Fe	0	0
	2 ^c	Mn	0	0
	3 <i>d</i>	Ph ₃ P	0	0
	4 ^e	propan-2-ol	trace	0
	5	PHMS	0	77
	6	HSiEt ₃	19	27
	7	PHSiH ₃	0	81
	8^d	B_2cat_2	0	0
	9	$B_2(OH)_4$	0	< 20
	10	$B_2 nep_2$	56	< 20
	11 f	HBpin	55	0
	12	B_2pin_2	83	0
	13 ^g	B_2pin_2	36	0
	14 ^h	$B_2 pin_2$	61	< 20

Table S1. Screening of reductant^a

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), BrettPhos (15 mol%), Cs₂CO₃ (2.0 equiv), TBAB (20 mol%), and reductant (1.5 equiv) in PhCF₃ (1.5 mL) at 130 °C for 18 hours under N₂; ^{*b*} Isolated yield; ^{*c*} Generating a complex mixture containing triarylamine (< 20%); ^{*d*} Most all of the starting material remained; ^{*e*}

When K₃PO₄ and 1,4-dioxane were used, a denitrative hydrogenation product anisole was formed; ^{*f*} A small amount of triarylamine was formed (< 20%); ^{*g*} 0.3 mmol B₂pin₂ was used, and a small amount of triarylamine was generated (37%); ^{*h*} 0.6 mmol B₂pin₂ were used, and a small amount of *p*-anisidine was formed (< 20%).

MeO 1a	Pd(acac) ₂ (5.0 mol%) ligand (5.0 - 15 mol%) TBAB (20 mol%) Cs ₂ CO ₃ (2.0 equiv) B ₂ pin ₂ (1.5 equiv) PhCF ₃ , N ₂ , 130 °C, 18 h	MeO 2a OMe
entry	ligand	2a ^b /yield/%
1	BrettPhos	83
2	XPhos	46
3	SPhos	0
4	RuPhos	0
5	JohnPhos	0
6	XantPhos	0
7	DPPF	0
8	IPr·HCl	0

Table S2. Screening of ligand ^a

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), ligand (15 mol% for monodentate, 5.0 mol% for bidentate and carbene ligand), Cs₂CO₃ (2.0 equiv), TBAB (20 mol%), and B₂pin₂ (1.5 equiv) in PhCF₃ (1.5 mL) at 130 °C for 18 hours under N₂; ^{*b*} Isolated yield.

Table S3. Screening of catalyst ^a

	NO ₂	Pd catalyst (5.0 mol%) BrettPhos (15 mol%) TBAB (20 mol%)	H N
MeO	19	Cs ₂ CO ₃ (2.0 equiv) B ₂ pin ₂ (1.5 equiv)	MeO OMe
	ια	PhCF ₃ , N ₂ , 130 °C, 18 h	28
	entry	Pd catalyst	2a ^b /yield/%
	1	Pd(acac) ₂	83
	2	$Pd(dba)_2$	< 20
	3	$Pd(OAc)_2$	50
	4	[Pd(allyl)Cl] ₂	25
	5	$PdCl_2(cod)$	< 20
	6	$Pd(TFA)_2$	37
	7	Pd(PPh ₃) ₄	0
	8	$Pd(^{t}Bu_{3}P)_{2}$	0

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd catalyst (5.0 mol%), BrettPhos (15 mol%), Cs₂CO₃ (2.0 equiv), TBAB (20 mol%), and B₂pin₂ (1.5

	NO ₂	Pd(acac) ₂ (5.0 mol%) BrettPhos (15 mol%) TBAB (20 mol%)	H N N
MeC) 1a	base (2.0 equiv) B ₂ pin ₂ (1.5 equiv) PhCF ₃ , N ₂ , 130 °C, 18 h	MeO OMe
-	entry	base	2a ^b /yield/%
-	1 c	CsOH•H ₂ O	41
	2	CsF	< 20
	3	K ₃ PO ₄	29
	4	KO'Bu	57
	5	KF	0
	6	K_2CO_3	48
	7	Cs_2CO_3	83
	8	DBU	0

Table S4. Screening of base ^a

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), BrettPhos (15 mol%), base (2.0 equiv), TBAB (20 mol%), and B₂pin₂ (1.5 equiv) in PhCF₃ (1.5 mL) at 130 °C for 18 hours under N₂; ^{*b*} Isolated yield; ^{*c*} When PPh₃ (0.2 mmol) in DMF was used instead of B₂pin₂ in PhCF₃ and no TBAB at 150 °C, the azoarene product was formed.

Table S5. Screening of solvent ^a

MeO	NO ₂ 1a	Pd(acac) ₂ (5.0 mol%) BrettPhos (15 mol%) TBAB (20 mol%) Cs ₂ CO ₃ (2.0 equiv) B ₂ pin ₂ (1.5 equiv) solvent, N ₂ , 130 °C, 18 h	MeO 2a OMe
_	entry	solvent	2a ^b /yield/%
	1	PhCF ₃	83
	2 ^c	DMF	0
	3	DMSO	0
	4	toluene	55
	5	o-xylene	53
	6	PhF	58
	7	1,4-dioxane	27
	8	<i>n</i> -heptane	41
	9	THF	< 20

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), BrettPhos (15 mol%), Cs₂CO₃ (2.0 equiv), TBAB (20 mol%), and B₂pin₂ (1.5 equiv) in a solvent (1.5 mL) at 130 °C for 18 hours under N₂; ^{*b*} Isolated yield; ^{*c*} When LiO'Bu or KOMe were used instead of Cs₂CO₃, the azoxyarene product was formed.

NO ₂	Pd(acac) ₂ (5.0 mol%) BrettPhos (15 mol%) additive (20 mol%)		
MeO 1a	Cs ₂ CO ₃ (2.0 equiv) B ₂ pin ₂ (1.5 equiv) PhCF ₃ , N ₂ , temp, 18 h	MeO	2a OMe
entry	additive	temp (°C)	2a ^b /yield/%
1	-	130	65
2	TBAI	130	66
3	TBAA	130	75
4	TBAC	130	72
5	TBAB	130	83
6	TBAB	110	73
7	TBAB	150	70

Table S6. Screening of additive and temperature ^a

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), BrettPhos (15 mol%), Cs₂CO₃ (2.0 equiv), additive (20 mol%), and B₂pin₂ (1.5 equiv) in PhCF₃ (1.5 mL) at a temperature for 18 hours under N₂; ^{*b*} Isolated yield.

Table S7. Control experiments ^a

MeO	NO ₂ —	conditions	MeO 8	NH ₂ + N	MeO 2a	ОМе
entry	Pd catalyst	ligand	base	reductant	8 ^b /yield/%	2a ^b /yield/%
1	$Pd(acac)_2$	BrettPhos	Cs ₂ CO ₃	B ₂ pin ₂	0	83
2	-	BrettPhos	Cs_2CO_3	B_2pin_2	40	0
3	$Pd(acac)_2$	-	Cs_2CO_3	B_2pin_2	43	0
4	$Pd(acac)_2$	BrettPhos	-	B_2pin_2	0	0
5	$Pd(acac)_2$	BrettPhos	Cs ₂ CO ₃	-	0	0
6°	-	-	Cs_2CO_3	B ₂ pin ₂	84	0

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), Pd(acac)₂ (5.0 mol%), BrettPhos (15 mol%), Cs₂CO₃ (2.0 equiv), TBAB (20 mol%), and B₂pin₂ (1.5 equiv) in PhCF₃ (1.5 mL) at 130 °C for 18 hours under N₂; ^{*b*} Isolated yield; ^{*c*} B₂pin₂ (3.0 equiv) and PhCF₃ (3.0 mL) were used.

3. Optimization of Reaction Conditions for the Synthesis of Symmetrical Triarylamine

OMe

Ma	NO ₂	Pd catalys ligand (base (2	t (5.0 mol%) 15 mol%)			
Mec) ·	reductant	reductant (0.73 equiv)			
	19	solvent No	150 °C 24 h	MeO 🗸 🗸	~ ~ ~ ~	ОМе
	ια	561V6111, 14 <u>2</u> ,	100 0,211		Ja	
entry	Pd catalyst	ligand	base	solvent	reductant	3a ^b
						/yield/%
1 c	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCF ₃	B_2pin_2	45
2^{d}	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCF ₃	B_2pin_2	55
3	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCF ₃	B_2pin_2	63
4 ^e	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCF ₃	B_2pin_2	56
5^{f}	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCF ₃	B_2pin_2	53
6	$Pd(acac)_2$	BrettPhos	CsOH•H ₂ O	PhCF ₃	B_2pin_2	0
7	$Pd(acac)_2$	BrettPhos	K ₃ PO ₄	PhCF ₃	B_2pin_2	30
8	$Pd(acac)_2$	BrettPhos	KO ^t Bu	PhCF ₃	B_2pin_2	0
9	$Pd(acac)_2$	BrettPhos	Na ₂ CO ₃	PhCF ₃	B_2pin_2	0
10	$Pd(acac)_2$	BrettPhos	K_2CO_3	PhCF ₃	B_2pin_2	25
11	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	DMF	B_2pin_2	0
12	Pd(acac) ₂	BrettPhos	Cs ₂ CO ₃	PhCH ₃	B ₂ pin ₂	70
13	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	<i>m</i> -xylene	B_2pin_2	65
14	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhF	B_2pin_2	59
15	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	1,4-dioxane	B_2pin_2	61
16	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	<i>n</i> -heptane	B_2pin_2	55
17^{k}	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCH ₃	B_2pin_2	36
18^{l}	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCH ₃	B_2pin_2	25
19 ^m	$Pd(acac)_2$	BrettPhos	Cs_2CO_3	PhCH ₃	B_2pin_2	47

Table S8. Optimization of conditions for the synthesis of symmetrical triarylamine ^{*a*, *b*}

^{*a*} Reaction conditions: 4-nitroanisole **1a** (0.30 mmol), catalyst (5.0 mol%), ligand (15 mol%), base (2.0 equiv), and reductant (0.22 mmol) in solvent (1.0 mL) at 150 °C for 24 hours under N₂; ^{*b*} Isolated yield; ^{*c*} B₂pin₂ (0.15 mmol); ^{*d*} B₂pin₂ (0.20 mmol), ^{*e*} B₂pin₂ (0.25 mmol), ^{*f*} B₂pin₂ (0.27 mmol); ^{*k*} additive (TBAB, 20 mol%), ^{*l*} 110 °C, ^{*m*} 130 °C.

4. General Procedure for Product 2 or 3

Procedure A: In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with $Pd(acac)_2$ (4.6 mg, 5.0 mol%), BrettPhos (24.2 mg, 15 mol%), nitroarene 1 (0.30 mmol), B_2pin_2 (114.3 mg, 0.45 mmol), Cs_2CO_3 (195.5 mg, 0.6 mmol), TBAB (19.3 mg, 20 mol%), and PhCF₃ (1.5 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 18 hours. After the mixture was cooled to room temperature, the

resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel (PE : EA) to give the desired product **2**.

Procedure B: In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with $Pd(acac)_2$ (4.6 mg, 5 mol%), BrettPhos (24.2 mg, 15 mol%), nitroarene **1** (0.30 mmol), B_2pin_2 (56 mg, 0.22 mmol) Cs_2CO_3 (195.5 mg, 0.6 mmol), and PhCH₃ (1.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 150 °C for 24 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel (PE : EA or PE : DCM) to give the desired product **3**.

5. General Procedure for Product 4 or 5

Procedure C: In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with nitroarene Ar^1 (0.15 mmol), B₂pin₂ (114.3 mg, 0.45 mmol), Cs₂CO₃ (130.3 mg, 0.40 mmol), TBAB (12.9 mg, 40 mol%), and PhCF₃ (1.5 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 18 hours. After the mixture was cooled to room temperature, transferred the sealed tube to the glovebox and added Pd(acac)₂ (1.5 mg, 5.0 mol%), BrettPhos (8.1 mg, 15 mol%), and the nitroarene Ar^2 (0.10 mmol, 1.0 equiv) to the bottom of the sealed tube via a small filter paper, allowing them to mix thoroughly (Note: when the catalyst and ligand adhere to the reactor inner wall, the desired product yield decreases sharply). Continue stirring the reaction mixture at 130 °C for 22 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel (PE : EA or PE : DCM) to give the desired product **4**.

Procedure D: In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with $Pd(acac)_2$ (3.1 mg, 5.0 mol%), BrettPhos (16.1 mg, 15 mol%), nitroarene **Ar**¹ (0.20 mmol, 1.0 equiv), B₂pin₂ (76 mg, 0.30 mmol), Cs₂CO₃ (130.3 mg, 0.40 mmol), TBAB (12.9 mg, 20 mol%), and PhCF₃ (1.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 18 hours. After the mixture was cooled to room temperature, transferred the sealed tube to the glovebox and added Cs₂CO₃ (130.3 mg, 0.40 mmol) and the nitroarene **Ar**² (0.15 mmol) to the bottom of the sealed tube via a small filter paper, allowing them to mix thoroughly. Continue stirring the reaction mixture at 130 °C for 26 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel (PE : EA or PE : DCM) to give the desired product **5**.

6. Mechanistic Studies

a) Examining the role of palladium catalyst

In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with 4-nitroanisole **1a** (46 mg, 0.30 mmol), B_2pin_2 (228.6 mg, 0.90 mmol), Cs_2CO_3 (195.5 mg, 0.60 mmol), TBAB (19.3 mg, 20 mol%), and PhCF₃ (3.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 18 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel to give the *p*-anisidine **8** as a brown solid in 84 % (31 mg) yield.

b) Evaluating the role of B₂Pin₂

In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with $Pd(acac)_2$ (4.6 mg, 5.0 mol%), BrettPhos (24.2 mg, 15 mol%), 4-nitroanisole **1a** (46 mg, 0.30 mmol), Cs₂CO₃ (195.5 mg, 0.60 mmol), TBAB (19.3 mg, 20 mol%), and PhCF₃ (1.5 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 18 hours.

c) Verifying the possible intermediate

In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with $Pd(acac)_2$ (3.1 mg, 5.0 mol%), BrettPhos (16.1 mg, 15 mol%); 4-nitroanisole **1a** (30.6 mg, 0.20 mmol), intermediates **9** (0.30 mmol), Cs_2CO_3 (260.6 mg, 0.80 mmol), TBAB (25.8 mg, 40 mol%), and PhCF₃ (3.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 130 °C for 22 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel to give the desired product **4e**.

7. General Procedure for Synthesis of Hole-Transporting Material TCTA

a) Efficient synthesis of the key intermediate of hole-transporting material TCTA

In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with carbazole **6** (835.4 mg, 5.0 mmol), 4-fluoronitrobenzene (775.6 mg, 5.5 mmol), dried cesium fluoride (1822.8 mg, 12 mmol), and DMSO (4.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 150 °C for 15 hours. After the mixture was cooled to room temperature, the mixture was poured into 12.5 mL of stirred methanol slowly, and the precipitated yellow crystals. The mixture was filtered, and the product 9-(4-nitrobenzene)-9*H*-carbazole **7** was obtained with 90% yield.

b) Single-step synthesis of TCTA

In a nitrogen gas filled glovebox, a reaction tube (35 mL) equipped with a magnetic stir bar was charged with Pd(acac)₂ (4.6 mg, 5 mol%), BrettPhos (24.2 mg, 15 mol%), 9-(4-nitrophenyl)-9*H*-carbazole 7 (86.5 mg 0.30 mmol), B₂pin₂ (56 mg, 0.22 mmol) Cs₂CO₃ (195.5 mg, 0.6 mmol) and PhCH₃ (1.0 mL) before being sealed with a rubber septum. The reaction mixture was stirred at 150 °C for 24 hours. After the mixture was cooled to room temperature, the resulting solution was directly filtered. The solvent was evaporated in vacuo to give the crude products. The residue was purified by flash column chromatography on silica gel (PE \rightarrow PE : EA = 100 : 1) to give the desired product **3q** TCTA (52.6 mg, 71%).

8. Scale-Up Experiments

In a nitrogen gas filled glovebox, a Schlenk tube (100 mL) equipped with a magnetic stir bar was charged with 1-methoxy-2-nitrobenzene (306.3 mg, 2.0 mmol), $Pd(acac)_2$ (30.5 mg, 0.10 mmol), BrettPhos (161 mg, 0.30 mmol), Cs_2CO_3 (1303.3 mg, 4.0 mmol), B_2pin_2 (761.8 mg, 3.0 mmol), and TBAB (129.0 mg, 0.4 mmol). Then, $PhCF_3$ (10 mL) was added and the mixture stirred at 130 °C for 18 hours. After the reaction cooled to room temperature, the resulting

solution was directly filtered through a pad of silica by EA. Concentration in vacuo followed by silica gel column purification gave the desired product **2b** in 84 % yield (192.6 mg).

In a nitrogen gas filled glovebox, a Schlenk tube (100 mL) equipped with a magnetic stir bar was charged with nitrobenzene (369.3 mg, 3.0 mmol), $Pd(acac)_2$ (45.7 mg, 0.15 mmol), BrettPhos (241.5 mg, 0.30 mmol), Cs_2CO_3 (1995.0 mg, 4.0 mmol), and B_2pin_2 (558.7 mg, 2.2 mmol). Then, PhCH₃ (10 mL) was added and the mixture stirred at 150 °C for 24 hours. After the reaction cooled to room temperature, the resulting solution was directly filtered through a pad of silica by EA. Concentration in vacuo followed by silica gel column purification gave the desired product **3d** in 79 % yield (193.5 mg).

9. Characterization Data of Starting Materials and Products

EtOOC N N NO₂ 1x

Ethyl 1-(4-nitrophenyl)-3-(trifluoromethyl)-1*H*-pyrazole-4-carboxylate (1x)

The title compound was prepared according to previously reported literature procedure¹; ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 2.2 Hz, 2H), 8.16 (s, 1H), 7.65 (d, J = 8.9 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.5, 148.2, 143.9, 143.2, 132.70 (q, J_{C-F} = 40.4 Hz), 126.8, 124.6, 118.90 (q, J_{C-F} = 271.6 Hz). 117.9, 61.6, 14.0.; ¹⁹F NMR (565 MHz, CDCl₃) δ -54.95.

2,2'-Dimethoxy-3-nitro-1,1'-binaphthalene (1y)

The title compound was prepared according to previously reported literature procedure¹; ¹**H NMR** (600 MHz, CDCl₃) δ 8.86 (d, J = 2.4 Hz, 1H), 8.17 (d, J = 9.1 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 9.4, 2.4 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 9.1 Hz, 1H), 7.48 (d, J = 9.1 Hz, 1H), 7.35 (ddd, J = 8.0, 6.8, 1.0 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.22 (d, J = 9.3 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 158.1, 154.8, 143.6, 136.8, 133.6, 131.8, 130.0, 129.1, 128.1, 127.1, 126.68, 126.65, 125.1, 124.6, 123.7, 120.0, 119.6, 117.8, 115.4, 113.8, 56.6, 56.5.

Bis(4-methoxyphenyl)amine (2a)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a white solid in 83 % (28.5 mg) yield. The spectral data were in accordance with those reported in the literature². ¹H NMR (600 MHz, CDCl₃) δ 6.95 (d, *J* = 8.9 Hz, 4H), 6.84 (d, *J* = 8.9 Hz, 4H), 5.31 (s, 1H), 3.79 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 154.2, 137.9, 119.5, 114.7, 55.6.

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a white solid in 85 % (25.2 mg) yield; The spectral data were in accordance with those reported in the literature³. ¹H NMR (600 MHz, CDCl₃) δ 7.08 (d, *J* = 8.1 Hz, 4H), 6.96 (d, *J* = 8.4 Hz, 4H), 5.52 (s, 1H), 2.31 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 130.1, 129.8, 117.9, 20.6.

Diphenylamine (2c)

2c

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE) as a light yellow oil in 85 % (21.6 mg) yield; The spectral data were in accordance with those reported in the literature³. ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.26 (m, 4H), 7.09 (d, *J* = 7.5 Hz, 4H), 6.95 (t, *J* = 7.5 Hz, 2H), 5.71 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 143.1, 129.3, 121.0, 117.8.

Dis(4-fluorophenyl)amine (2d)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 25 : 1) as a light yellow oil in 32 % (9.8 mg) yield. The spectral data were in accordance with those reported in the literature³. ¹H NMR (600 MHz, CDCl₃) δ 7.00 – 6.92 (m, 8H), 5.49 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 157.8 (d, J_{C-F} = 239.6 Hz), 139.7 (d, J_{C-F} = 2.5 Hz), 119.4 (d, J_{C-F} = 7.7 Hz), 116.0 (d, J_{C-F} = 22.6 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -122.59.

Bis(4-phenoxyphenyl)amine (2e)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 200 : 1) as a white solid in 79 % (41.9 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.34 (dd, J = 8.6, 7.3 Hz, 4H), 7.08 (t, J = 7.4 Hz, 2H), 7.06 – 7.03 (m, 4H), 7.02 (dd, J = 8.7, 1.1 Hz, 4H), 7.00 – 6.97 (m, 4H), 5.56 (s, 1H); ¹³C **NMR** (151 MHz, CDCl₃) δ 158.2, 150.7, 139.6, 129.6, 122.5, 120.6, 119.2, 117.8; **m.p.:** 102-104 °C; **HRMS** (APCI) calcd for C₂₄H₁₉NO₂ [M + H⁺], 354.1489; found: 354.1488.

Bis(4-(trifluoromethyl)phenyl)amine (2f)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a light yellow solid in 64 % (29.3 mg) yield. The spectral data were in accordance with those reported in the literature². ¹**H NMR** (600 MHz, CDCl₃) δ 7.55 (d, *J* = 8.4 Hz, 4H), 7.16 (d, *J* = 8.4 Hz, 4H), 6.12 (s, 1H); ¹³**C NMR** (151 MHz, CDCl₃) δ 144.8, 126.8 (q, *J*_{C-F} = 3.8 Hz), 124.3 (q, *J*_{C-F} = 271.0 Hz), 123.5 (q, *J*_{C-F} = 33.0 Hz), 117.4; ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.75.

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 200 : $1\rightarrow100$: 1) as a yellow oil in 75 % (36.2 mg) yield. The spectral data were in accordance with those reported in the literature⁴. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 6.8 Hz, 4H), 7.59 – 7.47 (m, 4H), 7.46 – 7.33 (m, 6H), 7.27 (d, J = 6.9 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 5.88 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 143.4, 142.5, 141.0, 129.7, 128.7, 127.3, 127.1, 120.0, 116.71, 116.67.

Di-m-tolylamine (2h)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = $200 : 1 \rightarrow 100 : 1$) as a light yellow oil in 89 % (26.3 mg) yield; The spectral data were in accordance with those reported in the literature³; ¹H NMR (600

MHz, CDCl₃) δ 7.18 (t, J = 7.7 Hz, 2H), 6.91 (d, J = 7.4 Hz, 4H), 6.77 (d, J = 7.4 Hz, 2H), 5.63 (s, 1H), 2.34 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 143.2, 139.1, 129.1, 121.7, 118.5, 114.9, 21.5.

Dimethyl 3,3'-azanediyldibenzoate (2i)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 10 : 1) as a white solid in 54 % (23.1 mg) yield. The spectral data were in accordance with those reported in the literature⁵. ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.71 (m, 2H), 7.62 (dt, *J* = 7.6, 1.3 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.28 (ddd, *J* = 8.1, 2.5, 1.1 Hz, 2H), 6.03 (s, 1H), 3.90 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 142.9, 131.4, 129.4, 122.5, 122.0, 118.9, 52.2.

Bis(3-(trifluoromethoxy)phenyl)amine (2j)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a yellow oil in 80 % (40.5 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.29 (t, J = 8.2 Hz, 2H), 6.98 (ddd, J = 8.2, 2.2, 0.9 Hz, 2H), 6.94 (s, 2H), 6.83 (d, J = 8.0 Hz, 2H), 5.88 (s, 1H); ¹³C **NMR** (151 MHz, CDCl₃) δ 150.3, 143.7, 130.6, 120.4 (q, J_{C-F} = 257.2 Hz), 116.1, 113.7, 110.3; ¹⁹F **NMR** (565 MHz, CDCl₃) δ -57.77; **HRMS** (APCI) calcd for C₁₄H₉F₆NO₂ [M + H⁺], 338.0610; found: 338.0602.

Bis(4-(tert-butyl)phenyl)amine (2k)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a light yellow oil in 84 % (35.5 mg) yield. The spectral data were in accordance with those reported in the literature⁶. ¹H NMR (600 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 2H), 7.17 (t, *J* = 2.1 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.91 (ddd, *J*

= 7.9, 2.3, 1.0 Hz, 2H), 5.77 (s, 1H), 1.34 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 142.9, 128.9, 117.9, 115.0, 114.8, 34.7, 31.3.

Di-o-tolylamine (2l)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a light yellow oil in 91 % (26.9 mg) yield; The spectral data were in accordance with those reported in the literature⁷; ¹H NMR (600 MHz, CDCl₃) δ 7.23 (d, J = 7.1 Hz, 2H), 7.15 (t, J = 6.8 Hz, 2H), 7.02 (d, J = 7.4 Hz, 2H), 6.94 (t, J = 6.9 Hz, 2H), 5.17 (s, 1H), 2.30 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 141.9, 130.8, 127.5, 126.8, 121.3, 118.2, 17.8.

Bis(2-methoxyphenyl)amine (2m)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 200 : 1) as a colorless oil in 85 % (29.2 mg) yield. The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.35 (m, 2H), 7.04 – 6.84 (m, 6H), 6.52 (s, 1H), 3.92 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 132.4, 120.7, 120.1, 115.4, 110.5, 55.6.

Bis(3,5-dimethylphenyl)amine (2n)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = $200 : 1 \rightarrow 100 : 1$) as a light yellow oil in 84 % (28.4 mg) yield. The spectral data were in accordance with those reported in the literature³. ¹H NMR (600 MHz, CDCl₃) δ 6.73 (s, 4H), 6.62 (s, 2H), 5.54 (s, 1H), 2.31 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 143.2, 138.9, 122.7, 115.7, 21.4.

Di(naphthalen-1-yl)amine (20)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 250 : 1) as a pink solid in 79 % (31.9 mg) yield. The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 2H), 7.96 – 7.90 (m, 2H), 7.61 – 7.53 (m, 4H), 7.50 (t, J = 6.8 Hz, 2H), 7.37 (td, J = 7.5, 3.2 Hz, 2H), 7.06 (dd, J = 7.5, 4.2 Hz, 2H), 6.36 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.3, 134.6, 128.6, 126.9, 126.2, 126.1, 125.6, 122.4, 121.8, 115.4.

Bis(3,4-dimethylphenyl)amine (2p)

2р

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a yellow oil in 76 % (25.7 mg) yield. The spectral data were in accordance with those reported in the literature⁸. ¹H NMR (600 MHz, CDCl₃) δ 7.04 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 2.5 Hz, 2H), 6.84 (dd, J = 8.0, 2.5 Hz, 2H), 5.46 (s, 1H), 2.24 (d, J = 6.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 141.5, 137.4, 130.2, 128.8, 119.4, 115.2, 19.9, 18.9.

Bis(4-methoxy-3-methylphenyl)amine (2q)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a white solid in 75 % (28.9 mg) yield. The spectral data were in accordance with those reported in the literature⁸. ¹H NMR (600 MHz, CDCl₃) δ 6.82 (d, J = 7.1 Hz, 4H), 6.75 (d, J = 9.2 Hz, 2H), 5.21 (s, 1H), 3.81 (s, 6H), 2.21 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 152.4, 137.6, 127.6, 121.4, 116.2, 111.1, 55.8, 16.3.

Bis(2-methoxypyridin-3-yl)amine (2r)

S17

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a white solid in 92 % (31.9 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.70 (dd, J = 5.0, 1.6 Hz, 2H), 7.48 (dd, J = 7.7, 1.6 Hz, 2H), 6.82 (dd, J = 7.7, 5.0 Hz, 2H), 6.45 (s, 1H), 4.04 (s, 6H); ¹³C **NMR** (151 MHz, CDCl₃) δ 154.1, 136.9, 126.5, 120.3, 116.7, 53.6; **m.p.:** 60-62 °C; HRMS (APCI) calcd for C₁₂H₁₃N₃O₂ [M + H⁺], 232.1081; found: 232.1076.

Bis(4-methoxy-3,5-dimethylphenyl)amine (2s)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a colorless oil in 82 % (35.1 mg) yield. The spectral data were in accordance with those reported in the literature⁴. ¹H NMR (600 MHz, CDCl₃) δ 6.69 (s, 4H), 5.31 (s, 1H), 3.72 (s, 6H), 2.26 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 151.1, 139.5, 131.5, 118.1, 59.9, 16.2.

Bis(9,9-dimethyl-9*H*-fluoren-2-yl)amine (2t)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a white solid in 86 % (51.8 mg) yield. The spectral data were in accordance with those reported in the literature⁹. ¹**H NMR** (600 MHz, CDCl₃) δ 7.69 (t, J = 8.4 Hz, 4H), 7.46 (d, J = 7.4 Hz, 2H), 7.38 (td, J = 7.4, 1.2 Hz, 2H), 7.31 (td, J = 7.4, 1.2 Hz, 2H), 7.28 (d, J = 2.2 Hz, 2H), 7.12 (dd, J = 8.1, 2.1 Hz, 2H), 5.96 (s, 1H), 1.54 (s, 12H); ¹³**C NMR** (151 MHz, CDCl₃) δ 155.3, 153.0, 142.7, 139.2, 132.5, 126.9, 126.0, 122.4, 120.9, 119.0, 116.9, 112.2, 46.7, 27.2.

Bis(benzo[d][1,3]dioxol-5-yl)amine (2u)

2u

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a yellow oil in 57 % (22 mg) yield. ¹H NMR (600 MHz, CDCl₃) δ 6.70 (d, *J* = 8.2 Hz, 2H), 6.58 (d, *J* = 2.2 Hz, 2H), 6.42 (dd, *J* = 8.3, 2.3 Hz,

2H), 5.91 (s, 4H), 5.31 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 142.1, 139.0, 110.9, 108.5, 100.93, 100.89; **HRMS** (APCI) calcd for C₁₄H₁₁NO₄ [M + H⁺], 258.0761; found: 258.0756.

Bis(2,3-dihydrobenzofuran-5-yl)amine (2v)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 10 : 1) as a yellow solid in 73 % (27.7 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 6.89 – 6.86 (m, 2H), 6.73 (dd, J = 8.3, 2.3 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 5.20 (s, 1H), 4.54 (t, J = 8.6 Hz, 4H), 3.16 (t, J = 8.6 Hz, 4H); ¹³C **NMR** (151 MHz, CDCl₃) δ 154.7, 138.4, 127.8, 118.4, 115.9, 109.4, 71.1, 30.1; **m.p.:** 96-98 °C; **HRMS** (APCI) calcd for C₁₆H₁₅O₂[M + H⁺], 254.1176; found: 254.1170.

Bis(4-(9H-carbazol-9-yl)phenyl)amine (2w)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 20 : 1) as a white solid in 75 % (56.2 mg) yield. The spectral data were in accordance with those reported in the literature¹⁰. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, J = 7.8 Hz, 4H), 7.54 – 7.46 (m, 12H), 7.36 (tt, J = 6.4, 2.1 Hz, 8H), 5.96 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 141.2, 130.7, 128.3, 125.9, 123.1, 120.3, 119.7, 118.8, 109.7.

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = $10 : 1 \rightarrow 5 : 1$) as a white solid in 64 % (55.8 mg) yield. ¹**H NMR** (600 MHz, CDCl₃) δ 8.10 (s, 2H), 7.32 (d, J = 8.7 Hz, 4H), 7.17 (d, J = 8.8 Hz, 4H), 6.36 (s, 1H), 4.37 (q, J = 7.1 Hz, 4H), 1.38 (t, J = 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 161.0, 143.5, 142.2, 132.6, 132.5 (q, $J_{C-F} = 40.0$ Hz), 127.1, 119.1 (q, $J_{C-F} = 271.4$ Hz), 117.7, 116.4, 61.3, 14.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -55.49; m.p.: 108-110 °C; HRMS (APCI) calcd for C₂₆H₂₁F₆N₅O₄ [M + H⁺], 582.1570; found: 582.1561.

Bis(2,2'-dimethoxy-[1,1'-binaphthalen]-3-yl)amine (2y)

Following the general **Procedure A**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 2 : 1 \rightarrow DCM) as a white solid in 72 % (69.3 mg) yield. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.38 (s, 1H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.88 (d, *J* = 9.1 Hz, 2H), 7.67 (d, *J* = 2.2 Hz, 2H), 7.58 (d, *J* = 9.2 Hz, 2H), 7.48 (d, *J* = 9.2 Hz, 2H), 7.31 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 2H), 7.23 (ddd, *J* = 8.2, 6.7, 1.3 Hz, 2H), 7.15 (dd, *J* = 9.1, 2.3 Hz, 2H), 7.01 (dd, *J* = 8.5, 1.1 Hz, 2H), 6.87 (d, *J* = 9.1 Hz, 2H), 3.73 (s, 6H), 3.65 (s, 6H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 155.1, 153.3, 139.8, 133.9, 130.5, 129.7, 129.2, 129.0, 128.4, 128.2, 126.8, 126.1, 125.1, 123.8, 121.4, 119.4, 119.3, 115.2, 114.7, 110.6, 56.8, 56.6; m.p.: 274-275 °C; HRMS (APCI) calcd for C₄₄H₃₅NO₄ [M + H⁺], 642.2639; found: 642.2627.

Tris(4-methoxyphenyl)amine (3a)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a light yellow solid in 70 % (23.4 mg) yield. The spectral data were in accordance with those reported in the literature⁷. ¹**H NMR** (600 MHz, CDCl₃) δ 7.00 (d, *J* = 9.0 Hz, 6H), 6.82 (d, *J* = 9.0 Hz, 6H), 3.80 (s, 9H); ¹³**C NMR** (151 MHz, CDCl₃) δ 154.8, 141.9, 124.7, 114.4, 55.4.

Tri-p-tolylamine (3b)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a colourless oil in 65 % (18.7 mg) yield; The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.05 (d, J = 7.9 Hz, 6H), 6.97 (d, J = 8.5 Hz, 6H), 2.31 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 145.7, 131.7, 129.7, 123.8, 20.7.

Triphenylamine (3c)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 77 % (18.9 mg) yield; The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.25 (t, *J* = 7.9 Hz, 6H), 7.10 (d, *J* = 8.6 Hz, 6H), 7.01 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 147.8, 129.2, 124.1, 122.6.

Tris(4-phenoxyphenyl)amine (3d)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 65 % (33.9 mg) yield. The spectral data were in accordance with those reported in the literature¹¹. ¹**H NMR** (600 MHz, CDCl₃) δ 7.38 – 7.29 (m, 6H), 7.09 (dd, J = 13.4, 8.1 Hz, 9H), 7.04 (d, J = 7.9 Hz, 6H), 6.94 (d, J = 8.9 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 157.6, 152.2, 143.6, 129.7, 125.0, 122.9, 120.0, 118.4.

Tris(4-fluorophenyl)amine (3e)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 29 % (8.7 mg) yield. The spectral data were in accordance with those reported in the literature³. ¹H NMR (600 MHz, CDCl₃) δ 7.08 – 6.69 (m, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 158.6 (d, $J_{C-F} = 243.1$ Hz), 144.0 (d, $J_{C-F} = 2.8$ Hz), 125.2 (d, $J_{C-F} = 8.1$ Hz), 116.1 (d, $J_{C-F} = 22.6$ Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -120.08.

Triethyl 4,4',4''-nitrilotribenzoate (3f)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = $20 : 1 \rightarrow 10 : 1$) as a white solid in 48 % (22.1 mg) yield. The spectral data were in accordance with those reported in the literature¹². ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 8.7 Hz, 6H), 7.11 (d, J = 8.7 Hz, 6H), 4.36 (q, J = 7.1 Hz, 6H), 1.38 (t, J = 7.2 Hz, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 165.9, 150.3, 131.1, 125.8, 123.7, 60.9, 14.3.

Tris(3-(tert-butyl)phenyl)amine (3g)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a colorless oil in 65 % (26.9 mg) yield. ¹H NMR (600 MHz, CDCl₃) δ 7.20 (s, 3H), 7.17 (t, *J* = 7.9 Hz, 3H), 7.03 (d, *J* = 7.9 Hz, 3H), 6.87 (d, *J* = 9.2 Hz, 3H), 1.26 (s, 27H); ¹³C NMR (151 MHz, CDCl₃) δ 152.0, 147.7, 128.5, 121.25, 121.15, 119.2, 34.7, 31.3; HRMS (APCI) calcd for C₃₀H₃₉N [M + H⁺], 414.3155; found: 414.3147.

Tri-*m*-tolylamine (3h)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a colourless oil in 74 % (21.2 mg) yield; The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.14 (t, *J* = 7.8 Hz, 3H), 6.92 (s, 3H), 6.89 (d, *J* = 7.9 Hz, 3H), 6.84 (d, *J* = 7.4 Hz, 3H), 2.28 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 138.9, 128.9, 124.8, 123.3, 121.4, 21.4.

Tri([1,1'-biphenyl]-3-yl)amine (3i)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 66 % (31.3 mg) yield. ¹**H NMR** (600 MHz, CDCl₃) δ 7.61 – 7.56 (m, 6H), 7.50 (t, J = 2.0 Hz, 3H), 7.43 (dd, J = 8.4, 7.0 Hz, 6H), 7.39 (d, J = 7.9 Hz, 3H), 7.36 (dt, J = 14.7, 1.3 Hz, 3H), 7.33 (dt, J = 7.7, 1.3 Hz, 3H), 7.22 (ddd, J = 8.0, 2.3, 1.1 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 148.2, 142.4, 140.8, 129.7, 128.7, 127.3, 127.0, 123.1, 122.9, 121.7; **m.p.:** 145-147 °C; **HRMS** (APCI) calcd for C₃₆H₂₇N [M + H⁺], 474.2216; found: 474.2208.

Timethyl 3,3',3''-nitrilotribenzoate (3j)

3j

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = $20 : 1 \rightarrow 10 : 1$) as a white solid in 56 % (23.4 mg) yield. ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.68 (m, 6H), 7.34 (t, J = 7.8 Hz, 3H), 7.25 (ddd, J = 8.1, 2.5, 1.3 Hz, 3H), 3.86 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 147.4, 131.8, 129.7, 128.5, 125.0, 124.6, 52.2; **m.p.:** 176-177 °C; **HRMS** (APCI) calcd for C₂₄H₂₁NO₆ [M + H⁺], 420.1442; found: 420.1441.

Tris(4-methoxy-3,5-dimethylphenyl)amine (3k)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 4 : 1) as a white solid in 55 % (23 mg) yield. ¹H **NMR** (500 MHz, CDCl₃) δ 6.66 (s, 6H), 3.72 (s, 9H), 2.19 (s, 18H); ¹³C **NMR** (126 MHz, CDCl₃) δ 152.1, 143.8, 131.2, 124.1, 59.8, 16.2; **m.p.:** 253-255 °C; **HRMS** (APCI) calcd for C₂₇H₃₃NO₃ [M + H⁺], 420.2533; found: 420.2524.

Tris(3,4-dimethylphenyl)amine (3l)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 63 % (20.8 mg) yield. The spectral data were in accordance with those reported in the literature¹³. ¹H NMR (600 MHz, CDCl₃) δ 7.03 (d, J = 7.9 Hz, 3H), 6.92 (s, 3H), 6.84 (dt, J = 8.2, 2.2 Hz, 3H), 2.26 (t, J = 2.1 Hz, 9H), 2.21 (t, J = 2.2 Hz, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 146.1, 137.2, 130.3, 130.1, 125.2, 121.5, 19.8, 19.1.

Tris(3,5-dimethylphenyl)amine (3m)

Following the general Procedure B, the title compound was isolated by flash column

chromatography on silica gel (PE) as a white solid in 68 % (22.4 mg) yield; The spectral data were in accordance with those reported in the literature⁷. ¹H NMR (600 MHz, CDCl₃) δ 6.71 (s, 6H), 6.67 (s, 3H), 2.24 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 138.6, 124.2, 122.1, 21.3.

Tris(benzo[d][1,3]dioxol-5-yl)amine (3n)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a yellow oil in 60 % (22.6 mg) yield. ¹**H NMR** (600 MHz, CDCl₃) δ 6.67 (d, J = 8.3 Hz, 3H), 6.57 (d, J = 2.2 Hz, 3H), 6.47 (dd, J = 8.4, 2.2 Hz, 3H), 5.92 (s, 6H); ¹³C **NMR** (151 MHz, CDCl₃) δ 148.1, 143.0, 116.8, 108.3, 105.8, 101.1; **HRMS** (APCI) calcd for C₂₁H₁₅NO₆ [M + H⁺], 378.0972; found: 378.0964.

Tris(2,3-dihydrobenzofuran-5-yl)amine (30)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 55 % (20.4 mg) yield. ¹**H NMR** (500 MHz, CDCl₃) δ 6.90 (s, 3H), 6.79 (d, J = 8.5 Hz, 3H), 6.65 (d, J = 8.5 Hz, 3H), 4.54 (t, J = 8.6 Hz, 6H), 3.13 (t, J = 8.6 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 155.3, 142.6, 127.7, 123.6, 120.9, 109.3, 71.2, 30.0; **m.p.:** 168-170 °C; **HRMS** (APCI) calcd for C₂₄H₂₁NO₃ [M + H⁺], 372.1594; found: 372.1587.

Tris(9,9-dimethyl-9*H*-fluoren-2-yl)amine (3p)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 70 % (41.5 mg) yield. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.4 Hz, 3H), 7.64 (d, J = 8.2 Hz, 3H), 7.43 (d, J = 7.4 Hz, 3H), 7.34 (m, J = 7.6 Hz, 6H), 7.29 (t, J = 7.4 Hz, 3H), 7.18 (d, J = 8.1 Hz, 3H), 1.46 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 153.5, 147.5, 139.0, 133.9, 127.0, 126.4, 123.0, 122.5, 120.6, 119.3, 118.5, 46.8, 27.0; HRMS (APCI) calcd for C₄₅H₃₉N [M + H⁺], 594.3155; found: 594.3144.

Tris(4-(9H-carbazol-9-yl)phenyl)amine (3q)

Following the general **Procedure B**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 71 % (52.6 mg) yield. The spectral data were in accordance with those reported in the literature⁷. ¹**H NMR** (600 MHz, CDCl₃) δ 8.22 (d, J = 7.7 Hz, 6H), 7.63 (d, J = 8.7 Hz, 6H), 7.60 – 7.55 (m, 12H), 7.51 (t, J = 7.7 Hz, 6H), 7.36 (t, J = 7.4 Hz, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 146.3, 140.9, 132.8, 128.2, 125.9, 125.3, 123.3, 120.3, 119.9, 109.8.

4-Methoxy-*N*-(*p*-tolyl)aniline (4a)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 6 : 1) as a yellow oil in 75 % (16 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.06 – 7.01 (m, 4H), 6.88 – 6.84 (m, 4H), 5.41 (s, 1H), 3.80 (s, 3H), 2.29 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 154.8, 142.4, 136.6, 129.8, 129.3, 121.1, 116.5, 114.6, 55.6, 20.5.

N-(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine (4b)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 4 : 1) as a white solid in 79 % (21.8 mg) yield. The spectral data were in accordance with those reported in the literature¹⁵. ¹**H NMR** (600 MHz, CDCl₃) δ 7.57 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 5.59 (s, 1H), 3.83 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 155.4, 144.6, 141.0, 135.4, 132.3, 128.7, 127.9, 126.4, 126.3, 122.4, 115.7, 114.7, 55.6.

4-Fluoro-*N*-(4-methoxyphenyl)aniline (4c)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 8 : 1) as a yellow oil in 46 % (10 mg) yield. The spectral data were in accordance with those reported in the literature¹⁶. ¹**H NMR** (600 MHz, CDCl₃) δ 7.00 (d, *J* = 8.9 Hz, 2H), 6.93 (t, *J* = 8.7 Hz, 2H), 6.90 – 6.83 (m, 4H), 5.39 (s, 1H), 3.80 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.1 (d, *J*_{C-F} = 238.2 Hz), 155.0, 141.1, 136.5, 121.2, 117.8 (d, *J*_{C-F} = 7.6 Hz), 115.8 (d, *J*_{C-F} = 22.2 Hz), 114.7, 55.6; ¹⁹**F NMR** (565 MHz, CDCl₃) δ -124.37.

4-Methoxy-N-(4-(trifluoromethyl)phenyl)aniline (4d)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 8 : 1) as a yellow oil in 85 % (22.7 mg) yield. The spectral data were in accordance with those reported in the literature¹⁶. ¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 2H), 7.12 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* =

8.5 Hz, 2H), 5.74 (s, 1H), 3.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 156.5, 148.6, 133.7, δ 126.6 (q, $J_{C-F} = 3.8$ Hz), δ 124.7 (q, $J_{C-F} = 270.6$ Hz), 124.2, 120.4 (q, $J_{C-F} = 32.6$ Hz), 114.8, 113.7, 55.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -61.22.

4-Methoxy-N-phenylaniline (4e)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 6 : 1) as a yellow solid in 77 % (15.4 mg) yield. The spectral data were in accordance with those reported in the literature¹⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 7.8 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.2, 145.1, 135.7, 129.3, 122.2, 119.5, 115.6, 114.6, 55.5.

N-(4-methoxyphenyl)-2-methylaniline (4f)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 4 : 1) as a yellow oil in 83 % (17.7 mg) yield. The spectral data were in accordance with those reported in the literature¹⁶. ¹H NMR (600 MHz, CDCl₃) δ 7.19 – 7.15 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.05 – 7.01 (m, 3H), 6.90 – 6.87 (m, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 5.24 (s, 1H), 3.82 (s, 3H), 2.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.1, 143.3, 136.3, 130.7, 126.7, 125.2, 122.1, 119.9, 115.1, 114.6, 55.6, 17.7.

Methyl 3-((4-methoxyphenyl)amino)benzoate (4g)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 4 : 1) as a yellow solid in 71 % (18.2 mg) yield. The spectral data were in accordance with those reported in the literature¹⁶. ¹**H NMR** (600 MHz, CDCl₃) δ 7.56 – 7.54 (m, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.10 – 7.05 (m, 3H), 6.90 – 6.87 (m, 2H), 5.63 (s, 1H), 3.88 (s, 3H), 3.81 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 167.2, 155.7, 145.5, 134.9, 131.2, 129.2, 122.8, 120.4, 119.4, 116.0, 114.8, 55.5, 52.1.

N-(4-methoxyphenyl)-3-methylaniline (4h)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 6 : 1) as a yellow oil in 86 % (18.3 mg) yield. The spectral data were in accordance with those reported in the literature¹⁷. ¹H NMR (600 MHz, CDCl₃) δ 7.11 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.73 (d, *J* = 8.1 Hz, 2H), 6.67 (d, *J* = 7.4 Hz, 1H), 5.46 (s, 1H), 3.81 (s, 3H), 2.29 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.2, 145.1, 139.1, 135.8, 129.1, 122.2, 120.4, 116.3, 114.6, 112.8, 55.6, 21.5.

2-Methoxy-N-(4-methoxyphenyl)pyridin-3-amine (4i)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 3 : 1) as an orange oil in 84 % (19.3 mg) yield. ¹**H NMR** (600 MHz, CDCl₃) δ 7.58 (dd, J = 5.0, 1.6 Hz, 1H), 7.16 (dd, J = 7.7, 1.6 Hz, 1H), 7.11 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 6.73 (dd, J = 7.7, 5.0 Hz, 1H), 5.92 (s, 1H), 4.03 (s, 3H), 3.80 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 155.8, 152.7, 134.6, 134.1, 130.2, 123.2, 117.0, 116.9, 114.7, 55.5, 53.4; **HRMS** (APCI) calcd for C₁₃H₁₄N₂O₂ [M + H⁺], 231.1128; found: 231.1125.

N-(4-methoxyphenyl)-1-methyl-1H-indol-5-amine (4j)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 6 : 1) as a brown solid in 50 % (12.6 mg) yield. The spectral data were in accordance with those reported in the literature¹⁸. ¹**H** NMR (600 MHz, CDCl₃) δ 7.29 (d, *J* = 2.0 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.03 (d, *J* = 3.0 Hz, 1H), 7.00 – 6.95 (m, 3H), 6.86 – 6.81 (m, 2H), 6.38 (d, *J* = 3.0 Hz, 1H), 5.39 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H); ¹³**C** NMR (151 MHz, CDCl₃) δ 153.7, 139.4, 136.8, 133.1, 129.3, 129.1, 118.6, 116.2, 114.7, 110.6, 109.8, 100.2, 55.7, 32.9.

Ethyl 4-(p-tolylamino)benzoate (4k)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 8 : 1) as a yellow solid in 63 % (16.1 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.8 Hz, 2H), 7.17 – 7.13 (m, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 5.98 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 166.6, 148.6, 138.1, 133.0, 131.4, 130.0, 121.2, 120.9, 114.0, 60.4, 20.8, 14.4.

4-Fluoro-N-(p-tolyl)aniline (4l)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 65 % (13.1 mg) yield. The spectral data were in accordance with those reported in the literature¹⁹. ¹H NMR (600 MHz, CDCl₃) δ 7.09 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.95 (m, 4H), 6.95 – 6.91 (m, 2H), 5.50 (s, 1H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 157.6 (d, *J*_{C-F} = 239.1 Hz), δ 141.1, 139.8, 130.5, 129.9, 119.3 (d, *J*_{C-F} = 7.7 Hz), 117.8, 115.8 (d, *J*_{C-F} = 22.5 Hz) 20.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -123.08.

4-Methyl-N-(4-(trifluoromethyl)phenyl)aniline (4m)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 37 % (9.3 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.44 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 8.3 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 5.83 (s, 1H), 2.34 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 147.5, 138.3, 133.0, 130.1, 126.6 (q, *J*_{C-F} = 3.8 Hz), 124.7 (q, *J*_{C-F} = 270.6 Hz), 121.04, 121.02 (q, *J*_{C-F} = 32.7 Hz), 114.6, 20.8; ¹⁹**F NMR** (565 MHz, CDCl₃) δ -61.36.

Methyl 3-(p-tolylamino)benzoate (4n)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 6 : 1) as a white solid in 54 % (13.0 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.67 – 7.64 (m, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.18 (ddd, *J* = 8.1, 2.6, 1.0 Hz, 1H), 7.12 (d, *J* = 8.3 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 5.73 (s, 1H), 3.89 (s, 3H), 2.32 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 167.2, 144.3, 139.5, 131.7, 131.2, 130.0, 129.3, 121.1, 120.5, 119.5, 117.2, 52.1, 20.7.

N-(p-tolyl)-3-(trifluoromethoxy)aniline (40)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 62 % (16.6 mg) yield. ¹H NMR (600 MHz, CDCl₃) δ 7.21 (t, J = 8.2 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 6.87 (dd, J = 7.8, 2.5 Hz, 1H), 6.83 (s, 1H), 6.70 (d, J = 8.1 Hz, 1H), 5.71 (s, 1H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 150.3, 145.9, 138.9, 132.3, 130.3, 130.0, δ 120.5 (q, J_{C-F} = 256.8 Hz), 120.1, 114.1, 111.6, 108.2, 20.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -57.62; HRMS (APCI) calcd for C₁₄H₁₂F₃NO [M + H⁺], 268.0944; found: 268.0940.

3-Methyl-*N*-(*p*-tolyl)aniline (4p)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 86 % (17.0 mg) yield. The spectral data were in accordance with those reported in the literature¹⁹. ¹H **NMR** (600 MHz, CDCl₃) δ 7.15 (t, J = 7.7 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 7.8 Hz, 2H), 6.73 (d, J = 7.5 Hz, 1H), 5.58 (s, 1H), 2.33 (s, 3H), 2.32 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 143.9, 140.4, 139.1, 130.8, 129.8, 129.1, 121.2, 118.9, 117.5, 114.0, 21.5, 20.7.

3,5-Dimethyl-N-(p-tolyl)aniline (4q)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 86 % (18.1 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.09 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.3 Hz, 2H), 6.65 (s, 2H), 6.55 (s, 1H), 5.53 (s, 1H), 2.31 (s, 3H), 2.26 (s, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 143.9, 140.4, 139.0, 130.7, 129.8, 122.2, 119.0, 114.6, 21.4, 20.7.

N-(p-tolyl)naphthalen-1-amine (4r)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 81 % (19.0 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.55 – 7.46 (m, 3H), 7.38 (t, J = 7.8 Hz, 1H), 7.30 (dd, J = 7.5, 1.1 Hz, 1H), 7.15 – 7.08 (m, 2H), 6.97 (d, J = 8.4 Hz, 2H), 5.91 (s, 1H), 2.34 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 141.8, 139.6, 134.6, 130.4, 129.9, 128.5, 127.0, 126.1, 126.0, 125.5, 122.0, 121.5, 118.5, 114.1, 20.6.

2-Methoxy-N-(p-tolyl)pyridin-3-amine (4s)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 4 : 1) as a yellow oil in 89 % (19.1 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (dd, J = 5.0, 1.6 Hz, 1H), 7.35 (dd, J = 7.7, 1.6 Hz, 1H), 7.13 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.4 Hz, 2H), 6.76 (dd, J = 7.7, 5.0 Hz, 1H), 6.03 (s, 1H), 4.04 (s, 3H), 2.32 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 153.0, 138.6, 135.1, 131.9, 129.9, 129.1, 120.1, 117.9, 117.0, 53.4, 20.7.

1-Methyl-*N*-(*p*-tolyl)-1*H*-indol-5-amine (4t)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE : DCM = 8 : 1) as a white solid in 69 % (16.3 mg) yield. The spectral data were in accordance with those reported in the literature¹⁴. ¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (d, *J* = 2.1 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.04 (dt, *J* = 5.7, 2.6 Hz, 4H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.40 (d, *J* = 3.5 Hz, 1H), 5.52 (s, 1H), 3.79 (s, 3H), 2.29 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 143.7, 135.5, 133.5, 129.7, 129.4, 129.0, 128.5, 117.3, 115.9, 112.4, 109.7, 100.4, 32.9, 20.5.

2-Methyl-N-(p-tolyl)aniline (4u)

Following the general **Procedure C**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 79 % (15.7 mg) yield. The spectral data were in accordance with those reported in the literature¹⁹. ¹H NMR (600 MHz, CDCl₃) δ 7.19 (t, *J* = 7.1 Hz, 2H), 7.13 (td, *J* = 7.8, 1.5 Hz, 1H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.3 Hz, 2H), 6.90 (td, *J* = 7.4, 1.3 Hz, 1H), 5.32 (s, 1H), 2.33 (s, 3H), 2.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 141.0, 130.8, 130.4, 129.8, 127.0, 126.7, 121.0, 118.6, 117.2, 20.6, 17.8.

4-Methoxy-N,N-diphenylaniline (5a)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 81 % (22.3 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹H NMR (600 MHz, CDCl₃) δ 7.22 (t, J = 7.9 Hz, 4H), 7.09 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 8.0 Hz, 4H), 6.96 (t, J = 7.3 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 156.1, 148.1, 140.7, 129.0, 127.3, 122.8, 121.8, 114.7, 55.4.

N,*N*-diphenyl-[1,1'-biphenyl]-4-amine (5b)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a pink solid in 79 % (25.4 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹H **NMR** (600 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 2H), 7.50 (dd, J = 8.7, 2.0 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.7 Hz, 4H), 7.17 (d, J = 8.0 Hz, 6H), 7.06 (t, J = 7.3 Hz, 2H); ¹³C **NMR** (151 MHz, CDCl₃) δ 147.7, 147.1, 140.6, 135.1, 129.2, 128.7, 127.7, 126.8, 126.6, 124.4, 123.9, 122.9.

4-Phenoxy-N,N-diphenylaniline (5c)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a light yellow oil in 67 % (22.6 mg) yield. The spectral data were in accordance with those reported in the literature. ¹H NMR (600 MHz, CDCl₃) δ 7.35 (dd, J = 8.5, 7.5 Hz, 2H), 7.26 (dd, J = 9.4, 6.4 Hz, 4H), 7.10 (d, J = 8.6 Hz, 7H), 7.05 (d, J = 7.7 Hz, 2H), 7.00 (t, J = 7.3 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 157.5, 152.7, 147.9, 143.3, 129.7, 129.2, 126.3, 123.5, 123.0, 122.4, 119.9, 118.5. HRMS (APCI) calcd for C₂₄H₁₉NO [M + H⁺], 338.1539; found: 338.1535.

N,*N*-diphenyl-4-(trifluoromethyl)aniline (5d)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a colorless oil in 75 % (23.5 mg) yield. The spectral data were in accordance with those reported in the literature²¹. ¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, J = 8.6 Hz, 2H), 7.31 (t, J = 7.9 Hz, 4H), 7.12 (dd, J = 16.1, 7.7 Hz, 6H), 7.06 (d, J = 8.6 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 150.9, 146.8, 129.6, 126.2 (q, $J_{C-F} = 3.7$ Hz), 125.5, 124.5 (q, $J_{C-F} = 271.1$ Hz), 124.2, 122.8 (q, $J_{C-F} = 32.5$ Hz), 121.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -61.67.

4-Fluoro-*N*,*N*-diphenylaniline (5e)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 57 % (15.1 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹**H** NMR (600 MHz, CDCl₃) δ 7.24 (tdd, J = 9.5, 4.0, 2.0 Hz, 4H), 7.11 – 7.02 (m, 6H), 7.02 – 6.93 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 158.9 (d, $J_{C-F} = 242.8$ Hz), 147.9, 143.9, 129.2, 126.4 (d, $J_{C-F} = 7.8$ Hz), 123.5, 122.5, 116.0 (d, $J_{C-F} = 22.4$ Hz); ¹⁹**F** NMR (565 MHz, CDCl₃) δ -119.71.

N,N-diphenyl-3-(trifluoromethoxy)aniline (5f)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 78 % (25.7 mg) yield. ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 4H), 7.20 (t, J = 8.2 Hz, 1H), 7.12 (d, J = 7.6 Hz, 4H), 7.09 (t, J = 7.4 Hz, 2H), 6.95 (dd, J = 8.0, 1.8 Hz, 1H), 6.89 (s, 1H), 6.81 (d, J = 8.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 150.0, 149.4, 147.0, 129.9, 129.5, 125.0, 123.8, 120.5, 120.4 (q, J_{C-F} = 256.9 Hz), 115.0, 113.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -57.76; HRMS (APCI) calcd for C₁₉H₁₄F₃NO [M + H⁺], 330.1100; found: 330.1097.

3,5-Dimethyl-N,N-diphenylaniline (5g)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a colorless oil in 85 % (23.2 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (t,

J = 7.8 Hz, 4H), 7.08 (d, *J* = 7.9 Hz, 4H), 7.00 (t, *J* = 7.3 Hz, 2H), 6.73 (s, 2H), 6.69 (s, 1H), 2.23 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 147.7, 138.8, 129.1, 124.8, 124.0, 122.34, 122.30, 21.3.

N,N-diphenylnaphthalen-1-amine (5h)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a pink solid in 57 % (16.8 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.38 – 7.32 (m, 2H), 7.20 (dd, J = 8.5, 7.4 Hz, 4H), 7.04 (d, J = 7.7 Hz, 4H), 6.94 (t, J = 7.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 143.6, 135.3, 131.3, 129.0, 128.3, 127.2, 126.4, 126.34, 126.32, 126.1, 124.3, 121.8, 121.6.

1-Methyl-N,N-diphenyl-1H-indol-5-amine (5i)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 60 % (17.9 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹H **NMR** (600 MHz, CDCl₃) δ 7.43 (d, J = 1.9 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.21 (dd, J = 8.6, 7.4 Hz, 4H), 7.10 – 7.07 (m, 5H), 7.05 (d, J = 3.1 Hz, 1H), 6.93 (t, J = 7.3 Hz, 2H), 6.40 (d, J = 3.6 Hz, 1H), 3.80 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 148.7, 140.0, 134.2, 129.5, 129.3, 128.9, 122.5, 121.9, 121.2, 119.2, 110.1, 100.9, 33.0.

Methyl 3-(diphenylamino)benzoate (5j)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a yellow oil in 77 % (23.4 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹**H NMR** (600 MHz, CDCl₃) δ 7.78 – 7.74 (m, 1H), 7.66 (dt, *J* = 7.5, 1.4 Hz, 1H), 7.31 – 7.24 (m, 6H), 7.11 – 7.06 (m, 4H), 7.05 (t, *J* = 7.4 Hz, 2H), 3.85 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 166.9, 148.1, 147.4, 131.3, 129.4, 129.2, 128.0, 124.41, 124.37, 123.4, 123.2, 52.1.

4-(9H-carbazol-9-yl)-N,N-diphenylaniline (5k)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE) as a white solid in 84 % (34.5 mg) yield. The spectral data were in accordance with those reported in the literature²⁰. ¹**H NMR** (600 MHz, CDCl₃) δ 8.17 (d, J = 7.7 Hz, 2H), 7.49 – 7.41 (m, 6H), 7.38 – 7.33 (m, 4H), 7.33 – 7.28 (m, 4H), 7.27 – 7.23 (m, 4H), 7.12 (t, J = 7.3 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 147.5, 147.1, 141.1, 131.4, 129.4, 127.8, 125.8, 124.7, 124.0, 123.4, 123.2, 120.2, 119.7, 109.8.

N-([1,1'-biphenyl]-4-yl)-N-(4-methoxyphenyl)-[1,1'-biphenyl]-4-amine (51)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a white solid in 70 % (29.9 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.60 (dd, J = 8.3, 1.1 Hz, 4H), 7.53 – 7.48 (m, 4H), 7.46 – 7.41 (m, 4H), 7.35 – 7.29 (m, 2H), 7.22 – 7.12 (m, 6H), 6.91 (d, J = 9.0 Hz, 2H), 3.84 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 156.4, 147.3, 140.7, 140.4, 134.6, 128.7, 127.7, 127.5, 126.7, 126.6, 123.0, 114.9, 55.5; **HRMS** (APCI) calcd for C₃₁H₂₅NO [M + H⁺], 428.2009; found: 428.2006.

4-Methoxy-*N*,*N*-bis(4-phenoxyphenyl)aniline (5m)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 50 : 1) as a yellow oil in 60 % (27.6 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.33 (t, J = 8.0 Hz, 4H), 7.11 – 7.07 (m, 4H), 7.06 – 7.01 (m, 8H), 6.92 (d, J = 8.9 Hz, 4H), 6.86 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 157.8, 155.8, 151.6, 144.0, 141.0, 129.6, 126.3, 124.2, 122.8, 120.0, 118.2, 114.7, 55.5; **HRMS** (APCI) calcd for C₃₁H₂₅NO₃ [M + H⁺], 460.1907; found:460.1902.

N-(3,5-dimethylphenyl)-N-(4-methoxyphenyl)-3,5-dimethylaniline (5n)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a white solid in 52 % (17.2 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.06 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 6.67 (s, 4H), 6.62 (s, 2H), 3.82 (s, 3H), 2.22 (s, 12H); ¹³C **NMR** (151 MHz, CDCl₃) δ 155.7, 148.3, 141.2, 138.5, 127.1, 123.6, 120.9, 114.5, 55.4, 21.3; **HRMS** (APCI) calcd for C₂₃H₂₅NO [M + H⁺], 332.2009; found: 332.2004.

N-(4-methoxyphenyl)-3-methyl-N-(m-tolyl)aniline (50)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 100 : 1) as a yellow oil in 75 % (22.8 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.11 (t, *J* = 7.8 Hz, 2H), 7.10 – 7.05 (m, 2H), 6.85 (ddd, *J* = 10.0, 6.8,

3.9 Hz, 6H), 6.78 (d, J = 7.5 Hz, 2H), 3.82 (s, 3H), 2.26 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 155.9, 148.2, 141.0, 138.8, 128.8, 127.2, 123.6, 122.6, 120.2, 114.6, 55.4, 21.4; HRMS (APCI) calcd for C₂₁H₂₁NO [M + H⁺], 304.1696; found: 304.1692.

N-(9,9-dimethyl-9*H*-fluoren-2-yl)-*N-*(4-methoxyphenyl)-9,9-dimethyl-9*H*-fluoren-2-amine (5p)

Following the general **Procedure D**, the title compound was isolated by flash column chromatography on silica gel (PE : EA = 200 : 1) as a yellow solid in 59 % (29.9 mg) yield. ¹H **NMR** (600 MHz, CDCl₃) δ 7.64 (dt, J = 7.5, 0.9 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.40 (dt, J = 7.4, 0.9 Hz, 2H), 7.32 (td, J = 7.4, 1.2 Hz, 2H), 7.26 (td, J = 7.4, 1.2 Hz, 2H), 7.24 (d, J = 2.1 Hz, 2H), 7.19 (d, J = 8.9 Hz, 2H), 7.03 (dd, J = 8.2, 2.1 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H), 1.43 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 156.0, 154.9, 153.4, 147.9, 141.0, 139.1, 133.2, 127.1, 126.9, 126.2, 122.4, 121.9, 120.5, 119.2, 117.2, 114.7, 55.5, 46.7, 27.1; HRMS (APCI) calcd for C₃₇H₃₃NO [M + H⁺], 508.2635; found: 508.2632.

10. References

- 1. R. Calvo, K. Zhang, A. Passera and D. Katayev, Nat. Commun., 2019, 10, 3410.
- 2. O. A. Levitskiy and T. V. Magdesieva, Org. Lett., 2019, 21, 10028–10032.
- 3. A. Tlili, F. Monnier and M. Taillefer, *ChemComm*, 2012, 48 6408–6410.
- P. V. Kattamuri, J. Yin, S. Siriwongsup, D. H. Kwon, D. H. Ess, Q. Li, G. Li, M. Yousufuddin, P. F. Richardson, S. C. Sutton and L. Kurti, *J. Am. Chem. Soc.*, 2017, 139, 11184–11196.
- A. O. Adeniji, B. M. Twenter, M. C. Byrns, Y. Jin, M. Chen, J. D. Winkler and T. M. Penning, J. Med. Chem., 2012, 55, 2311–2323.
- 6. C. T. Yang, Z. Q. Zhang, Y. C. Liu and L. Liu, Angew. Chem. Int. Ed., 2011, 50, 3904–3907.
- K. Wang, Z. H. Deng, S. J. Xie, D. D. Zhai, H. Y. Fang and Z. J. Shi, *Nat. Commun.*, 2021, 12, 248.
- A. V. Aksenov, N. A. Aksenov, N. A. Orazova, D. A. Aksenov, M. V. Dmitriev and M. Rubin, *RSC Adv.*, 2015, 5, 84849–84855.
- K. Lim, C. Kim, J. Song, T. Yu, W. Lim, K. Song, P. Wang, N. Zu and J. Ko, J. Phys. Chem. C, 2011, 115, 22640–22646.
- 10. K.-T. Wong, Y.-H. Lin, H.-H. Wu and F. Fungo, Org. Lett., 2007, 9, 4531–4534.
- 11. C.-C. Lee, M.-k. Leung, P.-Y. Lee, T.-L. Chiu, J.-H. Lee, C. Liu and P.-T. Chou, *Macromolecules*, 2011, **45**, 751–765.
- 12. W.-j. Zhang, X.-c. Lin, F. Li, Z.-j. Huang, C.-b. Gong and Q. Tang, *New J. Chem.*, 2020, 44, 16412–16420.
- 13. H. B. Goodbrand and N.-X. Hu, J. Org. Chem., 1999, 64, 670–674.
- 14. W. Chen, K. Chen, W. Chen, M. Liu and H. Wu, ACS Catal., 2019, 9, 8110–8115.
- 15. R. Takahashi, K. Kubota and H. Ito, *ChemCommun*, 2020, **56**, 407–410.
- 16. G. Li, L. Yang, J. J. Liu, W. Zhang, R. Cao, C. Wang, Z. Zhang, J. Xiao and D. Xue, *Angew*. *Chem. Int. Ed.*, 2021, **60**, 5230–5234.
- 17. X. Guan, H. Zhu and T. G. Driver, ACS Catal., 2021, 11, 12417–12422.
- 18. V. Dhayalan, C. Sämann and P. Knochel, *ChemCommun*, 2015, **51**, 3239–3242.
- 19. Y. Feng, H. Luo, F. Yu, Q. Liao and L. Lin, Green Chem., 2023, 25, 2361–2367.
- F. Inoue, M. Kashihara, M. R. Yadav and Y. Nakao, Angew. Chem. Int. Ed., 2017, 56, 13307– 13309.
- M.-Q. Yan, J. Yuan, Y.-X. Pi, J.-H. Liang, Y. Liu, Q.-G. Wu, X. Luo, S.-H. Liu, J. Chen, X.-L. Zhu and G.-A. Yu, Org. Biomol. Chem., 2016, 14, 451–454.

11. NMR Spectra of Starting Materials and Products

¹H NMR Spectrum of 1x

¹³C NMR Spectrum of **1**x

¹H NMR Spectrum of **1**y

¹³C NMR Spectrum of **1**y

¹H NMR Spectrum of **2a**

¹³C NMR Spectrum of **2a**

¹H NMR Spectrum of **2b**

¹³C NMR Spectrum of **2b**

¹H NMR Spectrum of **2c**

¹³C NMR Spectrum of **2c**

¹H NMR Spectrum of 2d

¹³C NMR Spectrum of **2d**

¹⁹F NMR Spectrum of **2d**

¹³C NMR Spectrum of **2e**

¹H NMR Spectrum of **2f**

 $^{13}\mathrm{C}$ NMR Spectrum of 2f

¹⁹F NMR Spectrum of **2f**

¹H NMR Spectrum of 2g

¹³C NMR Spectrum of **2g**

¹H NMR Spectrum of **2h**

¹³C NMR Spectrum of **2h**

¹H NMR Spectrum of **2i**

¹³C NMR Spectrum of **2i**

¹H NMR Spectrum of **2**j

¹³C NMR Spectrum of **2**j

¹⁹F NMR Spectrum of **2**j

¹H NMR Spectrum of **2**k

¹³C NMR Spectrum of **2**k

¹³C NMR Spectrum of **2**I

¹H NMR Spectrum of **2m**

¹³C NMR Spectrum of **2m**

¹H NMR Spectrum of **2n**

¹³C NMR Spectrum of **2n**

¹H NMR Spectrum of **20**

¹³C NMR Spectrum of **20**

¹H NMR Spectrum of **2p**

¹³C NMR Spectrum of **2p**

¹³C NMR Spectrum of **2**q

¹H NMR Spectrum of **2r**

¹³C NMR Spectrum of **2r**

¹H NMR Spectrum of **2s**

¹³C NMR Spectrum of **2s**

¹H NMR Spectrum of **2t**

¹³C NMR Spectrum of **2t**

¹H NMR Spectrum of **2u**

¹³C NMR Spectrum of **2u**

 $^{13}\mathrm{C}$ NMR Spectrum of 2v

¹³C NMR Spectrum of 2w

¹H NMR Spectrum of 2x

¹³C NMR Spectrum of 2x

¹H NMR Spectrum of **2**y

¹³C NMR Spectrum of **2**y

¹H NMR Spectrum of **3a**

¹³C NMR Spectrum of **3a**

¹H NMR Spectrum of $\mathbf{3b}$

¹³C NMR Spectrum of **3b**

¹H NMR Spectrum of **3c**

¹³C NMR Spectrum of **3c**

¹H NMR Spectrum of 3d

¹³C NMR Spectrum of **3d**

¹H NMR Spectrum of **3e**

¹³C NMR Spectrum of **3e**

¹⁹F NMR Spectrum of **3e**

¹H NMR Spectrum of **3f**

¹³C NMR Spectrum of **3f**

¹H NMR Spectrum of **3g**

¹³C NMR Spectrum of **3g**

1 H NMR Spectrum of **3h**

¹³C NMR Spectrum of **3h**

¹H NMR Spectrum of **3i**

¹³C NMR Spectrum of **3i**

¹H NMR Spectrum of **3**j

¹³C NMR Spectrum of **3**j

¹H NMR Spectrum of **3**k

¹³C NMR Spectrum of **3**k

¹H NMR Spectrum of **3**l

¹³C NMR Spectrum of **3**l

¹H NMR Spectrum of 3m

¹³C NMR Spectrum of **3m**

¹H NMR Spectrum of 3n

¹³C NMR Spectrum of **3n**

¹H NMR Spectrum of **30**

¹³C NMR Spectrum of **30**

¹H NMR Spectrum of **3p**

¹³C NMR Spectrum of **3p**

¹H NMR Spectrum of **3**q

¹³C NMR Spectrum of **3**q

¹H NMR Spectrum of 4a

¹³C NMR Spectrum of **4a**

¹H NMR Spectrum of **4b**

¹³C NMR Spectrum of **4b**

¹H NMR Spectrum of 4c

¹³C NMR Spectrum of **4c**

¹H NMR Spectrum of 4d

¹³C NMR Spectrum of 4d

¹⁹F NMR Spectrum of **4d**

¹H NMR Spectrum of **4e**

¹³C NMR Spectrum of **4e**

1 H NMR Spectrum of **4**f

¹³C NMR Spectrum of **4**f

¹H NMR Spectrum of 4g

¹³C NMR Spectrum of **4g**

1 H NMR Spectrum of **4h**

¹³C NMR Spectrum of **4h**

¹H NMR Spectrum of 4i

¹³C NMR Spectrum of **4i**

¹H NMR Spectrum of 4j

¹³C NMR Spectrum of **4**j

¹H NMR Spectrum of 4k

¹³C NMR Spectrum of **4**k

¹H NMR Spectrum of 41

¹³C NMR Spectrum of **4**l

¹⁹F NMR Spectrum of **4**l

¹H NMR Spectrum of 4m

¹³C NMR Spectrum of **4m**

¹⁹F NMR Spectrum of **4m**

¹H NMR Spectrum of 4n

¹³C NMR Spectrum of **4n**

¹H NMR Spectrum of **40**

¹³C NMR Spectrum of **40**

¹H NMR Spectrum of **4p**

¹³C NMR Spectrum of **4p**

¹H NMR Spectrum of **4**q

S106

¹³C NMR Spectrum of **4q**

¹H NMR Spectrum of 4r

 13 C NMR Spectrum of 4r

¹H NMR Spectrum of **4s**

¹³C NMR Spectrum of 4s

¹H NMR Spectrum of 4t

¹³C NMR Spectrum of 4t

¹H NMR Spectrum of **4u**

S110

¹³C NMR Spectrum of **4u**

¹H NMR Spectrum of **5a**

¹³C NMR Spectrum of **5a**

¹H NMR Spectrum of **5b**

¹³C NMR Spectrum of **5b**

¹H NMR Spectrum of **5**c

¹³C NMR Spectrum of **5**c

¹H NMR Spectrum of **5d**

¹³C NMR Spectrum of **5d**

¹⁹F NMR Spectrum of **5d**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm) ¹H NMR Spectrum of **5e**

¹³C NMR Spectrum of **5e**

¹⁹F NMR Spectrum of **5e**

¹H NMR Spectrum of **5**f

¹³C NMR Spectrum of **5**f

¹⁹F NMR Spectrum of **5**f

¹H NMR Spectrum of **5g**

¹³C NMR Spectrum of **5g**

¹H NMR Spectrum of **5h**

¹³C NMR Spectrum of **5h**

¹H NMR Spectrum of **5**i

¹³C NMR Spectrum of **5**i

¹H NMR Spectrum of **5**j

¹³C NMR Spectrum of **5**j

¹H NMR Spectrum of **5**k

¹³C NMR Spectrum of **5**k

¹H NMR Spectrum of **5**

 $^{13}\mathrm{C}$ NMR Spectrum of **51**

¹H NMR Spectrum of **5m**

¹³C NMR Spectrum of **5m**

¹H NMR Spectrum of **5n**

¹³C NMR Spectrum of **5n**

¹H NMR Spectrum of **50**

¹³C NMR Spectrum of **50**

¹H NMR Spectrum of **5p**

¹³C NMR Spectrum of **5p**

