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1. The protocol of building CD cross-dock test set 

 

For the complexes in the CD test set, we employed the following methodology to search 

for their Apo states and other Holo states: 

1. ApoRef Subset: We directly utilize the dataset processed by Zhang et al1. 

2. CASF2016 Subset: This subset contains 57 different proteins, each with five 

ligand-bound Holo states. We initially search for the Apo states of these 57 

target proteins in the ApoBind database2. In cases where the Apo state is not 

available, we employed the AHoJ tool3 to search for it, and ensure that each 

Holo state has at most three Apo states. Then we pair the Apo structures and 

other Holo structures in each target with the Holo structure for the cross-docking 

experiment. 

3. Ensemble CDK2, EGFR, and FXA Subsets: These subsets consist of complex 

structures of three target proteins: CDK2, EGFR, and FXA. We search the PDB 

database for Holo structures using the Uniprot ID of these proteins and analyze 

whether they contain drug-like ligands in the orthosteric site to differentiate 

between Apo and Holo states. For CDK2, Apo PDB id: 1FIN, Uniprot ID: 

P24941; For EGFR, Apo PDB id: 7A2A, Uniprot ID: P00533; For FXA, Apo 

PDB id: 1EZQ, Uniprot ID: P00742. 

4. DUDE27-HoloEns Subset: In this subset, we used the dataset (herein named 

DUDE27-AF2) reported by Zhang et al.4 as the reference set of the Holo-Holo 

cross-dock test set. This test set contains Holo, AF2 modeled structures (referred 

as truncated AF2 structures in the original paper4) and IFD-MD5 refined AF2 

modeled structures of 27 targets from DUD-E6 (see details in the Supplemental 

Table. S10). We firstly queried the 27 Holo structures to ProteinsPlus web 

server7, and used SIENA8 module, a fully-automated protein binding site 

ensemble search tool, to search homologous Holo binding sites with the 

following general settings: (1) binding site radius is set to 5 Å, (2) Holo 

structures only, (3) the minimum site identity is set to 1.0, (4) complete residues 
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only, (5) no mutations in the global alignment, (6) remove sites with ligand 

duplicates, (7) the size of the interaction-based ensemble reduction is 10, (8) No 

PDB id found in our training set, (8) other parameters follows Screening Mode. 

Further, additional parameters (such as resolution threshold is set to 3 Å and 

allow mutations in the global alignment but not in binding site) were optimized 

to ensure that at least two Holo structures can be searched for each target as 

much as possible. Note that the query Holo structures were excluded from the 

searched Holo set. To control the quadratic growth of pairs (O(n2)) while 

preserving interaction diversity, we limited the Holo-Holo cross-docking for 

each target to at most five Holo structures with the slightest backbone RMSD 

(e.g., seven targets have more than five searched Holo structures). See details in 

the supplemental Table. S2 about the DUDE27-HoloEns subset. 

5. GPCR-AF2 Subset: Compiled by Karelina et al.9, this subset comprises 66 

GPCR extracellular domain-ligand complex structures published in the PDB 

after April 30, 2018. It includes 18 different GPCR proteins (17 class A, 1 class 

B). We predict the structures of these 18 GPCRs using AlphaFold210, restricting 

the structure templates to those dated before April 30, 2018. The structure with 

the highest pLDDT score is selected and further optimized using amber relax11. 

 

Our methodology for processing the structures obtained from our search is as follows: 

Taking ligand i as an example, its experimental Holo state structure is denoted as Holo 

i. We utilize the align_binding_sites module of the Schrödinger software suite12 to 

overlay the Holo i structure with either the Apo state structure or other Holo state 

structures bound to different ligands (non-Holo i), using the default parameters -cutoff 

5 -dist 5. The resultant overlaid structure (non-Holo i) serves as the target protein 

structure for cross-docking input of ligand i. 

For the ligand small molecules, we prepare them using the prepwizard module of the 

Schrödinger software, which involves converting the PDB format to SDF format. In the 

post-processing phase, we meticulously examine the cross-docking structures for 
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potential clashes. If a severe clash exists between the ligand and the protein, we exclude 

that particular sample from our analysis. 
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2. System preparation 
 

To avoid introducing bias toward the crystal ligand, proteins and ligands were first 

separated from the PDB complex structures, then prepared independently using the 

prepwizard module of the Schrödinger software with default settings. The protein 

preparation pipeline included removing water molecules, adding hydrogen atoms, 

filling missing side chain atoms, assigning bond orders, and optimizing the H-Bond 

network. A restrained minimization was performed with the fixed backbone, optimizing 

hydrogen atoms using the OPLS_2005 force field13 to preserve the conformations of 

the binding sites as much as possible. PROPKA14, 15 and Epik were used to assign the 

protonation and ionization states of the proteins, respectively, at pH=7.0. Ligands were 

treated similarly according to the above protein preparation scheme, respecting 

chiralities from the input geometry based on the crystal structure. Meanwhile, we 

carefully checked the prepared ligand structures to ensure they could be readable for 

RDKit16 as much as possible. The prepared proteins and ligands were further processed 

according to the official documentation of each docking program for suitable docking 

inputs. 
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3. Baseline methods 
 

3.1 Vina 

AutoDock Vina17 is a widely-used traditional docking method. Ligands were converted 

from SDF format to PDBQT format by the mk_prepare_ligand.py script from Meeko 

v0.518. Protein PDBQT files were generated by the prepare_receptor script with the 

additional argument -A ‘checkhydrogens’ in ADFR Suite 1.0. We defined the box using 

the center of the ligand present in the crystal structure, setting the box dimensions to 

24×24×24 Å3. The ‘exhaustiveness’ parameter in Vina was set to 32, producing up to 

10 poses for each docking run. Docking was repeated running 40 times with different 

random seeds to get the top-ranked pose. 

 

3.2 Smina 

Smina19 improves AutoDock Vina with a new scoring function and is more easy-to-use. 

The PDBQT file preparation, box construction and the sampling strategy were the same 

from the aforemetioned baseline method AutoDock Vina. 

 

3.3 LinF9 

LinF920 improves Autodock Vina with a new scoring function and is more user-friendly. 

The PDBQT file preparation, box construction and the sampling strategy were the same 

from the aforemetioned baseline method AutoDock Vina. 

 

3.4 Gold 

Gold21 is another widely-used traditional docking method. The binding sites were 

defined as pocket residues within radius 12.5 Å around the crystal ligand. The settings 

used were rescore function ‘plp’, autoscale 10, and early termination off. The docking 

performance was taken from Buttenschoen et al. reported22. 
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3.5 VinaFlex 

AutoDock Vina also supports flexible docking with movable side chains23. However, it 

requires the explicit designation of the side chains allowed to move and can support up 

to 14 flexible residues. Before each docking attempt, we randomly selected up to 14 

residues within the defined 24×24×24 Å3 box to act as the flexible residues. The ligand 

preparation was consistent to AutoDock Vina, but protein preparation required an 

additional scheme for preparing flexible residues. Here, we used a python script 

prepare_flexreceptor.py available at https://github.com/ccsb-scripps/AutoDock- 

Vina/tree/develop/example/autodock_scripts to obtain two PDBQT files, one for rigid 

part and the other for flexible side chains. The ‘exhaustiveness’ parameter was set to 

16. Each docking run generated up to 10 poses, and this docking process was repeated 

running 40 times using different random seeds to get the top-ranked pose. 

 

3.6 rDock 

rDock24 is another traditional docking method. The protein input files for rDock are in 

Mol2 format which can be converted from Schrödinger Mae format files by 

structconvert module of Schrödinger software. The ligand input files are in SDF format, 

directly taken from prepared ones in the Section 2 in the supplementary information. 

The box construction and the sampling strategy were the same from the aforemetioned 

baseline method AutoDock Vina. Otherwise, functional groups, specifically -OH and -

NH3+, located within 3 Å of the ligand on the pocket residues were allowed to move. 

Docking was repeated running 40 times with different random seeds to get the top-

ranked pose. 

 

3.7 Glide 

Glide25 is a powerful commercial docking method. The rigid receptor docking was 

executed using the Glide-SP docking method in the Schrodinger software suite. The 

protein and ligand preparation protocol has been described in the Section 2 in the 

supplementary information. For the generation of grid files, the parameter 
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‘INNERBOX’ was set to 15 and ‘UTERBOX’ was set to 30, with all other parameters 

as default. Each docking run produced a maximum of 10 poses, and the docking was 

repeated running 40 times to get the top-ranked pose. 

 

3.8 TankBind 

TankBind26 is a recently developed deep learning-based method. The protocol and 

setting followed the official tutorial, which is available at https://github.com/luwei0917 

/TankBind/blob/main/examples/testset_evaluation_cleaned.ipynb. Instead of using the 

P2Rank prediction for pocket localization, the model utilizes the center of the ligand 

from the crystal structure, with all other parameters set to their default values. Since 

this method reconstructs ligand coordinates from the predicted distance matrix of 

complex, it can only generate a single pose for the ligand. 

 

3.9 EDM-Dock 

EDM-Dock27 is a deep learning-based method sharing similar algorithm with TankBind. 

The protocol in the README file in the EDM-Dock repository 

(https://github.com/MatthewMasters/EDM-Dock) were used for docking. The box was 

defined as a 22.5×22.5×22.5 Å3 cube. Extra energy minimization was performed for 

the single ligand pose predicted by EDM-Dock. 

 

3.10 KarmaDock 

KarmaDock28 is a recently developed deep learning-based regression model which 

predicts ligand coordinates directly in the Euclidean space. Following the protocol from 

the KarmaDock article28, we reproduced its reported results on the CASF2016 test set 

(Supplemental Table. S3), showing that we successfully re-trained the original 

KarmaDock. For fair comparison with our model, we further re-trained KarmaDock 

using the PDBbind time-split training set without any artificial intervention. 

KarmaDock docking was run with its default parameters. 

Additionally, we augmented the KarmaDock model with a ResNet module to predict 
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the side chain torsion angles of the binding pocket, resulting in a refined model named 

KarmaDock-sc (see Supplemental Fig. S4). 

 

3.11 DiffDock 

DiffDock29 is a blind-docking method based on diffusion generative model. Although 

it's not fair to compare DiffDock with pocket-docking methods, we still evaluate its 

performance to reflect the defect of ignoring physical plausibility of these deep 

learning-based methods. Each generation of ligand poses was repeated running 40 times, 

and the generated poses were ranked by DiffDock confidence model. Again, the 

docking performance was taken from Buttenschoen et al. reported22.   



S10 
 

4. The composition of CD cross-dock test set 
 

Table S1. Numbers of cross-dock pairs in CD test set. α 

Subset Type No. 

pfam 

No. 

Apo 

No. 

Holo 

No. Crossdock 

Ensemble-CDK2 Apo-Holo 1 34 339 11317 

Ensemble-EGFR Apo-Holo 1 1 72 67 

Ensemble-FXA Apo-Holo 1 4 109 436 

ApoRef Apo-Holo 32 64 293 548 

CASF2016 Apo-Holo;Holo-

Holo 

57 338 285 1760 

DUDE27-HoloEns Holo-Holo 27 0 93 268 

GPCR-AF2 AF2 Structure-

Holo 

1 18 66 66 

αNo. pfam denotes the number of pfam for target proteins in each subset. No. Apo and No. Holo 

denotes the number of protein Apo states (without drug-like ligand binding) and protein Holo states 

in each subset. No. Crossdock denotes the total number of Apo-Holo pairs and Holo-Holo pairs in 

each subset. For GPCR-AF2 subset, the AlphaFold2 predicted GPCR structures are counted as Apo 

proteins. DUDE27-HoloEns is a subset that only comprises of Holo-Holo cross-dock pairs, and the 

related details can be found in Table. S2.  

 

 

Table S2. Details about the searched Holo structures in DUDE27-HoloEns subset. 

Target 
PDB  

code 

PDB  

chains 

Active site  

identity 

Backbone  

RMSDα 

All atom  

RMSDα 

dpp4 2AJ8 A  1.00  0.24  0.49  

dpp4 5LLS A  1.00  0.25  0.34  

dpp4 2BUC A  1.00  0.26  0.62  

ptn1 8SKL A  1.00  0.22  0.61  

ptn1 7MM1 A  1.00  0.25  0.66  

ptn1 7FQU A  1.00  0.28  0.86  

aces 7AIS A  1.00  0.17  0.41  

aces 4TVK A  1.00  0.27  0.48  

aces 6H12 A  1.00  0.31  0.54  

aces 5EHX A  1.00  0.33  0.76  

aces 1GQR A  1.00  0.33  0.79  

braf 5ITA A  1.00  1.29  1.38  

braf 7M0X A  1.00  1.93  2.13  

braf 7P3V A  1.00  1.95  2.00  

braf 6P3D A  1.00  2.38  2.85  

braf 6N0Q A  1.00  2.54  2.81  
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vgfr2 6GQO A  1.00  2.01  1.93  

vgfr2 6XVK A  1.00  2.01  1.91  

akt2 3E87 A  1.00  0.50  1.38  

akt2 1O6K A  1.00  0.52  1.45  

akt2 2UW9 A  1.00  0.58  1.57  

akt2 2JDR A  1.00  0.69  1.06  

tgfr1 5FRI A  1.00  0.42  0.86  

tgfr1 2WOT A  1.00  0.44  0.82  

tgfr1 4X0M A  1.00  0.70  0.93  

mapk2 1NY3 A  1.00  0.64  0.97  

mapk2 6T8X A  1.00  0.77  0.92  

mapk2 3KA0 A  1.00  4.31  3.21  

tryb1 4MPU A  1.00  0.15  0.80  

tryb1 4MPW A  1.00  0.16  0.70  

tryb1 4MPV A  1.00  0.17  0.58  

tryb1 5F03 A  1.00  0.18  0.99  

try1 2AYW A  1.00  0.11  0.30  

try1 3A7W A  1.00  0.28  0.74  

thrb 6YSX H  1.00  0.24  0.51  

thrb 2ZG0 H  1.00  0.26  0.45  

thrb 3U9A H  1.00  0.35  0.50  

thrb 6ZUW H  1.00  0.39  0.81  

thrb 6ZV8 H  1.00  0.42  0.72  

ppard 7VWG A  1.00  0.26  0.63  

ppard 5U43 A  1.00  0.37  0.84  

ppard 1GWX A  1.00  0.41  0.92  

ppard 5U46 A  1.00  0.45  0.79  

ppard 7WGN A  1.00  0.52  0.92  

pparg 7WGO A  1.00  0.39  0.77  

pparg 6MS7 A  1.00  0.40  1.43  

pparg 2VST A  1.00  0.41  1.20  

pparg 2HWR A  1.00  0.42  0.92  

pparg 6ZLY A  1.00  0.43  0.73  

fa10 3KQB A  1.00  0.26  0.65  

fa10 3M37 A  1.00  0.32  0.79  

fa10 4Y71 A  1.00  0.40  0.97  

cdk2 3SW7 A  1.00  0.44  1.33  

cdk2 3QRT A  1.00  0.54  1.24  

mk10 2ZDU A  1.00  0.26  1.12  

mk10 1PMV A  1.00  0.58  1.02  

mk10 2O0U A  1.00  0.66  1.49  

rxra 6STI A  1.00  0.21  0.63  

rxra 7UW2 A  1.00  0.24  0.76  

rxra 7B9O A  1.00  0.24  0.71  
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rxra 2P1T A  1.00  0.25  0.66  

rxra 7NKE A  1.00  0.25  1.01  

mk14 3ZSH A  1.00  1.78  1.61  

mk14 5N65 A  1.00  1.99  1.96  

gria2 3KGC B  1.00  0.16  0.24  

gria2 1GR2 A  1.00  1.38  1.50  

gria2 2AIX A  1.00  1.74  1.78  

egfr 8A27 A  1.00  0.51  1.01  

egfr 7KXZ A  1.00  1.20  1.95  

egfr 8F1Z A  1.00  1.21  1.93  

egfr 7U99 A  1.00  1.28  1.94  

egfr 8DSW A  1.00  1.58  2.28  

igf1r 1K3A A  0.86  0.74  0.97  

igf1r 1JQH A  0.95  3.83  4.23  

ampc 6WHF B  1.00  0.24  0.71  

met 2RFS A  1.00  2.05  2.71  

met 2WKM A  1.00  2.10  2.72  

met 7B3Q A  1.00  2.17  2.81  

bace1 4B0Q A  1.00  0.18  0.70  

bace1 6UVP A  1.00  0.20  0.37  

bace1 4FSL A  1.00  0.33  0.53  

bace1 6JT4 A  1.00  1.16  1.24  

hs90a 3WQ9 A  1.00  0.49  0.58  

hs90a 5VYY A  1.00  0.86  1.09  

hs90a 7UR3 A  1.00  1.38  1.76  

hs90a 3T0Z A  1.00  1.46  1.46  

fabp4 7FVY A  1.00  0.40  0.69  

fabp4 7FVV A  1.00  0.45  0.76  

fabp4 7FWZ A  1.00  0.45  0.72  

fabp4 7FZJ A  1.00  0.52  0.75  

fabp4 7FYT A  1.00  0.54  0.95  

ital 4IXD A  1.00  0.41  1.06  

ital 3BQM B  1.00  0.58  1.32  

αThe RMSD is calculated between the query Holo structure from DUD-E and searched Holo 

structure from the SIENA tool. 
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Fig. S1. Pocket backbone Cα RMSD distribution of cross-dock pairs on each subset 

from CD test set.  
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5. The details of MDN confidence model 
 

 

Fig. S2. Architecture of the MDN (mixture density network) confidence model.  

 

The protein backbone's structural encoding is accomplished via the GVP (Geometric 

Vector Perceptron) module30, resulting in node embeddings for each pocket residue, 

denoted as . Concurrently, the ligand graph undergoes encoding through a Graph 

Transformer module31, yielding node embeddings for each ligand atom, symbolized as 

. This process is followed by the computation of ligand-residue pairwise distance 

embeddings, achieved via the outer product method. Subsequently, a feed-forward 

neural layer is employed to predict the parameters of a Gaussian mixture model32, 

which characterizes the distribution of each pairwise distance. 

The model is trained to minimize the loss function, as depicted in equation (1). This 

function encompasses multiple components:  represents the loss associated with 

the mixture density network;  and  denote the cross-entropy cost functions 

for predicting atom and bond types, respectively, which serve as auxiliary tasks. 

Notably,  is designed to minimize the negative log-likelihood of  , which 

signifies the minimum distance between the atoms of residue  and ligand atom . This 

distance is calculated using a mixture model comprising   Gaussian 

distributions, parametrized by  ,  and  , as predicted by the model (refer to 

Equation (2)). The final confidence score is computed using the equation (3). 
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6. The details about re-training KarmaDock 
 

Table S3. The splitting methods on PDBbind V2020 dataset. α 

  Time-split MLSF-split 

Splitting metrics 
Uploading time & ligand 

overlap 
Sequence similarity 

Training set size 16379 17242 

Validation set size 968 1916 

Test set size 363 285 

Protein sequence 

similarity 
0.484 1.00 

αThe time-split method follows the work of EquiBind, where 363 complex structures from PDBbind 

2020 dataset uploaded later than 2019 serve as test set. After removing ligands that exist in the test 

set, the remaining 16739 structures are used for training and 968 structures are used for validation. 

The MLSF-split method is used by the work of KarmaDock, where 90% of PDBbind general set 

serve as training set, 10% of PDBbind general set serve as validation set, and CASF201633 serves 

as test set. Protein sequence similarity represents protein sequence similarity between test set and 

training & validation set. As is analyzed by Zhang et al.28, MLSF-split method causes all the protein 

sequences in test set existing in training set, while time-split method results in a more reasonable 

protein similarity between test set and training & validation set. 

 

Table S4. The performance of KarmaDock without conformation correction from 

various scenarios. β 

Result from 
Dataset 

success rate 
training set test set 

Published data MLSF-split training set MLSF-split test set 89.1% 

Released model MLSF-split training set MLSF-split test set 81.2% 

Re-trained model MLSF-split training set MLSF-split test set 87.4% 

Published data Time-split training set Time-split test set 56.2% 

Released model MLSF-split training set Time-split test set 55.7% 

Re-trained model Time-split training set Time-split test set 42.7% 
βWe have re-trained KarmaDock in both methods for PDBbind dataset splitting. Publish represents 

the published success rate in the corresponding test set from KarmaDock article28; Release 

represents the success rate of released KarmaDock model by Zhang et al. from their github 

repository (https://github.com/schrojunzhang/KarmaDock); Re-train represents the success rate of 

KarmaDock model re-trained by us. On MLSF-split dataset, we find that we can reproduce the 

performance of KarmaDock published in the article (89.1% vs 87.4%). On time-split dataset, using 

the same training protocol, we cannot reproduce the published docking success rate of KarmaDock 

on time-split test set (56.2% vs 42.7%), but we find that the released model trained on MLSF-split 

training set have similar docking success rate with the article published data (56.2% vs 55.7%). 
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7. Supplementary information in PDBbind time-

split test set 
 

 
Fig. S3. Ablation experiments of DiffBindFR network sampling steps (A) and 

denoising paradigm (B, ODE/SDE) and denoising steps (B) on PDBbind time-split test 

set. The top-1 ligand poses used for evaluation are selected by MDN confidence model, 

and have not undergone any local optimization. 
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Fig. S4. Architecture of side chain torsion angle prediction module in KarmaDock-sc. 

The module is implemented based on ResNet, and the cosine and sine of a torsion angle 

is predicted following AlphaFold210. 

 

 

 

 

 

 

 

Fig. S5. Distributions of DiffBindFR on PDBbind time-split test set for C-Dist and |∆χ1, 

< 15°|. C-Dist denotes ligand centroid distance, and |∆χ1, < 15°| denotes proportion of 

pocket residues with |∆χ1| < 15°. 
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Fig. S6. Evaluation of DiffBindFR generalizability on PDBbind time-split test set. A 

protein is considered novel based on no Uniprot ID overlap, and a ligand based on a 0.5 

Tanimoto similarity coefficient cut off relative to PDBbind time-split training set (using 

1024 bit RDKit fingerprints16). 
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8. Supplementary information in Posebusters test 

set 
 

 

Fig. S7. Performance of DiffBindFR on Posebusters test set. For each complex, 40 

poses are generated 

 

 

 

 

Fig. S8. Evaluation of DiffBindFR generalizability on Posebusters test set. A protein is 

considered novel based on a 40% sequence identity cut off, and a ligand based on a 0.5 

Tanimoto similarity coefficient cut off relative to PDBbind time-split training set (using 

1024 bit RDKit fingerprints16). 
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Fig. S9. The invalid rate of the top-1 poses with L-RMSD < 2 Å generated by various 

deep learning-based methods on different Posebusters terms. The invalidity of each 

term is evaluated by Posebusters suite, and the number in each box from the plot 

represents the proportion of poses fails in each term. 

 

 
Fig. S10. The binding poses generated by various deep learning-based methods from 

Posebusters test set. Four cases (PDB id: 6TW5, 7PRM, 7T1D, 7CD9) are visualized, 

where conformations in gray and blue represent crystal structures and docking 

structures, respectively. 
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Table S5. Posebusters terms that various deep learning-based methods fail in. α 

  6TW5 7PRM 7T1D 7CD9 

EDM-Dock 

aromatic_ring_flatnes

s, 

internal_steric_clash,  

internal_energy, 

volume_overlap_with

_protein, 

minimum_distance_to

_protein 

bond_angles, 

aromatic_ring_flatness, 

minimum_distance_to_pro

tein 

aromatic_ring_flatness, 

internal_steric_clash,  

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

aromatic_ring_flatness, 

tetrahedral_chirality, 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

KarmaDock 

Align 

internal_steric_clash,  

internal_energy, 

volume_overlap_with

_protein, 

minimum_distance_to

_protein 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

TankBind-

pocket 

internal_steric_clash,  

internal_energy, 

minimum_distance_to

_protein 

internal_steric_clash,  

internal_energy, 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

aromatic_ring_flatness, 

internal_steric_clash,  

internal_energy, 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

tetrahedral_chirality, 

internal_steric_clash, 

internal_energy, 

bond_lengths, 

volume_overlap_with_prot

ein, 

minimum_distance_to_pro

tein 

DiffBindFR-

mina 
- - - - 

DiffBindFR-

MDN 
- - - - 

αFour cases from Fig. S9 are analyzed through Posebusters suite22 to check their pose validity.  
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9. Supplementary information in CD test set 
 

Table S6. L-RMSD of various methods on the subsets of CD test set. α 

Method 

Ensemble-CDK2 Ensemble-EGFR Ensemble-FXA 

RMSD 

Mean 

RMSD 

Median 

RMSD 

Mean 

RMSD 

Median 

RMSD 

Mean 

RMSD 

Median 

Traditional 

rigid receptor 

docking 

methods 

Vina 6.12±2.63 6.26 6.37±2.34 6.90 4.35±3.17 3.02 

LinF9 6.12±2.50 6.31 6.31±2.43 6.63 3.88±2.90 2.96 

Smina 6.15±2.65 6.28 6.33±2.53 6.90 4.17±3.16 2.70 

Gnina 5.67±2.63 5.78 6.02±2.69 6.29 3.83±2.99 2.44 

Glide 4.81±2.60 5.21 6.87±3.63 7.67 3.49±2.72 2.31 

Traditional 

flexible  

docking 

methods 

VinaFlex 8.04±2.92 7.88 9.03±2.47 9.45 9.19±2.22 9.42 

rDock 4.61±2.76 4.62 5.45±2.98 4.70 3.29±2.66 2.28 

Deep 

learning-

based 

docking 

methods 

TankBind-pocket 2.17±1.85 1.62  2.21±0.96 1.82 1.73±0.96 1.50 

EDM-Dock 2.62±1.27 2.32  2.95±1.05 2.66 2.68±0.98 0.45 

KarmaDock Align 1.89±1.20 1.58  2.65±2.06 1.93 2.43±0.92 2.30 

DiffBindFR-Smina 2.31±1.80 1.73  3.44±2.53 2.57 1.54±1.14 1.30 

DiffBindFR-MDN 1.85±1.34 1.48  2.58±2.15 1.80 1.42±0.70 1.35 

 

Table S6. (continued) 

Method 

ApoRef CASF2016 GPCR-AF2 

RMSD 

Mean 

RMSD 

Median 

RMSD 

Mean 

RMSD 

Median 

RMSD 

Mean 

RMSD 

Median 

Traditional 

rigid receptor 

docking 

methods 

Vina 6.98±3.35 7.22 4.93±3.62 4.46 7.42±3.99 7.77 

LinF9 6.59±3.08 6.67 4.99±3.56 4.52 5.66±2.54 5.18 

Smina 7.08±3.47 7.43 4.88±3.69 4.38 7.25±4.15 7.41 

Gnina 6.67±3.65 6.51 4.57±3.56 3.74 6.72±3.95 6.06 

Glide 6.62±3.51 6.85 4.28±3.20 3.74 5.37±3.60 4.57 

Traditional 

flexible  

docking 

methods 

VinaFlex 8.81±2.94 9.06 8.80±2.98 9.07 7.36±3.33 7.07 

rDock 5.46±3.02 5.31 4.11±2.82 3.58 5.37±3.60 5.12 

Deep learning-

based docking 

methods 

TankBind-pocket 2.63±1.88 1.97 2.37±2.38 1.63 3.74±1.98 3.42 

EDM-Dock 3.33±1.55 3.09 3.06±1.92 2.55 4.72±1.95 4.61 

KarmaDock Align 2.47±1.56 2.04 2.36±1.57 1.89 4.30±2.20 3.91 

DiffBindFR-Smina 2.96±2.32 2.10 2.30±2.28 1.58 4.92±4.12 4.02 

DiffBindFR-MDN 2.32±1.73 1.76 1.87±1.93 1.25 3.64±2.59 2.74 
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Table S6. (continued) 

Method 

DUDE27-HoloEns 

RMSD 

Mean 

RMSD  

Median 

Traditional rigid  

receptor  

docking methods 

Vina 6.04±3.37 5.88 

LinF9 5.70±3.16 5.47 

Smina 6.10±3.38 6.33 

Gnina 5.86±3.51 5.63 

Glide 5.72±3.41 5.38 

Traditional flexible  

docking methods 

VinaFlex 8.45±3.16 8.74 

rDock 5.00±3.31 4.44 

Deep  

learning-based  

docking methods 

TankBind-pocket 3.14±2.32 2.40 

EDM-Dock 3.64±2.00 3.29 

KarmaDock Align 3.14+2.36 2.37 

DiffBindFR-Smina 3.91±3.59 2.48 

DiffBindFR-MDN 3.28±3.31 2.08 

αBest performance in bold for the lowest RMSD Mean and RMSD Medium. 

 

Table S7. Performance of various methods on the 660 CASF2016 Apo-Holo pairs. α 

Method RMSD Mean RMSD Median PB-success rate 

Traditional 

rigid 

receptor 

docking 

methods 

Vina 5.94±3.66 5.62 0.195 

LinF9 5.60±3.47 5.30 0.186 

Smina 5.89±3.75 5.51 0.202 

Gnina 5.58±3.65 5.26 0.211 

Glide 5.19±3.18 5.01 0.132 

Traditional 

flexible  

docking 

methods 

VinaFlex 8.73±2.88 8.91 0.015 

rDock 5.17±2.82 4.86 0.148 

Deep 

learning-

based 

docking 

methods 

TankBind-pocket 2.58±2.67 1.76  0.115 

EDM-Dock 3.67±12.5 2.73  0.053 

KarmaDock Align (release) 2.55±1.78 2.01  0.088 

KarmaDock Align (re-train) 2.47±1.61 2.00  0.109 

DiffBindFR-Smina 2.71±2.45 1.91  0.495 

DiffBindFR-MDN 2.20±2.15 1.48  0.561 
αBest performance in bold. RMSD Mean and RMSD Medium, lowest; PB-success rate, highest. 

RMSD Mean and RMSD Median denote the average ± standard deviation and median of Ligand 

RMSD for top-1 generated ligand poses from each complex, respectively. KarmaDock Align 

(release) represents the released KarmaDock model trained on PDBbind general set, and 

KarmaDock Align (re-train) represents the KarmaDock model trained on PDBbind time-split 

training set. 
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Table S8. Performance of various methods on the 1100 CASF2016 Holo-Holo pairs. α 

Method RMSD Mean RMSD Median PB-success rate 

Traditional 

rigid 

receptor 

docking 

methods 

Vina 4.32±3.46 3.64 0.354 

LinF9 4.62±3.57 3.88 0.324 

Smina 4.28±3.52 3.48 0.365 

Gnina 3.96±3.37 2.95 0.385 

Glide 3.75±3.08 2.85 0.272 

Traditional 

flexible  

docking 

methods 

VinaFlex 8.84±3.03 9.16 0.027 

rDock 3.47±2.62 2.94 0.385 

Deep 

learning-

based 

docking 

methods 

TankBind-pocket 2.24±2.18 1.59  0.128 

EDM-Dock 5.62±1.85 2.48  0.071 

KarmaDock Align (release) 2.26±1.58 1.78 0.132 

KarmaDock Align (re-train) 2.30±1.54 1.84  0.153 

DiffBindFR-Smina 2.11±2.14 1.36  0.609 

DiffBindFR-MDN 1.67±1.76 1.12  0.682 
αBest performance in bold. RMSD Mean and RMSD Medium, lowest; PB-success rate, highest. 

RMSD Mean and RMSD Median denote the average ± standard deviation and median of Ligand 

RMSD for top-1 generated ligand poses from each complex, respectively. KarmaDock Align 

(release) represents the released KarmaDock model trained on PDBbind general set, and 

KarmaDock Align (re-train) represents the KarmaDock model trained on PDBbind time-split 

training set. 

 

 

Table S9. Performance of various methods on DUDE27-HoloEns redocking pairs. α 

Method RMSD Mean RMSD Median PB-success rate 

Traditional 

rigid 

receptor 

docking 

methods 

Vina 2.98±3.31 1.22 0.565 

LinF9 3.37±3.42 1.80 0.540 

Smina 2.63±3.22 1.10 0.610 

Gnina 2.60±3.10 1.11 0.610 

Glide 3.14±3.32 1.88 0.530 

Traditional 

flexible  

docking 

methods 

VinaFlex 8.20±3.51 8.52 0.050 

rDock 2.67±2.75 1.42 0.560 

Deep 

learning-

based 

docking 

methods 

TankBind-pocket 2.71±1.92 1.98  0.090 

EDM-Dock 3.44±2.21 2.98  0.090 

KarmaDock Align (re-train) 3.17±2.58 2.35  0.070 

DiffBindFR-Smina 2.34±2.93 1.18  0.660 

DiffBindFR-MDN 2.63±3.42 1.50  0.550 
αBest performance in bold for the lowest RMSD Mean and RMSD Medium. 
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Fig. S11. The binding poses of four cases from ApoRef subset in CD test set. In all 

panels, Holo protein and ligand are shown in grey. Apo protein structure is shown in 

blue. DiffBindFR sampled ligand and pocket side chains are shown in sliver lake blue. 

Note that DiffBindFR sampled structure shares the backbone with Apo structure. 
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Table S10. Details about DUDE27-AF2 set. 

Target 
PDB 

& chain 

UniProt 

ID 

Backbone 

RMSDα 

Flexible Side Chains for 

VinaFlexβ 

Flexible 

residues 

aces 1E66-A P04058 0.41 

ASP93, TRP105, GLU220,  

PHE351, TYR355, TRP453,  

HIS461  

7 

akt2 3D0E-A P31751 0.88 

LYS181, GLU200, MET229,  

TYR231, GLU279, MET282,  

THR292, ASP293, PHE294  

9 

bace1 3L5D-A P56817 0.46 

LEU91, ASP93, SER96,  

TYR132, THR133, GLN134,  

ASP289, THR292, THR293  

9 

hs90a 1UYG-A P07900 0.78 
ASN51, MET98, LEU107,  

PHE138, TRP162  
5 

tgfr1 3HMM-A P36897 0.43 
ILE211, LYS232, TYR282,  

HIS283, LEU340, ASP351  
6 

tryb1 2ZEC-A Q15661 0.33 
ASP218, SER219, GLN221,  

TRP244, GLU246  
5 

try1 2AYW-A P00760 0.40 
HIS63, LEU104, TYR154,  

GLN197, SER200, TRP216  
6 

thrb 1YPE-H P00734 2.95 
HIS406, TYR410, LEU459,  

TRP511, TRP590, PHE602  
6 

fabp4 2NNQ-A P15090 0.67 

PHE17, MET21, MET41,  

SER54, ILE105, ARG127,  

TYR129  

7 

ppard 2ZNP-A Q03181 0.49 

ARG248, LEU294, VAL298,  

LEU303, VAL312, LYS331,  

PHE332, HIS413, TYR43  

9 

pparg 2GTK-A P37231 0.45 

PHE292, HIS294, PHE310,  

GLN314, ARG316, SER317,  

HIS351, LEU358, PHE391,  

HIS477, TYR501  

11 

fa10 3KL6-A P00742 0.58 

THR318, TYR319, PHE396,  

GLN416, TRP439, GLU441,  

ILE451, TYR452  

8 

cdk2 1H00-A P24941 0.83 

ILE10, LYS33, PHE80,  

ASP86, LYS89, ASN132,  

LEU134, ASP145  

8 

met 3LQ8-A P08581 1.09 

LYS1110, GLU1127, 

MET1131,  

LEU1157, MET1211, 

ASP1222,  

PHE1223 

7 

mk10 2ZDT-A P53779 0.91 LYS68, ILE70, LYS93,  7 
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MET146, LEU148, MET149,  

ASN152  

rxra 1MV9-A P19793 0.39 

ILE268, GLN275, LEU309,  

ILE310, PHE313, ARG316,  

LEU326, ILE345, PHE346,  

HIS435, LEU436  

11 

mk14 2QD9-A Q16539 1.32 

VAL30, LYS53, ILE84,  

LEU104, THR106, LEU108,  

MET109, ASP112, LEU167  

9 

braf 3D4Q-A P15056 1.38 
ILE463, LYS483, LEU514,  

TRP531, PHE583, ASP594  
6 

vgfr2 2P2I-A P35968 0.95 

LYS868, GLU885, PHE918,  

CYS1024, LEU1035, 

ASP1046,  

PHE1047  

7 

gria2 3KGC-B P19491 1.66 

GLU423, TYR471, THR501,  

ARG506, LEU671, THR707,  

GLU726, MET729, TYR753  

9 

egfr 2RGP-A P00533 1.04 

LYS745, MET766, LEU777,  

THR790, MET793, LEU844,  

THR854, ASP855, PHE856  

9 

mapk2 3M2W-A P49137 0.64 

LEU70, LYS93, MET138,  

LEU141, ASP142, GLU190,  

LEU193, THR206, ASP207 

9 

ital 2ICA-A P20701 0.89 

ILE151, ILE260, ILE280,  

TYR282, ILE284, LYS312,  

LEU327, LYS330, ILE331  

9 

dpp4 2I78-B P27487 0.34 

GLU206, SER209, PHE357,  

ARG358, TYR547, SER630,  

ARG669  

7 

ptn1 2AZR-A P18031 0.30 

TYR46, ASP48, LYS120,  

ASP181, PHE182, CYS215,  

SER216, ILE219, ARG221,  

GLN262  

10 

igf1r 2OJ9-A P08069 1.61 

LEU1005, VAL1013, 

LYS1033,  

MET1079, MET1082, 

MET1142  

6 

ampc 1L2S-B P00811 0.39 
SER80, GLN136, ASN168,  

ARG220, TYR237 
5 

αThe backbone RMSD is calculated between residues within 5 Å around crystal ligand in the 

Holo and matched ones in the AF2 predicted protein pocket. 
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βThe flexible side chains are picked by expert experience through observing the binding-site aligned 

AF2 predicted and Holo crystal structures. Then, VinaFlex uses theses flexible side chains for 

flexible docking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S11. The L-RMSD of various methods on DUDE27-AF2 test set. 

Target 

L-RMSD 

IFD-MD 

(Holo) α 

IFD-MD 

(Docked)β 

DiffBindFR-

Smina 

DiffBindFR-

MDN 
VinaFlex rDock 

aces 0.68 6.19 0.59 0.65 0.75 5.63 

akt2 0.57 10.82 1.16 1.79 9.12 5.53 

bace1 1.20 4.96 4.61 3.29 8.32 4.99 

hs90a 6.94 6.79 3.99 3.30 7.02 7.19 

tgfr1 0.42 0.43 1.32 1.73 6.99 1.29 

tryb1 5.22 5.19 1.25 1.24 9.48 2.00 

try1 2.95 8.47 1.17 1.43 8.66 2.57 

thrb 2.82 6.86 7.90 26.67 8.58 8.56 

fabp4 0.96 7.14 5.44 5.57 4.37 4.80 

ppard 1.42 0.85 3.49 2.12 1.42 4.03 

pparg 1.84 1.49 1.17 1.31 3.31 3.45 

fa10 1.26 1.36 1.62 0.95 10.32 0.82 

cdk2 2.63 3.12 3.27 3.78 8 8.36 

met 6.67 6.70 8.09 7.72 13.22 11.63 

mk10 0.74 0.76 2.15 2.38 9.64 7.77 

rxra 1.95 4.27 1.81 5.22 3.24 1.29 

mk14 2.4 8.97 1.73 1.87 9.21 11.20 

braf 1.38 5.75 1.4 1.28 5.02 1.58 

vgfr2 1.38 7.85 8.3 2.94 10.83 10.53 
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gria2 1.74 3.71 10.96 2.07 5.65 6.08 

egfr 2.19 10.12 5.20 1.96 9.68 11.21 

mapk2 1.59 1.83 1.22 1.28 1.54 1.16 

ital 1.63 6.86 6.78 4.24 10.87 11.07 

dpp4 3.14 3.10 6.09 2.12 9.58 9.16 

ptn1 0.53 1.24 1.91 1.98 1.78 0.64 

igf1r 2.44 6.66 2.29 2.28 5.82 7.04 

ampc 2.66 2.20 1.99 3.06 2.71 1.94 

Median 1.74 5.19 2.15 2.12 8.00 5.53 

SRγ 0.59 0.26 0.48 0.44 0.15 0.26 

PB-SRδ 0.48 0.26 0.44 0.33 0.07 0.26 

αIFD-MD (Holo) refers to utilize the ground-truth crystal ligand poses as the IFD-MD template 

poses. 

βIFD-MD (Docked) refers to utilize the glide docked ligand poses as the IFD-MD template poses. 

γSR: The success rate of L-RMSD below 2 Å. 
δPB-SR: The PB-success rate. 

 

 

 

 

 

Table S12. The sc-RMSD of various methods on DUDE27-AF2 test set. 

Target 

 sc-RMSD for Flexible Pocket Side Chainsα 

Holo  

vs AF2 

IFD-MD 

(Holo) 

IFD-MD 

(Docked) 

DiffBindFR-

Smina 

DiffBindFR-

MDN 
VinaFlex rDock 

aces 1.25 1.8 1.78 0.91 0.58 0.93 5.63 

akt2 1.89 1.4 1.72 1.65 1.48 1.96 5.53 

bace1 0.32 1.26 1.42 0.42 0.37 0.75 4.99 

hs90a 2.12 2.08 2.11 1.54 1.59 2.23 7.19 

tgfr1 0.98 1.42 1.35 1.2 1.57 0.87 1.29 

tryb1 1.78 1.24 1.40 1.37 1.56 1.77 2.00 

try1 1.48 1.54 1.35 0.94 1.33 2.67 2.57 

thrb 3.44 3.21 3.31 3.44 4.95 4.75 8.56 

fabp4 1.49 1.62 1.37 1.41 1.98 1.74 4.80 

ppard 1.27 1.7 1.20 1.76 1.49 1.23 4.03 

pparg 1.77 1.79 1.82 1.54 1.38 1.24 3.45 

fa10 1.49 1.33 3.68 1.16 1.5 1.77 0.82 

cdk2 1.60 1.46 2.32 2.33 2.84 1.85 8.36 

met 5.11 5.03 5.38 5.34 5.32 5.69 11.63 

mk10 1.44 1.1 1.20 1.35 1.49 2.19 7.77 

rxra 1.18 1.46 1.61 1.68 2.42 1.70 1.29 

mk14 1.48 1.54 1.57 1.38 1.4 1.92 11.20 

braf 1.69 2.36 1.93 1.35 1.51 1.91 1.58 

vgfr2 5.18 6.79 5.45 5.24 6.28 5.63 10.53 
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gria2 2.33 2.13 2.11 2.06 2.19 2.19 6.08 

egfr 1.57 1.35 1.46 1.73 1.77 2.02 11.21 

mapk2 1.23 1.31 1.58 1.03 1.49 1.66 1.16 

ital 1.77 1.49 3.03 2.5 1.82 2.11 11.07 

dpp4 1.68 1.84 1.65 1.49 1.95 3.23 9.16 

ptn1 1.08 1.26 0.78 1.11 1.3 1.41 0.64 

igf1r 1.70 1.75 1.69 1.59 1.52 2.00 7.04 

ampc 1.87 2.50 1.92 1.43 1.27 2.14 1.94 

Median 1.60 1.54 1.69 1.49 1.52 1.92 5.53 

SRβ - 0.41 0.48 0.63 0.41 0.22 - 
α “Flexible Pocket Side Chains” represents the “Flexible Side Chains for VinaFlex” recorded in 

Table S10. 

βSR: The success rate of side chains refinement, defined by the sc-RMSD between the refined side 

chains and the corresponding side chains in Holo pocket is lower than the baseline (Holo vs AF2).  

 

Table S12. (continued) 

Target 

sc-RMSD for Pocket Side Chains within 5 Å around the crystal ligand 

Holo  

vs AF2 

IFD-MD 

(Holo) 

IFD-MD 

(Docked) 

DiffBindFR-

Smina 

DiffBindFR-

MDN 

aces 1.12 1.45 1.37 0.90 0.93 

akt2 2.36 2.80 2.26 2.19 2.10 

bace1 0.99 1.47 1.86 0.83 0.89 

hs90a 1.57 1.68 1.78 1.27 1.28 

tgfr1 1.39 1.74 1.65 1.53 1.50 

tryb1 1.24 1.19 1.40 0.97 0.98 

try1 1.30 1.44 1.34 0.94 1.82 

thrb 4.21 4.26 4.38 4.12 4.57 

fabp4 1.42 1.57 1.86 1.53 1.57 

ppard 1.33 1.53 1.28 1.45 1.31 

pparg 1.53 1.37 1.62 1.47 1.33 

fa10 1.38 1.43 2.65 1.43 1.55 

cdk2 1.49 1.58 2.08 2.06 2.08 

met 3.41 3.53 3.64 3.52 3.43 

mk10 1.22 1.37 1.50 1.34 1.36 

rxra 1.07 1.37 1.42 1.35 1.82 

mk14 1.75 2.23 1.89 1.84 1.52 

braf 2.22 2.63 2.80 2.12 2.33 

vgfr2 3.15 4.00 3.45 3.19 3.70 

gria2 2.09 2.09 2.01 1.96 2.03 

egfr 2.49 2.20 3.38 2.57 2.61 

mapk2 1.15 1.54 1.55 1.12 1.48 

ital 1.54 1.35 3.11 1.71 1.79 

dpp4 1.10 1.48 1.68 1.01 1.25 

ptn1 0.99 1.09 0.71 0.97 1.12 
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igf1r 3.55 3.19 3.49 3.53 3.44 

ampc 1.11 1.85 1.57 0.98 0.92 

Median 1.42 1.57 1.86 1.47 1.55 

SR - 0.22 0.19 0.56 0.41 
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10.The discussion about the redocking success rate 
 

The reported redocking performance of AutoDock Vina and Glide on the time-split test 

set is considerably lower compared to other literatures. We believe that there are two 

main reasons why conventional methods did not achieve a high redocking success rate 

(>80%) conducted in our work: 

 

10.1 Dataset Differences 

Currently, the most commonly used dataset in the docking field is PDBbind 2020. There 

are generally two ways to divide the PDBbind 2020 dataset: the MLSF-split and the 

PDBbind time-split. The MLSF-split methods designate 90% of the PDBbind general 

set as the training set, 10% of the PDBbind general set as the validation set, and use 

CASF2016 as the test set, a typical test set reporting high docking success rate. On the 

other hand, the time-split methods use 363 complex structures from the PDBbind 2020 

dataset, uploaded after 2019, as the test set. After excluding ligands present in the test 

set, the remaining 16,739 structures are used for training, and 968 structures are used 

for validation. 

 

Fig. S12. Distribution of number of ligand-containing heavy atoms in CASF2016 test 

set and time-split test set. 
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Compared to the CASF2016 test set, the PDBbind time-split test set contains ligands 

with a higher number of heavy atoms (Fig. S12), even with about 15% of the ligands 

being peptides34. This composition results in traditional methods performing more 

poorly on the PDBbind time-split test set. 

Additionally, compared to the CASF2016 test set, the PDBbind time-split test set 

contains a higher number of structures with poor resolution (Fig. S13), which can also 

make re-dock harder. 

 

 

Fig. S13. Resolution of crystal complex structures in CASF2016 test set and time-split 

test set. 

 

10.2 Exhaustive Sampling 

In order to evaluate the real-world applicability of docking methods, we did not perform 

exhaustive sampling for each docking program. The docking power assessment of the 

CASF2016 test set provided decoy poses33 generated by re-docking using three 

molecular docking programs, including GOLD (version 5.2, Cambridge 

Crystallographic Data Center), Surflex implemented in the SYBYL software (version 

8.1, CERTARA Inc.), and the molecular docking module implemented in the MOE 



S35 
 

software (version 2015, Chemical Computing Group). GOLD was used to generate 400 

binding poses, Surflex generated 300 binding poses, and MOE also generated 300 

binding poses. Residues within 10 Å from the native ligand were considered to form 

the binding pocket. Through pose clustering, up to 100 binding poses were selected as 

representatives and used in the docking power set. The representatives' decoys from the 

CASF2016 docking power set, using Vina as its scoring function, selected the top1 

ligand binding pose achieving an 81.2% success rate (Table. S13). CASF2016 pays 

more attention to the docking power of scoring functions as the decoy poses are well 

prepared. Indeed, a practical docking process involving pose sampling and scoring, 

both of them decide the docking success rate. Therefore, we further used Glide and Vina 

to perform “sampling-and-scoring” docking, and carefully prepared proteins and 

ligands following the official guidelines (consistent with those used in our paper), 

considering residues within 10 Å from the native ligand to form the binding pocket. 

Subsequently, 40 rounds of independent sampling were performed on the complexes in 

this test set, with the top-scoring ligand pose used to calculate L-RMSD. To prevent 

confusion with later results, we refer to the Vina method here as Vina buffer. The results 

showed that Glide and Vina buffer achieved docking success rates of 59.6% and 63.2% 

(Table. S13), respectively, on the CASF2016 test set. Furthermore, to prove that our 

baseline method of defining the pocket using residues within 10 Å of the ligand's center 

coordinate does not affect docking performances, we also tested Vina docking results 

using the same pocket definition as in our paper (Vina box center). The results revealed 

that Vina buffer and Vina box center achieved the same success rate (Table. S13), with 

a similar distribution of L-RMSD for the top1 ligand pose (Fig. S14). This indicates 

that achieving around an 80% success rate in re-docking tasks requires significant 

computational efforts and the use of multiple docking tools for exhaustive sampling, 

which is clearly impractical for screening large compound libraries. 
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Table S13. The L-RMSD of various methods on DUDE27-AF2 test set. 

Strategy 

name 

Sampling 

method 

Scoring 

function 

Pocket definition Sampling 

turns 

Success rate (L-

RMSD < 2 A) 

Vina center 

box 

Vina Vina Residues within 24 Å 

cubic at native ligand 

coordinate center 

40 63.2% 

Vina buffer Vina Vina Residues within 10 Å 

from the native ligand 

40 63.2% 

Glide Glide SP Glide SP Residues within 10 Å 

from the native ligand 

40 59.6% 

CASF2016 

Decoys 

GOLD, 

Surflex, 

MOE 

Vina Residues within 10 Å 

from the native ligand 

1000 81.2% 

 

 

 

 

 

Fig. S14. L-RMSD distribution of selected top1 ligand pose using different 

conventional docking methods. 
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