Supporting Information for

Topological effect of intramolecular split G-quadruplex on

Thioflavin T binding and fluorescence light-up

Mengmeng Lv, ${ }^{\text {a,b }}$ Jiangtao Ren, ${ }^{\text {b* Erkang Wang }}{ }^{\text {a,b* }}$
${ }^{\text {a }}$ College of Chemistry, Jilin University, Changchun, Jilin 130012, China.
${ }^{\mathrm{b}}$ State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
* Corresponding author E-mail: jiangtaoren@ciac.ac.cn; ekwang@ciac.ac.cn

Table of contents:

- Oligonucleotides used in this study. (Table S1)
- The gene fragments of this work (Table S2).

■ Eleven Intra-SG structures (S1-S11) derived from T30695 G-quadruplex. (Figure S1)

■ Fluorescence responses of ThT with different types of DNA strands (S8, C/S8 or C / C^{\prime}). (Figure S2)

■ UV-vis spectra of ThT incubated with different Intra-SG strands or $C /$ Intra-SG hybrids.
(Figure S3)

■ Fluorescence spectra of different ThT/Intra-SG systems ($S 8 H a^{\prime}, S 8 H b^{\prime}, S 8 H c^{\prime}$ and $S 8 H d^{\prime}$).
(Figure S4)

- CD spectra and normalized UV-melting profiles of $S 8 \mathrm{Ha}^{\text {a }}$ without or with Ha . (Figure S5)
- The fluorescence intensity of ThT/Intra-SG in the presence of target or different target variants generated through grafting different numbers of A or T bases at the 5^{\prime} or 3^{\prime} end.
(Figure S6)
- The fluorescence intensity of $\mathrm{ThT} / \mathrm{S} 8 H a^{\prime}$ with R 11 or R 11 variants generated through grafting different numbers (k) of T bases at the 3^{\prime} terminus ($R T k$). (Figure S7)

■ The fluorescence intensity of $\mathrm{ThT} / \mathrm{S} 8 \mathrm{Ha}^{\prime}$ in the presence of $H a$ or different $H a$ variants generated through tailoring different numbers of bases from the 5^{\prime} end ($L y$). (Figure S8)

■ Fluorescence spectra of different ThT/Intra-SG systems (S8Ra', $S 8 R b^{\prime}, S 8 R c^{\prime}, S 8 R d^{\prime}, S 8 R e^{\prime}$ and $S 8 R f^{\prime}$). (Figure S9)

- Fluorescence data on the topological effect study of ThT/S8Ra' system. (Figure S10)

Experimental section

Asymmetric PCR amplification (A-PCR). The gene sequences of Hepatitis B (GenBank accession number AB116094), Ebola (GenBank accession number KY786026.1) and Nova (GenBank accession number KB270442.1) viruses can be retrieved from the GenBank database of the National Center for Biotechnology Information. A-PCR primers including a forward primer $(F P)$ and a reverse primer $(R P)$ were designed for HBV fragment $(H F)$ using the Snap gene sequence analysis and design software.

As for the developed LABP (Figure 6D-E), an optimum molar ratio of 10:1 was adopted. Each A-PCR sample ($20 \mu \mathrm{~L}$) was prepared by mixing $10 \mu \mathrm{~L}$ of Taq PCR Master Mix consisting of Taq DNA polymerase, dNTPs mix and $\mathrm{MgCl}_{2}, 3.6 \mu \mathrm{~L}$ of $F P$ $(20 \mu \mathrm{M}), 1.8 \mu \mathrm{~L}$ of $R P(4 \mu \mathrm{M})$, and $5 \mu \mathrm{~L}$ of target template (HF,EF or $N F)$ of different concentrations. The template was replaced by buffer as a negative control. All the reaction mixtures were subjected to repeated cycles of 10 s at $98^{\circ} \mathrm{C}, 15 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and 15 s at $72^{\circ} \mathrm{C}$, on an Applied Biosystems Veriti Thermal Cycler (Life Technologies Holdings Pte Ltd., Singapore). The A-PCR conditions used included an initial denaturation step at $98^{\circ} \mathrm{C}$ for 30 s , followed by 35 cycles of denaturation at $98^{\circ} \mathrm{C}$ for 10 s , annealing at $60^{\circ} \mathrm{C}$ for 15 s , and an extension at $72^{\circ} \mathrm{C}$ for 15 s . In the end, there was a final extension step at $72^{\circ} \mathrm{C}$ for 7 min . The A-PCR amplicons were subjected to subsequent ligation and RCA reaction.

Ligation and RCA reaction. $20 \mu 1$ of A-PCR product was mixed with $2 \mu 1$ of T4 DNA ligase reaction buffer (400 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.8,100 \mathrm{mM} \mathrm{MgCl} 2,100 \mathrm{mM}$ DTT, 5 mM ATP and 50% PEG4000), $2.5 \mu \mathrm{l}$ of padlock $(\mathrm{Pa}, 3.2 \mu \mathrm{M})$ and $0.75 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$.

After annealing for 5 min at $75^{\circ} \mathrm{C}, 2 \mu \mathrm{l}$ of T4 DNA ligase ($4 \mathrm{U} / \mu \mathrm{l}$) was added into the mixture, and the ligation reaction proceeded for 2 h at $37^{\circ} \mathrm{C}$. Subsequently, the polymerization reaction was initiated by adding $1.75 \mu \mathrm{~L}$ of dNTPs (10 mM), $2 \mu \mathrm{~L}$ of phi29 DNA polymerase ($5 \mathrm{U} / \mu \mathrm{L}$) and $4 \mu \mathrm{~L}$ of phi29 buffer (330 mM Tris- $\mathrm{HCl}, 660$ $\mathrm{mM} \mathrm{KCl}, 100 \mathrm{mM} \mathrm{MgCl} 2,1 \%(\mathrm{v} / \mathrm{v})$ Tween 20 and $10 \mathrm{mM} \mathrm{DTT}, \mathrm{pH} 7.5$) into the ligation solution. After 2 h at $37^{\circ} \mathrm{C}$, it was terminated through a thermal treatment for 5 min at $95^{\circ} \mathrm{C}$.

Signal transduction. $44 \mu \mathrm{~L}$ of Tris/ Mg buffer (25 mM Tris- HCl buffer, $10 \mathrm{mM} \mathrm{Mg}{ }^{2+}$, pH 8.0) was added to each RCA sample. After sonication for 10 min at room temperature, $S 8 R a^{\prime}(10 \mu \mathrm{~L}, 9 \mu \mathrm{M})$ in Tris/K buffer and $R v / B L$ conversion probe ($5 \mu \mathrm{~L}$, $24 \mu \mathrm{M})$ in Tris/ Mg buffer were added and incubated for 1 h at room temperature. Finally, the solution was mixed with $\operatorname{ThT}(6 \mu \mathrm{~L}, 250 \mu \mathrm{M})$ and $204 \mu \mathrm{~L}$ of Tris/Mg buffer with $30 \mathrm{mM} \mathrm{K}^{+}$, and then fluorescence spectra were collected after 20 min of incubation at room temperature.

Gel electrophoresis. As for agarose gel electrophoresis in Figure 6A, an agarose gel ($3 \%(\mathrm{w} / \mathrm{v}$)) was prepared in $1 \times$ TAE buffer (40 mM Tris-acetic acid, 2 mM EDTA, pH 7.5). $10 \mu \mathrm{~L}$ of each A-PCR sample was mixed with $4 \mu \mathrm{~L}$ of loading buffer ($1 \times \mathrm{TAE}$ with 36% glycerol) and loaded into the gel. As for denaturing polyacrylamide gel electrophoresis in Figure 6B, a polyacrylamide gel ($12 \%(\mathrm{w} / \mathrm{v})$) was prepared within $1 \times$ TBE buffer with urea (89 mM Tris, 89 mM boric acid, 2 mM EDTA and 7 M urea, pH 8.3). $5 \mu \mathrm{~L}$ of each ligation sample was mixed with $2 \mu \mathrm{~L}$ of loading buffer ($1 \times \mathrm{TBE}$ with 7 M urea and 36% glycerol, pH 8.3) and loaded into the gel. As for native polyacrylamide gel electrophoresis in Figure 6C, a polyacrylamide gel ($12 \%(\mathrm{w} / \mathrm{v})$) was prepared within $1 \times$ TBE buffer. $5 \mu \mathrm{~L}$ of each sample was mixed with $2 \mu \mathrm{~L}$ of loading buffer ($1 \times$ TBE with 36% glycerol, pH 8.3) and loaded into the gel. All the gels were run at 60 V for $80-100 \mathrm{~min}$, stained with $\operatorname{Gel}-\operatorname{Red}(0.2 \%)$ for 40 min and photographed using a fluorescence imaging system, iBrightTM FL1000 (Thermo Fisher Scientific, USA).

Table S1. Oligonucleotides used in this study. (Note: Spacer sequences are indicated by italic letter. The mutated bases were indicted by red letters.)

Oligo	Sequence (5^{\prime} to 3^{\prime})
T30695	GGGTGGGTGGGTGGGT
S1	G TTCTTTTCTTTTCTTTTCTT GGTGGGTGGGTGGGT
S2	GG TTCTTTTCTTTTCTtTtCTt GTGGGTGGGTGGGT
S3	GGG titctitictitictittctt GGGTGGGTGGGT
S4	GGGTG TtCitttcittictittctt GGTGGGTGGGT
S5	GGGTGG TTCTTTTCTTTTCTTTTCTT GTGGGTGGGT
S6	GGGTGGGT TTCTtTtCttitctittett GGGTGGGT
S7	GGGTGGGTG TTCTTTTCTTTTCTtTTCTT GGTGGGT
S8	GGGTGGGTGG TTCTtTTCTtTtctittctt GTGGGT
S9	GGGTGGGTGGGT TtCttttctittctittctt GGGT
S10	GGGTGGGTGGGTG TTCTtTtctittctittctt GGT
S11	GGGTGGGTGGGTGG TTCTtTtctittctittcti GT
C^{\prime}	TTCTTTTCTTTTCTTTTCTT
C	AAGAAAAGAAAAGAAAAGAA
S8Ha'	GGGTGGGTGG TCCTAGGAATCCTGATGTGA GTGGGT
$H a$	TCACATCAGGATTCCTAGGA
$S 8 H b^{\prime}$	GGGTGGGTGG TAAGAAGATGAGGCATAGCA GTGGGT
Hb	TGCTATGCCTCATCTTCTTA
$S 8 H c^{\prime}$	GGGTGGGTGGAGAAGTCCACCACGAGTCTAGTGGGT
Hc	TCCTCACAATACCGCAGAGT
S8Hd ${ }^{\prime}$	GGGTGGGTGGTCCTGGTTATCGCTGGATGT GTGGGT
Hd	ACATCCAGCGATAACCAGGA
5HT1	tTCACATCAGGATTCCTAGGA
$5 \mathrm{HT2}$	ttTCACATCAGGATTCCTAGGA
5HT4	tttTCACATCAGGATTCCTAGGA
5HT6	tttttTCACATCAGGATTCCTAGGA
5HT8	tttttttCACATCAGGATTCCTAGGA

$5 \mathrm{HT10}$	ttttttttTCACATCAGGATTCCTAGGA
$3 H T 1$	TCACATCAGGATTCCTAGGAt
$3 H T 2$	TCACATCAGGATTCCTAGGAtt
3HT4	TCACATCAGGATTCCTAGGAtttt
$3 H T 6$	TCACATCAGGATTCCTAGGAttttt
3HT8	TCACATCAGGATTCCTAGGAttttttt
$3 H T 10$	TCACATCAGGATTCCTAGGAtttttttt
5HA1	aTCACATCAGGATTCCTAGGA
$5 \mathrm{HA2}$	aaTCACATCAGGATTCCTAGGA
5HA4	aaaTCACATCAGGATTCCTAGGA
5HA6	aaaaaTCACATCAGGATTCCTAGGA
5HA8	aaaaaaaTCACATCAGGATTCCTAGGA
5 HAlO	aaaaaaaaaTCACATCAGGATTCCTAGGA
$3 H A 1$	TCACATCAGGATTCCTAGGAa
$3 \mathrm{HA2}$	TCACATCAGGATTCCTAGGAaa
$3 H A 4$	TCACATCAGGATTCCTAGGAaaaa
$3 H A 6$	TCACATCAGGATTCCTAGGAaaaaa
$3 H A 8$	TCACATCAGGATTCCTAGGAaaaaaaa
$3 H A 10$	TCACATCAGGATTCCTAGGAaaaaaaaaa
5ST1	tAAGAAAAGAAAAGAAAAGAA
$5 S T 2$	ttAAGAAAAGAAAAGAAAAGAA
5ST4	ttttAAGAAAAGAAAAGAAAAGAA
5ST6	tttttAAGAAAAGAAAAGAAAAGAA
5ST8	$\mathfrak{t t t t t t} A A G A A A A G A A A A G A A A A G A A ~$
5ST10	ttttttttAAGAAAAGAAAAGAAAAGAA
3ST1	AAGAAAAGAAAAGAAAAGAAt
$3 S T 2$	AAGAAAAGAAAAGAAAAGAAtt
$3 S T 4$	AAGAAAAGAAAAGAAAAGAAtttt
3 ST6	AAGAAAAGAAAAGAAAAGAAttttt

3ST8	AAGAAAAGAAAAGAAAAGAAtttttt
3ST10	AAGAAAAGAAAAGAAAAGAAtttttttt
M1	ACACATCAGGATTCCTAGGA
M2	TGACATCAGGATTCCTAGGA
M3	TCTCATCAGGATTCCTAGGA
M4	TCAGATCAGGATTCCTAGGA
M5	TCACTTCAGGATTCCTAGGA
M6	TCACAACAGGATTCCTAGGA
M11	TCACATCAGGTTTCCTAGGA
M16	TCACATCAGGATTCCAAGGA
M20	TCACATCAGGATTCCTAGGT
R6	TCACAT
R7	TCACATC
R9	TCACATCA
R10	TCACATCAG
R11	TCACATCAGG
R16	TCACATCAGGATTCC
R19	TCACATCAGGATTCCTAGG
L6	CTAGGA
L7	CCTAGGA
L9	TTCCTAGGA
L10	ATTCCTAGGA
L11	GATTCCTAGGA
L16	ATCAGGATTCCTAGGA
L19	CACATCAGGATTCCTAGGA
RT5	TCACATCAGGttttt
RT10	TCACATCAGGtttttttt
RT20	TCACATCAGGtttttttttttttttt
RT30	TCACATCAGGtttttttttttttttttttttttt

$S 8 R a^{\prime}$	GGGTGGGTGGTTAATAATATCCAGATAGTTGTGGGT
$R a$	AACTATCTGGATATTATTAA
$S 8 R b^{\prime}$	GGGTGGGTGGTCCTGAGACACCTATCTCATGTGGGT
$R b$	ATGAGATAGGTGTCTCAGGA
$S 8 R c^{\prime}$	GGGTGGGTGGTAATAATATACCTATCTCATGTGGGT
Rc	ATGAGATAGGTATATTATTA
$S 8 R d^{\prime}$	GGGTGGGTGGTCCTATGACTCTCATTGTGAGTGGGT
$R d$	TCACAATGAGAGTCATAGGA
$S 8 R e^{\prime}$	GGGTGGGTGGTCATTACAGTCCACATAGTTGTGGGT
$R e$	AACTATGTGGACTGTAATGA
$S 8 R f^{\prime}$	GGGTGGGTGGTCCTATGACTTAGTTTGTGAGTGGGT
$R f$	TCACAAACTAAGTCATAGGA
5RT1	tAACTATCTGGATATTATTAA
5RT2	ttAACTATCTGGATATTATTAA
5RT4	ttttAACTATCTGGATATTATTAA
5RT6	tttttAACTATCTGGATATTATTAA
5RT8	$t t t t t t A A C T A T C T G G A T A T T A T T A A ~$
$5 \mathrm{RT10}$	ttttttttAACTATCTGGATATTATTAA
3RT1	AACTATCTGGATATTATTAAt
$3 R T 2$	AACTATCTGGATATTATTAAtt
3RT4	AACTATCTGGATATTATTAAtttt
3RT6	AACTATCTGGATATTATTAAttttt
3 RT8	AACTATCTGGATATTATTAAtttttt
3 RT10	AACTATCTGGATATTATTAAttttttttt
5RA1	aAACTATCTGGATATTATTAA
5RA2	aaAACTATCTGGATATTATTAA
5RA4	aaaaACTATCTGGATATTATTAA
5RA6	aaaaaAACTATCTGGATATTATTAA
5RA8	aaaaaaaaAACTATCTGGATATTATTAA

5RA10	aaaaaaaaaAACTATCTGGATATTATTAA
3RA1	AACTATCTGGATATTATTAAa
3 RA2	AACTATCTGGATATTATTAAaa
3RA4	AACTATCTGGATATTATTAAaaa
3RA6	AACTATCTGGATATTATTAAaaaaa
3RA8	AACTATCTGGATATTATTAAaaaaaaa
3 RA10	AACTATCTGGATATTATTAAaaaaaaaaa
MR1	TACTATCTGGATATTATTAA
MR2	ATCTATCTGGATATTATTAA
MR3	AAGTATCTGGATATTATTAA
MR4	AACAATCTGGATATTATTAA
MR5	AACTTTCTGGATATTATTAA
MR6	AACTAACTGGATATTATTAA
MR7	AACTATGTGGATATTATTAA
MR9	AACTATCTCGATATTATTAA
MR10	AACTATCTGCATATTATTAA
MR11	AACTATCTGGTTATTATTAA
MR16	AACTATCTGGATATTTTTAA
MR20	AACTATCTGGATATTATTAT
D6	AACTAT
D7	AACTATC
D9	AACTATCTG
D10	AACTATCTGG
D11	AACTATCTGGA
D16	AACTATCTGGATATTA
D19	AACTATCTGGATATTATTA
RD5	AACTATCTGGAtttt
RD10	AACTATCTGGAtttttttt
RD20	AACTATCTGGAtttttttttttttttt

$R D 30$	AACTATCTGGAttttttttttttttttttttttttt
$R v$	AACTATCTGGAATGAT
$F P$	ACCGAACATGGAGAACATCACA
$R P$	GGAGGACAAACGGGCAACATAC ACCCCTGCTCGTGTTACAGGCGGGGTTTTTC
$S C$	CTGATGTGATG- $P a$
$B L$	TGACATTTGGTCCTAGGAATC

Table S2. The sequences of three double-stranded DNA targets ($H F, E F$ and $N F$) derived from genes of Hepatitis B, Ebola and Nova viruses, respectively.

Name	Information (5' to 3^{\prime})
HF	AATCTCCTCGAGGACTGGGGACCCTGCACCGAACATGGAGAA CATCACATCAGGATTCCTAGGACCCCTGCTCGTGTTACAGGCG GGGTTTTTCTTGTTGACAAGAATCCTCACAATACCGCAGAGTC TAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGATCACC CGTGTGTCTTGGCCAAAATTCGCAGTCCCCAACCTCCAATCAC TCACCAACCTCCTGTCCTCCAATTTGTCCTGGTTATCGCTGGAT GTGTCTGCGGCGTTTTATCATATTCCTCTTCATCCTGCTGCTAT GCCTCATCTTCTTATTGGTTCTTCTGGATTATCAGGGTATGTTG CCCGTTTGTCCTCT
EF	CTTCAGCTCACACCCCTTGAGAGAGCCGGTCAATGCAACGGA GGACCCGTCCAGTGGCTACTATTCTACCACAATTAGATATCAG GCTACCGGTTTTGGAACCAATGAGACGGAGTACTTGTTCGAG GTTGACAATTTGACCTACGTCCAACTTGAATCAAGATTCACGC CACAGTTTTTGCTCCAGCTGAATGAGACAATATATGCAAGTGG GAAAAGGAGCAACACCACGGGAAAACTAATTTGGAAGGTCA ACCCCGAAATTGATACAACAATCGGGGAGTGGGCCTTCTGGG

	AAACTAAAAAAACCTCACTAGAAAAATTCGCAGT
$N F$	TACTCCTGATTTTGAGTTCACTTATTTAGTGCCACCTTCTGTTG
	AATCTAAAACCAAGCCTTTTTCCTTACCTATTTTAACCCTTTCT
	GAGCTCACAAATTCGAGGTTCCCAGTCCCCATCGATTCGCTTT
	TCACCGCCCAGAATAATGTGTTGCAGGTGCAGTGTCAAAATG
	GCAGGTGTACACTTGATGGTGAGTTACAAGGCACAACCCAGT TGCTCCCATCTGGCATCTGTGCATTCAGAGGACGGGTGACAGC ACAAATTAACCAACGTGACAGGTGGCACATGCAACTGCAAAA
	CCTCAATGGTACAACATATGACCCAACTGATGATGTGCCAGC
CCCGCTGG	

$T 30695$

S4

S8

S1

S5

S9

$S 2$

S6

S10

S3

S7

S11

Figure S1. Eleven Intra-SG structures (S1-S1) derived from T30695 G-quadruplex.

Figure S2. Fluorescence responses of ThT with different types of DNA strands (S8, $C / S 8$ or C / C^{\prime}). The concentration of each DNA strand and ThT was 300 nM and $5 \mu \mathrm{M}$, respectively, in Tris/K buffer.

Figure S3. (A-H) UV-vis spectra of ThT incubated with different Intra-SG strands (blue curves) or $C /$ Intra-SG hybrids (red curves). The black curves represent ThT only. The final concentrations of ThT and DNA were $2.5 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$, respectively, in

Tris/K buffer.

Figure S4. Fluorescence spectra of different ThT/Intra-SG systems. Four new Intra-SG structures ($\mathrm{S} 8 \mathrm{Ha} a^{\prime}, S 8 H b^{\prime}, S 8 H c^{\prime}$ and $S 8 H d^{\prime}$) derived from $S 8$ were designed for recognizing four short DNA segments ($H a, H b, H c$ and $H d$, respectively) from HBV gene. The calculated R values were indicated in the graphs. The concentration of each DNA strand and ThT in Tris/K buffer were 300 nM and $5 \mu \mathrm{M}$, respectively.

Figure S5. (A) CD spectra of $S 8 H a^{\prime}$ without (black curve) or with (red curve) $H a$. The blue curve represents the duplex $H a / H a^{\prime}$. The final concentration of each indicated strand in Tris/K buffer was $7 \mu \mathrm{M}$. (B) Normalized UV-melting profiles of $\mathrm{S} 8 \mathrm{Ha}^{\prime}$ at 295 nm (red curve) and duplex $H a / H a^{\prime}$ at 260 nm (black curve). The corresponding T_{m} values were shown in the inserted table. The concentration of each DNA strand in Tris/K buffer was $2 \mu \mathrm{M}$.

Figure S6. (A-B) The fluorescence intensity of ThT/S8Ha' (Blank) in the presence of $H a$ or different $H a$ variants generated through grafting different numbers (m, n) of A bases at the $5^{\prime}(5 H A m, ~ A)$ or 3^{\prime} end (3HAn, B). The value. (C-H) The fluorescence intensity of ThT/S2 (Blank, C-D), ThT/S5 (Blank, E-F), and ThT/S8 (Blank, G-H), in
the presence of C or different C variants generated through grafting different numbers (m, n) of T bases at the $5^{\prime}(5 C T m, ~ \mathrm{C}, \mathrm{E}$ and G$)$ or 3^{\prime} end ($3 C T n, \mathrm{D}, \mathrm{F}$ and H). The concentrations of ThT and each DNA strand were $5 \mu \mathrm{M}$ and 300 nM , respectively, in Tris/K buffer.

Figure S7. The fluorescence intensity of ThT/S8Ha' with R11 or R11 variants generated through grafting different numbers (k) of T bases at the 3^{\prime} terminus ($R T \mathrm{~T}$). The concentration of each DNA strand and ThT was 300 nM and $5 \mu \mathrm{M}$, respectively, in Tris/K buffer.

Figure S8. The fluorescence intensity of ThT/S8Ha' (Blank) in the presence of $H a$ or different $H a$ variants generated through tailoring different numbers of bases from the 5' end ($L y$). The letter " y " in $L y$ represents base numbers of target DNA after tailoring. A schematic diagram is inserted in each figure for illustrating the target DNA tailoring. The concentration of each DNA strand and ThT was 300 nM and $5 \mu \mathrm{M}$, respectively,
in Tris/K buffer.

Figure S9. Fluorescence spectra of different ThT/Intra-SG systems. These new six Intra-SG structures ($S 8 R a^{\prime}, S 8 R b^{\prime}, S 8 R c^{\prime}, S 8 R d^{\prime}, S 8 R e^{\prime}$ and $S 8 R f^{\prime}$) derived from $S 8$ were designed for recognizing six random DNA target strands, $R a, R b, R c, R d, R e$ and $R f$, respectively. The calculated R values were indicated in the graphs. The concentration of each DNA strand and ThT was 300 nM and $5 \mu \mathrm{M}$, respectively, in Tris/K buffer.

Figure S10. (A-D) The fluorescence intensity of ThT/S8Ra' (Blank) in the presence of $R a$ or different $R a$ variants generated through grafting different numbers (m, n) of A bases (A-B) or T bases (C-D) at the $5^{\prime}(5 R A m, A$ and $C)$ or 3^{\prime} end (3RAn, B and D), or single-base mutation (MRx, E), or tailoring different numbers of bases from the 3^{\prime} end
($D y, \mathrm{~F}$). The letter " x " in MRx represents the mutation site from the 5 ' to 3 ' end. The letter " y " in $D y$ represents base numbers of target DNA after tailoring. (G) The fluorescence intensity of ThT/S8Ra' with D11 or D11 variants generated through grafting different numbers (k) of T bases at the 3^{\prime} terminus ($R D k$). (H) Fluorescence intensity of $\mathrm{ThT} / S 8 R a^{\prime}$ without or with different targets ($R a, D 11$ or $R v$). The concentrations of each DNA strand and ThT were 300 nM and $5 \mu \mathrm{M}$, respectively.

