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ESI.1. High-throughput reaction profiling with DBDMH 

In high-throughput reaction profiling studies, poor reactivity was observed with DBDMH, even 
in the presence of acid additive (Figure SI.1). 

 

Figure SI.1. High-throughput reaction profiling evaluating DBDMH in the presence of 22 acid 
additives, along with replicate additive-free conditions 

UPLC area % of starting material 1 (blue), product 2 (green) and side product 3 (red) measured 
over 9 hours in 1.5 hour time intervals.  

Conditions: 63 µmol 1, 69.3 umol DBDMH and 6.3 µmol acid additive in ACN (0.25M) irradiated 
with 405 nm LEDs at 60 mW (level 1) intensity for 9 h at 10 - 30 oC. 
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ESI.2. Photoreactor development 

Photons are a reagent in photochemical transformations, thus, effective and robust photon 
delivery is a critical aspect of automated photochemical reaction execution. Popular systems for 
batch photochemistry include the Penn PhD system,1 which can accommodate one millimole-
scale reaction, as well as the SynLED and TAK-120 systems, which can accommodate up to ten 
millimole-scale reactions.2 When it comes to miniaturized, high-throughput batch photoreactor 
systems, the Lumidox photoreactor systems from Analytical Sales has seen widespread 
implementation in the photochemistry field.3 Here, up to 96 micromole-scale reactions can be 
executed in parallel, with one LED dedicated to each reaction well. The Lumidox LED panels, 
coupled with glass-bottomed 96-well Paradox photoreactors, have been reported in a number 
of high-throughput photochemistry optimizations.4,5 Two generations of the Lumidox LED 
panels exist, with the Lumidox II panels offering higher light intensities than the less powerful 
Lumidox I panels. Due to the wide range of LED light wavelengths and intensities available with 
the Lumidox II panels, we selected these for evaluation and characterization. 

The parameters we were interested in characterizing were efficient photon delivery with 
uniform temperature control. We were aware that Lumidox II LED panels could lead to well 
temperature increases up to 25 °C at the lowest light intensity, and therefore initiated our 
studies at level 1 light intensity (60 mW per well). We implemented a temperature feedback 
loop to maintain the photoreactor temperature at 25 °C through active cooling of the base of 
the LED array with a chiller-cooled circulator block. We monitored the photoreactor 
temperature with the LED panel on for 60 minutes, then off for 60 minutes, and repeated this 
cycle six times. Upon switching the LED array on, the photoreactor temperature increased to 33 
°C, and upon switching the LED array off, the photoreactor temperature decreased to 10 °C 
(Figure SI.2). We attributed these temperature swings to  ineffective cooling of the 
photoreactor, as the chiller-cooled circulator block was only in contact with the base of the LED 
panel. 

 

Figure SI.2. Temperature monitoring of the Lumidox II LED panel with the Paradox photoreactor  
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We therefore turned to Analytical Sales for the development of a more efficiently cooled 
photoreactor system that could access all five light intensities (60-385 mW) while maintaining a 
photoreactor temperature of 25 °C. Analytical Sales moved forward with the design and 
prototyped a custom photoreactor with cooling channels incorporated between the rows of 
wells. In order to accommodate these cooling channels, the number of wells were decreased 
from 96 to 48. The custom photoreactor was aptly named the temperature-controlled reactor 
(TCR). We implemented a temperature feedback loop to maintain the TCR temperature at 25 
°C. Here, in addition to active cooling of the base of the LED array with a chiller-cooled 
circulator block, a tubing connection was established to flow the chiller fluid through the TCR 
cooling channels. We monitored the photoreactor temperature with the LED panel on for 30 
minutes, then off for 30 minutes, at each light intensity level from 60 mW per well through 385 
mW per well. With the implementation of the TCR cooling channels, excellent temperature 
control was achieved across all five light intensity levels, and the temperature was maintained 
between 24 and 26 °C, measured at three well positions (Figure SI.3). With these results in 
hand, we integrated the Lumidox TCR LED controller, the Huber circulating chiller and a V&P 
scientific tumble stirrer through RS232 connections to enable the direct Chemspeed Autosuite 
software control of illumination, cooling and stirring. With this, we were ready to optimize 
photochemical reactions in high throughput. 

 

Figure SI.3. Temperature monitoring of the Lumidox TCR photoreactor 
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ESI.3. Plateau detection algorithm selection 

The next challenge was to develop an effective real time plateau detection method based on 
the following assumptions: (1) the experimental outcome Y(t) is measured sequentially at 
different timepoints t=(t0,t1,t2…), (2) the experimental outcome at each timepoint is denoted as 
Y=(Y0,Y1,Y2…), (3) the experimental conditions are denoted as X=(X1,X2,X3,...), (4) the goal of real 
time plateau detection is that at any time t, given the experimental conditions X, and all 
previous measurements {Y(s)}s<t, to decide whether the experiment has reached a “plateau” 
and can be stopped. Given these assumptions, three real time plateau detection methods were 
evaluated against existing data.  
 
Algorithm 1 (maximum negative difference): The maximum negative difference approach 
assumes that after reaching a plateau, there are still fluctuations across time, assuming the 
maximum negative difference of Y(t) is caused by random fluctuations. The experiment reaches 
a plateau at t if  |Yt−Yt−1|≤ δ, where the threshold is computed from previous data by: δ=max∀ 

{Ys < Ys−1}{|Ys−Ys−1|}.  
 
Algorithm 2 (plateau variability): The plateau variability approach assumes that after reaching 
plateau, assuming Yt∼N(μ,σ2), then δY=Yt−Yt−1∼N(0,2∗σ2). The 95% confidence interval of δY is: 
±1.96∗√2∗σ. The experiment reaches plateau at t-1 if |Yt−Yt−1|≤δ, where the threshold is 
computed from previous data by: δ=1.96∗√2∗σ. The parameters (μ,σ) can also be estimated 
from previous data. 
 
Algorithm 3 (threshold of slope): The threshold of slope approach assumes that the slope at 
time t is s(t)=(Yt−Yt−1)/Δt; (t≥2), where Δt is the time interval. The experiment reaches plateau at 
t if the slope is less than a certain threshold: s(t)≤δ, where the dynamic threshold is based on 
only previous data under the same conditions: δ(t)=0.3∗1/(t−2)Σ(t−1,i=2)s(i). 
 
Of the three approaches, algorithm 2 performed optimally. Upon manually validating the 
automated plateau labeling of a set of historically captured reaction profiles, 170 out of 184 of 
plateaus were labeled correctly (the failures included 1 false negatives, 9 false positives and 4 
time adjustments. Figure SI.4). This corresponded to a success rate of 92%. Thus, real time 
plateau detection algorithm 2 was implemented for use in real-time autonomous plateau 
detection.   
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Figure SI.4. Evaluation of the algorithm 2 on historically captured reaction profile data 

 

ESI.4. Optimization algorithm selection 

The next step in building an autonomous optimizer for photochemical reactions was the 
definition of a sequential model based optimization strategy. Sequential model based 
optimization strategies rely upon the construction of a surrogate model of the objective 
function for the defined parameter space.6 The  modeling is necessary because the objective 
function is typically not known, complex or difficult to sample in chemical process 
optimizations. Thus, a statistical surrogate model is constructed from a set of seed experiments, 
and an acquisition function is utilized to propose new experiments, the results of which feed 
into improving the surrogate model, from which the acquisition function proposes new 
experiments. This cycle is continued until a predefined output parameter threshold or number 
of experiments is reached (Figure SI.5). Here we discuss the selection of algorithms for each 
step in this workflow. A significant portion of our code draws from open-source Python 
libraries.7 
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Figure SI.5. Steps in a sequential model based optimization workflow 

The first decision point was the threshold for optimization. Here, 48 experiments were selected 
as the maximum threshold. The first eight of these experiments were designated as seed 
experiments, and the subsequent 40 were dedicated to optimization. With respect to the seed 
experiments, as opposed to random sampling of the parameter space, a D-optimal design was 
utilized to seed the parameter space more uniformly.8 The second decision point was the 
modeling strategy for constructing the statistical approximation of the objective function. 
Linear regression modeling was deemed a plausible approach, but so was Gaussian process 
modeling. Instead of opting for a single modeling method, a more pragmatic approach 
employing both modeling methods was pursued. Also, if the model failed to predict a better 
experimental proposal, the selection strategy would revert to random sampling, allowing the 
model to be updated with additional data. The third decision point was the acquisition function. 
For linear regression modeling, the options included the predicted mean, prediction with 
standard error and upper prediction interval (UPR). Because each of these functions performed 
similarly in simulations, the predicted mean acquisition method was selected for linear 
regression modeling.9 For Bayesian optimization (BO) through Gaussian process modeling, the 
options to choose from included expected improvement (EI), probability of improvement (PI) 
and upper confidence bound (UCB).10,11 Again, because each of these functions performed 
similarly in simulations, expected improvement was selected for the first autonomous 
experiment (Figure SI.6). However, in later experiments, the selection was widened to include 
all three BO acquisition functions.   
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Figure SI.6. Simulated optimization runs based on a neural network model of historically 
captured reaction profile data 
Each simulated optimization was repeated 100 times. 
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ESI.5. Closed-loop integration of the autonomous optimizer components 

The final step in rendering the system autonomous was the development of a data integration 
strategy among the hardware and software components (Figure SI.7). For this, a Python 
interface was developed to configure the input parameters and ranges, input stock mixture 
concentrations, output parameters, UPLC retention times, retention time windows, and file 
locations. The optimizer code was configured to suggest an experiments based on the 
configured parameters. Once the optimizer code suggested an experiment, the interface code 
was designed to translate this to dispense volumes for experimental execution by the 
Chemspeed Autosuite software, which was programmed to monitor the dispense volume file 
for new entries. Once the experimental execution was completed, a sample aliquot was 
injected into the sample valve. This was followed by a digital relay switch to trigger UPLC 
acquisition through the Agilent Chemstation software. Upon UPLC data processing via the 
Chemstation software, an auto-generated results file was parsed by the interface code, and the 
output relayed to the optimizer code, where the plateau detection algorithm determined 
whether or not a plateau had been reached. If the plateau was not reached, the interface 
software triggered the Chemspeed Autosuite software to aliquot additional samples. Once the 
plateau was reached, the interface triggered the Chemspeed software to terminate sampling, 
and relayed the final experimental results to the optimizer code, which then suggested the next 
experiment through a pre-configured sequential-model based optimization algorithm (linear 
model based or Gaussian process model based BO). The Python code and autonomous 
optimization data sets can be accessed publicly at https://github.com/ekwan/zhulong.git . 

 

Figure SI.7. Data flow in the integrated closed-loop optimization system 
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ESI.6. Reproducibility assessment 

Reproducibility experiments are useful in the development of autonomous systems because 
they have the potential to uncover both hardware and software issues, but more importantly, 
provide researchers with the confidence to trust self-optimization results. Our system posed an 
extra level of challenge in that a demonstration of consistent and reliable reaction profiles 
under constant reaction conditions were a requirement.  

Four reproducibility runs were carried out, and different hardware and software issues were 
resolved with each run until excellent reproducibility was observed in run 4 (Table SI.1 and 
Figure SI.8). In the first run, the stock solution concentrations were high, which led to several to 
exist as solid liquid slurries. Although the wide bore Chemspeed needles, with their 0.8 mm 
inner diameters, are capable of slurry transfers, the accuracy and precision of the transfers 
suffered. Thus, in the first run, the reproducibility was extremely poor, where different reaction 
rates were observed in experiments carried out under the same conditions in two solvents, ACN 
and DMC. The stock mixture concentrations were gradually reduced until the compounds were 
fully dissolved, improving the process performance until excellent reproducibility was observed 
in runs 3 and 4. The reduction in stock solution concentrations resulted in a reduction of the 
reaction concentration, which increased the reaction rate under the same light intensity.  

Table SI.1. Stock solution concentrations for reproducibility testing 

 Run 1 Run 2 Run 3 Run 4 

Scale in 4 63 µmol 25 µmol 20 µmol 20 µmol 

[1] stock 0.630 M 0.250 M 0.250 M 0.250 M 

[NBS] stock 0.945 M 0.375 M 0.250 M 0.250 M 

[H2SO4] stock 0.315 M 0.125 M 0.100 M 0.100 M 

[3.1] reaction 0.252 M 0.100 M 0.080 M 0.080 M 

Temperature 25 oC 25 oC 25 oC 5 oC 

Wavelength 470 nm 470 nm 470 nm 405 nm* 

*470 nm LED array that warped due to incompatibility with Syltherm at high temperate was 
replaced with a 405 nm LED array. Green: Slurry in ACN and DMC; Blue: slurry in  DMC. 
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Figure SI.8. Time course monitoring of LC area % product 2 for reproducibility testing. 

 

ESI.7. Scale-up studies 
 
In order to ensure that that micromole-scale bath conditions translated well millimole-scale 
flow conditions, the preferred conditions for scale-up of photochemical reactions due to large 
surface area to volume ratio and ideal path length for photon flux,12 we scaled up the 
conditions from the reproducibility studies in a Vaportec photoreactor (10% H2SO4 with NBS in 
ACN). Three temperatures were assessed between 10 and 30 oC, and the temperature influence 
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was determined to be minimal on a large scale as well. 1.5 g of pyridazinone 1 was passed 
through a Vaportec 3 ml reactor with a flow rate of 0.5 ml/ min for 65 min at 10 oC to generate 
product 2 in 69% assay yield and product 3 in 13% assay yield, with 5% starting material 1 
remaining, thus, the mass balance was determined to be 87% (Figure SI.9). Reaction profiles 
were similar to those observed on micromole-scale in batch. This experiment confirmed that 
micromole-scale results in batch could be translated to millimole-scale in flow. 
 

 
 

 

Figure SI.9. Scale-up experiments in a Vaportec photoreactor.  

 

ESI.8. Optimization performance assessment 

An important question to answer in researching optimization algorithms for chemical process 
optimization is how well the technology performs with respect to (1) arrival at a global 
optimum, and (2) gaining process insights. The parameter space in this optimization certainly 
proved to be challenging, with several local optima of similar performance as well as 
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interactions among the various parameters. Since we employed three different optimization 
approaches, we reasoned that comparisons of these three approaches did provide us with a 
better understanding around the influence of the model choice and sampling strategy on the 
optimization performance. Firstly, our linear model assumed a linear relationship between the 
additive loading and the product level at reaction plateau, while allowing for nonlinear 
relationships with the rest of the numerical variables. Thus, the regressors in our ‘linear model’ 
approach contained a linear term for the additive loading as well as quadratic terms for all the 
other numerical input variables (additive pKa, temperature, stage, reagent equivalents). This 
assumption was proven incorrect in the first optimization run, where we found that high 
loadings of low pKa acids resulted in low levels of product. This incorrect assumption was based 
on the high throughput reaction profiling data, but we had not explored as wide of a range of 
additive loadings in those experiments. Thus, even the most informed assumptions made in 
developing regression models may lead to poor optimization performance, if incorrect. 
Bayesian optimization, on the other hand, is based on GP model approximations of the seed 
data and thus is not tied to such assumptions. Therefore, BO through GP regression would be 
our first choice in future optimizations. 

The impact of the sampling strategy on optimization performance was also explored. Figure 
SI.10  illustrates box plots of the medians and interquartile ranges of product LC area % upon 
the implementation of different acquisition functions for sampling the parameter space. The 
literature indicated that PI would be the most exploitative acquisition function, sampling closer 
to the predicted optimum, and that UCB would be the most explorative acquisition function, 
sampling areas of high uncertainty.10,11 The data illustrated in the box plots support this 
literature precedent. For example, in run 3, where the EI, PI and UCB strategies were alternated 
in the same run, PI sampled areas that produced product levels close to the optimum 
(exploitation), while UCB sampled areas that produced a wider range of product levels 
(exploration). Intuitively, one might speculate that sampling closer to the predicted optimum to 
be more effective, but when faced with objective functions with multiple local optima, some 
exploration is critical to determination of the global optimum. 

Another way to compare the various sampling strategies was to compare the number of 
iterations dedicated to each additive using each acquisition function (Figure SI.11). As expected, 
in the third Bayesian optimization run, UCB sampled 7 out of 8 additives, while PI focused on 3, 
and EI sampled 5. In the second Bayesian optimization run, EI once again sampled 5 out of 8 
additives. Finally, in the first LM based optimization run, mean best prediction sampled 5 out of 
8 additives. 
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Figure SI.10. Box plot of LC area % product under various sampling strategies 

 

Figure SI.11. Count of iterations per each additive under different sampling strategies 

Finally, we were interested in understanding both the convergence behavior and sampling 
diversity of each optimization strategy. We turned to multidimensional scaling (MDS) in order 
to flatten the combinatorial parameter space and more clearly observe the optimization 
trajectory (Figure SI.12).13 This allowed for (1) the establishment of evidence for optimization 
convergence and (2) the assessment of diversity in sampling the combinatorial parameter 
space. As mentioned previously, the goal of the optimization was to achieve a balance between 
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a global optimum while gaining sufficient insight into the process robustness. Figure SI.12.a 
indicates that runs 2 and 3 converged, but run 1 did not. Figure SI.12.b. indicates that the 
highest sampling diversity was observed in run 1, but the diversity was attributed to random 
sampling upon the inability of the linear regression model to make better predictions. The 
sampling diversity was moderately high in run 3 due to the implementation of three different 
acquisition functions. Interestingly, it appears that the optimizer was sampling in circles at one 
point in the run 3 as it cycled between the three acquisition functions, thus, in future 
optimizations, it may be more effective to begin with UCB in order to increase the initial 
sampling diversity, then switch to EI in the second half of the run to facilitate convergence.  

 

Figure SI.12. Multidimensional scaling (MDS) visualizations 
a) The optimization trajectory in three runs, with the purple arrows illustrating the optimization 
path (from light to dark) and yellow points indicating the initial seed and random samples. b) 
The sampling diversity colored by the different acquisition functions implemented in each 
strategy.  
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ESI.9. NMR Studies to the interaction of reaction components prior to irradiation 
 

NMR studies were performed to understand the impact of various reaction species on NBS.  

 

Figure SI.13. NMR studies of NBS with the addition of various reaction species in solution 
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NMR studies were performed to understand the equilibrium between pyridazinone 1 and 
succinimide. 

 

Figure SI.14. NMR studies of pyridazinone 1 and NBS 

Table SI.2. Assays to determine pyridazinone 1 and succinimide concentrations 

70 mM pyridazinone 1 in solution 
Component [Theoretical] 

mM 
Peak 
Area 

# 
Protons 

[Measured] 
mM 

Measured 
umol 

Measured 
mol%  

Pyridazinone 1 70 1.07 1 76.0 152.1 100.0 
Biphenyl 81 2.28 2 

   

70 mM Pyridazinone 1 + 70 mM NBS in solution 
Component [Theoretical] 

mM 
Peak 
Area 

# 
Protons 

[Measured] 
mM 

Measured 
umol 

Measured 
mol% 

Pyridazinone 1 70 0.87 1 58.7 117.5 77.0 
Succinimide 70 0.26 1 17.6 35.1 23.0 
Biphenyl 81 2.40 2 

   

Total NH 
   

76.3 152.6 
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ESI.10. Analysis of random forest parameter importance modeling 

The first analysis was conducted to investigate whether the high variable importance of the 
additive variable was observed due to its larger number of factor levels compared to other 
variables. We repeated the RF variable importance calculation 100 times, for both the original 
and randomly shuffled additive variable. The additive pKa numerical descriptor was excluded 
due to correlation. The boxplot below shows the comparison between the “%-increase-MSE” 
variable importance scores between these two settings. When the additive feature was 
shuffled, the corresponding “%-increase-MSE” reduced significantly compared to the “%-
increase-MSE” using the original additive feature. In other words, the additive feature was no 
longer ranked among the top important features after being shuffled despite the shuffled data 
having the same number of factor levels in additive. 

 
 

Figure SI.15. Analysis of additive parameter importance 

The second analysis was conducted to investigate whether the numerical additive pKa feature 
helped to improve the model generalizability for unseen additives. We simulated a prospective 
out-of-sample test set using the existing data by selecting each of the eight additive categories 
as the test set with an unseen additive. For example, selecting data with “acetic acid” as the 
test set, while using the rest of data containing the remaining seven additives as the training 
set. We compared three featurization methods for each train/ test split and repeated with 
different random seeds 300 times: 1) Original additive pKa variable; 2) Replacing all the additive 
pKa values with random values generated from a normal distribution with the same mean and 
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standard deviation; 3) Removing additive pKa. The factor variable additive was excluded from 
this analysis since it could not be applied to a new additive category. The two boxplots below 
show the R2 and RMSE on each test set from 300 repeated experiments, and the two summary 
tables contain the average metrics across repeated experiments. The results suggest that 
meaningful featurization of additive pKa may help to improve the model generalization 
performance for some new additives, such as lactic acid, phenylphosphonic acid, and water, 
compared to random featurization or omitting additive. However, our dataset is obtained from 
unbalanced optimization campaigns. To further validate any findings or observations from this 
dataset, it would be necessary to conduct additional experiments with a randomized 
experimental design and random-control procedures, which is out-of-scope of this work. 

 

 
 
Figure SI.16. Analysis of additive pKa parameter importance (R2) 
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Figure SI.17. Analysis of additive pKa parameter importance (RMSE) 
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ESI.11. Experimental 

General 

Commercial reagents were purchased from Millipore Sigma, Oakwood, Combi-Blocks, Alfa 
Aesar, Acros, and Strem, and used as received. Anhydrous solvents were purchased from 
Millipore Sigma and used as received. Aqueous solutions were deoxygenated through 
subsurface nitrogen sparge for a minimum of 30 minutes. 

Stock solutions were prepared manually in anhydrous solvents under N2 atmosphere and 
placed on the robot deck for autonomous execution. A fluoropolymer and metal top-sealed 48-
well photoreactor with 1 mL glass vial inserts was equilibrated at the designated reaction 
temperature under 20 psig of N2 with 400 rpm agitation. The photoreactor was irradiated with 
an LED array. 

Equipment 

Autonomous optimization experiments were executed using a Chemspeed SWING XL robotic 
system equipped with a four-needle dispense head and four 1 mL syringe pumps to enable 
accurate dispenses at low volumes. Agitation was carried out through an integrated custom 
V&P scientific two-position tumble stirring module and temperature control was achieved 
through an integrated Huber Unistat chiller with temperature feedback control. Photochemical 
reactions were executed in a 48 well Analytical Sales Temperature Controlled Reactor (TCR) 
prototype and irradiated with a modified Analytical Sales Lumidox II LED array. Online HPLC 
analysis was carried out through an integrated Agilent 1290 UPLC equipped with a photodiode 
array detector and a custom sampling valve installed on the robot. 

Compounds were purified  on a CombiFlash purification system employing Redisep Rf Gold 
silica gel columns. 1H NMR spectra for characterization were acquired on a Bruker 500 MHz 
instrument (4 scans). Samples were prepared in DMSO-d6 and spectra were calibrated to the 
DMSO-d6 reference peak at 2.50 ppm. 13C NMR spectra for characterization were recorded on a 
Bruker 500 MHz instrument (5120 scans). Samples were prepared in DMSO-d6 and spectra were 
calibrated to the DMSO-d6 reference peak at 40 ppm. ESI+ MS for characterization were 
acquired on an Agilent 1290 UPLC-MS.  
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Representative procedure for high throughput reaction profiling experiments 

The described procedure was executed in batch for 48 - 96 reactions.  To each well was 
dispensed 200 µl  of a mixture of starting material 1 (63.0 µmol, 0.315 M), brominating reagent 
(75.6 µmol, 0.378 M), and octofluorotoluene (6.3 µmol, 0.032 M). This was followed by the 
addition of acid additive (6.3 µmol, 50 µl  of 0.126 M stock solution). The reaction mixture was 
irradiated with a 405 or 470 nm LED array for the designated time interval at 25 oC. The LED 
array was switched off and 10 µl of each reaction mixture was transferred to a 96-well 
polypropylene collection block prefilled with 800 µl of ACN diluent. The irradiation-sampling 
sequence was continued until between 6 and 12 samples were aliquoted and diluted from each 
reaction mixture. The diluted samples were subjected to offline UPLC analysis. 

Representative procedure for LED NMR experiments  

To a 2 mL volumetric flask under N2 atmosphere was dispensed stock solutions of  6-methyl-4-
(trifluoromethyl)pyridazin-3(2H)-one 1 (25.0 mg, 0.140 mmol) and NBS (30.3 mg, 0.168 mmol) 
in ACN-d3. This was followed by the addition of a stock solution of H3PO4 (1.39 mg, 0.0140 
mmol) in ACN-d3. The resulting mixture was adjusted to 2 mL of volume with ACN-d3 and 600 µl 
was transferred to a 5 mm thin wall NMR tube followed by the placement of the coaxial insert. 
The joint was parafilmed and the sample was wrapped with foil to keep out the light. The 
sample was irradiated at 445 nm at the desired temperature under LED NMR acquisition.  

Representative procedure for autonomous reproducibility experiments 

The described procedure was executed sequentially for each reaction.  To each well was 
dispensed methyl pyridazinone 1 (20 µmol, 80 µl of 0.25 M stock solution), NBS (25 µmol, 100 
µl of 0.25 M stock solution), H2SO4 (2 µmol, 20 µl of 0.10 M stock solution), and anhydrous ACN 
or DMC (50 µl) to ensure a total reaction volume of 250 µl. The reaction mixture was irradiated 
with an LED array for two minutes at 25 oC. The LED array was switched off and 5 µl of the 
reaction mixture was transferred to a 96-well polypropylene collection block prefilled with 400 
µl of ACN diluent. Upon needle-mixing, 40 ul of diluted sample from the collection block was 
aliquoted and injected to the on-deck sampling valve outfitted with a 2 µl loop. The valve was 
automatically switched to transfer the sample to the UPLC for analysis. The irradiation-
sampling-online analysis sequence was continued until the reaction reached a plateau or a 
maximum number of 12 samples were analyzed. 
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Procedure for scale-up experiment in flow  

To a 50 mL volumetric flask was added 6-methyl-4-(trifluoromethyl)pyridazin-3(2H)-one 1 (12.5 
mmol, 2.23 g) and NBS (15.0 mmol, 2.67 g), followed by 25 mL of ACN to dissolve all solids. 
H2SO4 (1.25 mmol, 0.0668 mL) was added and the volume adjusted to 50 mL with ACN. The 
solution was flowed through a Vaportec system equipped with a 3 mL reactor under 450 nm 
irradiation at 0.5 ml/min (6 min residence time). After 25 min, the product stream collection 
was initiated and continued for 65 min. 32.6 ml was collected to generate 6-(bromomethyl)-4-
(trifluoromethyl)pyridazin-3(2H)-one 2 in 69% assay yield and 6-(dibromomethyl)-4-
(trifluoromethyl)pyridazin-3(2H)-one 3 in 13% assay yield, with 5% assay yield 6-methyl-4-
(trifluoromethyl)pyridazin-3(2H)-one 1 remaining. 

Representative procedure for autonomous optimization reactions 

The described procedure was executed sequentially for each reaction.  To each well was 
dispensed starting material 1 (20 µmol, 80 µl of 0.25 M stock solution), brominating reagent (20 
- 30 µmol, 80 - 120 µl of 0.25 M stock solution), acid additive (0.2 – 5.0 µmol, 2 - 50 µl of 0.10 M 
stock solution), and anhydrous ACN or DMC (100 - 188 µl) to ensure a total reaction volume of 
350 µl. The reaction mixture was irradiated with an LED array for two minutes at a designated 
reaction temperature between 5 and 35 oC. The LED array was switched off and 5 µl of the 
reaction mixture was transferred to a 96-well polypropylene collection block prefilled with 400 
µl of ACN diluent. Upon needle-mixing, 40 ul of diluted sample from the collection block was 
aliquoted and injected to the on-deck sampling valve outfitted with a 2 µl loop. The valve was 
automatically switched to transfer the sample to the UPLC for analysis (Figure SI.13). The 
irradiation-sampling-online analysis sequence was continued until the reaction reached a 
plateau or a maximum number of 12 samples were analyzed.  
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Figure SI.18. Image of the Chemspeed SWING XL deck for autonomous experimentation 

Procedure for the synthesis of 6-methyl-4-(trifluoromethyl)pyridazin-3(2H)-one 1: 

 

To a 1 L flask was added acetone (1.92 mol, 112 g, 141 ml) and AcOH (400 mL). Methyl 3,3,3-
trifluoro-2-oxopropanoate 4 (1.28 mol, 200 g, 145 ml) was charged via addition funnel over 2 
min, raising the temperature rose to 46 oC. The resulting mixture was flowed through a 5 ml 
flow reactor housed in a 150 oC oven until steady state was established at 0.416 ml/min and the 
reactor output was collected for 18 h 30 min to yield 519 g of solution containing 192 g (0.897 
mol) of methyl 2-hydroxy-4-oxo-2-(trifluoromethyl)pentanoate 5.  

To a 3 L round bottom flask was transferred 290 g of solution containing 107 g (0.500 mol) of 
methyl 2-hydroxy-4-oxo-2-(trifluoromethyl)pentanoate 5. To this solution was charged 
hydrazine hydrate (0.752 mol, 37.6 g, 36.5 ml) under N2 atmosphere over 10 min, raising the 
temperature to 50 oC. The reaction was aged at 80 oC for 1 h. The reaction was cooled to 25 oC 
and 322 ml of water was added via addition funnel over 20 min. This was followed by the 
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addition of 644 ml 35 wt% NaH2PO4 via addition funnel over 40 min. The mixture was cooled to 
0 oC, filtered and the cake washed twice with 160 ml water. The wet cake was dried in a 
vacuum oven under N2 sweep to yield 77.3 g of 6-methyl-4-(trifluoromethyl)pyridazin-3(2H)-
one 1 in 87% yield.  

1H NMR (500 MHz, DMSO-d6) δ 13.39 (s, 1H), 7.86 – 7.83 (m, 1H), 2.31 (s, 3H). 

13C NMR (126 MHz, DMSO-d6) δ 156.42, 144.42, 133.99 – 133.63 (m), 127.35 (q, J = 31.0 Hz), 
122.09 (q, J = 272.7 Hz), 20.52. 

MS ESI+: (m/z calc. for C6H5F3N2O, [M + H] = 179.0); found = 179.0. 

Procedure for the synthesis of 6-(bromomethyl)-4-(trifluoromethyl)pyridazin-3(2H)-one 2: 

 

To a 100 mL round bottom flask was added 6-(hydroxymethyl)-4-(trifluoromethyl)pyridazin-
3(2H)-one 6 (25.8 mmol, 5.00 g), CBr4 (38.6 mmol, 12.8 g) and ACN (50 ml). The mixture was 
cooled in an ice batch and PPh3 (28.3 mmol, 7.42 g) was added, raising the temperature to 21 
oC. The mixture was concentrated to dryness and purified over silica gel to yield 6-
(bromomethyl)-4-(trifluoromethyl)pyridazin-3(2H)-one 2 (the yield was not determined). 

1H NMR (500 MHz, DMSO-d6) δ 13.78 (s, 1H), 8.09 – 8.05 (m, 1H), 4.62 (s, 2H). 

13C NMR (126 MHz, DMSO-d6) δ 156.26, 143.97, 133.10 (q, J = 4.9 Hz), 128.16 (q, J = 31.5 Hz), 
121.80 (q, J = 272.9 Hz), 31.40. 

MS ESI+: (m/z calc. for C6H4BrF3N2O, [M + H] = 256.9); found = 256.9. 

Procedure for the synthesis of 6-(dibromomethyl)-4-(trifluoromethyl)pyridazin-3(2H)-one 3: 
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To a 40 ml vial was charged 6-methyl-4-(trifluoromethyl)pyridazin-3(2H)-one 1 (22.5 mmol, 4.00 
g), NBS (56.1 mmol, 10.0 g) and ACN (40 ml). This was followed by the addition of H2SO4 (2.25 
mmol, 0.220 g, 0.120 ml). The mixture was split into 2 vials and irradiated with a Penn PhD 
photoreactor at 470 nm for 4 h. The mixture was concentrated to dryness and purified over 
silica gel to yield 5.56 g of 6-(dibromomethyl)-4-(trifluoromethyl)pyridazin-3(2H)-one 3 in 82% 
yield.  

1H NMR (500 MHz, DMSO-d6) δ 13.92 (s, 1H), 8.15 – 8.11 (m, 1H), 7.25 (s, 1H). 

13C NMR (126 MHz, DMSO-d6) δ 156.12, 144.94, 130.57 (q, J = 4.9 Hz), 128.76 (q, J = 31.8 Hz), 
121.52 (q, J = 273.1 Hz), 38.27. 

MS ESI+: (m/z calc. for C6H3Br2F3N2O, [M + H] = 334.9); found = 334.9. 
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ESI.12. Characterization data 

 

Figure SI.19. MS ESI+ of 1 

 

Figure SI.20. MS ESI+ of 2 

 

Figure SI.21. MS ESI+ of 3 
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Figure SI.22. 1H and 13C NMR spectra of 1 in DMSO-d6 
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Figure SI.23. 1H and 13C NMR spectra of 2 in DMSO-d6 
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Figure SI.24. 1H and 13C NMR spectra of 3 in DMSO-d6  
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ESI.13. Analytical methods 

Reaction analyses were carried out using an Agilent 1100 HPLC-UV using the method below: 

Table SI.3. HPLC-UV method for optimization sample analysis 

Column: 
Agilent Poroshell 210 PFP 2.7 um, 4.6 x 50 
mm 

Column Temperature: 50 oC 
Flow Rate: 0.85 ml/min 
Detection: 210 nm 
Acquisition Time: 3.0 min 
Mobile Phase: Solvent A = 2 mM ammonium formate in 

water; Solvent B = 2 mM ammonium formate 
in acetonitrile 10% water 

Mobile Phase Program: Time  
0.0 min 
1.5 min 
2.5 min 
3.0 min 

B% 
5 
100 
100 
5 

Injection Volume: 2 µL 

Compound Name: Retention time:  
6-methyl-4-(trifluoromethyl)pyridazin-3(2H)-one 1 0.99 min 

6-(bromomethyl)-4-(trifluoromethyl)pyridazin-3(2H)-
one 2 

1.27 min 

6-(dibromomethyl)-4-(trifluoromethyl)pyridazin-
3(2H)-one 3 

1.48 min 

Example Chromatogram 
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ESI.14. Chemspeed protocol 

Below is an excerpt of the Chemspeed protocol used in autonomous optimization. 
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Figure SI.25. Chemspeed protocol for autonomous optimization of the photobromination 
reaction 
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