Supporting information

Lanthanide MOF Based Luminescent Sensor Arrays for the Detection of Castration-Resistant Prostate Cancer Curing Drugs and Biomarkers

Xinrui Wang ${ }^{[a]}$, Karuppasamy Gopalsamy ${ }^{[b]}$, Gilles Clavier ${ }^{[c]}$, Guillaume Maurin ${ }^{[b]}$, Bin Ding ${ }^{*[d]}$, Antoine Tissot ${ }^{*[a]}$ and Christian Serre ${ }^{*[a]}$
[a] Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France.
[b] ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France.
[c] Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France.
[d] Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China

1. General methods

The $\mathrm{H}_{2} \mathrm{~L}$ Ligand was purchased from JiNan Henghua (Jinan, China). DNA sequences were purchased from AZENTA company. All the other reagents were commercially purchased and utilized without further purification. C, H, and N microanalyses were carried out with a PerkinElmer 240 elemental analyzer. Powder X-Ray Diffraction (PXRD) was characterized by a highthroughput Bruker D8 Advance diffractometer working on transmission mode and equipped with a focusing Göbel mirror producing CuK α radiation $(\lambda=1.5418 \AA)$ and a LynxEye detector. FT-IR spectra (4000-500 cm^{-1}) were recorded by using a Nicolet iS5 FTIR ThermoFisher spectrometer. Ultrasonic preparation was carried by a Branson Ultrasonic bath (sonifier sound enclosure Instrument, USA). Agilgent technologies (USA) cary 300 spectrophotometer was utilized to record ultraviolet-visible (UV-vis) adsorption spectra. The photo-luminescent spectra were performed using a Fluorolog-3, Horiba Jobin Yvon (USA). TEM, STEM-HAADF, and EDS images were recorded with Thermo Fisher Scientific Talos F200X (USA), spot size of the beam used for TEMEDS imaging is 6.

Lifetime experiments were done using 10 mm path length quartz cuvettes: The ns fluorescence decay curves were obtained by the time-correlated single-photon counting (TCSPC) method. The setup is composed with a titanium sapphire Ti:Sa oscillator (Spectra Physics, Maï Taï HP) emitting pulses of 100 fs duration at $690 \mathrm{~nm}, 80 \mathrm{MHz}$ frequency. The laser pulses then pass through a pulse picker which implements acousto-optic modulator to pick up specific pulse to reduce the repetition rate at 4 MHz (GWU Lasertechnik, UHG-23-PSK). Then the beam, after adjusting the excitation power and the polarization with respectively an intensity attenuator filter wheel and a Fresnel rotator, passes through the sample solution. Fluorescence photons were detected at 90° through a long pass filter (Schott, RG9), a monochromator (CVI Laser Corporation, Digikröm CM110) and a polarizer by means of a micro channel plate photomultiplier (Hamamatsu, MCP-PMT R3809U-50), connected to a TCSPC module (Becker \& Hickl, SPC-630). Time-correlated fluorescence decay data is finally processed and analysed with the help of a software which implements the non-linear square method (Globals, Laboratory for Fluorescence Dynamics at the University of Illinois at Urbana-Champaign). The Absolute quantum yield test of MOFs 1-4 were measured on a SPEX Fluoromax-3 (Horiba Jobin-Yvon) equipped with an integrating sphere of 10 cm diameter and a Horiba Jobin-Yvon acquisition and analysis procedure. Quantum yields were calculated using equation (1), where the subscript with " 0 " and " x " stand for the corresponding parameter for the standard and sample and $\Phi_{\mathrm{F}}, \mathrm{A}, \mathrm{S}$ and n represents the quantum yield, absorbance, integrated photoluminescence intensity and refractive index, respectively. For this measurement, the excitation position is 260 nm and the emission range is from 535 nm to 620 nm . Zeta potential measurements were performed on Nano-ZS, Worcestershire, (Malvern, UK). MilliQ water was obtained from Millipore system. TGA data were collected on Mettler Toledo TGA/DSC 2, STAR System apparatus with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under the oxygen flow. ICP analysis were carried by Agilent 7700 Series ICP-MS, USA.

2. X- ray Crystallography.

Single crystal X-Ray diffraction experiments where performed on MOF 1 and MOF 2 on a Bruker

SMART 1000 CCD diffractometer utilizing graphite-monochromated Mo-K α radiation $(\lambda=$ $0.71073 \AA$). Lorentz polarization, $\omega-\varphi$ scanning method and absorption corrections were utilized. The structures were analyzed by direct methods and refined with the full-matrix least-squares method utilizing the SHELXS-97 and SHELXL-97 programs. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. Organic hydrogen atoms were defined geometrically. Analytical expressions of neutral-atom scattering factors were utilized and anomalous dispersion corrections were incorporated. Crystallographic data and refinement details for 1 and 2 were summarized in Table S 1 , selected bond lengths and angles were summarized in Table S2-S5 and selected hydrogen bonds lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ were calculated with the program PLATON and listed in Tables S6-S7. CCDC-2213806 (1), CCDC-2213805 (2) contain the crystallographic data for this work. These data can be obtained free of charge from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

3. Experimental Section

Preparation of $\left[\mathrm{Eu}_{2}(\mathrm{~L})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF})\right]_{\mathrm{n}}(\mathbf{1})$.

A mixture of Europium chloride $(18.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{~L}(15.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added into the mixture of DMF $(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature. After 48 hours reaction time, colorless bulky crystals of $\mathbf{1}$ were isolated in 65% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. Elemental analysis found (\%) for $\mathrm{C}_{3.19} \mathrm{H}_{2.25} \mathrm{Eu}_{0.12} \mathrm{~N}_{0.62} \mathrm{O}_{0.88}$: C 49.1 H 2.92 N 7.36; calcd: C 49.36, H 2.99, N 7.46.

Preparation of $\left[\mathrm{Tb}_{2}(\mathrm{~L})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{DMF})\right]_{\mathrm{n}}(2)$.

A mixture of Terbium chloride ($74.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{~L}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added into the mixture of DMF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature. After 48 hours reaction time, colorless bulky crystals of $\mathbf{2}$ were isolated in 54% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. Elemental analysis found (\%) for $\mathrm{C}_{48.75} \mathrm{H}_{32.25} \mathrm{~N}_{9.25} \mathrm{O}_{14} \mathrm{~Tb}_{2}$: C 47.98 H 2.96 N 7.18; calcd: C 48.19, H 3.07, N 7.28.

Preparation of Eu0.096 Tbo.904-MOF (3).

A mixture of Europium chloride ($2.7 \mathrm{mg}, 40.1 \mathrm{nmol}$), Terbium chloride ($53.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{~L}(46.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added into the mixture of $\mathrm{DMF}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ for one day and then cooled to room temperature naturally, colorless bulky crystals of $\mathbf{3}$ were isolated in 63% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. The product was washed with ethanol to exchange residual DMF solvent molecules in the pores of $\mathrm{Ln}-\mathrm{MOF}$ and then dried in a vacuum oven to volatilize all the solvent traces.

Preparation of $\mathbf{E u}_{0.051} \mathbf{T b}_{0.949}$-MOF (4).

A mixture of Europium chloride $(3.66 \mathrm{mg}, 0.01 \mathrm{mmol})$, Terbium chloride $(70.87 \mathrm{mg}, 0.19$ mmol) and $\mathrm{H}_{2} \mathrm{~L}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added into the mixture of $\mathrm{DMF}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature naturally, colorless bulky crystals of 4 were isolated in 66% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. The product was washed with ethanol to exchange residual DMF solvent molecules in the pores of $\mathrm{Ln}-\mathrm{MOF}$ and then dried in a vacuum oven to volatilize all the solvent traces.

Preparation of $\mathbf{E u}_{0.011} \mathbf{T b}_{0.989}$-MOF (5).
A mixture of Europium chloride ($0.732 \mathrm{mg}, 0.002 \mathrm{mmol}$), Terbium chloride ($13 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{~L}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added into the mixture of DMF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature naturally, colorless bulky crystals of $\mathbf{5}$ were isolated in 55% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. The product was washed with ethanol to exchange residual DMF solvent molecules in the pores of $\mathrm{Ln}-\mathrm{MOF}$ and then dried in a vacuum oven to volatilize all the solvent traces.

Preparation of $\mathbf{E u}_{0.415} \mathbf{T b}_{0.585}-$ MOF (6).

A mixture of Europium chloride $(36.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, Terbium chloride $(37.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{~L}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added into the mixture of DMF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature naturally, colorless bulky crystals of $\mathbf{6}$ were isolated in 45% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. The product was washed with ethanol to exchange residual DMF solvent molecules in the pores of $\mathrm{Ln}-\mathrm{MOF}$ and then dried in a vacuum oven to

volatilize all the solvent traces.

Preparation of $\mathbf{E u}_{0.516} \mathbf{T b}_{0.484}$-MOF (7).

A mixture of Europium chloride ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$), Terbium chloride ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{~L}(15.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added into the mixture of DMF $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$. The mixed solutions were sealed in a 25 mL Teflon reactor, after the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for one day and then cooled to room temperature naturally, colorless bulky crystals of 7 were isolated in 55% yield based on $\mathrm{H}_{2} \mathrm{~L}$ ligand. The product was washed with ethanol to exchange residual DMF solvent molecules in the pores of $\mathrm{Ln}-\mathrm{MOF}$ and then dried in a vacuum oven to volatilize all the solvent traces.

4. Analysis of luminescent decay test of MOF 1-

3@Hydroxyflutamidine after added AR

After adding different concentrations of AR , the luminescence lifetime of MOF 1@Hydroxyflutamidine (emission at 614 nm) decreased from 230μ s to 192μ s while the lifetime of MOF 2@Hydroxyflutamidine (emission at 543 nm) decreased from $209 \mu \mathrm{~s}$ to $186 \mu \mathrm{~s}$. In addition, the lifetime of MOF 3@Hydroxyflutamidine at 614 nm decreased from 427μ s to $277 \mu \mathrm{~s}$ and MOF 3@Hydroxyflutamidine located at 543 nm increased from $72.9 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$. This confirms that AR can interrupt energy transfer between Tb^{3+} and Eu^{3+} in MOF 3@Hydroxyflutamidine (Table. S15).

Table S1. Crystallographic data and details of refinements for Eu-MOF (1) and Tb-MOF (2) a,b.

	Eu-MOF (1)	Tb-MOF (2)
Formula	$\mathrm{C}_{3.19} \mathrm{H}_{2.25} \mathrm{Eu}_{0.12} \mathrm{~N}_{0.62} \mathrm{O}_{0.88}$	$\mathrm{C}_{48.75} \mathrm{H}_{32.25} \mathrm{~N}_{9.25} \mathrm{O}_{14} \mathrm{~Tb}_{2}$
$\mathrm{M}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	82.3	1289.43
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C 2/c
$a(\AA)$	22.7369 (19)	22.681(5)
$b(\AA)$	13.7847 (11)	13.694(3)
$c(\AA)$	36.172 (3)	35.586(7)
α (deg)	90	90
β (deg)	100.8480(10))	101.482(4)
γ (deg)	90	90
$V\left(\AA^{3}\right)$	11134.4(15)	10832(4)
Z	128	8
F (000)	5200	5052
$\rho_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.571	1.581
$\mu\left(\mathrm{mm}^{-1}\right)$	2.303	2.660
data/restraints/parameters	11436 / 14 / 704	10884 / 70 / 698
GOF on F^{2}	1.099	1.005
$\mathrm{R}_{1}{ }^{\text {a }}$ ($\mathrm{I}=2 \sigma(\mathrm{I})$)	0.0474	0.1254

```
\omegaR2}\mp@subsup{}{2}{\textrm{b}}\mathrm{ (all data)
\({ }^{a} R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| /\left|F_{\mathrm{o}}\right| \cdot{ }^{b} \omega R_{2}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|^{2}-\left|F_{\mathrm{c}}{ }^{2}\right|^{2} / w\left|F_{o}{ }^{2}\right|^{2}\right]^{1 / 2}\right.\).

Table S2. Selected bond lengths [ \(\AA\) ] for Eu-MOF (1).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Eu-MOF} \\
\hline Eu1-O1 & 2.325 (4) & Eu2- \(\mathrm{O6}^{\text {i }}\) & 2.309 (4) \\
\hline Eu1-O5 & 2.404 (4) & Eu2-O2 & 2.328 (4) \\
\hline Eu1-O13 & 2.405 (5) & Eu2-O7 \({ }^{\text {iii }}\) & 2.388 (5) \\
\hline Eu1-O14 & 2.418 (5) & Eu2-O11 \({ }^{\text {iv }}\) & 2.388 (4) \\
\hline Eu1-O10 & 2.479 (4) & Eu2-O9 & 2.432 (4) \\
\hline \[
\mathrm{Eu} 1-\mathrm{O} 4^{\mathrm{i}}
\] & 2.548 (4) & Eu2-O88iii & 2.432 (4) \\
\hline Eu1-O3 \({ }^{\text {i }}\) & 2.556 (4) & Eu2-O3 \({ }^{\text {i }}\) & 2.450 (4) \\
\hline Eu1-N9 \({ }^{\text {ii }}\) & 2.577 (5) & Eu2-O12 \({ }^{\text {iv }}\) & 2.516 (4) \\
\hline Eu1-O9 & 2.608 (4) & O6-Eu2 \({ }^{\text {v }}\) & 2.310 (4) \\
\hline O3-Eu2 \({ }^{\text {v }}\) & 2.450 (4) & O7-Eu2 \({ }^{\text {vi }}\) & 2.388 (5) \\
\hline O3-Eu1 \({ }^{\text {v }}\) & 2.556 (4) & \[
\mathrm{O} 8-\mathrm{Eu} 2^{\mathrm{vi}}
\] & 2.432 (4) \\
\hline O11-Eu2 \({ }^{\text {iv }}\) & 2.388 (4) & O12-Eu2 \({ }^{\text {iv }}\) & 2.516 (4) \\
\hline N9-Eu1 \({ }^{\text {ii }}\) & 2.577 (5) & & \\
\hline
\end{tabular}

Symmetry codes: (i) \(-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2\); (ii) \(-\mathrm{x}+2,-\mathrm{y}+2,-\mathrm{z}+2\); (iii) \(\mathrm{x}, \mathrm{y}+1, \mathrm{z}\); (iv) \(-\mathrm{x}+2, \mathrm{y}\), \(-z+3 / 2\); (v) \(-x+3 / 2, y-1 / 2,-z+3 / 2\); (vi) \(x, y-1, z\).

\section*{Eu-MOF}
\begin{tabular}{|c|c|c|c|}
\hline O14-Eu1-O9 & 70.10 (15) & \(\mathrm{O} 1-\mathrm{Eu} 1-\mathrm{O} 10\) & 127.02 (14) \\
\hline O10-Eu1-O9 & 51.08 (12) & O5-Eu1-O10 & 128.87 (16) \\
\hline O4 \({ }^{\text {i }}\) - \(\mathrm{Eu} 1-\mathrm{O} 9\) & 93.85 (13) & O13-Eu1-O10 & 139.93 (18) \\
\hline O3--Eu1-O9 & 64.86 (13) & O14-Eu1-O10 & 72.44 (18) \\
\hline N9 \({ }^{\text {iii }}\)-Eu1-O9 & 123.25 (15) & \(\mathrm{O} 1-\mathrm{Eu} 1-\mathrm{O} 4{ }^{\text {i }}\) & 128.82 (15) \\
\hline O4i-Eu1-N9 \({ }^{\text {ii }}\) & 72.60 (15) & O1-Eu1-O5 & 81.80 (15) \\
\hline \(\mathrm{O} 3{ }^{\text {i }}\)-Eu1-N9 \({ }^{\text {ii }}\) & 123.36 (15) & O1-Eu1-O13 & 85.1 (2) \\
\hline O1-Eu1-O9 & 77.11 (14) & O5-Eu1-O13 & 72.40 (19) \\
\hline O5-Eu1-O9 & 139.20 (15) & O1—Eul-O14 & 81.04 (18) \\
\hline O13-Eu1-O9 & 138.5 (2) & O5-Eu1-O14 & 72.40 (17) \\
\hline \(\mathrm{O} 1-\mathrm{Eu} 1-\mathrm{N} 9^{\text {ii }}\) & 152.26 (17) & O13-Eu1-O14 & 143.60 (19) \\
\hline O5-Eu1-N9 \({ }^{\text {ii }}\) & 70.54 (15) & O6 \({ }^{\text {i }} \mathrm{Eu} 2-\mathrm{O} 7{ }^{\text {iii }}\) & 87.94 (17) \\
\hline O13-Eu1-N9 \({ }^{\text {ii }}\) & 88.4 (2) & \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 7{ }^{\text {iii }}\) & 156.46 (15) \\
\hline O14-Eu1-N9 \({ }^{\text {ii }}\) & 88.52 (18) & O6--Eu2-O11 \({ }^{\text {iv }}\) & 126.66 (14) \\
\hline O10-Eu1-N9 \({ }^{\text {ii }}\) & 72.63 (15) & \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 11^{\text {iv }}\) & 79.65 (17) \\
\hline O5-Eu1-O3 \({ }^{\text {i }}\) & 144.65 (14) & \(\mathrm{O} 7 \mathrm{iii}-\mathrm{Eu} 2-\mathrm{O} 11^{\text {iv }}\) & 89.28 (19) \\
\hline O13-Eu1-O3 \({ }^{\text {i }}\) & 75.60 (18) & O6i-Eu2-O9 & 141.57 (14) \\
\hline O14-Eu1-O3 \({ }^{\text {i }}\) & 134.10 (15) & \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 9\) & 77.26 (14) \\
\hline O10-Eu1-O3 \({ }^{\text {i }}\) & 85.81 (15) & O7iii-Eu2-O9 & 121.77 (15) \\
\hline O 4 - \(\mathrm{Eu} 1-3^{\text {i }}\) & 50.85 (12) & O11 \({ }^{\text {iv }}\)-Eu2-09 & 81.18 (14) \\
\hline O5-Eu1-O4 \({ }^{\text {i }}\) & 126.28 (15) &  & 121.49 (15) \\
\hline O13-Eu1-O4 \({ }^{\text {i }}\) & 68.84 (17) & \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 8{ }^{\text {iii }}\) & 148.96 (15) \\
\hline O14-Eu1-O4 \({ }^{\text {i }}\) & 143.20 (17) & \(\mathrm{O} 7 \mathrm{iii}-\mathrm{Eu} 2-\mathrm{O} 8^{\text {iii }}\) & 52.70 (15) \\
\hline O10-Eu1-O4 \(4^{\text {i }}\) & 71.86 (15) & \(\mathrm{O} 11^{\text {iv }}-\mathrm{Eu} 2-\mathrm{O} 8^{\text {iii }}\) & 97.56 (16) \\
\hline \(\mathrm{O} 1-\mathrm{Eu} 1-\mathrm{O}^{\text {i }}\) & 80.93 (15) & \(\mathrm{O} 9-\mathrm{Eu} 2-\mathrm{O} 8{ }^{\text {iii }}\) & 71.78 (14) \\
\hline \(\mathrm{O} 6^{\mathrm{i}}-\mathrm{Eu} 2-\mathrm{O} 12^{\mathrm{iv}}\) & 74.25 (14) & O6--Eu2-O3 \({ }^{\text {i }}\) & 78.03 (14) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 12{ }^{\text {iv }}\) & 78.32 (15) & \(\mathrm{O} 2-\mathrm{Eu} 2-\mathrm{O} 3^{\text {i }}\) & 88.00 (15) \\
\hline \(\mathrm{O} 7{ }^{\text {iii }}-\mathrm{Eu} 2-\mathrm{O} 12{ }^{\text {iv }}\) & 78.42 (15) & \(\mathrm{O} 7{ }^{\text {iiii }}-\mathrm{Eu} 2-\mathrm{O} 3{ }^{\text {i }}\) & 110.93 (16) \\
\hline \(\mathrm{O} 11^{\text {iv }}-\mathrm{Eu} 2-\mathrm{O} 12^{\text {iv }}\) & 53.10 (13) & \(\mathrm{O} 11^{\text {iv }}-\mathrm{Eu} 2-\mathrm{O}^{\text {i }}\) & 149.74 (14) \\
\hline O9-Eu2-O12 \({ }^{\text {iv }}\) & 131.15 (13) & \(\mathrm{O} 9-\mathrm{Eu} 2-\mathrm{O} 3^{\text {i }}\) & 69.13 (13) \\
\hline O 8 iii \(-\mathrm{Eu} 2-\mathrm{O} 12{ }^{\text {iv }}\) & 124.71 (16) & \(\mathrm{O} 8^{\text {iii- }}\) - \(\mathrm{Eu} 2-\mathrm{O} 3^{\text {i }}\) & 79.05 (15) \\
\hline O 3 i-Eu2-O12 \({ }^{\text {iv }}\) & 150.41 (14) & & \\
\hline
\end{tabular}

Symmetry codes: (i) \(-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2\); (ii) \(-\mathrm{x}+2,-\mathrm{y}+2,-\mathrm{z}+2\); (iii) \(\mathrm{x}, \mathrm{y}+1, \mathrm{z}\); (iv) \(-\mathrm{x}+2, \mathrm{y}\), \(-z+3 / 2\); (v) \(-x+3 / 2, y-1 / 2,-z+3 / 2\); (vi) \(x, y-1, z\).

Table S4. Selected bond lengths [ \(\AA\) ] for Tb-MOF (2).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Tb-MOF} \\
\hline \(\mathrm{Tb} 1-\mathrm{O} 11^{\text {i }}\) & 2.283 (14) & \(\mathrm{Tb} 2-\mathrm{O} 2{ }^{\text {iii }}\) & 2.306 (13) \\
\hline Tb1-O1 & 2.326 (13) & \(\mathrm{Tb} 2-\mathrm{O} 12{ }^{\text {iv }}\) & 2.317 (14) \\
\hline Tb1-O6 & 2.340 (13) & Tb2-O13 & 2.386 (16) \\
\hline \(\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {ii }}\) & 2.381 (13) & Tb2-O14' & 2.409 (10) \\
\hline Tb1-O10 & 2.398 (16) & Tb2-O14 & 2.411 (10) \\
\hline Tb1-O9 & 2.439 (14) & Tb2-O4v & 2.506 (12) \\
\hline Tb1-O8 \({ }^{\text {iii }}\) & 2.445 (12) & Tb2-O7 & 2.508 (15) \\
\hline Tb1-O5 & 2.500 (13) & Tb2-O8 & 2.534 (12) \\
\hline Tb2-N9 \(9^{\text {vi }}\) & 2.549 (13) & \(\mathrm{Tb} 2-\mathrm{O} 3^{\text {v }}\) & 2.549 (12) \\
\hline
\end{tabular}

Symmetry codes: (i) \(-x+1 / 2, y-1 / 2,-z+1 / 2\); (ii) \(-x+1 / 2, y+1 / 2,-z+1 / 2\); (iii) \(-x, y,-z+1 / 2\); (iv) \(-x\), \(y-1,-z+1 / 2\); (v) \(x-1 / 2, y+1 / 2, z\); (vi) \(x-1 / 2,-y+3 / 2, z-1 / 2\); (vii) \(x+1 / 2, y-1 / 2, z\); (viii) \(-x, y+1\), \(-z+1 / 2\); (ix) \(x+1 / 2,-y+3 / 2, z+1 / 2\).

Table S5. Selected angles [ \({ }^{\circ}\) ] for Tb-MOF (1)

\section*{Tb-MOF}
\begin{tabular}{|c|c|c|c|}
\hline O11- \({ }^{\text {i }}\) Tbl-O1 & 83.5 (5) & \(\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 8{ }^{\text {iii }}\) & 71.7 (4) \\
\hline \(\mathrm{O} 11-\mathrm{Tb} 1-\mathrm{O} 6\) & 127.8 (5) & \(\mathrm{O} 11^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 5\) & 73.6 (5) \\
\hline \(\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 6\) & 79.0 (5) & \(\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 5\) & 77.5 (5) \\
\hline \(\mathrm{O} 11-\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {ii }}\) & 75.8 (5) & \(\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 5\) & 54.8 (5) \\
\hline \(\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {ii }}\) & 91.4 (5) & \(\mathrm{O} 3 \mathrm{ii}-\mathrm{Tb} 1-\mathrm{O} 5\) & 148.4 (5) \\
\hline \(\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 3{ }^{\text {ii }}\) & 152.3 (5) & \(\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 5\) & 77.8 (5) \\
\hline \(\mathrm{O} 11-\mathrm{Tb} 1-\mathrm{O} 10\) & 85.6 (6) & \(\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 5\) & 124.3 (5) \\
\hline \(\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 10\) & 155.0 (5) & \(\mathrm{O} 8{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 5\) & 134.7 (4) \\
\hline \(\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 10\) & 90.2 (6) & \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O} 12{ }^{\text {iv }}\) & 81.5 (5) \\
\hline \(\mathrm{O} 3{ }^{\text {iii }} \mathrm{Tb} 1-\mathrm{O} 10\) & 107.6 (5) & \(\mathrm{O} 2 \mathrm{iii}-\mathrm{Tb} 2-\mathrm{O} 13\) & 85.9 (6) \\
\hline \(\mathrm{O} 11-\mathrm{Tb} 1-\mathrm{O} 9\) & 121.0 (5) & \(\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 13\) & 72.6 (6) \\
\hline \(\mathrm{O} 1-\mathrm{Tbl}-\mathrm{O} 9\) & 149.5 (5) & \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O} 14{ }^{\prime}\) & 84.0 (7) \\
\hline \(\mathrm{O} 6-\mathrm{Tbl}-\mathrm{O} 9\) & 96.3 (6) & \(\mathrm{O} 12^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 14^{\prime}\) & 73.1 (8) \\
\hline \(\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 9\) & 78.9 (5) & O13-Tb2-O14' & 145.3 (8) \\
\hline \(\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 9\) & 53.4 (5) & \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O} 14\) & 75.4 (8) \\
\hline \(\mathrm{O} 11^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 8^{\mathrm{iii}}\) & 139.3 (4) & \(\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 14\) & 67.6 (19) \\
\hline \(\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 8^{\text {iii }}\) & 77.8 (5) & \(\mathrm{O} 13-\mathrm{Tb} 2-\mathrm{O} 14\) & 137.9 (18) \\
\hline \(\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 8^{\text {iii }}\) & 83.6 (4) & \(\mathrm{O} 2 \mathrm{iii}-\mathrm{Tb} 2-\mathrm{O} 4^{\mathrm{v}}\) & 129.7 (5) \\
\hline \(\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 8^{\text {iii }}\) & 69.0 (4) & \(\mathrm{O} 12^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 4^{\mathrm{v}}\) & 127.8 (5) \\
\hline \(\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 8^{\text {iii }}\) & 123.8 (5) & \(\mathrm{O} 13-\mathrm{Tb} 2-\mathrm{O} 4^{\text {v }}\) & 70.2 (6) \\
\hline \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O} 8\) & 76.6 (4) & O14'-Tb2-O4 \({ }^{\text {v }}\) & 138.6 (7) \\
\hline \(\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 8\) & 139.3 (5) & \(\mathrm{O} 14-\mathrm{Tb} 2-\mathrm{O} 4^{\text {v }}\) & 148.4 (13) \\
\hline \(\mathrm{O} 13-\mathrm{Tb} 2-\mathrm{O} 8\) & 138.1 (5) & \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O} 7\) & 126.9 (5) \\
\hline O14'-Tb2-O8 & 70.8 (7) & \(\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Tb} 2-\mathrm{O} 7\) & 128.7 (5) \\
\hline \(\mathrm{O} 14-\mathrm{Tb} 2-\mathrm{O} 8\) & 73.8 (18) & \(\mathrm{O} 13-\mathrm{Tb} 2-\mathrm{O} 7\) & 139.6 (6) \\
\hline \(\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Tb} 2-\mathrm{O} 8\) & 92.2 (4) & \(\mathrm{O} 14{ }^{\prime}-\mathrm{Tb} 2-\mathrm{O} 7\) & 69.7 (7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{O} 7-\mathrm{Tb} 2-\mathrm{O} 8\) & 51.6 (4) & \(\mathrm{O} 14-\mathrm{Tb} 2-\mathrm{O} 7\) & 79.0 (16) \\
\hline \(\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 80.4 (5) & \(\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Tb} 2-\mathrm{O} 7\) & 70.3 (5) \\
\hline \(\mathrm{O} 12^{\mathrm{iv}}-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 143.5 (5) & O14'—Tb2—N9 \({ }^{\text {vi }}\) & 87.5 (7) \\
\hline \(\mathrm{O} 13-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 74.7 (5) & O14-Tb2-N9 \({ }^{\text {vi }}\) & 93.0 (10) \\
\hline O14'-Tb2-O3 \({ }^{\text {v }}\) & 135.4 (7) & \(\mathrm{O} 4{ }^{\text {v }}-\mathrm{Tb} 2-\mathrm{N} 9^{\text {vi }}\) & 72.4 (4) \\
\hline \(\mathrm{O} 14-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 136.0 (15) & \(\mathrm{O} 7-\mathrm{Tb} 2-\mathrm{N} 9^{\text {vi }}\) & 75.1 (5) \\
\hline \(\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Tb} 2-\mathrm{O} 3^{\text {v }}\) & 51.3 (4) & \(\mathrm{O} 8-\mathrm{Tb} 2-\mathrm{N} 9{ }^{\text {vi }}\) & 126.4 (4) \\
\hline \(\mathrm{O} 7-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 87.2 (5) & \(\mathrm{O}^{\mathrm{v}}-\mathrm{Tb} 2-\mathrm{N} 9^{\text {vi }}\) & 123.7 (4) \\
\hline \(\mathrm{O} 8-\mathrm{Tb} 2-\mathrm{O}^{\text {v }}\) & 65.1 (4) & \(\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Tb} 2-\mathrm{N} 9{ }^{\text {vi }}\) & 69.2 (4) \\
\hline \(\mathrm{O} 2 \mathrm{iii}-\mathrm{Tb} 2-\mathrm{N} 9^{\text {vi }}\) & 150.8 (5) & O13-Tb2-N9 \({ }^{\text {vi }}\) & 85.4 (6) \\
\hline
\end{tabular}

Symmetry codes: (i) \(-x+1 / 2, y-1 / 2,-z+1 / 2\); (ii) \(-x+1 / 2, y+1 / 2,-z+1 / 2\); (iii) \(-x, y,-z+1 / 2\); (iv) \(-x\), \(y-1,-z+1 / 2\); (v) \(x-1 / 2, y+1 / 2, z\); (vi) \(x-1 / 2,-y+3 / 2, z-1 / 2\); (vii) \(x+1 / 2, y-1 / 2, z\); (viii) \(-x, y+1\), \(-z+1 / 2\); (ix) \(x+1 / 2,-y+3 / 2, z+1 / 2\).

Table S6. Hydrogen bonds for Eu-MOF \(\left[\AA \text { and }{ }^{\circ}\right]^{a}\)
\begin{tabular}{lllll}
\hline \(\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\) & \(\mathrm{d}(\mathrm{D}-\mathrm{H})\) & \(\mathrm{d}(\mathrm{H} \cdots \mathrm{A})\) & \(\mathrm{d}(\mathrm{D} \cdots \mathrm{A})\) & \(<(\mathrm{DHA})\) \\
\hline \(\mathrm{O}(13)-\mathrm{H}(13 \mathrm{~A}) \cdots \mathrm{O}(4)\) & 0.96 & 2.33 & \(2.803(7)\) & 110 \\
\(\mathrm{O}(13)-\mathrm{H}(13 \mathrm{~B}) \cdots \mathrm{O}(7)\) & 0.96 & 2.09 & \(3.032(8)\) & 164 \\
\(\mathrm{C}(7)-\mathrm{H}(7) \cdots \mathrm{O}(6)\) & 0.93 & 2.31 & \(3.224(7)\) & 170 \\
\(\mathrm{C}(16)-\mathrm{H}(16) \cdots \mathrm{O}(4)\) & 0.93 & 2.47 & \(3.377(9)\) & 165 \\
\(\mathrm{C}(29)-\mathrm{H}(29) \cdots \mathrm{N}(5)\) & 0.93 & 2.50 & \(2.810(10)\) & 100 \\
\(\mathrm{C}(32)-\mathrm{H}(32) \cdots \mathrm{O}(14)\) & 0.93 & 2.56 & \(3.391(14)\) & 148 \\
\(\mathrm{C}(35)-\mathrm{H}(35) \cdots \mathrm{N}(3)\) & 0.93 & 2.60 & \(3.482(12)\) & 159 \\
\(\mathrm{C}(39)-\mathrm{H}(39) \cdots \mathrm{O}(11)\) & 0.93 & 2.42 & \(3.224(7)\) & 145 \\
\(\mathrm{C}(45)-\mathrm{H}(45) \cdots \mathrm{N}(8)\) & 0.93 & 2.53 & \(2.837(10)\) & 100 \\
\(\mathrm{C}(48)-\mathrm{H}(48) \cdots \mathrm{O}(10)\) & 0.93 & 2.40 & \(2.944(8)\) & 117 \\
\hline
\end{tabular}

Table S7. Hydrogen bonds for Tb-MOF \(\left[\AA \text { and }{ }^{\circ}\right]^{a}\)
\begin{tabular}{lllll}
\hline \(\mathrm{D}-\mathrm{H}^{\cdots} \mathrm{A}\) & \(\mathrm{d}(\mathrm{D}-\mathrm{H})\) & \(\mathrm{d}(\mathrm{H} \cdots \mathrm{A})\) & \(\mathrm{d}(\mathrm{D} \cdots \mathrm{A})\) & \(<(\mathrm{DHA})\) \\
\hline \(\mathrm{O}(13)-\mathrm{H}(13 \mathrm{~A}) \cdots \mathrm{O}(12)\) & 0.97 & 2.41 & \(2.79(2)\) & 102 \\
\(\mathrm{O}(13)-\mathrm{H}(13 \mathrm{~A}) \cdots \mathrm{O}(5)\) & 0.97 & 1.91 & \(2.80(2)\) & 151 \\
\(\mathrm{O}(13)-\mathrm{H}(13 \mathrm{~B}) \cdots \mathrm{O}(4)\) & 0.96 & 2.39 & \(2.81(2)\) & 106 \\
\(\mathrm{O}\left(14^{\prime}\right)-\mathrm{H}(14 \mathrm{~A}) \cdots \mathrm{O}(12)\) & 0.97 & 2.46 & \(2.82(3)\) & 101 \\
\(\left.\mathrm{O}(14)^{\prime}\right)-\mathrm{H}(14 \mathrm{~B}) \cdots \mathrm{O}(8)\) & 0.96 & 2.49 & \(2.87(3)\) & 103 \\
\(\mathrm{C}(5)-\mathrm{H}(5) \cdots \mathrm{O}(4)\) & 0.93 & 2.53 & \(2.83(2)\) & 100 \\
\(\mathrm{C}(7)-\mathrm{H}(7) \cdots \mathrm{O}(11)\) & 0.93 & 2.28 & \(3.19(2)\) & 165 \\
\(\mathrm{C}(19)-\mathrm{H}(19) \cdots \mathrm{O}(8)\) & 0.93 & 2.43 & \(2.79(2)\) & 103 \\
\(\mathrm{C}(37)-\mathrm{H}(37) \cdots \mathrm{O}(12)\) & 0.93 & 2.46 & \(2.78(2)\) & 100 \\
\(\mathrm{C}(48)-\mathrm{H}(48) \cdots \mathrm{O}(7)\) & 0.93 & 2.56 & \(3.08(3)\) & 116 \\
\hline
\end{tabular}

Table. S8. Limit of detection (LOD) value for the detection of Hydroxyflutamine in different work.
\begin{tabular}{llll}
\hline Sensor name & Detection method & LOD & Ref \\
\hline pespsin-CuNCs & Fluorescence & 61.82 nM & 1 \\
\(\mathrm{CB} / \beta-\mathrm{CD}\) & Fluorescence & \(0.016 \mu \mathrm{M}\) & 2 \\
Re-Ru@f- & Electrochemical method & 3.17 nM & 3 \\
MWCNT/GCE & & & \\
MoS2-CZO/GCE & Electrochemical method & \(0.005 \mu \mathrm{M}\) & 4 \\
nano-Ag/MGCE & Electrochemical method & \(9.33 \mu \mathrm{M}\) & 5 \\
BDDE & Electrochemical method & \(0.42 \mu \mathrm{M}\) & 6 \\
Sn-ZnO-rGO & Electrochemical method & 7.3 nM & 7 \\
Eu/Tb-MOF & Fluorescence & 8.37 fM & This work \\
\hline
\end{tabular}

Table S9. Results of Hydroxyflutamide detection based on MOF 3 in human serum solution
\begin{tabular}{lllll}
\((\mathbf{1 0 \%}\), water as solvent \(\mathbf{( n = 3 )}\) & & & \\
\hline Sample & Added(pM) & Found(pM) & Recovery(\%) & RSD(\%) \\
\hline 1 & 0 & Not detected & & \\
2 & 0.02 & 0.0194 & 97 & 0.056 \\
3 & 0.04 & 0.0382 & 95.3 & 0.053 \\
4 & 0.06 & 0.0588 & 98 & 0.048 \\
5 & 0.08 & 0.0764 & 95.5 & 0.06 \\
6 & 0.1 & 0.1035 & 103.5 & 0.05 \\
7 & 0.12 & 0.1267 & 105.6 & 0.0656 \\
8 & 0.14 & 0.1473 & 105.2 & 0.0553 \\
9 & 0.2 & 0.2108 & 105.4 & 0.053 \\
10 & 0.22 & 0.2174 & 98.8 & 0.048 \\
11 & 0.24 & 0.2337 & 97.4 & 0.06 \\
12 & 0.26 & 0.2517 & 96.8 & 0.05 \\
\hline
\end{tabular}

Table S10 Amplitude averaged luminescent lifetime of MOF 1-3 after adding different concentration of hydroxyflutamide, excitation position is \(\mathbf{2 6 6} \mathbf{~ n m}\).
\begin{tabular}{lll}
\hline Sample Name & Wavelength \(/ \mathrm{nm}\) & Lifetime \(/ \mu \mathrm{s}\) \\
\hline MOF 3 & 543 & 714.13 \\
MOF 3 + Hydroxyflutamide \((480.9 \mathrm{ng} / \mathrm{mL})\) & 543 & 664.22 \\
MOF 3 & 614 & 427.69 \\
MOF 3 + Hydroxyflutamide \((480.9 \mathrm{ng} / \mathrm{mL})\) & 614 & 352.72 \\
MOF 1 & 614 & 131 \\
MOF 1+ Hydroxyflutamide & 614 & 129.2 \\
MOF 2 & 543 & 225.31 \\
MOF 2+ Hydroxyflutamide & 543 & 212.80 \\
\hline
\end{tabular}

Table S11 Results of PSA detection based on MOF 3@Hydroxyflutamidine in human serum ( \(\mathrm{n}=3\) )
\begin{tabular}{lllll}
\hline Sample & Added \((\mathrm{pM})\) & Found \((\mathrm{pM})\) & Recovery(\%) & RSD(\%) \\
\hline 1 & 0 & Not detected & & \\
2 & 2 & 1.99 & 99.5 & 0.825 \\
3 & 4 & 4.11 & 102.75 & 0.975 \\
4 & 6 & 5.87 & 97.8 & 0.865 \\
5 & 8 & 8.03 & 100.38 & 0.651 \\
6 & 10 & 9.38 & 93.8 & 0.778 \\
7 & 12 & 11.89 & 99.08 & 0.6 \\
8 & 14 & 14.13 & 100.93 & 0.601 \\
9 & 16 & 16.05 & 100.31 & 0.66 \\
10 & 18 & 18.16 & 100.89 & 0.778 \\
11 & 20 & 21.08 & 105.4 & 0.822 \\
12 & 22 & 21.74 & 98.8 & 0.847 \\
13 & 24 & 23.37 & 97.4 & 0.825 \\
14 & 26 & 25.17 & 96.8 & 0.691 \\
15 & 28 & 27.21 & 97.18 & 0.8 \\
16 & 30 & 30.12 & 100.4 & 0.975 \\
\hline
\end{tabular}

Table S12. Results of AR detection based on MOF 3@Hydroxyflutamidine in human serum
\begin{tabular}{lllll}
\(\mathbf{( n = 3 )}\) & & & \\
\hline Sample & Added(pM) & Found(pM) & Recovery(\%) & RSD(\%) \\
\hline 1 & 0 & Not detected & & \\
2 & 1 & 1.048 & 104.8 & 1.965 \\
3 & 3 & 2.931 & 97.69 & 2.438 \\
4 & 4 & 3.93 & 98.25 & 2.298 \\
5 & 5 & 5.003 & 100.06 & 2.642 \\
6 & 6 & 5.898 & 98.3 & 3.108 \\
7 & 7 & 6.792 & 97.03 & 3.012 \\
8 & 8 & 7.949 & 99.4 & 2.7654 \\
9 & 9 & 8.892 & 98.9 & 2.3497 \\
10 & 10 & 10.092 & 100.92 & 2.4321 \\
11 & 11 & 10.613 & 96.5 & 2.8453 \\
12 & 12 & 11.713 & 97.6 & 2.8768 \\
13 & 13 & 13.979 & 107.5 & 2.5689 \\
\hline
\end{tabular}

Table. S13. Limit of detection (LOD) value for the detection of PSA in previous work.
\begin{tabular}{llll}
\hline \multicolumn{1}{c}{ Sample } & \multicolumn{1}{c}{ Detection method } & \multicolumn{1}{c}{ LOD } & \multicolumn{1}{c}{ Ref } \\
\hline GR-Au & Electrochemical detection & \(0.59 \mathrm{ng} / \mathrm{mL}\) & 8 \\
TCNQ-Cu \(\mathrm{C}_{3}(\mathrm{BTC})_{2}\) SPEs & Electrochemical detection & \(0.06 \mathrm{ng} / \mathrm{mL}\) & 9 \\
Silica nanoparticles & Electrochemical detection & \(0.76 \mathrm{ng} / \mathrm{mL}\) & 10 \\
Cd-MOF & Fluorescence sensor & \(27 \mathrm{pg} / \mathrm{mL}\) & 11 \\
QD-655 & Fluorescence sensor & \(100 \mathrm{pg} / \mathrm{mL}\) & 12 \\
Eu/Tb-MOF & Fluorescence sensor & \(15.9 \mathrm{pg} / \mathrm{mL}\) & This work \\
\hline
\end{tabular}

Table. S14 Amplitude averaged luminescent lifetime of MOF 1-3@hydroxyflutamide after adding different concentration of PSA, excitation position is \(266 \mathbf{~ n m}\).
\begin{tabular}{lll}
\hline Sample name & Wavelength/nm & LIfetime/ \(\boldsymbol{\mu s}\) \\
\hline Hydroxyflutamide@MOF3 & 543 & 72.96 \\
Hydroxyflutamide@MOF3 + PSA \((10 \mathrm{ng} / \mathrm{mL})\) & 543 & 107.36 \\
Hydroxyflutamide@MOF3 + PSA \((20 \mathrm{ng} / \mathrm{mL})\) & 543 & 106.72 \\
Hydroxyflutamide@MOF3 + PSA \((30 \mathrm{ng} / \mathrm{mL})\) & 543 & 125.43 \\
Hydroxyflutamide@MOF3 & 614 & 156.27 \\
Hydroxyflutamide@MOF3+PSA \((30 \mathrm{ng} / \mathrm{mL})\) & 614 & 136.76 \\
MOF1@hydroxyflutamide & 614 & 234.27 \\
MOF1@hydroxyflutamide+PSA \((10 \mathrm{ng} / \mathrm{mL})\) & 614 & 219.27 \\
Hydroxyflutamide@MOF1+PSA \((20 \mathrm{ng} / \mathrm{mL})\) & 614 & 215.16 \\
Hydroxyflutamide@MOF1+PSA \((30 \mathrm{ng} / \mathrm{mL})\) & 614 & 189.90 \\
Hydroxyflutamide@MOF2 & 543 & 208.74 \\
Hydroxyflutamide@MOF2+PSA \((10 \mathrm{ng} / \mathrm{mL})\) & 543 & 203.00 \\
Hydroxyflutamide@MOF2+PSA \((20 \mathrm{ng} / \mathrm{mL})\) & 543 & 199.84 \\
Hydroxyflutamide@MOF2+PSA \((30 \mathrm{ng} / \mathrm{mL})\) & 543 & 194.34 \\
\hline
\end{tabular}

Table. S15 Amplitude averaged luminescent lifetime of MOF 1-3@hydroxyflutamide after adding different concentration of AR, excitation position is \(\mathbf{2 6 6} \mathbf{~ n m}\).
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ Sample Name } & Wavelength /nm & Lifetime / \(\boldsymbol{\mu s}\) \\
\hline Hydroxyflutamide@MOF3 & 614 & 427.69 \\
Hydroxyflutamide@MOF3+Ar (6 nM) & 614 & 293.74 \\
Hydroxyflutamide@MOF3+Ar 9 nM\()\) & 614 & 277.58 \\
Hydroxyflutamide@MOF3 & 543 & 72.96 \\
Hydroxyflutamide@MOF3+Ar (3 nM) & 543 & 75.32 \\
Hydroxyflutamide@MOF3+Ar 6 nM\()\) & 543 & 94.69 \\
Hydroxyflutamide@MOF3+Ar 9 nM\()\) & 543 & 100.07 \\
Hydroxyflutamide@MOF2 & 543 & 209.50 \\
Hydroxyflutamide@MOF2+Ar (3 nM) & 543 & 204.50 \\
Hydroxyflutamide@MOF2+Ar 6 nM\()\) & 543 & 190.55 \\
Hydroxyflutamide@MOF2+Ar \((9 \mathrm{nM})\) & 543 & 186.45 \\
Hydroxyflutamide@MOF1 & 614 & 230.55 \\
Hydroxyflutamide@MOF1+Ar (3 nM) & 614 & 219.55 \\
Hydroxyflutamide@MOF1+Ar \((6 \mathrm{nM})\) & 614 & 206.24 \\
Hydroxyflutamide@MOF1+Ar \((9 \mathrm{nM})\) & 614 & 191.57 \\
\hline
\end{tabular}

Table S16 Amplitude averaged luminescent lifetime of MOF 1-3 after adding different concentration of AR or PSA, excitation position is \(266 \mathbf{~ n m}\).
\begin{tabular}{lll}
\hline Sample Name & Wavelength \(/ \mathbf{n m}\) & Lifetime \(/ \mathbf{n s}\) \\
\hline Hydroxyflutamide \(@\) MOF3 \((480.9 \mathrm{ng} / \mathrm{mL})\) & 350 & 1.51 \\
Hydroxyflutamide \(@\) MOF3 \((480.9 \mathrm{ng} / \mathrm{mL})+\) AR \((3 \mathrm{nM})\) & 350 & 1.44 \\
Hydroxyflutamide \(@\) MOF3 \((480.9 \mathrm{ng} / \mathrm{mL})+\) AR \((6 \mathrm{nM})\) & 350 & 1.36 \\
Hydroxyflutamide@MOF3 \((480.9 \mathrm{ng} / \mathrm{mL})\) & 350 & 1.67 \\
Hydroxyflutamide \(@\) MOF3 \((480.9 \mathrm{ng} / \mathrm{mL})+\) PSA \((50 \mathrm{ng} / \mathrm{mL})\) & 350 & 1.64 \\
\hline
\end{tabular}


Figure. S1 Structure motif picture of \(\mathrm{H}_{2} \mathrm{~L}\) (Carobon= Grey, Oxygen= Red, Nitrogen= Blue).


Figure. S2 (a) TG analysis of Eu-MOF, Tb-MOF and MOF 3. (b) UV-vis spectra of Eu-MOF, TbMOF and MOF 3. (c) Variable temperature Powder X-ray Diffraction (PXRD) patterns of MOF 3. (d) PXRD of \(E u_{x}-\mathrm{Tb}_{1-\mathrm{x}}\)-MOF under different conditions.


Figure. S3. Luminescence spectra of (a) MOF 1 suspension ( \(0.1 \mathrm{~g} / \mathrm{L}\) in water); (b) MOF 2 suspension ( \(0.1 \mathrm{~g} / \mathrm{L}\) in water); (c) MOF 3 suspension ( \(0.1 \mathrm{~g} / \mathrm{L}\) in water); (d) MOF 4 suspension ( \(0.1 \mathrm{~g} / \mathrm{L}\) in water).


MOF 1 MOF 5 MOF 4 MOF 3 MOF 6 MOF 7 MOF 2
Figure. S4 Luminescence lifetime of MOF 1-7 at 543 nm and 614 nm (excitation at 260 nm ).


Figure. S5 (a) Luminescence spectra of \(\mathbf{3}\) after adding Hydroxyflutamide at different concentrations (excitation: 250 nm ); (b) linear relationship between concentration of Hydroxyflutamide and relative luminescence intensity ratio of 3 .


Figure. S6. The luminescence decays of (a) MOF 1 (emission at 543 nm ); (b) MOF 2 (emission at 614 nm ); (c) MOF 3@hydroxyflutamide (emission at 543 nm ); (d) MOF 3@hydroxyflutamide (emission at 614 nm ) after adding different concentrations of AR. All the experiments were performed at \(\lambda_{\mathrm{ex}}=260 \mathrm{~nm}\).


Figure. S7 Luminescence spectra of \(\mathbf{3}\) after adding different concentrations of AR (excitation: 250 nm ).


Figure. S8 Luminescence spectra of \(\mathbf{3}\) after adding different concentrations of PSA (excitation: 250 nm ).


Figure. S9 (a) Luminescence spectra of 3 with Hydroxyflutamide ( \(10 \mu \mathrm{M}\) ) after adding different concentrations of PSA (excitation: 250 nm ); (b) the relationship between luminescent ratio of \(\mathbf{3}\) and the concentration of PSA.


Figure. S10 (a) Luminescence spectra of \(\mathbf{3}\) with \((10 \mu \mathrm{M})\) after adding different concentrations of AR (excitation: 250 nm ); (b) the relationship between luminescent ratio of \(\mathbf{3}\) and the concentration of AR.


Figure. S11 Zeta potentials of MOF 3, hydroflutamide, and the mixture of the MOF 3 with hydroxyflutamide and specific antigen and androgen receptor.


Figure. S12 Raman spectra of (a) PSA under different condition; (b) AR under different condition.


Figure. S13. The luminescence decays of (a) MOF 3@Hydroxyflutamide (emission at 543 nm ); (b) MOF3@Hydroxyflutamide (emission at 614 nm ); (c) MOF2@Hydroxyflutamide (emission at 543 nm ); (d) MOF1@Hydroxyflutamide (emission at 614 nm ) after adding different concentrations of PSA. All the experiments were performed at \(\lambda_{\text {ex }}=260 \mathrm{~nm}\).


Figure. S14. The luminescence decays of (a) MOF 3@Hydroxyflutamide (emission at 543 nm ); (b) MOF 3@Hydroxyflutamide (emission at 614 nm ); (c) MOF 2@ Hydroxyflutamide (emission at 543 nm ); (d) MOF 1@Hydroxyflutamide (emission at 614 nm ) after adding different concentrations of AR. All the experiments were performed at \(\lambda_{\mathrm{ex}}=260 \mathrm{~nm}\).


Figure. S15. The luminescence decays of (a) MOF 3@Hydroxyflutamide (emission at 350 nm ) after adding different concentrations of PSA; and (b) MOF 3@Hydroxyflutamide (emission at 350 \(\mathrm{nm})\) after adding different concentrations of AR. All the experiments were performed at \(\lambda_{\mathrm{ex}}=260\) nm.

\section*{References}
1. S. Borse, Z. V. P. Murthy, T.-J. Park and S. K. Kailasa, Microchemical Journal, \(2021,164\).
2. S. Kubendhiran, R. Sakthivel, S. M. Chen, B. Mutharani and T. W. Chen, Anal Chem, 2018, 90, 6283-6291.
3. P. Veerakumar, V. Vinothkumar, S.-M. Chen, A. Sangili and K.-C. Lin, Journal of Materials Chemistry C, 2021, 9, 15949-15966.
4. S. V. Selvi, N. Nataraj, T. W. Chen, S. M. Chen, S. Nagarajan, C. S. Ko, T. W. Tseng and C. C. Huang, Materials Today Chemistry, 2022, 23.
5. F. Ahmadi, J. B. Raoof, R. Ojani, M. Baghayeri, M. M. Lakouraj and H. Tashakkorian, Chinese Journal of Catalysis, 2015, 36, 439-445.
6. L. Švorc, K. Borovská, K. Cinková, D. M. Stanković and A. Planková, Electrochimica Acta, 2017, 251, 621-630.
7. K.-Y. Hwa, A. Santhan and S. K. S. Tata, Microchemical Journal, 2021, 160.
8. H. D. Jang, S. K. Kim, H. Chang and J. W. Choi, Biosens Bioelectron, 2015, 63, 546-551.
9. S. K. Bhardwaj, A. L. Sharma, N. Bhardwaj, M. Kukkar, A. A. S. Gill, K.-H. Kim and A. Deep, Sensors and Actuators B: Chemical, 2017, 240, 10-17.
10. B. Qu, X. Chu, G. Shen and R. Yu, Talanta, 2008, 76, 785-790.
11. M. M. Wanderley, C. Wang, C. D. Wu and W. Lin, JAm Chem Soc, 2012, 134, 9050-9053.
12. H. Y. Song, T. I. Wong, A. Sadovoy, L. Wu, P. Bai, J. Deng, S. Guo, Y. Wang, W. Knoll and X. Zhou, Lab Chip, 2015, 15, 253-263.```

